JP2010251217A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2010251217A
JP2010251217A JP2009101529A JP2009101529A JP2010251217A JP 2010251217 A JP2010251217 A JP 2010251217A JP 2009101529 A JP2009101529 A JP 2009101529A JP 2009101529 A JP2009101529 A JP 2009101529A JP 2010251217 A JP2010251217 A JP 2010251217A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium
lithium secondary
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009101529A
Other languages
Japanese (ja)
Other versions
JP5372584B2 (en
Inventor
Akira Sato
明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009101529A priority Critical patent/JP5372584B2/en
Publication of JP2010251217A publication Critical patent/JP2010251217A/en
Application granted granted Critical
Publication of JP5372584B2 publication Critical patent/JP5372584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery suppressing reduction of an additive for improving safety, due to side effects for improving safety. <P>SOLUTION: The lithium secondary battery is formed via a lithium absorbing and emitting positive electrode, a lithium absorbing and emitting negative electrode and a lithium salt containing nonaqueous electrolyte. The positive electrode includes a positive electrode mixture and a collector; the positive electrode mixture includes a lithium and transition metal containing composite oxide, a conductive assistant and a binder resin; and the positive electrode mixture contains a halogen element containing polymer compound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池に関するものである。   The present invention relates to a lithium secondary battery.

電子技術の進歩により、電子機器の性能が向上して小型化,ポータブル化が進み、その電源としてエネルギー密度の高い二次電池が望まれている。これらの要求に応え、近年、エネルギー密度を大幅に向上できる非水電解液系二次電池、すなわち、有機電解液系リチウムイオン二次電池(以下、単に「リチウム二次電池」と記す。)が開発され、急速に普及している。また近年、リチウム二次電池は、高容量・高電圧の動力源として、電気自動車やハイブリット車への用途が期待されている。   Advances in electronic technology have improved the performance of electronic devices, leading to miniaturization and portability, and secondary batteries with high energy density are desired as power sources. In response to these requirements, in recent years, non-aqueous electrolyte secondary batteries that can significantly improve energy density, that is, organic electrolyte lithium ion secondary batteries (hereinafter simply referred to as “lithium secondary batteries”) have been developed. Developed and rapidly spreading. In recent years, lithium secondary batteries are expected to be used for electric vehicles and hybrid vehicles as a high-capacity, high-voltage power source.

しかしながら、これらの適用に際しては、リチウム二次電池が長寿命であること、高出力であることに加えて、濫用時における電池の安全性の確保も重要である。   However, in these applications, in addition to the long life and high output of the lithium secondary battery, it is also important to ensure the safety of the battery during abuse.

現行のリチウム二次電池は電解液として可燃性の有機電解液を使用しているため、電池のエネルギー密度向上に伴い、過充電,内部短絡などの濫用時の安全性確保が困難になりつつある。   Because current lithium secondary batteries use flammable organic electrolytes as electrolytes, it is becoming more difficult to ensure safety during abuse due to overcharge, internal short-circuiting, etc., as the energy density of batteries increases. .

リチウム二次電池は、内部短絡のような際に電池の発熱が進行すると、正極・負極ともに電解液との反応が起こりうる。この際に、発熱を抑制することができない際には、電解液の気化、気化した反応生成物が電池缶から放出されて、発火する恐れがある。   In the lithium secondary battery, when the heat generation of the battery proceeds during an internal short circuit, the positive electrode and the negative electrode may react with the electrolyte. At this time, when the heat generation cannot be suppressed, the electrolyte solution is vaporized, and the vaporized reaction product is released from the battery can and may ignite.

このように、電解液の揮発によるリチウム二次電池の発熱・発火に対して安全性を向上させるために、電解液に添加剤を添加することが検討されている。   Thus, in order to improve safety against heat generation and ignition of the lithium secondary battery due to volatilization of the electrolytic solution, it has been studied to add an additive to the electrolytic solution.

従来から、難燃剤として用いられている添加剤として、リン酸エステル,リン元素と窒素元素の化合物であるホスファゼン,ハロゲン系化合物の添加剤が検討されている。これらは、燃焼時に生成する酸素ラジカルをトラップして、燃焼反応を抑制する効果を有する。このような添加剤を添加により、リチウム二次電池の安全性向上が検討されている。   Conventionally, as additives used as flame retardants, phosphate esters, phosphazenes that are compounds of phosphorus elements and nitrogen elements, and additives of halogen compounds have been studied. These have the effect of trapping oxygen radicals generated during combustion and suppressing the combustion reaction. Improvement of the safety of lithium secondary batteries has been studied by adding such additives.

特許文献1には、上記リン酸エステル等を混合することについて開示されている。   Patent Document 1 discloses mixing the phosphate ester and the like.

特開平4−184870号公報JP-A-4-184870

添加剤が安全性向上のために効果を示すためには、添加剤がリチウム二次電池内に存在する必要がある。添加剤として用いられているリン酸エステルにおいては、電解液中に溶解して存在している際に、負極上での副反応による分解で減少することが知られている。そのため実際に添加剤の効果が必要な状況において、添加剤が電池内に充分に存在しない欠点があった。   In order for the additive to be effective for improving safety, the additive needs to be present in the lithium secondary battery. It is known that the phosphate ester used as an additive is reduced by decomposition due to a side reaction on the negative electrode when it is dissolved in the electrolytic solution. Therefore, in a situation where the effect of the additive is actually required, there is a drawback that the additive is not sufficiently present in the battery.

本発明の目的は、安全性向上のための添加剤が副反応で減少することを抑制して、安全性を向上させたリチウム二次電池を提供することにある。   An object of the present invention is to provide a lithium secondary battery in which safety is improved by suppressing a decrease in additives for improving safety due to side reactions.

本発明のリチウム二次電池は、リチウムを吸蔵放出する正極と、リチウムを吸蔵放出する負極と、リチウム塩を含む非水電解液を介して形成されるリチウム二次電池であって、正極にハロゲン元素を含有する高分子化合物を有することを特徴とする。   The lithium secondary battery of the present invention is a lithium secondary battery formed through a positive electrode that occludes and releases lithium, a negative electrode that occludes and releases lithium, and a non-aqueous electrolyte containing a lithium salt. It has a high molecular compound containing an element.

本発明によれば、安全性に優れるリチウム二次電池を得ることができる。   According to the present invention, a lithium secondary battery excellent in safety can be obtained.

本実施例に関わる円筒型リチウム二次電池の片側断面図。1 is a half sectional view of a cylindrical lithium secondary battery according to an embodiment. 本実施例にかかるリチウム二次電池の正極の拡大断面図。The expanded sectional view of the positive electrode of the lithium secondary battery concerning a present Example.

本発明のリチウム二次電池は、リチウムを吸蔵放出する正極と、リチウムを吸蔵放出する負極と、リチウム塩を含む非水電解液を介して形成されるリチウム二次電池であって、正極は正極合剤と集電体を有し、正極合剤は、リチウム及び遷移金属を有する複合酸化物,導電助剤及びバインダー樹脂を有し、正極合剤は、ハロゲン元素を含有する高分子化合物を有することを特徴とする。また、ハロゲン元素が、リン元素,臭素元素又は塩素元素であることが好ましく、その中でも、ハロゲン元素が、ポリリン酸,ポリリン酸アンモニウム,ポリリン酸ナトリウム又は化学式(1)で表される化合物であることがより好ましい。   The lithium secondary battery of the present invention is a lithium secondary battery formed through a non-aqueous electrolyte containing a positive electrode that occludes and releases lithium, an anode that occludes and releases lithium, and a lithium salt, and the positive electrode is a positive electrode It has a mixture and a current collector, the positive electrode mixture has a composite oxide containing lithium and a transition metal, a conductive additive and a binder resin, and the positive electrode mixture has a polymer compound containing a halogen element It is characterized by that. Further, the halogen element is preferably a phosphorus element, a bromine element or a chlorine element. Among them, the halogen element is polyphosphoric acid, ammonium polyphosphate, sodium polyphosphate or a compound represented by the chemical formula (1). Is more preferable.

Figure 2010251217
(式中、R1,R2はリン元素に結合する官能基、nは重合度を示す)
Figure 2010251217
(Wherein R 1 and R 2 are functional groups bonded to the phosphorus element, and n represents the degree of polymerization)

さらに、ハロゲン元素を含有する高分子化合物の粒径が、複合酸化物の粒径の20%以下であることを特徴とする。   Furthermore, the particle size of the polymer compound containing a halogen element is 20% or less of the particle size of the composite oxide.

また、本発明のリチウム二次電池は、リチウムを吸蔵放出する正極と、リチウムを吸蔵放出する負極と、リチウム塩を含む非水電解液を介して形成されるリチウム二次電池であって、正極及び非水電解液に、ポリリン酸,ポリリン酸アンモニウム,ポリリン酸ナトリウム又は化学式(2)で表される化合物を有することを特徴とする。   The lithium secondary battery of the present invention is a lithium secondary battery formed through a non-aqueous electrolyte containing a positive electrode that occludes and releases lithium, an anode that occludes and releases lithium, and a lithium salt. And the non-aqueous electrolyte includes polyphosphoric acid, ammonium polyphosphate, sodium polyphosphate, or a compound represented by the chemical formula (2).

Figure 2010251217
(式中、R1,R2はリン元素に結合する官能基、nは重合度を示す)
Figure 2010251217
(Wherein, R 1, R 2 is a functional group bonded to the phosphorus element, n represents shows the degree of polymerization)

ここで、R1,R2は、アルキル基,シクロアルキル基,アルケニル基,アルコキシ置換アルキル基又はアリール基であることが好ましい。 Here, R 1 and R 2 are preferably an alkyl group, a cycloalkyl group, an alkenyl group, an alkoxy-substituted alkyl group, or an aryl group.

上記構成をとることにより、負極上での副反応を防止することが可能となり、リチウム二次電池中における添加剤の安全性向上の効果を維持することを考案した。   By adopting the above configuration, it has become possible to prevent side reactions on the negative electrode and to maintain the effect of improving the safety of the additive in the lithium secondary battery.

具体的には、負極上での添加剤の副反応等による分解により添加剤が低減することなく、電解液と正極活物質の反応を低減し電池内での発熱反応を抑制することにより、電解液の気化を抑制することができ安全性が向上する。また、添加剤を電解液中に分散することで、難燃性が向上する。ここで、正極活物質から発生する酸素ラジカルが、電解液を酸化すると考えられているが、この酸素ラジカルと電解液が反応する現象は、酸化反応であり、発熱を伴うため、電池内の温度が上昇して、より副反応が起こりやすい状態になる。そこで、本発明では、このラジカルを補足して安全にするラジカル補足剤を存在させることで、濫用時にラジカルを補足して電解液との反応を抑制し、リチウム二次電池の安全性を向上することが期待できる。よって、正極で発生する酸素ラジカルを捕捉する作用を考慮すると、正極中に上記添加剤を固定することが効果的であり、より大きな効果を発揮する。   Specifically, by reducing the reaction between the electrolytic solution and the positive electrode active material and suppressing the exothermic reaction in the battery without reducing the additive by decomposition due to side reaction of the additive on the negative electrode, The vaporization of the liquid can be suppressed and safety is improved. Moreover, a flame retardance improves by disperse | distributing an additive in electrolyte solution. Here, it is thought that oxygen radicals generated from the positive electrode active material oxidize the electrolyte solution. However, the phenomenon in which the oxygen radicals react with the electrolyte solution is an oxidation reaction and generates heat. As a result, the side reaction is more likely to occur. Therefore, in the present invention, the presence of a radical scavenger that captures these radicals and makes them safe so as to capture the radicals during abuse and suppress the reaction with the electrolyte, thereby improving the safety of the lithium secondary battery. I can expect that. Therefore, in consideration of the action of trapping oxygen radicals generated at the positive electrode, it is effective to fix the additive in the positive electrode, and a greater effect is exhibited.

また、具体的には、上記添加剤は、非水電解液と正極活物質との発熱を抑制するための化合物であり、固体であって、室温から100℃以下において、電解液に不溶性もしくは難溶性であることが好ましい。また、リチウム二次電池を通常の条件で使用する際には、電解液中に存在していても作用するものではないが、リチウム二次電池の発熱時において100℃以上の高温になった際に電解液中に溶解して効果を発揮しても良い。   Specifically, the additive is a compound for suppressing heat generation between the non-aqueous electrolyte and the positive electrode active material, and is a solid and insoluble or difficult to dissolve in the electrolyte at room temperature to 100 ° C. or less. It is preferable that it is soluble. Also, when the lithium secondary battery is used under normal conditions, it does not work even if it is present in the electrolyte, but when the lithium secondary battery is heated to a high temperature of 100 ° C. or higher Alternatively, it may be dissolved in the electrolytic solution to exert its effect.

以下、本発明の実施の形態を説明するが、本発明は以下の実施態様のみに限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not limited only to the following embodiment.

まず、リチウム二次電池の正極の拡大断面を示した図2を用いて、本形態を説明する。   First, this embodiment will be described with reference to FIG. 2 showing an enlarged cross section of a positive electrode of a lithium secondary battery.

リチウム二次電池の正極は、アルミニウム(Al)集電体5に、正極活物質21,導電剤23,バインダー樹脂24が混合状態で形成され、これらの間に固体の添加剤22が含有されている。   A positive electrode of a lithium secondary battery is formed by mixing an aluminum (Al) current collector 5 with a positive electrode active material 21, a conductive agent 23, and a binder resin 24, and a solid additive 22 is contained therebetween. Yes.

正極活物質21の粒径は、約10μm程度であり、添加剤22の粒径は、約1〜2μm程度である。正極活物質の粒径の変化に応じて添加剤の粒径も変化するが、添加剤の粒径は正極活物質の粒径の約20%程度であることが好ましい。なお、集電体上に塗布した正極材の厚さは20〜100μmである。   The particle size of the positive electrode active material 21 is about 10 μm, and the particle size of the additive 22 is about 1 to 2 μm. Although the particle size of the additive also changes according to the change in the particle size of the positive electrode active material, the particle size of the additive is preferably about 20% of the particle size of the positive electrode active material. In addition, the thickness of the positive electrode material apply | coated on the electrical power collector is 20-100 micrometers.

添加剤としては、リン元素,臭素元素,塩素元素を有する高分子化合物であり、電解液に対して難溶もしくは不溶であることが望ましい。   The additive is a polymer compound containing phosphorus element, bromine element, and chlorine element, and is preferably hardly soluble or insoluble in the electrolytic solution.

これらのポリマーについては、リン元素を含有するポリマーとして、ポリリン酸,ポリリン酸アンモニウム,ポリリン酸ナトリウムが挙げられる。   About these polymers, polyphosphoric acid, ammonium polyphosphate, and sodium polyphosphate are mentioned as a polymer containing a phosphorus element.

またリン元素を含有するポリマーとして、環状構造を有するホスファゼンが開環して重合した、式(1)に示すホスファゼンのポリマーを用いてもよい。   In addition, as the polymer containing a phosphorus element, a phosphazene polymer represented by the formula (1) in which a phosphazene having a cyclic structure is opened and polymerized may be used.

Figure 2010251217
(式中、R1,R2はリン元素に結合する官能基、nは重合度を表す。)
Figure 2010251217
(In the formula, R 1 and R 2 are functional groups bonded to the phosphorus element, and n represents the degree of polymerization.)

式(1)において、R1,R2は、アルキル基,シクロアルキル基,アルケニル基,アルコキシ置換アルキル基又はアリール基である。式(1)のR1,R2におけるアルキル基としては、メチル基,エチル基,プロピル基,ブチル基,ペンチル基,へキシル基等が挙げられ、シクロアルキル基としては、シクロプロピル基,シクロヘキシル基等が挙げられ、アルケニル基としては、アリル基,メタリル基等が挙げられ、アルコキシ置換アルキル基としては、メトキシエチル基,メトキシエトキシエチル基等が挙げられ、アリール基としては、フェニル基,メチルフェニル基,メトキシフェニル基等が挙げられる。上記置換基中の水素元素は、ハロゲン元素で置換されていてもよい。これらの中でも、難燃性に優れる点で、メチル基,エチル基,プロピル基,トルフルオロエチル基,フェニル基,3−フルオロフェニル基が好ましい。 In the formula (1), R 1 and R 2 are an alkyl group, a cycloalkyl group, an alkenyl group, an alkoxy-substituted alkyl group or an aryl group. Examples of the alkyl group in R 1 and R 2 in the formula (1) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and the cycloalkyl group includes a cyclopropyl group and a cyclohexyl group. Alkenyl groups include allyl groups and methallyl groups, alkoxy-substituted alkyl groups include methoxyethyl groups and methoxyethoxyethyl groups, and aryl groups include phenyl groups and methyl groups. A phenyl group, a methoxyphenyl group, etc. are mentioned. The hydrogen element in the substituent may be substituted with a halogen element. Among these, a methyl group, an ethyl group, a propyl group, a trifluoroethyl group, a phenyl group, and a 3-fluorophenyl group are preferable because of excellent flame retardancy.

重合度nは、高分子の分子量に関わるものであるが、熱により重合体から単量体への分解する解重合と呼ばれる現象が起こる温度に関わる。そのため、添加剤として働くのに適切な温度で重合するような重合度が望ましい。   The degree of polymerization n is related to the molecular weight of the polymer, but is related to the temperature at which a phenomenon called depolymerization that decomposes from polymer to monomer by heat occurs. For this reason, a degree of polymerization that allows polymerization at an appropriate temperature to act as an additive is desirable.

添加剤の添加量については、添加剤の含有量が多い方が、安全性向上に対する寄与が大きいが、正極中における導電助剤による集電体と正極活物質間との通電するための集電構造を形成しにくくなる。   Regarding the amount of additive added, the greater the additive content, the greater the contribution to safety improvement, but the current collector for conducting electricity between the current collector and the positive electrode active material by the conductive assistant in the positive electrode. It becomes difficult to form a structure.

添加剤として用いるハロゲン含有のポリマーとして、塩化,臭化したポリマーを用いることができる。具体的なポリマーとして、ポリオキシエチレン,ポリメチルメタアクリレート,ポリエチレン,ポリスチレン,セルロースを塩化,臭化したポリマーが挙げられる。   As the halogen-containing polymer used as an additive, a chlorinated or brominated polymer can be used. Specific examples of the polymer include polymers obtained by chlorinating and bromating polyoxyethylene, polymethyl methacrylate, polyethylene, polystyrene, and cellulose.

特に、ハロゲンの結合が切れやすいもの、分子内におけるハロゲンの割合が高いものが効果的である。   In particular, those in which the halogen bond is easily broken and those in which the proportion of halogen in the molecule is high are effective.

さらに、リチウムを可逆的に吸蔵放出する正極活物質としては、コバルト酸リチウム(LiCoO2),ニッケル酸リチウム(LiNiO2)などの層状化合物、あるいは一種以上の遷移金属を置換したもの、あるいはマンガン酸リチウム(Li1+xMn2-x4(ただしx=0〜0.33),Li1+xMn2-x-yy4(ただし、MはNi,Co,Cr,Cu,Fe,Al,Mgより選ばれた少なくとも1種の金属を含み、x=0〜0.33,y=0〜1.0,2−x−y>0),LiMnO3,LiMn23,LiMnO2,LiMn2-xx2(ただし、MはCo,Ni,Fe,Cr,Zn,Taより選ばれた少なくとも1種の金属を含み、x=0.01〜0.1),Li2Mn3MO8(ただし、MはFe,Co,Ni,Cu,Znより選ばれた少なくとも1種の金属を含み))、あるいは層状系リチウムマンガン酸化物Li(1+a)NixCoyMnzO2(ただし、−0.1<a<0.2,0<x<0.9,0<y<0.9,0<z<0.9,0.9<(x+y+z)<1.1),銅−リチウム酸化物(Li2CuO2)、あるいはLiV38,LiFe34,V25,V612,VSe,Cu227などのバナジウム酸化物、あるいは化学式ジスルフィド化合物、あるいはFe2(MoO43などを含む混合物などの1種又は2種以上が挙げられる。 Further, as a positive electrode active material that reversibly occludes and releases lithium, a layered compound such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), or one substituted with one or more transition metals, or manganic acid lithium (Li 1 + x Mn 2- x O 4 ( provided that x = 0~0.33), Li 1 + x Mn 2-xy M y O 4 ( provided that, M is Ni, Co, Cr, Cu, Fe, Including at least one metal selected from Al and Mg, x = 0 to 0.33, y = 0 to 1.0, 2 -xy> 0), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 , LiMn 2−x M x O 2 (where M includes at least one metal selected from Co, Ni, Fe, Cr, Zn, and Ta, x = 0.01 to 0.1), Li 2 Mn 3 MO 8 (where M is selected from Fe, Co, Ni, Cu, Zn) Or a layered lithium manganese oxide Li (1 + a) NixCoyMnzO 2 (where -0.1 <a <0.2, 0 <x <0.9, 0 <y). <0.9, 0 <z <0.9, 0.9 <(x + y + z) <1.1), copper-lithium oxide (Li 2 CuO 2 ), or LiV 3 O 8 , LiFe 3 O 4 , V 1 type or 2 types or more, such as a mixture containing vanadium oxides such as 2 O 5 , V 6 O 12 , VSe, Cu 2 V 2 O 7 , chemical disulfide compounds, Fe 2 (MoO 4 ) 3, etc. It is done.

また、リチウムを可逆的に吸蔵放出する負極活物質としては、天然黒鉛,石油コークスや石炭ピッチコークス等から得られる易黒鉛化材料を2500℃以上の高温で熱処理したもの、メソフェーズカーボン或いは非晶質炭素,炭素繊維,リチウム金属,リチウムと合金化する金属、あるいは炭素粒子表面に金属を担持した材料が用いられる。例えばリチウム,アルミニウム,スズ,ケイ素,インジウム,ガリウム,マグネシウムより選ばれた金属あるいは合金である。また、該金属または該金属の酸化物を負極活物質として利用できる。   In addition, as a negative electrode active material that reversibly occludes and releases lithium, an easily graphitized material obtained from natural graphite, petroleum coke, coal pitch coke, or the like is heat-treated at a high temperature of 2500 ° C. or higher, mesophase carbon, or amorphous Carbon, carbon fiber, lithium metal, metal alloying with lithium, or a material having a metal supported on the surface of carbon particles is used. For example, a metal or alloy selected from lithium, aluminum, tin, silicon, indium, gallium, and magnesium. Further, the metal or the oxide of the metal can be used as a negative electrode active material.

電解液としては、リチウム塩を電解質とし、これを有機溶媒に溶解したものを用いることができる。   As the electrolytic solution, a lithium salt as an electrolyte, which is dissolved in an organic solvent can be used.

リチウム塩としては、LiN(CF3CF2SO22,LiN(CF3SO22,LiCF3SO3,LiClO4,LiPF6,LiBF4,LiAsF6などのうち1種類もしくは2種類以上を選択して用いることができる。 As the lithium salt, one or more of LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6, etc. Can be selected and used.

有機溶媒としては、カーボネート類,エステル類,エーテル類等を用いることができる。例えば、エチレンカーボネート,プロピレンカーボネート,ブチレンカーボネート,ジメチルカーボネート,ジエチルカーボネート,メチルエチルカーボネート,ジエチルカーボネート,γ−ブチロラクトロン,酢酸メチル,1,3−ジオキソラン,1,3−ジメトキシエタン,1,2−ジエトキシエタン,テトラヒドロフランなどを用いることができ、その他にスルホランなどの硫黄化合物,含窒素化合物,含珪素化合物,含フッ素化合物,含リン化合物などの有機溶媒を用いることができる。   As the organic solvent, carbonates, esters, ethers and the like can be used. For example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactron, methyl acetate, 1,3-dioxolane, 1,3-dimethoxyethane, 1,2-diethoxy Ethane, tetrahydrofuran and the like can be used, and organic solvents such as sulfur compounds such as sulfolane, nitrogen-containing compounds, silicon-containing compounds, fluorine-containing compounds and phosphorus-containing compounds can also be used.

ただし、正極中に添加する添加剤と化学的な反応をするものは、添加剤の効果を著しく損なうことになるので望ましくない。   However, it is not desirable to chemically react with the additive added to the positive electrode because the effect of the additive will be significantly impaired.

また、本実施例にかかるリチウム二次電池は、以下に示すような電気機器に搭載することができる。例えば、電気自動車,電動式自転車,パソコン,携帯電話,デジタルカメラ,ビデオレコーダー,ミニディスクポータブルプレイヤー,パーソナルデジタルアシスタント,腕時計,ラジオ,電子手帳,電動工具,掃除機,玩具,エレベーター,災害用ロボット,医療介護用歩行補助機,医療介護用車椅子,医療介護用移動式ベッド,非常用電源,ロードコンディショナー,電力貯蔵システムなどの電源として本形態のリチウム二次電池を用いることができる。安全性向上により、家庭用の充電池として用いることができる他、電池の大型化が可能となるため家庭・地域用の分散電源に適する。また、これら民生用の用途以外に、軍需用や宇宙用としても使用することができる。   Moreover, the lithium secondary battery according to the present example can be mounted on an electrical device as described below. For example, electric cars, electric bicycles, personal computers, mobile phones, digital cameras, video recorders, mini-disc portable players, personal digital assistants, watches, radios, electronic notebooks, electric tools, vacuum cleaners, toys, elevators, disaster robots, The lithium secondary battery of the present embodiment can be used as a power source for medical care walking assist devices, medical care wheelchairs, medical care mobile beds, emergency power supplies, load conditioners, power storage systems, and the like. It can be used as a home-use rechargeable battery due to improved safety, and can be increased in size, making it suitable for home / regional distributed power supplies. In addition to these consumer applications, it can also be used for military use and space.

本形態で示したリチウム二次電池の形状については、特に限定されず、必要に応じて円筒型形状,角型形状,コイン型形状,ボタン型形状等の種々の形状とすることができる。また電池の外装材についても、ステンレス缶に限らず、ラミネートしたものでもよい。   The shape of the lithium secondary battery shown in this embodiment is not particularly limited, and may be various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape as necessary. Also, the battery exterior material is not limited to the stainless steel can but may be a laminated one.

以下に、本発明にかかる一実施形態を、実施例及び比較例を示すことによって具体的に説明する。   EMBODIMENT OF THE INVENTION Below, one Embodiment concerning this invention is described concretely by showing an Example and a comparative example.

(実施例1)
正極中に固体のポリリン酸を加えた実施例1について以下に示す。
Example 1
It shows below about Example 1 which added solid polyphosphoric acid in the positive electrode.

[正極の作製]
正極については、以下の手順で作製した。
[Production of positive electrode]
The positive electrode was produced by the following procedure.

バインダー樹脂であるポリフッ化ビニリデン(PVDF)をNMPに溶解し、濃度10%の溶液を準備した。この溶液34重量部に対し、正極活物質LiNi0.33Co0.33Mn0.332の粉体60重量部とポリリン酸6重量部を混合し、さらにNMPを加えて混練して正極合剤スラリーを調製し、このスラリーを正極集電体である厚さ0.02mmのアルミ箔上に塗布し、120℃の温風を送風することにより乾燥した。同様にして、正極集電体の裏面にも正極合剤スラリーを塗布し乾燥させ、正極合剤層を形成した。 Polyvinylidene fluoride (PVDF), which is a binder resin, was dissolved in NMP to prepare a solution having a concentration of 10%. To 34 parts by weight of this solution, 60 parts by weight of the positive electrode active material LiNi 0.33 Co 0.33 Mn 0.33 O 2 powder and 6 parts by weight of polyphosphoric acid are mixed, and further NMP is added and kneaded to prepare a positive electrode mixture slurry. The slurry was applied on a positive electrode current collector of 0.02 mm thick aluminum foil and dried by blowing warm air of 120 ° C. Similarly, the positive electrode mixture slurry was applied to the back surface of the positive electrode current collector and dried to form a positive electrode mixture layer.

その後、所定の厚みになるようプレス成形した後に減圧乾燥することで正極を得た。これは、正極板となる。   Thereafter, the positive electrode was obtained by press molding to a predetermined thickness and then drying under reduced pressure. This becomes a positive electrode plate.

[負極の作製]
負極については、以下の手順で作製した。
[Production of negative electrode]
About the negative electrode, it produced in the following procedures.

バインダー樹脂であるPVDFをNMPに溶解し、濃度10%の溶液を準備した。この溶液50重量部に対し、炭素材料である平均粒径10μmの非晶質炭素の粉体30重量部と活物質粉体50重量部とを混合し、さらに粘度調整のためにNMPを加えて負極合剤スラリーを混練して調製し、このスラリーを集電体である厚さ0.01mmの銅箔上にコーティングし、120℃の温風を送風することにより乾燥させた。   PVDF, which is a binder resin, was dissolved in NMP to prepare a 10% concentration solution. To 50 parts by weight of this solution, 30 parts by weight of an amorphous carbon powder having an average particle size of 10 μm, which is a carbon material, and 50 parts by weight of an active material powder are mixed, and NMP is added to adjust the viscosity. A negative electrode mixture slurry was prepared by kneading, and this slurry was coated on a copper foil having a thickness of 0.01 mm as a current collector, and dried by blowing hot air at 120 ° C.

同様にして、集電体の裏面にも負極合剤スラリーを塗布し乾燥させ負極合剤層を形成した。その後、所定の厚みになるようプレス成形した後に減圧乾燥することで負極(板)を得た。   Similarly, the negative electrode mixture slurry was applied to the back surface of the current collector and dried to form a negative electrode mixture layer. Thereafter, the negative electrode (plate) was obtained by press molding to a predetermined thickness and drying under reduced pressure.

[円筒型リチウム二次電池の作製]
得られた負極と正極とをセパレータを介して捲回し、ロール状の電極を形成する。これを電池缶に収納し、減圧乾燥した。
[Production of cylindrical lithium secondary battery]
The obtained negative electrode and positive electrode are wound through a separator to form a roll-shaped electrode. This was stored in a battery can and dried under reduced pressure.

次に、電池缶内にエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとの混合溶媒(2:4:4(体積比))にLiPF6を1mol/リットルの割合で溶解させた電解液を注入した後に、蓋をかしめることにより、図1に表す円筒型リチウム二次電池(直径15mm,長さ65mm)を作製した。また、充放電器を用いて、25℃で、電流300mA,充電終了電圧4.2〜3.0Vで充放電を20サイクル行った。 Next, after injecting an electrolyte solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate (2: 4: 4 (volume ratio)) at a rate of 1 mol / liter into the battery can. The cylindrical lithium secondary battery (diameter 15 mm, length 65 mm) shown in FIG. 1 was produced by caulking the lid. In addition, using a charger / discharger, charging / discharging was performed 20 cycles at 25 ° C. with a current of 300 mA and a charging termination voltage of 4.2 to 3.0 V.

[示差走査熱量測定]
発熱挙動を調べるため示差走査熱量測定を行った。上記充放電後、4.2Vに充電したリチウム二次電池を解体して、電解液を保持したままの正極板を3.5mmφに打ち抜き、サンプル片を得た。このサンプル片をステンレス製耐圧密閉容器に封入し、示差走査熱量測定装置(DSC:Differential Scanning Calorimetry)にて5℃/分の昇温条件で室温から400℃まで昇温し、初期の発熱ピーク温度を測定し、正極耐熱性の指標とした。DSCの測定結果から、発熱ピーク高さは2.1mW、発熱ピーク温度は330℃であった。
[Differential scanning calorimetry]
Differential scanning calorimetry was performed to investigate the exothermic behavior. After the charge and discharge, the lithium secondary battery charged to 4.2 V was disassembled, and the positive electrode plate holding the electrolyte was punched out to 3.5 mmφ to obtain a sample piece. This sample piece is sealed in a stainless steel pressure-resistant airtight container, and heated by a differential scanning calorimeter (DSC) from room temperature to 400 ° C. under a temperature rising condition of 5 ° C./min. Was used as an index of heat resistance of the positive electrode. From the DSC measurement results, the exothermic peak height was 2.1 mW and the exothermic peak temperature was 330 ° C.

(実施例2)
正極中に固体のホスファゼン誘導体を加えた実施例2を以下に示す。
(Example 2)
Example 2 in which a solid phosphazene derivative was added to the positive electrode is shown below.

ホスファゼン誘導体としては、   As phosphazene derivatives,

Figure 2010251217
(式中、R1,R2はリン元素に結合する官能基、nは重合度を表す。)を用い、R1はプロピル基、R2はトルフルオロエチル基、重合度nは100のものを使用した。
Figure 2010251217
(Wherein R 1 and R 2 are functional groups bonded to the phosphorus element, n represents the degree of polymerization), R 1 is a propyl group, R 2 is a trifluoroethyl group, and the degree of polymerization n is 100. It was used.

[正極の作製]
正極については、以下の手順で作製した。
[Production of positive electrode]
The positive electrode was produced by the following procedure.

バインダー樹脂であるポリフッ化ビニリデン(PVDF)をNMPに溶解し、濃度10%の溶液を準備した。この溶液34重量部に対し、正極活物質LiNi0.33Co0.33Mn0.332の粉体60重量部と上記ホスファゼン誘導体(化学式(1)、R1はプロピル基、R2はトルフルオロエチル基、重合度nは100のもの)6重量部を混合し、さらにNMPを加えて混練して正極合剤スラリーを調製し、このスラリーを正極集電体である厚さ0.02mmのアルミ箔上に塗布し、120℃の温風を送風することにより乾燥した。同様にして、正極集電体の裏面にも正極合剤スラリーを塗布し乾燥させ正極合剤層を形成した。 Polyvinylidene fluoride (PVDF), which is a binder resin, was dissolved in NMP to prepare a solution having a concentration of 10%. To this solution 34 parts by weight, the positive electrode active material LiNi 0.33 Co 0.33 Mn 0.33 powder 60 parts by weight of O 2 and the phosphazene derivative (formula (1), R 1 is propyl, R 2 is trifluoroethyl ethyl group, polymerization Mixing 6 parts by weight of NMP and kneading with NMP, a positive electrode mixture slurry is prepared, and this slurry is applied to a positive electrode current collector aluminum foil having a thickness of 0.02 mm. And dried by blowing warm air of 120 ° C. Similarly, the positive electrode mixture slurry was applied to the back surface of the positive electrode current collector and dried to form a positive electrode mixture layer.

その後、所定の厚みになるようプレス成形した後に減圧乾燥することで正極を得た。これを正極板とした。   Thereafter, the positive electrode was obtained by press molding to a predetermined thickness and then drying under reduced pressure. This was used as a positive electrode plate.

[負極の作製]
負極については、実施例1と同様の手順で作製した。
[Production of negative electrode]
The negative electrode was prepared in the same procedure as in Example 1.

[円筒型リチウム二次電池の作製]
得られた負極と正極とをセパレータを介して捲回し、ロール状の電極を形成した。これを電池缶に収納し、減圧乾燥した。
[Production of cylindrical lithium secondary battery]
The obtained negative electrode and positive electrode were wound through a separator to form a roll-shaped electrode. This was stored in a battery can and dried under reduced pressure.

次に、電池缶内にエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとの混合溶媒(2:4:4(体積比))にLiPF6を1mol/リットルの割合で溶解させた電解液を注入した後に、蓋をかしめることにより、リチウム二次電池(直径15mm,長さ65mm)を作製した。また、充放電器を用いて、25℃で、電流300mA,充電終了電圧4.2〜3.0Vで充放電を20サイクル行った。 Next, after injecting an electrolyte solution in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate (2: 4: 4 (volume ratio)) at a rate of 1 mol / liter into the battery can. Then, a lithium secondary battery (diameter: 15 mm, length: 65 mm) was produced by caulking the lid. In addition, using a charger / discharger, charging / discharging was performed 20 cycles at 25 ° C. with a current of 300 mA and a charging termination voltage of 4.2 to 3.0 V.

[示差走査熱量測定]
発熱挙動を調べるため示差走査熱量測定を行った。上記充放電後、4.2Vに充電したリチウム二次電池を解体して、電解液を保持したままの正極板を3.5mmφに打ち抜き、サンプル片を得た。このサンプル片をステンレス製耐圧密閉容器に封入し、示差走査熱量測定装置(DSC:Differential Scanning Calorimetry)にて5℃/分の昇温条件で室温から400℃まで昇温し、初期の発熱ピーク温度を測定し、正極耐熱性の指標とした。DSCの測定結果から、発熱ピーク高さは2.0mW、発熱ピーク温度は325℃であった。
[Differential scanning calorimetry]
Differential scanning calorimetry was performed to investigate the exothermic behavior. After the charge and discharge, the lithium secondary battery charged to 4.2 V was disassembled, and the positive electrode plate holding the electrolyte was punched out to 3.5 mmφ to obtain a sample piece. This sample piece is sealed in a stainless steel pressure-resistant airtight container, and heated by a differential scanning calorimeter (DSC) from room temperature to 400 ° C. under a temperature rising condition of 5 ° C./min. Was used as an index of heat resistance of the positive electrode. From the DSC measurement results, the exothermic peak height was 2.0 mW and the exothermic peak temperature was 325 ° C.

(比較例1)
電解液に、液体のトリメチルリン酸エステルを20%添加した電解液を用いた比較例1を以下に示す。
(Comparative Example 1)
Comparative Example 1 using an electrolytic solution obtained by adding 20% of a liquid trimethyl phosphate to the electrolytic solution is shown below.

[正極の作製]
正極については、以下の手順で作製した。
[Production of positive electrode]
The positive electrode was produced by the following procedure.

バインダー樹脂であるポリフッ化ビニリデン(PVDF)をNMPに溶解し、濃度10%の溶液を準備した。この溶液40重量部に対し、正極活物質LiNi0.33Co0.33Mn0.332の粉体60重量部を混合し、さらにNMPを加えて混練して正極合剤スラリーを調製し、このスラリーを正極集電体である厚さ0.02mmのアルミ箔上に塗布し、120℃の温風を送風することにより乾燥した。同様にして、正極集電体の裏面にも正極合剤スラリーを塗布し乾燥させ、正極合剤層を形成した。その後、所定の厚みになるようプレス成形した後に減圧乾燥することで正極を得た。これを正極板とした。 Polyvinylidene fluoride (PVDF), which is a binder resin, was dissolved in NMP to prepare a solution having a concentration of 10%. To this solution 40 parts by weight, were mixed 60 parts by weight powder of the positive active material LiNi 0.33 Co 0.33 Mn 0.33 O 2 , a positive electrode mixture slurry was prepared by kneading in addition to NMP, positive electrode and the slurry The film was applied on an aluminum foil having a thickness of 0.02 mm and dried by blowing warm air at 120 ° C. Similarly, the positive electrode mixture slurry was applied to the back surface of the positive electrode current collector and dried to form a positive electrode mixture layer. Thereafter, the positive electrode was obtained by press molding to a predetermined thickness and then drying under reduced pressure. This was used as a positive electrode plate.

[負極の作製]
負極については、実施例1と同様の手順で作製した。
[Production of negative electrode]
The negative electrode was prepared in the same procedure as in Example 1.

[円筒型リチウム二次電池の作製]
得られた負極と正極とをセパレータを介して捲回し、ロール状の電極を形成した。これを電池缶に収納し、減圧乾燥した。
[Production of cylindrical lithium secondary battery]
The obtained negative electrode and positive electrode were wound through a separator to form a roll-shaped electrode. This was stored in a battery can and dried under reduced pressure.

次に、電池缶内にエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとの混合溶媒(2:4:4(体積比))80重量部にトリメチルリン酸エステル20重量部を加えて、LiPF6を1mol/リットルの割合で溶解させた電解液を注入した後に、蓋をかしめることにより、リチウム二次電池(直径15mm,長さ65mm)を作製した。また、充放電器を用いて、25℃で、電流300mA,充電終了電圧4.2〜3.0Vで充放電を20サイクル行った。 Then, a mixed solvent of ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate in a battery can (2: 4: 4 (volume ratio)) to 80 parts by weight by adding 20 parts by weight of trimethyl phosphate ester, 1 mol of LiPF 6 After injecting the electrolytic solution dissolved at a ratio of 1 / liter, the lid was caulked to produce a lithium secondary battery (diameter 15 mm, length 65 mm). In addition, using a charger / discharger, charging / discharging was performed 20 cycles at 25 ° C. with a current of 300 mA and a charging termination voltage of 4.2 to 3.0 V.

[示差走査熱量測定]
発熱挙動を調べるため示差走査熱量測定を行った。上記充放電後、4.2Vに充電したリチウム二次電池を解体して、電解液を保持したままの正極板を3.5mmφに打ち抜き、サンプル片を得た。このサンプル片をステンレス製耐圧密閉容器に封入し、示差走査熱量測定装置(DSC:Differential Scanning Calorimetry)にて5℃/分の昇温条件で室温から400℃まで昇温し、初期の発熱ピーク温度を測定し、正極耐熱性の指標とした。DSCの測定結果から、発熱ピーク高さは2.4mW、発熱ピーク温度は307℃であった。
[Differential scanning calorimetry]
Differential scanning calorimetry was performed to investigate the exothermic behavior. After the charge and discharge, the lithium secondary battery charged to 4.2 V was disassembled, and the positive electrode plate holding the electrolyte was punched out to 3.5 mmφ to obtain a sample piece. This sample piece is sealed in a stainless steel pressure-resistant airtight container, and heated by a differential scanning calorimeter (DSC) from room temperature to 400 ° C. under a temperature rising condition of 5 ° C./min. Was used as an index of heat resistance of the positive electrode. From the DSC measurement results, the exothermic peak height was 2.4 mW and the exothermic peak temperature was 307 ° C.

(比較例2)
電解液及び正極に、本発明にかかる添加剤を添加しない比較例2を以下に示す。
(Comparative Example 2)
The comparative example 2 which does not add the additive concerning this invention to electrolyte solution and a positive electrode is shown below.

[正極の作製]
正極については、以下の手順で作製した。
[Production of positive electrode]
The positive electrode was produced by the following procedure.

バインダー樹脂であるポリフッ化ビニリデン(PVDF)をNMPに溶解し、濃度10%の溶液を準備した。この溶液40重量部に対し、正極活物質LiNi0.33Co0.33Mn0.332の粉体60重量部を混合し、さらにNMPを加えて混練して正極合剤スラリーを調製し、このスラリーを集電体である厚さ0.02mmのアルミ箔上に塗布し、120℃の温風を送風することにより乾燥した。同様にして、集電体の裏面にも正極合剤スラリーを塗布し乾燥させ正極合剤層を形成した。その後、所定の厚みになるようプレス成形した後に減圧乾燥することで正極を得た。これを正極板とした。 Polyvinylidene fluoride (PVDF), which is a binder resin, was dissolved in NMP to prepare a solution having a concentration of 10%. To 40 parts by weight of this solution, 60 parts by weight of the powder of the positive electrode active material LiNi 0.33 Co 0.33 Mn 0.33 O 2 is mixed, and further NMP is added and kneaded to prepare a positive electrode mixture slurry. It was applied onto an aluminum foil having a thickness of 0.02 mm and dried by blowing hot air at 120 ° C. Similarly, the positive electrode mixture slurry was applied to the back surface of the current collector and dried to form a positive electrode mixture layer. Thereafter, the positive electrode was obtained by press molding to a predetermined thickness and then drying under reduced pressure. This was used as a positive electrode plate.

[負極の作製]
負極については、実施例1と同様の手順で作製した。
[Production of negative electrode]
The negative electrode was prepared in the same procedure as in Example 1.

[円筒型リチウム二次電池の作製]
得られた負極と正極とをセパレータを介して捲回し、ロール状の電極を形成した。これを電池缶に収納し、減圧乾燥した。
[Production of cylindrical lithium secondary battery]
The obtained negative electrode and positive electrode were wound through a separator to form a roll-shaped electrode. This was stored in a battery can and dried under reduced pressure.

次に、電池缶内にエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとの混合溶媒(2:4:4(体積比))に、LiPF6を1mol/リットルの割合で溶解させた電解液を注入した後に、蓋をかしめることにより、リチウム二次電池(直径15mm,長さ65mm)を作製した。また、充放電器を用いて、25℃で、電流300mA,充電終了電圧4.2〜3.0Vで充放電を20サイクル行った。 Next, an electrolytic solution in which LiPF 6 was dissolved at a rate of 1 mol / liter was mixed into the battery can in a mixed solvent of ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate (2: 4: 4 (volume ratio)). Later, the lid was caulked to produce a lithium secondary battery (diameter 15 mm, length 65 mm). In addition, using a charger / discharger, charging / discharging was performed 20 cycles at 25 ° C. with a current of 300 mA and a charging termination voltage of 4.2 to 3.0 V.

[示差走査熱量測定]
発熱挙動を調べるため示差走査熱量測定を行った。上記充放電後、4.2Vに充電したリチウム二次電池を解体して、電解液を保持したままの正極板を3.5mmφに打ち抜き、サンプル片を得た。このサンプル片をステンレス製耐圧密閉容器に封入し、示差走査熱量測定装置(DSC:Differential Scanning Calorimetry)にて5℃/分の昇温条件で室温から400℃まで昇温し、初期の発熱ピーク温度を測定し、正極耐熱性の指標とした。DSCの測定結果から、発熱ピーク温度は320℃であった。
[Differential scanning calorimetry]
Differential scanning calorimetry was performed to investigate the exothermic behavior. After the charge and discharge, the lithium secondary battery charged to 4.2 V was disassembled, and the positive electrode plate holding the electrolyte was punched out to 3.5 mmφ to obtain a sample piece. This sample piece is sealed in a stainless steel pressure-resistant airtight container, and heated by a differential scanning calorimeter (DSC) from room temperature to 400 ° C. under a temperature rising condition of 5 ° C./min. Was used as an index of heat resistance of the positive electrode. From the DSC measurement results, the exothermic peak temperature was 320 ° C.

表1に、実施例1及び2、比較例1及び2に関する示差走査熱量測定結果を示す。実施例1及び2のように、本実施例にかかる添加剤を正極中に混在させることにより、発熱ピークを抑制し、発熱ピーク温度を高温側へシフトさせることができる。   Table 1 shows the results of differential scanning calorimetry for Examples 1 and 2 and Comparative Examples 1 and 2. Like Example 1 and 2, the exothermic peak can be suppressed and the exothermic peak temperature can be shifted to a high temperature side by mixing the additive concerning a present Example in a positive electrode.

Figure 2010251217
Figure 2010251217

以上の結果より、正極に本発明にかかる添加剤を添加することにより、効果を充放電サイクル後も維持することができ、また発熱ピークを低減、かつ、発熱ピーク温度を高温へシフトさせることができる。   From the above results, by adding the additive according to the present invention to the positive electrode, the effect can be maintained after the charge / discharge cycle, the exothermic peak can be reduced, and the exothermic peak temperature can be shifted to a high temperature. it can.

1 正極集電体
2 正極合剤層
3 負極集電体
4 負極合剤層
7 セパレータ
8 電流遮断弁
9 負極リード
10 正極リード
11 正極インシュレータ
12 負極インシュレータ
13 電池缶
14 ガスケット
15 電池蓋
21 正極活物質
22 添加剤
23 導電剤
24 バインダー樹脂
25 アルミニウム(Al)集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2 Positive electrode mixture layer 3 Negative electrode collector 4 Negative electrode mixture layer 7 Separator 8 Current cutoff valve 9 Negative electrode lead 10 Positive electrode lead 11 Positive electrode insulator 12 Negative electrode insulator 13 Battery can 14 Gasket 15 Battery lid 21 Positive electrode active material 22 Additive 23 Conductive agent 24 Binder resin 25 Aluminum (Al) current collector

Claims (7)

リチウムを吸蔵放出する正極と、リチウムを吸蔵放出する負極と、リチウム塩を含む非水電解液を介して形成されるリチウム二次電池において、
前記正極は、正極合剤と集電体を有し、
前記正極合剤は、リチウム及び遷移金属を有する複合酸化物,導電助剤及びバインダー樹脂を有し、
前記正極合剤は、ハロゲン元素を含有する高分子化合物を有することを特徴とするリチウム二次電池。
In a lithium secondary battery formed through a non-aqueous electrolyte containing a positive electrode that occludes and releases lithium, a negative electrode that occludes and releases lithium, and a lithium salt,
The positive electrode has a positive electrode mixture and a current collector,
The positive electrode mixture has a composite oxide having lithium and a transition metal, a conductive additive and a binder resin,
The lithium secondary battery, wherein the positive electrode mixture has a polymer compound containing a halogen element.
前記ハロゲン元素が、リン元素,臭素元素又は塩素元素であることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the halogen element is a phosphorus element, a bromine element, or a chlorine element. 前記ハロゲン元素が、ポリリン酸,ポリリン酸アンモニウム,ポリリン酸ナトリウム又は化学式(1)で表される化合物であることを特徴とする請求項1に記載のリチウム二次電池。
Figure 2010251217
(式中、R1,R2はリン元素に結合する官能基、nは重合度を示す)
The lithium secondary battery according to claim 1, wherein the halogen element is polyphosphoric acid, ammonium polyphosphate, sodium polyphosphate, or a compound represented by the chemical formula (1).
Figure 2010251217
(Wherein R 1 and R 2 are functional groups bonded to the phosphorus element, and n represents the degree of polymerization)
前ハロゲン元素を含有する高分子化合物の粒径が、前記複合酸化物の粒径の20%以下であることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein a particle size of the polymer compound containing the pre-halogen element is 20% or less of a particle size of the composite oxide. リチウムを吸蔵放出する正極と、リチウムを吸蔵放出する負極と、リチウム塩を含む非水電解液を介して形成されるリチウム二次電池において、
前記正極及び前記非水電解液に、ポリリン酸,ポリリン酸アンモニウム,ポリリン酸ナトリウム又は化学式(2)で表される化合物を有することを特徴とするリチウム二次電池。
Figure 2010251217
(式中、R1,R2はリン元素に結合する官能基、nは重合度を示す)
In a lithium secondary battery formed through a non-aqueous electrolyte containing a positive electrode that occludes and releases lithium, a negative electrode that occludes and releases lithium, and a lithium salt,
A lithium secondary battery, wherein the positive electrode and the non-aqueous electrolyte have polyphosphoric acid, ammonium polyphosphate, sodium polyphosphate, or a compound represented by the chemical formula (2).
Figure 2010251217
(Wherein R 1 and R 2 are functional groups bonded to the phosphorus element, and n represents the degree of polymerization)
前記化学式(2)において、R1,R2は、アルキル基,シクロアルキル基,アルケニル基,アルコキシ置換アルキル基又はアリール基であることを特徴とする請求項5に記載のリチウム二次電池。 6. The lithium secondary battery according to claim 5, wherein, in the chemical formula (2), R 1 and R 2 are an alkyl group, a cycloalkyl group, an alkenyl group, an alkoxy-substituted alkyl group, or an aryl group. 前記化学式(2)において、R1はプロピル基、R2はトルフルオロエチル基、重合度nは100であることを特徴とする請求項5に記載のリチウム二次電池。 6. The lithium secondary battery according to claim 5, wherein in the chemical formula (2), R 1 is a propyl group, R 2 is a trifluoroethyl group, and a polymerization degree n is 100. 6.
JP2009101529A 2009-04-20 2009-04-20 Lithium secondary battery Expired - Fee Related JP5372584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101529A JP5372584B2 (en) 2009-04-20 2009-04-20 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101529A JP5372584B2 (en) 2009-04-20 2009-04-20 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010251217A true JP2010251217A (en) 2010-11-04
JP5372584B2 JP5372584B2 (en) 2013-12-18

Family

ID=43313324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101529A Expired - Fee Related JP5372584B2 (en) 2009-04-20 2009-04-20 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5372584B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5333689B1 (en) * 2013-04-02 2013-11-06 新神戸電機株式会社 Non-aqueous electrolyte battery
JPWO2014119249A1 (en) * 2013-01-31 2017-01-26 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2017139118A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery manufacturing method
US9780348B2 (en) 2013-12-19 2017-10-03 Sony Corporation Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US9819026B2 (en) 2013-01-31 2017-11-14 Sanyo Electric Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2019075222A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Positive electrode plate and nonaqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154535A (en) * 1997-11-20 1999-06-08 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JPH11329444A (en) * 1998-05-20 1999-11-30 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2009016106A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11154535A (en) * 1997-11-20 1999-06-08 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JPH11329444A (en) * 1998-05-20 1999-11-30 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2009016106A (en) * 2007-07-03 2009-01-22 Ntt Facilities Inc Lithium ion secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119249A1 (en) * 2013-01-31 2017-01-26 三洋電機株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US9819026B2 (en) 2013-01-31 2017-11-14 Sanyo Electric Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10535879B2 (en) 2013-01-31 2020-01-14 Sanyo Electric Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5333689B1 (en) * 2013-04-02 2013-11-06 新神戸電機株式会社 Non-aqueous electrolyte battery
US9780348B2 (en) 2013-12-19 2017-10-03 Sony Corporation Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US10559800B2 (en) 2013-12-19 2020-02-11 Murata Manufacturing Co., Ltd. Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2017139118A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery manufacturing method
JP2019075222A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Positive electrode plate and nonaqueous electrolyte secondary battery
US10784515B2 (en) 2017-10-13 2020-09-22 Toyota Jidosha Kabushiki Kaisha Positive electrode plate and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5372584B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP6255722B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP5573313B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP5721179B2 (en) Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery including the same
JP6396153B2 (en) Lithium secondary battery
JP5942849B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP3959774B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP2007165125A (en) Electrolyte for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2011052428A1 (en) Non-aqueous electrolyte and device having the same
JP5641593B2 (en) Lithium ion battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP5357517B2 (en) Lithium ion secondary battery
JP2009140641A (en) Nonaqueous electrolyte, gel electrolyte, and secondary battery using the same
CN109716578B (en) Electrochemical cell comprising difunctional silyl phosphonate
JP5372584B2 (en) Lithium secondary battery
JP2010282906A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2010205474A (en) Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2016048624A (en) Lithium secondary battery
JP5082198B2 (en) Lithium ion secondary battery
JP2007294323A (en) Method for manufacturing nonaqueous electrolytic solution battery
WO2012011508A1 (en) Non-aqueous electrolyte for use in secondary batteries, and secondary battery
JP5879344B2 (en) Lithium secondary battery
JP4655118B2 (en) Non-aqueous electrolyte battery and non-aqueous electrolyte composition
JP2010015719A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JPWO2016068033A1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130918

LAPS Cancellation because of no payment of annual fees