JP2010249877A - Variable power telephoto optical system and optical device equipped with the same - Google Patents

Variable power telephoto optical system and optical device equipped with the same Download PDF

Info

Publication number
JP2010249877A
JP2010249877A JP2009096247A JP2009096247A JP2010249877A JP 2010249877 A JP2010249877 A JP 2010249877A JP 2009096247 A JP2009096247 A JP 2009096247A JP 2009096247 A JP2009096247 A JP 2009096247A JP 2010249877 A JP2010249877 A JP 2010249877A
Authority
JP
Japan
Prior art keywords
optical system
optical
lens
optical axis
diffractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009096247A
Other languages
Japanese (ja)
Inventor
Kenta Sudo
健太 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009096247A priority Critical patent/JP2010249877A/en
Publication of JP2010249877A publication Critical patent/JP2010249877A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable power telephoto optical system which has a simply constituted variable-power driving mechanism, and the entire length of which is small, and capable of suppressing defocusing to the minimum even when varying the power under the temperature fluctuating environment, and to provide an optical device equipped with the variable power telephoto optical system. <P>SOLUTION: The variable power telephoto optical system includes a diffraction optical system G1 that includes a diffraction surface having a first optical axis; a reflection optical system G2, including a reflection surface having a second optical axis arranged in parallel to the first optical axis; a return mirror M1, arranged behind the diffraction optical system G1, for bending the first optical axis toward the second optical axis; an optical path switching mirror M2, arranged behind the reflection optical system G2, and on an intersection P between the bent optical axis and the other optical axis, capable of selectively obtaining a first state, where only the light coming from the diffraction optical system G1 is turned toward the rear optical path and a second state, where only the light coming from the reflection optical system G2 is turned to the rear optical path. Lenses constituting the diffraction optical system G1 and the reflection optical system G2 are constituted of glass materials, where the temperature dependence coefficient of the refractive index dn/dT is positive. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、変倍式望遠光学系及びこれを備える光学装置に関するものである。   The present invention relates to a variable magnification telephoto optical system and an optical apparatus including the same.

近年、デジタルカメラやテレビカメラなどに使用する望遠光学系において、変倍のための機構が簡単で、全長が短く、広い波長域にて良好な結像性能を有するものが望まれている。   In recent years, telephoto optical systems used for digital cameras, television cameras, and the like have been desired to have a simple zooming mechanism, a short overall length, and good imaging performance in a wide wavelength range.

例えば、レンズの変倍方式として、レンズ光路切換方式(例えば、特許文献1を参照)を採用することにより、例えばミラーなど、光学系を構成する一つの光学素子を移動させるという簡単な構成で変倍切り換えができるとともに、変倍のために光学系を繰り出す必要がないため、光学系全長を短くすることができる。   For example, by adopting a lens optical path switching method (see, for example, Patent Document 1) as a lens magnification changing method, the lens can be changed with a simple configuration in which one optical element constituting an optical system such as a mirror is moved. Since the magnification can be switched and it is not necessary to extend the optical system for zooming, the total length of the optical system can be shortened.

しかしながら、長焦点距離化を進めつつ、特許文献1の技術をそのまま適用しようとすると、次のような問題が生じていた。まず、焦点距離が長いレンズを利用するため、レンズの色収差による色にじみが、撮影された画像に出てしまうおそれがあった。また、光学系の長焦点距離化に伴い、(上記変倍方式を採用しても)光学系全長が長くなってしまうおそれがあった。   However, if the technique of Patent Document 1 is applied as it is while increasing the focal length, the following problem has occurred. First, since a lens having a long focal length is used, there is a possibility that color blur due to chromatic aberration of the lens may appear in a captured image. Further, as the optical system becomes longer in focal length, the entire length of the optical system may become longer (even if the above zooming method is adopted).

こうした問題点に対処するために、反射光学系を利用するという方法がある。反射光学系は、原理的に色収差の発生がなく、かつ光学系全体の小型化を図りながら長焦点距離を得易いという長所がある。しかしながら、撮影画角の増大を図ることが難しく、また光束を往復して使用するために光軸近傍の光束がケラレてしまい、光学系全体の実質的な明るさが低下してしまうという短所がある。   In order to deal with such problems, there is a method of using a reflection optical system. The reflective optical system has the advantages that, in principle, chromatic aberration does not occur, and a long focal length can be easily obtained while downsizing the entire optical system. However, it is difficult to increase the shooting angle of view, and since the light beam is used in a reciprocating manner, the light beam near the optical axis is vignetted and the substantial brightness of the entire optical system is lowered. is there.

そこで、レンズ光路切換方式を採用しつつ、望遠用光学系として屈折光学系を、より長い焦点距離を有する超望遠用光学系として反射光学系を採用するという案が考えられる。   Therefore, it is conceivable to adopt a refractive optical system as the telephoto optical system and a reflective optical system as the supertelephoto optical system having a longer focal length while adopting the lens optical path switching method.

特開平4−3967号公報JP-A-4-3967

上記のような望遠用光学系を構成するレンズには、広い波長域で発生する色収差を除去するため、凸レンズに、螢石やED(Extra-low Dispersion)ガラス等の異常分散性を有する硝材が用いられることが多い。しかしながら、異常分散性を有する硝材は、屈折率の温度依存係数dn/dTが負であることが多く、かつその絶対値も他の一般的な硝材のものと比較して大きい。したがって、こうした硝材を用いた凸レンズは、温度上昇時に焦点距離を大幅にのばすという働きを持つ。   In order to remove chromatic aberration that occurs in a wide wavelength range, the lens constituting the telephoto optical system as described above is made of a convex lens and a glass material having anomalous dispersion such as meteorite or ED (Extra-low Dispersion) glass. Often used. However, a glass material having anomalous dispersion often has a negative temperature dependency coefficient dn / dT of a refractive index, and its absolute value is larger than that of other general glass materials. Therefore, a convex lens using such a glass material has a function of greatly increasing the focal length when the temperature rises.

それに対して、異常分散性を持たない一般の硝材は、屈折率の温度依存係数dn/dTが正であることが多い。しかしながら、こうした硝材は、上記のような望遠用光学系において凹レンズに用いられることが多いため、先の場合と同様に、温度上昇時には望遠光学系の焦点距離をのばす働きを持つ。   In contrast, a general glass material having no anomalous dispersion often has a positive temperature dependence coefficient dn / dT of refractive index. However, since such a glass material is often used for a concave lens in the telephoto optical system as described above, it has a function of increasing the focal length of the telephoto optical system when the temperature rises as in the previous case.

したがって、従来の望遠用光学系では、温度変動時に、凸レンズと凹レンズの両方が焦点距離の増大に寄与して、大きな焦点距離変動を生じる。そのため、反射系の超望遠と屈折系の望遠を切り換えると、大きなデフォーカス(合焦ずれ)が発生するおそれがあった。   Therefore, in the conventional telephoto optical system, both the convex lens and the concave lens contribute to the increase of the focal length when the temperature fluctuates, resulting in a large focal length variation. For this reason, when switching between the super-telephoto of the reflection system and the telephoto of the refraction system, there is a possibility that a large defocus (focus shift) may occur.

本発明は、このような問題に鑑みてなされたものであり、変倍のための駆動機構が簡単で、光学系の全長が短く、温度変動時に変倍しても発生するデフォーカスを最小限に抑えることが可能である、変倍式望遠光学系及びこれを備える光学装置を提供することを目的とする。   The present invention has been made in view of such problems. The drive mechanism for zooming is simple, the overall length of the optical system is short, and the defocus that occurs even when zooming is varied is minimized. An object of the present invention is to provide a variable magnification telephoto optical system and an optical apparatus including the same.

このような目的を達成するため、本発明を例示する第一の態様に従えば、第1の光軸を有した回折面を含む回折光学系と、前記第1の光軸と並列配置された第2の光軸を有した反射面を含む反射光学系と、前記回折光学系もしくは前記反射光学系の後方に配置され、前記第1の光軸もしくは前記第2の光軸をもう一方の光軸に向けて屈曲させる反射部材と、前記回折光学系もしくは前記反射光学系の後方で、前記屈曲された光軸と、もう一方の光軸との交点上に配置され、前記回折光学系からの光のみを後方の光路に向ける第1の状態と、前記反射光学系からの光のみを後方の光路に向ける第2の状態とを選択的に取り得る光路変換部材とを備え、前記回折光学系及び前記反射光学系を構成するレンズに、屈折率の温度依存係数dn/dTが正である硝材を用いることを特徴とする変倍式望遠光学系が提供される。   In order to achieve such an object, according to a first aspect illustrating the present invention, a diffractive optical system including a diffractive surface having a first optical axis, and the first optical axis are arranged in parallel. A reflection optical system including a reflection surface having a second optical axis, and a diffractive optical system or a rear of the reflection optical system, and the first optical axis or the second optical axis is used as the other light. A reflecting member that bends toward the axis, and is disposed on the intersection of the bent optical axis and the other optical axis behind the diffractive optical system or the reflective optical system; An optical path conversion member capable of selectively taking a first state in which only light is directed toward the rear optical path and a second state in which only light from the reflection optical system is directed toward the rear optical path; In addition, the temperature dependence coefficient dn / dT of the refractive index is positive in the lenses constituting the reflective optical system. Zoom telephoto optical system which is characterized by using a glass material is provided.

また、本発明を例示する第二の態様に従えば、第一の態様の変倍式望遠光学系を備えることを特徴とする光学装置が提供される。   According to a second aspect illustrating the present invention, there is provided an optical apparatus comprising the variable magnification telephoto optical system according to the first aspect.

本発明の変倍式望遠光学系及びこれを備える光学装置によれば、変倍のための駆動機構が簡単で、光学系の全長が短く、温度変動時に変倍しても発生するデフォーカスを最小限に抑えることが可能である。   According to the zoom-type telephoto optical system and the optical apparatus including the same according to the present invention, the drive mechanism for zooming is simple, the total length of the optical system is short, and defocusing that occurs even when zooming is performed during temperature fluctuations. It can be minimized.

本実施形態に係る変倍式望遠光学系の構成を概略的に示す図である。It is a figure which shows schematically the structure of the variable magnification telephoto optical system which concerns on this embodiment. 回折光学系を構成する回折光学素子の形状を示す図である。It is a figure which shows the shape of the diffractive optical element which comprises a diffractive optical system. 回折光学系の縦の球面収差と軸上色収差を示す図である。It is a figure which shows the vertical spherical aberration and axial chromatic aberration of a diffractive optical system. 比較用の望遠光学系の構成を概略的に示す図である。It is a figure which shows roughly the structure of the telephoto optical system for a comparison. 比較用の望遠光学系の縦の球面収差と軸上色収差を示す図である。It is a figure which shows the vertical spherical aberration and axial chromatic aberration of the telephoto optical system for a comparison. 反射光学系の縦の球面収差と軸上色収差を示す図である。It is a figure which shows the vertical spherical aberration and axial chromatic aberration of a reflective optical system. 上記変倍式望遠光学系を備える光学装置(カメラ)の構成を概略的に示す図である。It is a figure which shows schematically the structure of an optical apparatus (camera) provided with the said variable magnification type telephoto optical system. 本実施形態に係る変倍式望遠光学系の他の構成を概略的に示す図である。It is a figure which shows schematically the other structure of the variable magnification telephoto optical system which concerns on this embodiment. 回折光学系を使用した時におけるズーム概略図である。It is the zoom schematic when using a diffractive optical system. 反射光学系を使用した時におけるズーム概略図である。It is the zoom schematic when using a reflective optical system.

以下、本発明の実施形態について、図面を用いて説明する。なお、光路は光軸に代表させて説明する。図1は、本実施形態に係る変倍式望遠光学系の構成を概略的に示す図である。本実施形態に係る変倍式望遠光学系は、図1に示すように、焦点距離の異なる、望遠用の光学系である回折光学系G1と、超望遠用の光学系である反射光学系G2とを有し、それぞれの光軸がほぼ平行となるように並列配置し、これら二つの光路を切り換えて使用することにより、変倍を行うように構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The optical path will be described with the optical axis as a representative. FIG. 1 is a diagram schematically showing a configuration of a variable magnification telephoto optical system according to the present embodiment. As shown in FIG. 1, the variable magnification telephoto optical system according to the present embodiment includes a diffractive optical system G1 that is a telephoto optical system having a different focal length, and a reflective optical system G2 that is a supertelephoto optical system. Are arranged in parallel so that their optical axes are substantially parallel, and the two optical paths are switched and used to perform zooming.

回折光学系G1と反射光学系G2との間には、折り返しミラーM1と、光路切り換えミラーM2とが設けられている。   A folding mirror M1 and an optical path switching mirror M2 are provided between the diffractive optical system G1 and the reflective optical system G2.

折り返しミラーM1は、回折光学系G1の後方に配置され、回折光学系G1を通過した光路Aを反射光学系G2の光軸に向けて屈曲させるために、反射面を反射光学系G2側に向けて傾斜させている。   The folding mirror M1 is disposed behind the diffractive optical system G1, and in order to bend the optical path A that has passed through the diffractive optical system G1 toward the optical axis of the reflective optical system G2, the reflecting surface is directed toward the reflective optical system G2. Is inclined.

光路切り換えミラーM2は、折り返しミラーM1によって屈曲された光路A´と、反射光学系G2の光軸と一致させるため、反射光学系G2の後方に、具体的には光路A´と光学系G2を通過した光路Bとの交点P上に、反射面が折り返しミラーM1の反射面と対向するように設けられている。なお、光路切り換えミラーM2は、ミラー駆動装置M2mにより光路A´に沿って上下方向に移動可能であり、回折光学系G1からの光のみを後方の光路に向ける第1の状態(図1中の実線で示す位置)と、反射光学系G2からの光のみを後方の光路に向ける第2の状態(図1中の点線で示す位置)とを選択的に取り得る。   The optical path switching mirror M2 is disposed behind the reflective optical system G2, specifically, the optical path A ′ and the optical system G2 in order to match the optical path A ′ bent by the folding mirror M1 with the optical axis of the reflective optical system G2. On the intersection P with the optical path B that has passed, the reflecting surface is provided so as to face the reflecting surface of the folding mirror M1. The optical path switching mirror M2 is movable in the vertical direction along the optical path A ′ by the mirror driving device M2m, and is in a first state in which only the light from the diffractive optical system G1 is directed to the rear optical path (in FIG. 1). A position indicated by a solid line) and a second state (a position indicated by a dotted line in FIG. 1) in which only the light from the reflective optical system G2 is directed to the rear optical path can be taken selectively.

したがって、本実施形態における望遠光学系では、図1中の実線で示すように、光路切り換えミラーM2が反射光学系G2の光路内にある場合、回折光学系G1により得られる結像光束は、折り返しミラーM1で反射され、光路A´を通り、光路切り換えミラーM2で反射され、該ミラーM2の後方で光路Bの延長上に設けられた像面Iにて物体像を形成する。この際、反射光学系G2によって得られる像は、光路切り換えミラーM2によって妨げられ、像面Iに導くことができないようになっている。   Therefore, in the telephoto optical system according to the present embodiment, as shown by the solid line in FIG. 1, when the optical path switching mirror M2 is in the optical path of the reflective optical system G2, the imaging light beam obtained by the diffractive optical system G1 is folded back. Reflected by the mirror M1, passes through the optical path A ′, reflected by the optical path switching mirror M2, and forms an object image on an image plane I provided on the extension of the optical path B behind the mirror M2. At this time, the image obtained by the reflection optical system G2 is blocked by the optical path switching mirror M2, and cannot be guided to the image plane I.

また、図1中の点線で示すように、ミラー駆動装置M2mを駆動して、光路切り換えミラーM2を移動させ、反射光学系G2の光路B外に退出させた場合、反射光学系G2を通った光束は、回折光学系G1と同様に、像面Iにて物体像を形成する。この際、回折光学系G1によって得られる像は、光路切り換えミラーM2によって妨げられ、像面Iに導くことができないようになっている。   In addition, as shown by the dotted line in FIG. 1, when the mirror driving device M2m is driven to move the optical path switching mirror M2 and exit out of the optical path B of the reflective optical system G2, it passes through the reflective optical system G2. The light beam forms an object image on the image plane I as in the diffractive optical system G1. At this time, the image obtained by the diffractive optical system G1 is blocked by the optical path switching mirror M2, and cannot be guided to the image plane I.

以上のように、本実施形態においては、本光学系を構成する光学素子の一つである光路切り換えミラーM2を光路A´に沿って上下方向に移動させるという簡単な構成で変倍切り換えができる。   As described above, in this embodiment, zooming can be switched with a simple configuration in which the optical path switching mirror M2, which is one of the optical elements constituting the present optical system, is moved in the vertical direction along the optical path A ′. .

回折光学系G1について説明する。本実施形態に係る回折光学系G1は、物体側から順に並んだ、回折光学素子D1と、正レンズL1と、負レンズL2と、折り返しミラーM1と、補正レンズL3と、光路切り換えミラーM2とを有し、焦点距離が長い、望遠結像機能を持つ。   The diffractive optical system G1 will be described. The diffractive optical system G1 according to this embodiment includes a diffractive optical element D1, a positive lens L1, a negative lens L2, a folding mirror M1, a correction lens L3, and an optical path switching mirror M2 arranged in order from the object side. It has a long focal length and a telephoto imaging function.

回折光学素子D1は、紫外線硬化樹脂からなる平行平板を基板材としており、この像側の面に回折面(後述の表1の面番号1が該当)が形成されている。   The diffractive optical element D1 uses a parallel plate made of an ultraviolet curable resin as a substrate material, and a diffraction surface (corresponding to surface number 1 in Table 1 described later) is formed on the image side surface.

一般に、回折光学素子の位相関数φは、光軸からの高さをrとし、波長をλとし、係数C2〜C10としたとき、次式(1)で表される。 In general, the phase function φ of the diffractive optical element is expressed by the following equation (1), where r is the height from the optical axis, λ is the wavelength, and the coefficients are C 2 to C 10 .

φ(r)=(2π/λ)・(C22+C4+C66+C88+C1010) …(1) φ (r) = (2π / λ) · (C 2 r 2 + C 4 r 4 + C 6 r 6 + C 8 r 8 + C 10 r 10 ) (1)

本実施形態においては、式(1)のC4〜C10は全て0であるので、回折光学素子D1の焦点距離をfDとしたとき、次式(2)が成立する。 In the present embodiment, since C 4 to C 10 in the expression (1) are all 0, the following expression (2) is established when the focal length of the diffractive optical element D1 is f D.

φ(r)=(2π/λ)・C2・r2=(2π/λ)・{-1/(2fD)}・r2 …(2) φ (r) = (2π / λ) · C 2 · r 2 = (2π / λ) · {-1 / (2f D)} · r 2 ... (2)

回折光学素子D1は、環境温度20℃の状態にある場合、C2=-1.2389×10-5[mm-1]であるため、式(2)よりfD=40356.8282[mm]となる。 When the diffractive optical element D1 is in a state where the environmental temperature is 20 ° C., C 2 = −1.2389 × 10 −5 [mm −1 ], and therefore, f D = 40356.8282 [mm] from Expression (2).

続いて、回折光学素子D1の形状を図2に示す。回折光学素子D1において、m番目の輪帯の半径rmは、基準波長としてd線の波長λdを587.6[nm]とし、回折光学素子D1の焦点距離fDを40356.8282[mm](環境温度20度の場合)としたとき、次式(3)で表される。 Subsequently, the shape of the diffractive optical element D1 is shown in FIG. In the diffractive optical element D1, the radius r m of the m-th annular zone is set such that the wavelength λ d of the d-line is 587.6 [nm] as a reference wavelength, and the focal length f D of the diffractive optical element D1 is 40356.8282 [mm] (ambient temperature) (When 20 degrees), it is expressed by the following equation (3).

=(2m・λ・fD(1/2) …(3) r m = (2 m · λ d · f D ) (1/2) (3)

また、回折光学素子D1において、鋸歯状輪帯の高さhは、基準波長λdと回折光学素子D1の基板材の屈折率nを用いると、次式(4)で表される。 In the diffractive optical element D1, the height h of the serrated annular zone is expressed by the following equation (4) using the reference wavelength λ d and the refractive index n of the substrate material of the diffractive optical element D1.

h=λd/(n−1) …(4) h = λ d / (n−1) (4)

なお、本実施形態においては、基準波長λdは587.6[nm]としており、回折光学素子D1の基板材である紫外線硬化樹脂の屈折率nを1.500000とすると、鋸歯状輪帯の高さhは1.2[μm]となる。 In this embodiment, when the reference wavelength λ d is 587.6 [nm] and the refractive index n of the ultraviolet curable resin that is the substrate material of the diffractive optical element D1 is 1.500000, the height h of the serrated ring zone is 1.2 [μm].

また、本実施形態においては、正レンズL1、負レンズL2及び補正レンズL3に、いずれも屈折率の温度依存係数dn/dTが正である硝材を用いている(後述の表3参照)。   In the present embodiment, the positive lens L1, the negative lens L2, and the correction lens L3 are all made of a glass material having a positive temperature dependence coefficient dn / dT of the refractive index (see Table 3 described later).

上記構成によれば、回折光学系G1は、正レンズL1、負レンズL2及び補正レンズL3に色収差を発生し易い通常の光学ガラスを使用しているが、回折光学素子D1の波長分散効果によって、図3に示すように軸上色収差を良好に抑えることができる。   According to the above configuration, the diffractive optical system G1 uses normal optical glass that easily generates chromatic aberration in the positive lens L1, the negative lens L2, and the correction lens L3. However, due to the wavelength dispersion effect of the diffractive optical element D1, As shown in FIG. 3, axial chromatic aberration can be satisfactorily suppressed.

表1に回折光学系G1が環境温度20℃の状態にある場合の光学系データを、表2に環境温度40℃の状態にある場合の光学系データを示す。表2において、表1の環境温度が20℃の状態にある場合と比べ、変動した数値には、*印を付した。   Table 1 shows optical system data when the diffractive optical system G1 is in an ambient temperature state of 20 ° C., and Table 2 shows optical system data when it is in an environmental temperature state of 40 ° C. In Table 2, the changed numerical values are marked with an asterisk (*) as compared with the case where the environmental temperature in Table 1 is 20 ° C.

なお、表中の[全体諸元]において、fは全系の焦点距離を、FはF値を、ωは画角を示す。また、[レンズデータ]において、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、rは各レンズ面の曲率半径[単位mm]を、dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔[単位mm]を、ndはd線(波長587.6nm)に対する屈折率と硝材名を示す。また、空気の屈折率「1.000000」の記載は省略している(以上、表の説明は、表4、表5、表7及び表8についても同様である)。   In [Overall specifications] in the table, f represents the focal length of the entire system, F represents the F value, and ω represents the angle of view. In [Lens Data], the surface number is the order of the lens surfaces from the object side along the direction in which the light beam travels, r is the radius of curvature [unit mm] of each lens surface, and d is from The surface interval [unit mm], which is the distance on the optical axis to the optical surface (or image surface), nd indicates the refractive index and glass material name for the d-line (wavelength 587.6 nm). In addition, the description of the refractive index “1.000000” of air is omitted (the description of the table is the same for Table 4, Table 5, Table 7, and Table 8).

(表1)
回折光学系G1が環境温度20℃の状態にある場合
[全体諸元]
f=749.9981mm、F/10、ω=2.17°
[レンズデータ]
面番号 r d nd(硝材名)
1(入射瞳面) ∞ 25.0000 回折光学素子D1
2 299.7409 14.0000 1.516330(S-BSL7) L1
3 -216.6011 11.0000
4 -198.2239 8.0000 1.548141(S-TIL1) L2
5 3633.9276 440.0000
6 51.4073 10.0000 1.516330(S-BSL7) L3
7 46.3249 227.3592
(Table 1)
When the diffractive optical system G1 is in an ambient temperature of 20 ° C. [Overall specifications]
f = 749.9981mm, F / 10, ω = 2.17 °
[Lens data]
Surface number r d nd (name of glass material)
1 (entrance pupil plane) ∞ 25.0000 Diffractive optical element D1
2 299.7409 14.0000 1.516330 (S-BSL7) L1
3 -216.6011 11.0000
4 -198.2239 8.0000 1.548141 (S-TIL1) L2
5 3633.9276 440.0000
6 51.4073 10.0000 1.516330 (S-BSL7) L3
7 46.3249 227.3592

(表2)
回折光学系G1が環境温度40℃の状態にある場合
[全体諸元]
f=749.9769*mm、F/10、ω=2.17°
[レンズデータ]
面番号 r d nd(硝材名)
1(入射瞳面) ∞ 24.9980* 回折光学素子D1
2 299.7841* 14.0020* 1.516384*(S-BSL7) L1
3 -216.6323* 10.9986*
4 -198.2580* 8.0014* 1.548177*(S-TIL1) L2
5 3634.5526* 439.9986*
6 51.4147* 10.0014* 1.516384*(S-BSL7) L3
7 46.3316* 227.3555*
(Table 2)
When the diffractive optical system G1 is at an ambient temperature of 40 ° C. [Overall specifications]
f = 749.9769 * mm, F / 10, ω = 2.17 °
[Lens data]
Surface number r d nd (name of glass material)
1 (surface entrance pupil) ∞ 24.9980 * diffractive optical element D1
2 299.7841 * 14.0020 * 1.516384 * (S-BSL7) L1
3 -216.6323 * 10.9986 *
4 -198.2580 * 8.0014 * 1.548177 * (S-TIL1) L2
5 3634.5526 * 439.9986 *
6 51.4147 * 10.0014 * 1.516384 * (S-BSL7) L3
7 46.3316 * 227.3555 *

表1及び表2の光学系データを算出するにあたり、使用したデータ(レンズL1〜L3の線膨脹係数α及び屈折率の温度依存係数dn/dtと、回折光学素子D1の線膨脹係数α)を表3に示す。また、空気間隔の変化に関しては、レンズ鏡筒は極低膨張部材で構成されており、回折光学素子D1及び各レンズL1〜L3は、それぞれ像側レンズ面の側部が、胴付面、押え環が無い状態で、レンズ鏡筒に接着・保持されているものと考えて、数値を計算した。   In calculating the optical system data in Tables 1 and 2, the data used (the linear expansion coefficient α of the lenses L1 to L3 and the temperature dependence coefficient dn / dt of the refractive index and the linear expansion coefficient α of the diffractive optical element D1) are used. Table 3 shows. Regarding the change in the air interval, the lens barrel is formed of an extremely low expansion member, and each of the diffractive optical element D1 and the lenses L1 to L3 has a side surface of the image side lens surface, a body surface, and a presser foot. The numerical value was calculated on the assumption that the lens barrel was adhered and held without a ring.

(表3)
硝材名 線膨張係数[K-1] 温度依存係数dn/dT[K-1]
S-BSL7 7.2×10-6 2.7×10-6 L1,L3
S-TIL1 8.6×10-6 1.8×10-6 L2
紫外線硬化樹脂 100×10-6 − D1(基板材)
(Table 3)
Glass name Linear expansion coefficient [K -1 ] Temperature dependence coefficient dn / dT [K -1 ]
S-BSL7 7.2 × 10 -6 2.7 × 10 -6 L1, L3
S-TIL1 8.6 × 10 -6 1.8 × 10 -6 L2
UV curable resin 100 × 10 -6 − D1 (substrate material)

また、表1及び表2の光学系データを算出するにあたり、温度変化による回折光学素子D1の焦点距離の変化は、温度変化後の回折光学素子D1の焦点距離をfD´とし、温度変化前の回折光学素子D1の焦点距離をfDとし、回折光学素子D1を構成する素材の線膨張係数をαとし、温度変化時の上昇温度をΔTとしたとき、次式(5)より導いた。 In calculating the optical system data in Tables 1 and 2, the change in the focal length of the diffractive optical element D1 due to the temperature change is defined as f D ′, which is the focal length of the diffractive optical element D1 after the temperature change. When the focal length of the diffractive optical element D1 is f D , the linear expansion coefficient of the material constituting the diffractive optical element D1 is α, and the temperature rise during temperature change is ΔT, the following equation (5) is derived.

D´=fD(1+2・α・ΔT) …(5) f D ′ = f D (1 + 2 · α · ΔT) (5)

表1と表2の光学系データを基に近軸光線追跡を行うと、回折光学系G1において、環境温度が20℃から40℃に変化すると、回折光学系G1の焦点距離が0.0212mm短くなり、近軸像面位置が0.0036mm物体側へ移動することが分かる。したがって、回折光学系G1は、温度変動によるデフォーカスの発生を良好に抑えていることが分かる。   When paraxial ray tracing is performed based on the optical system data in Tables 1 and 2, when the environmental temperature is changed from 20 ° C. to 40 ° C. in the diffractive optical system G1, the focal length of the diffractive optical system G1 is shortened by 0.0212 mm. Thus, it can be seen that the paraxial image plane position moves to the object side by 0.0036 mm. Therefore, it can be seen that the diffractive optical system G1 satisfactorily suppresses the occurrence of defocus due to temperature fluctuations.

比較のため、屈折率の温度依存係数dn/dTが負である、EDガラスを用いて構成した望遠用の光学系G1´を例示する。図4に示すように、望遠用の光学系G1´は、物体側から順に並んだ、正レンズLaと、負レンズLbと、正レンズLcと、補正レンズLdとを有し、正レンズLa,Lcをいずれも屈折率の温度依存係数dn/dTが負であるEDレンズ(S-FPL51)を用いて構成した。この構成により、望遠用の光学系G1´は、焦点距離の長い、望遠結像機能を持ちながら、図5に示すように、軸上色収差を小さく抑えることができる。   For comparison, a telephoto optical system G1 ′ configured using ED glass, in which the temperature dependence coefficient dn / dT of the refractive index is negative, is illustrated. As shown in FIG. 4, the telephoto optical system G1 ′ includes a positive lens La, a negative lens Lb, a positive lens Lc, and a correction lens Ld arranged in order from the object side. Each Lc was configured using an ED lens (S-FPL51) having a negative temperature dependence coefficient dn / dT of the refractive index. With this configuration, the telephoto optical system G1 ′ can suppress axial chromatic aberration as shown in FIG. 5 while having a telephoto imaging function with a long focal length.

表4に比較用の光学系G1´が環境温度20℃の状態にある場合の光学系データを、表5に比較用の光学系G1´が環境温度40℃の状態にある場合の光学系データを示す。表5において、表2の環境温度が20℃の状態にある場合と比べ、変動した数値には、*印を付した。   Table 4 shows optical system data when the comparative optical system G1 'is in an environmental temperature of 20 ° C, and Table 5 shows optical system data when the comparative optical system G1' is in an environmental temperature of 40 ° C. Indicates. In Table 5, the changed numerical values are marked with an asterisk (*) compared to the case where the environmental temperature in Table 2 is 20 ° C.

(表4)
EDガラスを含む光学系G1´が環境温度20℃の状態にある場合
[全体諸元]
f=750.0031*mm、F/10、ω=2.17°
[レンズデータ]
面番号 r d nd
1(入射瞳面) 476.2539 14.0000 1.496999(S-FPL51) La
2 -156.9465 7.0000
3 -145.6730 7.0000 1.516330(S-BSL7) Lb
4 206.4596 5.0000
5 186.2614 12.0000 1.496999(S-FPL51) Lc
6 -1135.6986 450.0000
7 61.3709 10.0000 1.516330(S-BSL7) Ld
8 55.5313 233.6649
(Table 4)
When optical system G1 ′ including ED glass is in an ambient temperature of 20 ° C. [Overall specifications]
f = 750.0031 * mm, F / 10, ω = 2.17 °
[Lens data]
Surface number r d nd
1 (Pupil plane) 476.2539 14.0000 1.496999 (S-FPL51) La
2 -156.9465 7.0000
3 -145.6730 7.0000 1.516330 (S-BSL7) Lb
4 206.4596 5.0000
5 186.2614 12.0000 1.496999 (S-FPL51) Lc
6 -1135.6986 450.0000
7 61.3709 10.0000 1.516330 (S-BSL7) Ld
8 55.5313 233.6649

(表5)
EDガラスを含む光学系G1´が環境温度40℃の状態にある場合
[全体諸元]
f=752.4021*mm、F/10、ω=2.17°
[レンズデータ]
面番号 r d nd
1(入射瞳面) 476.3787* 14.0037* 1.496875*(S-FPL51) La
2 -156.9876* 6.9990*
3 -145.6940* 7.0010* 1.516384*(S-BSL7) Lb
4 206.4893* 4.9969*
5 186.3102* 12.0031* 1.496875*(S-FPL51) Lc
6 -1135.9962* 449.9986*
7 61.3797* 10.0014* 1.516384*(S-BSL7) Ld
8 55.5393* 235.5788*
(Table 5)
When the optical system G1 ′ including ED glass is in an ambient temperature of 40 ° C. [Overall specifications]
f = 752.4021 * mm, F / 10, ω = 2.17 °
[Lens data]
Surface number r d nd
1 (entrance pupil plane) 476.3787 * 14.0037 * 1.496875 * (S-FPL51) La
2 -156.9876 * 6.9990 *
3 -145.6940 * 7.0010 * 1.516384 * (S-BSL7) Lb
4 206.4893 * 4.9969 *
5 186.3102 * 12.0031 * 1.496875 * (S-FPL51) Lc
6 -1135.9962 * 449.9986 *
7 61.3797 * 10.0014 * 1.516384 * (S-BSL7) Ld
8 55.5393 * 235.5788 *

表4及び表5の光学系データを算出するにあたり、使用したデータ(レンズLa〜Ldの線膨脹係数α及び屈折率の温度依存係数dn/dt)を表6に示す。また、空気間隔の変化に関しては、レンズ鏡筒は極低膨張部材からなり、各レンズLa〜Ldは、それぞれ像側レンズ面の側部が、胴付面、押え環が無い状態で、レンズ鏡筒に接着・保持されているものと考えて、数値を計算した。   Table 6 shows data used in calculating the optical system data in Tables 4 and 5 (linear expansion coefficient α of lens La to Ld and temperature dependency coefficient dn / dt of refractive index). Regarding the change in the air interval, the lens barrel is made of an extremely low expansion member, and each of the lenses La to Ld has a lens mirror in a state where the side portion of the image side lens surface has no body surface and presser ring. The numerical value was calculated on the assumption that it was adhered and held on the cylinder.

(表6)
硝材名 線膨張係数[K-1] 温度依存係数dn/dT[K-1]
S-FPL51 13.1×10-6 -6.2×10-6 La,Lc
S-BSL7 7.2×10-6 2.7×10-6 Lb,Ld
(Table 6)
Glass name Linear expansion coefficient [K -1 ] Temperature dependence coefficient dn / dT [K -1 ]
S-FPL51 13.1 × 10 -6 -6.2 × 10 -6 La, Lc
S-BSL7 7.2 × 10 -6 2.7 × 10 -6 Lb, Ld

表4と表5の光学系データを基に近軸光線追跡を行うと、比較用の光学系G1´において、環境温度が20℃から40℃に変化すると、光学系G1´の焦点距離が2.3990mm長くなり、近軸像面位置が1.9139mm像側へ移動することが分かる。したがって、構成レンズに屈折率の温度依存係数dn/dtが正である硝材を用いた回折光学系G1(表1及び表2参照)は、構成レンズに屈折率の温度依存係数dn/dtが負である硝材を用いた光学系G1´(表4及び表5参照)と比較すると、温度変動によるデフォーカスの発生量が極めて小さいことがよく分かる。   When paraxial ray tracing is performed based on the optical system data in Tables 4 and 5, when the environmental temperature is changed from 20 ° C. to 40 ° C. in the comparative optical system G 1 ′, the focal length of the optical system G 1 ′ is 2 .3,990 mm, and the paraxial image plane position moves to the 1.9139 mm image side. Therefore, in the diffractive optical system G1 (see Tables 1 and 2) using a glass material in which the refractive index temperature dependency coefficient dn / dt is positive for the constituent lens, the refractive index temperature dependency coefficient dn / dt is negative for the constituent lens. Compared with the optical system G1 ′ using the glass material (see Tables 4 and 5), it can be clearly seen that the amount of defocus caused by temperature fluctuation is extremely small.

続いて、反射光学系G2について説明する。反射光学系G2は、図1に示すように、光路順に並んだ、主鏡M3と、副鏡M4と、補正レンズL4と、補正レンズL5とを有し、焦点距離が極めて長い、超望遠結像機能を持つ。なお、主鏡M3と副鏡M4は極低膨張部材で、補正レンズL4,L5は屈折率の温度依存係数dn/dTが正である硝材(表9参照)で、主鏡M3、副鏡M4及び補正レンズL8,L9を保持するレンズ鏡筒は極低膨張部材でそれぞれ構成されている。   Next, the reflection optical system G2 will be described. As shown in FIG. 1, the reflection optical system G2 includes a primary mirror M3, a secondary mirror M4, a correction lens L4, and a correction lens L5 arranged in the order of the optical paths, and has a very long focal length and a super telephoto connection. Has an image function. The primary mirror M3 and the secondary mirror M4 are extremely low expansion members, and the correction lenses L4 and L5 are glass materials (see Table 9) having a positive temperature dependence coefficient dn / dT of the refractive index, and the primary mirror M3 and the secondary mirror M4. The lens barrels that hold the correction lenses L8 and L9 are each composed of an extremely low expansion member.

反射光学系G2の全長は副鏡M4の裏面から像面まで725[mm]であり、反射光学系G2の焦点距離である3000[mm]に対して1/4以下に抑えられている。また、反射光学系G2は、上記のように焦点距離が極めて長い超望遠結像機能を持つ光学系であるが、主鏡M3と副鏡M4が光束を集光させる大半のパワーを有しているので、図6に示すように、原理的に色収差をほとんど生じない。   The total length of the reflective optical system G2 is 725 [mm] from the back surface of the secondary mirror M4 to the image plane, and is suppressed to 1/4 or less with respect to 3000 [mm] which is the focal length of the reflective optical system G2. The reflection optical system G2 is an optical system having a super-telephoto imaging function with a very long focal length as described above, but has a large amount of power for the primary mirror M3 and the secondary mirror M4 to collect the light beam. Therefore, as shown in FIG. 6, chromatic aberration hardly occurs in principle.

このような構成の反射光学系G2において、環境温度20℃の状態にある場合の光学系データを表7に、環境温度40℃の状態にある場合の光学系データを表8に示す。表8において、表7の環境温度が20℃の状態にある場合と比べ、変動した数値には、*印を付した。また、表中、非球面については、光軸に垂直な方向の高さをyとし、非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(サグ量)をzとし、頂点曲率基準球面の曲率半径(近軸曲率半径)をrとし、円錐係数をκとしたとき、その形状を以下の式(6)で示している。   In the reflection optical system G2 having such a configuration, optical system data when the ambient temperature is 20 ° C. is shown in Table 7, and optical system data when the ambient temperature is 40 ° C. is shown in Table 8. In Table 8, the changed numerical values are marked with an asterisk (*) compared to the case where the environmental temperature in Table 7 is 20 ° C. In the table, for the aspheric surface, the height in the direction perpendicular to the optical axis is y, and the distance along the optical axis from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at the height y (sag When the amount is z, the radius of curvature of the apex curvature reference sphere (paraxial radius of curvature) is r, and the cone coefficient is κ, the shape is expressed by the following equation (6).

z=cy2/{1+(1−(κ+1)c221/2} …(6) z = cy 2 / {1+ (1− (κ + 1) c 2 y 2 ) 1/2 } (6)

(表7)
反射光学系G2が環境温度20℃の状態にある場合
[全体諸元]
f=3000.5395mm、F/10、ω=0.54°
[レンズデータ]
面番号 r d 円錐係数κ nd(硝材名)
1(入射瞳面) -1200.0000 -460.0000 -1.0535 (反射) M3
2 -350.0000 478.0000 -2.7105 (反射) M4
3 192.4278 10.0000 (球面) 1.581439(S-TIL25) L4
4 92.0105 2.0000 (球面)
5 105.9285 10.0000 (球面) 1.882997(S-LAH58) L5
6 161.4805 199.6938 (球面)
(Table 7)
When the reflective optical system G2 is at an ambient temperature of 20 ° C. [Overall specifications]
f = 3000.5395mm, F / 10, ω = 0.54 °
[Lens data]
Surface number r d Cone coefficient κ nd (glass material name)
1 (entrance pupil plane) -1200.0000 -460.0000 -1.0535 (reflection) M3
2 -350.0000 478.0000 -2.7105 (Reflection) M4
3 192.4278 10.0000 (Spherical surface) 1.581439 (S-TIL25) L4
4 92.0105 2.0000 (spherical surface)
5 105.9285 10.0000 (Spherical surface) 1.882997 (S-LAH58) L5
6 161.4805 199.6938 (Spherical surface)

(表8)
反射光学系G2が環境温度40℃の状態にある場合
[全体諸元]
f=3000.5006*mm、F/10、ω=0.54°
[レンズデータ]
面番号 r d 円錐係数κ nd(硝材名)
1(入射瞳面) -1200.0000 -460.0000 -1.0535 (反射) M3
2 -350.0000 477.9985* -2.7105 (反射) M4
3 192.4563* 10.0015* (球面) 1.581509*(S-TIL25) L4
4 92.0241* 1.9987* (球面)
5 105.9425* 10.0013* (球面) 1.883095*(S-LAH58) L5
6 161.5018* 199.6913* (球面)
(Table 8)
When the reflective optical system G2 is at an ambient temperature of 40 ° C. [Overall specifications]
f = 3000.5006 * mm, F / 10, ω = 0.54 °
[Lens data]
Surface number r d Cone coefficient κ nd (glass material name)
1 (entrance pupil plane) -1200.0000 -460.0000 -1.0535 (reflection) M3
2 -350.0000 477.9985 * -2.7105 (Reflection) M4
3 192.4563 * 10.0015 * (Spherical surface) 1.581509 * (S-TIL25) L4
4 92.0241 * 1.9987 * (Spherical surface)
5 105.9425 * 10.0013 * (Spherical surface) 1.883095 * (S-LAH58) L5
6 161.5018 * 199.6913 * (Spherical surface)

表7及び表8の光学系データを算出するにあたり、使用したデータ(レンズL4,L5の線膨脹係数α及び屈折率の温度依存係数dn/dt)を表9に示す。   Table 9 shows data used for calculating the optical system data in Tables 7 and 8 (linear expansion coefficient α of lens L4, L5 and temperature dependence coefficient dn / dt of refractive index).

(表9)
硝材名 線膨張係数[K-1] 温度依存係数dn/dT[K-1]
S-TIL25 7.4×10-6 3.5×10-6 L4
S-LAH58 6.6×10-6 4.9×10-6 L5
(Table 9)
Glass name Linear expansion coefficient [K -1 ] Temperature dependence coefficient dn / dT [K -1 ]
S-TIL25 7.4 × 10 -6 3.5 × 10 -6 L4
S-LAH58 6.6 × 10 -6 4.9 × 10 -6 L5

表7と表8の光学系データを基に近軸光線追跡を行うと、反射光学系G2において、環境温度が20℃から40℃に変化すると、反射光学系G2の焦点距離が0.0389mm短くなり、近軸像面位置が0.0025mm物体側へ移動することが分かる。したがって、反射光学系G2は、温度変動によるデフォーカスの発生を良好に抑えていることが分かる。そして、反射光学系G2(表7及び表8参照)は、構成レンズに屈折率の温度依存係数dn/dtが負である硝材を用いた比較用の望遠光学系G1´(表4及び表5参照)と比較すると、温度変動によるデフォーカスの発生量は極めて小さいことがよく分かる。また、反射光学系G2と回折光学系G1は、温度変動時に発生するデフォーカス量がほぼ等しく、温度変動時にこれら光学系G1,G2の切り換えを行っても、デフォーカスが問題となることはないと考えられる。   When paraxial ray tracing is performed based on the optical system data in Tables 7 and 8, when the environmental temperature is changed from 20 ° C. to 40 ° C. in the reflective optical system G2, the focal length of the reflective optical system G2 is shortened by 0.0389 mm. Thus, it can be seen that the paraxial image plane position moves to the object side by 0.0025 mm. Therefore, it can be seen that the reflective optical system G2 satisfactorily suppresses the occurrence of defocus due to temperature fluctuations. The reflective optical system G2 (see Tables 7 and 8) is a comparative telephoto optical system G1 ′ (Tables 4 and 5) using a glass material having a negative temperature dependence coefficient dn / dt of the refractive index as a constituent lens. Compared with the reference), it can be seen that the amount of defocus caused by temperature fluctuation is extremely small. In addition, the reflection optical system G2 and the diffractive optical system G1 have substantially the same defocus amount generated when the temperature fluctuates, and even if the optical systems G1 and G2 are switched when the temperature fluctuates, the defocus does not become a problem. it is conceivable that.

図7に、本実施形態に係る望遠光学系、すなわち回折光学系G1及び反射光学系G2を備えた光学装置の例として、カメラCAMの構成を示す。このカメラCAMは、ミラー駆動装置M2mを駆動して、切り換えミラーM2を光路A´に沿って移動させ、選択された回折光学系G1もしくは反射光学系G2で不図示の被写体からの光が集光され、像面Iに配置された撮像素子(例えば、CCDやCMOS等)に結像される。   FIG. 7 shows a configuration of a camera CAM as an example of an optical apparatus including the telephoto optical system according to the present embodiment, that is, the diffractive optical system G1 and the reflective optical system G2. The camera CAM drives the mirror driving device M2m to move the switching mirror M2 along the optical path A ′, and the light from the subject (not shown) is condensed by the selected diffractive optical system G1 or the reflective optical system G2. Then, an image is formed on an image pickup device (for example, a CCD or a CMOS) arranged on the image plane I.

図8に、回折光学系G1と反射光学系G2の構成は上記のものと同じであるが、像面Iを中間結像面I´とし、この中間結像面I´の後方に、フォーカシングレンズ群G3、バリエータレンズ群G4、コンペンセータレンズ群G5を配置した例を示す。   In FIG. 8, the configurations of the diffractive optical system G1 and the reflective optical system G2 are the same as those described above, but the image plane I is an intermediate image plane I ′, and a focusing lens is located behind the intermediate image plane I ′. An example in which a group G3, a variator lens group G4, and a compensator lens group G5 are arranged is shown.

これらフォーカシングレンズ群G3、バリエータレンズ群G4、コンペンセータレンズ群G5は、ズーム機能を持つリレー系を構成しており、その倍率は0.5〜2倍となっている。したがって、本実施例では、回折光学系G1及びレンズ群G3,G4,G5からなる光学系と、反射光学系G2及びレンズ群G3,G4,G5からなる光学系は、それぞれ4倍のズーム比を持つズームレンズを構成することとなる。また、回折光学系G1と反射光学系G2の焦点距離が4倍異なるため、リレー系のズームと、回折光学系G1と反射光学系G2の切り換えを組み合わせることにより、焦点距離を375[mm]から6000[mm]まで16倍可変可能な変倍式望遠光学系を構成していることにもなる。   The focusing lens group G3, variator lens group G4, and compensator lens group G5 constitute a relay system having a zoom function, and the magnification is 0.5 to 2 times. Therefore, in this embodiment, the optical system composed of the diffractive optical system G1 and the lens groups G3, G4, and G5 and the optical system composed of the reflective optical system G2 and the lens groups G3, G4, and G5 each have a zoom ratio of 4 times. The zoom lens that has it will be constructed. Further, since the focal lengths of the diffractive optical system G1 and the reflective optical system G2 are four times different, the focal length can be reduced from 375 mm by combining the zoom of the relay system and the switching of the diffractive optical system G1 and the reflective optical system G2. This also constitutes a variable magnification telephoto optical system that can change 16 times up to 6000 [mm].

なお、フォーカシング群G3は近距離撮影時のフォーカシングに使用するレンズ群であり、ズーミングには使用しない。ズーミング時には、バリエータレンズ群G4とコンペンセータレンズ群G5を、図9,図10に示すように光軸に沿って移動させる。   The focusing group G3 is a lens group used for focusing during close-up shooting and is not used for zooming. During zooming, the variator lens group G4 and the compensator lens group G5 are moved along the optical axis as shown in FIGS.

本実施例においては、回折光学系G1の光軸を、折り返しミラーM1と光路切り換えミラーM2によって、反射光学系G2の光軸と一致させているので、図8に示すように、中間結像面I´より後方のレンズ群G3,G4,G5を共通化することが可能となっている。したがって、機構がシンプルとなり、装置全体のコストも抑えることも可能である。また、光学系全長(すなわち反射光学系G2の副鏡M4裏面から像面Iまで)は2285mmであり、最大焦点距離の6000mmに対して半分以下に抑えられている。また、上記したように、温度変動時に発生するデフォーカス量は回折光学系G1と反射光学系G2の両方において極めて少ないので、温度変動時に回折光学系G1と反射光学系G2とを切り換えてもデフォーカスの発生量は極めて小さい。   In this embodiment, the optical axis of the diffractive optical system G1 is made to coincide with the optical axis of the reflective optical system G2 by the folding mirror M1 and the optical path switching mirror M2, so that an intermediate image plane is obtained as shown in FIG. The lens groups G3, G4, G5 behind I ′ can be shared. Therefore, the mechanism becomes simple and the cost of the entire apparatus can be suppressed. The total length of the optical system (that is, from the back surface of the secondary mirror M4 of the reflective optical system G2 to the image plane I) is 2285 mm, which is suppressed to less than half of the maximum focal length of 6000 mm. Further, as described above, the amount of defocus that occurs when the temperature fluctuates is extremely small in both the diffractive optical system G1 and the reflective optical system G2, so that even if the diffractive optical system G1 and the reflective optical system G2 are switched during temperature fluctuation, the defocus amount is reduced. The amount of focus generation is extremely small.

以上のように、本実施形態に係る変倍式望遠光学系及びこれを備える光学装置によれば、変倍のための駆動機構が簡単で、光学系の全長が短く、温度変動時に変倍しても発生するデフォーカスを最小限に抑えることが可能である。   As described above, according to the zoom-type telephoto optical system and the optical apparatus including the same according to the present embodiment, the drive mechanism for zooming is simple, the total length of the optical system is short, and zooming is performed when temperature changes. However, it is possible to minimize the defocus that occurs.

なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。   In addition, in order to make this invention intelligible, although demonstrated with the component requirement of embodiment, it cannot be overemphasized that this invention is not limited to this.

G1 回折光学系
G2 反射光学系
G3 フォーカシングレンズ群
G4 バリエータレンズ群
G5 コンペンセータレンズ群
M1 折り返しミラー(反射部材)
M2 光路切り換えミラー(光路変換部材)
M3 主鏡
M4 副鏡
CAM カメラ(光学装置)
D1 回折光学素子
L1~L3 回折光学系の構成レンズ
L4,L5 反射光学系を構成するレンズ
La〜Lb 比較用の光学系を構成するレンズ
I 像面
I´ 中間結像面
G1 Diffractive optical system G2 Reflective optical system G3 Focusing lens group G4 Variator lens group G5 Compensator lens group M1 Folding mirror (reflective member)
M2 Optical path switching mirror (optical path conversion member)
M3 primary mirror M4 secondary mirror CAM camera (optical device)
D1 Diffractive optical element L1-L3 Constituent lens of diffractive optical system L4, L5 Lens constituting reflective optical system La-Lb Lens constituting optical system for comparison I Image plane I ′ Intermediate imaging plane

Claims (5)

第1の光軸を有した回折面を含む回折光学系と、
前記第1の光軸と並列配置された第2の光軸を有した反射面を含む反射光学系と、
前記回折光学系もしくは前記反射光学系の後方に配置され、前記第1の光軸もしくは前記第2の光軸をもう一方の光軸に向けて屈曲させる反射部材と、
前記回折光学系もしくは前記反射光学系の後方で、前記屈曲された光軸と、もう一方の光軸との交点上に配置され、前記回折光学系からの光のみを後方の光路に向ける第1の状態と、前記反射光学系からの光のみを後方の光路に向ける第2の状態とを選択的に取り得る光路変換部材とを備え、
前記回折光学系及び前記反射光学系を構成するレンズに、屈折率の温度依存係数dn/dTが正である硝材を用いることを特徴とする変倍式望遠光学系。
A diffractive optical system including a diffractive surface having a first optical axis;
A reflective optical system including a reflective surface having a second optical axis arranged in parallel with the first optical axis;
A reflective member disposed behind the diffractive optical system or the reflective optical system and configured to bend the first optical axis or the second optical axis toward the other optical axis;
The first optical system is disposed behind the diffractive optical system or the reflective optical system and on the intersection of the bent optical axis and the other optical axis, and directs only the light from the diffractive optical system to the rear optical path. And an optical path conversion member capable of selectively taking the second state in which only the light from the reflective optical system is directed to the rear optical path,
A variable magnification telephoto optical system, wherein a glass material having a positive temperature dependence coefficient dn / dT of a refractive index is used for the lenses constituting the diffractive optical system and the reflective optical system.
前記回折光学系は、少なくとも1枚の正レンズと、少なくとも1枚の負レンズとを有して構成されていることを特徴とする請求項1に記載の変倍式望遠光学系。   2. The variable magnification telephoto optical system according to claim 1, wherein the diffractive optical system includes at least one positive lens and at least one negative lens. 前記光路変換部材より像側に、バリエータレンズと、コンペンセータレンズとを備えることを特徴とする請求項1又は2に記載の変倍式望遠光学系。   The zoom lens system according to claim 1 or 2, further comprising a variator lens and a compensator lens on the image side of the optical path conversion member. フォーカシングレンズを備えることを特徴とする請求項1〜3のいずれか一項に記載の変倍式望遠光学系。   The zoom lens system according to any one of claims 1 to 3, further comprising a focusing lens. 請求項1〜4のいずれか一項に記載の変倍式望遠光学系を備えることを特徴とする光学装置。   An optical apparatus comprising the variable magnification telephoto optical system according to any one of claims 1 to 4.
JP2009096247A 2009-04-10 2009-04-10 Variable power telephoto optical system and optical device equipped with the same Pending JP2010249877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096247A JP2010249877A (en) 2009-04-10 2009-04-10 Variable power telephoto optical system and optical device equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096247A JP2010249877A (en) 2009-04-10 2009-04-10 Variable power telephoto optical system and optical device equipped with the same

Publications (1)

Publication Number Publication Date
JP2010249877A true JP2010249877A (en) 2010-11-04

Family

ID=43312321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096247A Pending JP2010249877A (en) 2009-04-10 2009-04-10 Variable power telephoto optical system and optical device equipped with the same

Country Status (1)

Country Link
JP (1) JP2010249877A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045887A (en) * 2011-01-12 2015-03-12 レイセオン カンパニー Wide spectral coverage ross corrected cassegrain-like telescope
CN110333601A (en) * 2019-07-11 2019-10-15 中国人民解放军63921部队 A kind of high-resolution imaging system that micro optical element is added
CN111367062A (en) * 2018-12-25 2020-07-03 中国科学院长春光学精密机械与物理研究所 Medium wave infrared two-gear zooming optical lens and imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126017A (en) * 1984-07-02 1986-02-05 ルドヴイク、カンツエク Catadioptric type lens system
JPH0843727A (en) * 1994-01-13 1996-02-16 Texas Instr Inc <Ti> Passive non-heat transfer property in optics
JPH11202208A (en) * 1997-10-27 1999-07-30 Wescam Inc Zoom lens assembly of optical reflecting and refracting system
JP2003156391A (en) * 2001-11-20 2003-05-30 Fujitsu Ltd Infrared imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126017A (en) * 1984-07-02 1986-02-05 ルドヴイク、カンツエク Catadioptric type lens system
JPH0843727A (en) * 1994-01-13 1996-02-16 Texas Instr Inc <Ti> Passive non-heat transfer property in optics
JPH11202208A (en) * 1997-10-27 1999-07-30 Wescam Inc Zoom lens assembly of optical reflecting and refracting system
JP2003156391A (en) * 2001-11-20 2003-05-30 Fujitsu Ltd Infrared imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045887A (en) * 2011-01-12 2015-03-12 レイセオン カンパニー Wide spectral coverage ross corrected cassegrain-like telescope
CN111367062A (en) * 2018-12-25 2020-07-03 中国科学院长春光学精密机械与物理研究所 Medium wave infrared two-gear zooming optical lens and imaging device
CN111367062B (en) * 2018-12-25 2021-07-16 中国科学院长春光学精密机械与物理研究所 Medium wave infrared two-gear zooming optical lens and imaging device
CN110333601A (en) * 2019-07-11 2019-10-15 中国人民解放军63921部队 A kind of high-resolution imaging system that micro optical element is added
CN110333601B (en) * 2019-07-11 2021-05-28 中国人民解放军63921部队 High-resolution imaging system with micro-optical element

Similar Documents

Publication Publication Date Title
US8654456B2 (en) Photographic optical system and image pickup apparatus including the photographic optical system
US9134512B2 (en) Zoom lens and image pickup apparatus having the same
CN108490592B (en) Zoom optical system
JP4944436B2 (en) Zoom lens and imaging apparatus having the same
JP5709640B2 (en) Zoom lens and image projection apparatus having the same
US8279538B2 (en) Lens system
JP5440759B2 (en) Zoom-type telephoto optical system and optical apparatus including the same
US20080285142A1 (en) Projection zoom lens
JP7021683B2 (en) Zoom lenses and optics
US9645370B2 (en) Zoom lens and image pickup apparatus having the same
TWI610094B (en) Zoom lens
JP5570171B2 (en) Imaging device and surveillance camera
KR100758291B1 (en) Refraction type small zoom lens optical system
JP4182088B2 (en) Zoom lens and optical apparatus having the same
KR20150117656A (en) Imaging optics
US7738182B2 (en) Image pickup optical system and image pickup apparatus including the same
US20240264417A1 (en) Variable magnification optical system, optical equipment, and method for producing variable magnification optical system
JP2006010895A (en) Three-group zoom lens
US6741398B2 (en) Zoom lens system, image projecting and image pick-up devices using the same
US8619373B2 (en) Zoom lens, optical apparatus equipped therewith, and method for manufacturing zoom lens
US20150234162A1 (en) Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP2010249877A (en) Variable power telephoto optical system and optical device equipped with the same
JP6128386B2 (en) Zoom lens and imaging device
WO2013161197A1 (en) Zoom lens and optical equipment having same
JP6037324B2 (en) Zoom lens system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131120