JP2010249626A - Temperature distribution detector - Google Patents

Temperature distribution detector Download PDF

Info

Publication number
JP2010249626A
JP2010249626A JP2009098692A JP2009098692A JP2010249626A JP 2010249626 A JP2010249626 A JP 2010249626A JP 2009098692 A JP2009098692 A JP 2009098692A JP 2009098692 A JP2009098692 A JP 2009098692A JP 2010249626 A JP2010249626 A JP 2010249626A
Authority
JP
Japan
Prior art keywords
detection element
infrared detection
temperature
temperature distribution
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009098692A
Other languages
Japanese (ja)
Other versions
JP5548936B2 (en
Inventor
Hirohisa Imai
博久 今井
Koji Yoshino
浩二 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009098692A priority Critical patent/JP5548936B2/en
Publication of JP2010249626A publication Critical patent/JP2010249626A/en
Application granted granted Critical
Publication of JP5548936B2 publication Critical patent/JP5548936B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature distribution detector for detecting temperature distribution at high speed by minimizing the moving range of an infrared detecting element group. <P>SOLUTION: This temperature distribution detector includes a plurality of rectilinear infrared detecting element groups. The respective element groups are disposed so as to equalize intervals between visual fields. A drive control means causes a drive means to move the element groups in a direction orthogonal to the element groups. The range of the move is only an interval between neighboring rectilinear infrared detecting element groups since reciprocation is made by an angle corresponding to a visual field interval of the element groups as to intervals between the moves. Minimizing the range of the move makes it possible to detect temperature distribution at high speed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、食品を加熱する加熱空間や家庭内の居住空間など定められた範囲内の温度分布を検出する温度分布検出装置に関するものである。   The present invention relates to a temperature distribution detection device for detecting a temperature distribution within a predetermined range such as a heating space for heating food or a living space in a home.

加熱庫で食品を加熱調理するオーブンレンジや、居住空間を暖房するエアコンでは、その加熱範囲の温度分布を検出することで、適切な加熱制御を行うことを目的とし、温度分布を検出する各種温度分布検出装置の提案をされている。   In microwave ovens that cook food in a heating cabinet and air conditioners that heat living spaces, various temperatures that detect temperature distributions are used for appropriate heating control by detecting the temperature distribution in the heating range. A distribution detection device has been proposed.

図7により、直線軸に沿って二次元に配列された赤外線検出素子群を、その直線軸に直交する方向に回転駆動させる構成で温度分布を検出する例を説明する(特許文献1参照)。図7において、サーモパイル熱検出素子1a〜1iは、直線軸2に沿って二次元配列されてサーモパイル熱検出素子群を構成している。   With reference to FIG. 7, an example in which a temperature distribution is detected with a configuration in which an infrared detection element group arranged two-dimensionally along a linear axis is rotationally driven in a direction perpendicular to the linear axis will be described (see Patent Document 1). In FIG. 7, the thermopile heat detection elements 1 a to 1 i are two-dimensionally arranged along the linear axis 2 to constitute a thermopile heat detection element group.

この構成でステッピングモータを使い、二次元のサーモパイル熱検出素子群を直線軸2に直交する方向に駆動することで、検出エリアをA、B、C、D,Eと移動させることで、A〜Eの広範囲で温度分布を検出することができる。そしてこの範囲を繰り返し往復駆動することにより、時系列に温度分布検出を繰り返すことができる。   By using a stepping motor in this configuration and driving a two-dimensional thermopile heat detection element group in a direction orthogonal to the linear axis 2, the detection area is moved to A, B, C, D, E, A to A temperature distribution can be detected in a wide range of E. The temperature distribution detection can be repeated in time series by repeatedly reciprocating this range.

特開2006−177848号公報JP 2006-177848 A

しかしながら、このような構成の二次元のサーモパイル熱検出素子群を移動させて温度分布を検出するには、広い範囲を移動させなければならない。即ち、図7中のAの直線軸からEの直線軸まで移動させなければならない。そのために移動時間を要することで、温度分布検出に要する時間が長いという課題がある。   However, in order to detect the temperature distribution by moving the two-dimensional thermopile heat detection element group having such a configuration, it is necessary to move a wide range. That is, it must be moved from the linear axis A to the linear axis E in FIG. Therefore, there is a problem that it takes a long time to detect the temperature distribution due to the movement time.

例えば、オーブンレンジなどで加熱庫内の食品を加熱する場合には、食品は急速に温度上昇しているものであり、その変化している食品温度を的確に検出して加熱制御するためにはより速く温度分布検出をする必要がある。   For example, when food in a heating chamber is heated in a microwave oven or the like, the food is rapidly rising in temperature, and in order to accurately detect and control the changing food temperature It is necessary to detect the temperature distribution faster.

また、エアコンで人の居住空間の温度分布を正しく検出するには、人の移動速度以上の速さで温度分布を検出する必要がある。いずれにしてもより速く温度分布を検出する必要があり、そのためには、赤外線検出素子群の移動範囲をできるだけ小さな範囲にしなければならない。   In addition, in order to correctly detect the temperature distribution of a person's living space with an air conditioner, it is necessary to detect the temperature distribution at a speed higher than the moving speed of the person. In any case, it is necessary to detect the temperature distribution faster, and for this purpose, the moving range of the infrared detection element group must be as small as possible.

本発明は、上記課題を解決するためになされたものであり、赤外線検出素子群の移動範囲をできるだけ小さくし、高速で温度分布を検出する温度分布検出装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a temperature distribution detection device that detects the temperature distribution at high speed by minimizing the movement range of the infrared detection element group.

本発明の温度分布検出装置は、赤外線を検出する複数の赤外線検出素子を直線状に配置した直線状赤外線検出素子群を複数有し、前記複数の直線状赤外線検出素子群を視野が所定の等間隔となるよう開けて配置した構成の二次元赤外線検出素子群と、前記二次元赤外
線検出素子群の各赤外線検出素子からの検出信号を選択し増幅し信号処理する信号処理回路と、前記直線状赤外線検出素子群の直線方向と直交する方向に前記二次元赤外線検出素子群を移動させる駆動手段と、前記駆動手段を制御する駆動制御手段を有し、前記駆動制御手段は前記複数の直線状赤外線検出素子群の視野の間隔の角度だけ前記駆動手段にて往復移動させる構成としたものである。
The temperature distribution detection apparatus of the present invention has a plurality of linear infrared detection element groups in which a plurality of infrared detection elements for detecting infrared rays are linearly arranged, and the plurality of linear infrared detection element groups have a predetermined field of view, etc. A two-dimensional infrared detection element group configured to be spaced apart, a signal processing circuit that selects, amplifies and processes a detection signal from each infrared detection element of the two-dimensional infrared detection element group, and the linear shape Drive means for moving the two-dimensional infrared detection element group in a direction orthogonal to the linear direction of the infrared detection element group, and drive control means for controlling the drive means, wherein the drive control means is the plurality of linear infrared rays The drive means reciprocates the angle of the visual field interval of the detection element group.

この構成により、直線状に配置した各赤外線検出素子が視野となる箇所の温度に応じた出力を発生し、信号処理回路が順次各赤外線検出素子を選択して増幅し信号処理する。そして直線状赤外線検出素子群は複数あり、各直線状赤外線検出素子群の視野の間隔は等しく配置されていて、駆動制御手段は駆動手段によりその直線状赤外線検出素子群に直行する方向に複数の直線状赤外線検出素子群を移動させ、その移動の間隔は各直線状の赤外線検出素子群の視野間隔の角度だけを往復移動させるので、移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能となる。   With this configuration, an output corresponding to the temperature at a position where each infrared detection element arranged in a straight line becomes a visual field is generated, and the signal processing circuit sequentially selects and amplifies each infrared detection element for signal processing. And there are a plurality of linear infrared detection element groups, and the visual field intervals of each linear infrared detection element group are equally arranged, and the drive control means has a plurality of directions in a direction perpendicular to the linear infrared detection element group by the drive means. The linear infrared detection element group is moved, and the movement interval is reciprocated only by the angle of the visual field interval of each linear infrared detection element group, so the movement range is only the interval between adjacent linear infrared detection element groups. Thus, it is possible to detect the temperature distribution at high speed while minimizing the moving range.

また、本発明の温度分布検出装置は、前記信号処理回路は、信号をデジタル化するAD変換器と、前記AD変換器のAD変換結果を基に温度情報に換算する温度換算部と、前記温度換算部で換算した温度情報をシリアル通信で出力する通信制御部を有する構成としたものであるから、AD変換器が各赤外線検出素子の増幅された出力信号をAD変換し、温度換算部が温度情報に換算して通信制御部がシリアル通信で温度情報を出力するので、ノイズなどに強く適切な温度分布検出ができる。   In the temperature distribution detection apparatus of the present invention, the signal processing circuit includes an AD converter that digitizes a signal, a temperature conversion unit that converts temperature information based on an AD conversion result of the AD converter, and the temperature Since it has a configuration including a communication control unit that outputs the temperature information converted by the conversion unit by serial communication, the AD converter AD converts the amplified output signal of each infrared detection element, and the temperature conversion unit converts the temperature Since it is converted into information and the communication control unit outputs temperature information through serial communication, it is possible to detect an appropriate temperature distribution that is resistant to noise and the like.

また、本発明の温度分布検出装置は、前記駆動制御手段は、往復駆動の端部にて隣接する前記直線状赤外線検出素子群の視野と一致するよう重なる範囲を有して移動するよう制御し、前記信号処理回路は前記往復駆動の端部における隣接する前記直線状赤外線検出素子群の視野が一致する位置の出力に基づき前記温度換算部の温度換算を補正する構成としているので、別の赤外線検出素子で同じ視野の温度を検出することにより、互いに補正できるので、素子間ばらつきを吸収することができ、温度分布検出の精度を向上させることができる。   In the temperature distribution detection apparatus of the present invention, the drive control means controls to move with an overlapping range so as to coincide with the field of view of the adjacent linear infrared detection element group at the end of the reciprocating drive. The signal processing circuit is configured to correct the temperature conversion of the temperature conversion unit based on the output of the position where the field of view of the adjacent linear infrared detection element groups adjacent to each other at the end of the reciprocating drive matches. By detecting the temperature of the same field of view with the detection elements, they can be corrected for each other, so that variations between elements can be absorbed and the accuracy of temperature distribution detection can be improved.

本発明によれば、直線状赤外線検出素子群は複数あり、各直線状赤外線検出素子群は視野の間隔が等しくなるように配置されていて、駆動制御手段は駆動手段によりその直線状赤外線検出素子群に直行する方向に複数の直線状赤外線検出素子群を移動させ、その移動の間隔は各直線状の赤外線検出素子群の視野間隔の角度だけを往復移動させるので、移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能となる。   According to the present invention, there are a plurality of linear infrared detection element groups, each linear infrared detection element group is arranged so that the visual field intervals are equal, and the drive control means is driven by the linear infrared detection element by the drive means. A plurality of linear infrared detection element groups are moved in a direction perpendicular to the group, and the movement interval is reciprocated only by the angle of the visual field interval of each linear infrared detection element group, so the movement range is an adjacent linear shape It is only the distance from the infrared detection element group, and it becomes possible to detect the temperature distribution at high speed while minimizing the moving range.

本発明の実施の形態1にかかる温度分布検出装置の側面断面構成図Side surface cross-section block diagram of the temperature distribution detection apparatus concerning Embodiment 1 of this invention 本発明の実施の形態1にかかる温度分布検出装置の二次元赤外線検出素子群の構成図1 is a configuration diagram of a two-dimensional infrared detection element group of a temperature distribution detection device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる温度分布検出装置による二次元の温度分布結果の説明図Explanatory drawing of the two-dimensional temperature distribution result by the temperature distribution detection apparatus concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる温度分布検出装置の信号処理回路の構成図1 is a configuration diagram of a signal processing circuit of a temperature distribution detection device according to a first exemplary embodiment of the present invention. 本発明の実施の形態2にかかる温度分布検出装置による二次元の温度分布結果の説明図Explanatory drawing of the two-dimensional temperature distribution result by the temperature distribution detection apparatus concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる温度分布検出装置の信号処理回路の構成図The block diagram of the signal processing circuit of the temperature distribution detection apparatus concerning Embodiment 2 of this invention 従来の温度分布検出装置による二次元の温度分布結果の説明図Explanatory drawing of the two-dimensional temperature distribution result by the conventional temperature distribution detector

以下、本発明に係る実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1は本発明の温度分布検出装置の断面図を示すものである。二次元赤外線検出素子群1における各赤外線検出素子はサーモパイルで構成され、金属製のカン3の中に封じ込めている。またカン3にはレンズ4を取り付けていて、レンズ4の焦点と二次元赤外線検出素子1の位置関係で各赤外線検出素子の視野を規定している。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of a temperature distribution detection apparatus of the present invention. Each infrared detection element in the two-dimensional infrared detection element group 1 is composed of a thermopile and is enclosed in a metal can 3. A lens 4 is attached to the can 3, and the field of view of each infrared detection element is defined by the positional relationship between the focal point of the lens 4 and the two-dimensional infrared detection element 1.

二次元赤外線検出素子群1の各赤外線検出素子の出力信号は金属線5を介して、プリント基板6に接続され、カン2と共に固定されている。プリント基板6には電源が供給され各種電子部品より成る信号処理回路7が搭載されている。プリント基板7にはコネクタ8が搭載されていて、コネクタ8にはリード線9が接続されていて、信号処理回路7で処理された信号を出力するものである。   An output signal of each infrared detection element of the two-dimensional infrared detection element group 1 is connected to the printed circuit board 6 through the metal wire 5 and fixed together with the can 2. The printed circuit board 6 is supplied with power and is equipped with a signal processing circuit 7 composed of various electronic components. A connector 8 is mounted on the printed circuit board 7, and a lead wire 9 is connected to the connector 8, and a signal processed by the signal processing circuit 7 is output.

以上は、樹脂より成るケース10の中に収納されていて、ケース10には赤外線が通過する通過孔11とリード線9を通すためのリード線孔12を設けている。また、駆動手段であるステッピングモータ13は、二次元赤外線検出素子群1を内部に収納したケース8に取り付けられ、ケース8全体を駆動するものであり、図面の奥と手前の方向に往復駆動するものである。駆動制御手段14は、ステッピングモータ13の駆動を制御する。   The above is housed in a case 10 made of resin, and the case 10 is provided with a passage hole 11 through which infrared rays pass and a lead wire hole 12 through which the lead wire 9 passes. Further, a stepping motor 13 as a driving means is attached to a case 8 in which the two-dimensional infrared detection element group 1 is housed, and drives the entire case 8 and reciprocates in the direction toward the back and front of the drawing. Is. The drive control means 14 controls the driving of the stepping motor 13.

図2は、二次元赤外線検出素子群1の構成を示すものである。二次元赤外線検出素子群1はサーモパイル1a、1d、1gより成る直線状赤外線検出素子群1Aと、サーモパイル1b、1e、1hより成る直線状赤外線検出素子群1Bと、サーモパイル1c、1f、1iより成る直線状赤外線検出素子群1Cとで構成されていて、直線状赤外線検出素子群1Aと1Bの視野の間隔と直線状赤外線検出素子群1Bと1Cの視野の間隔は等しくなるように配置している。   FIG. 2 shows the configuration of the two-dimensional infrared detection element group 1. The two-dimensional infrared detection element group 1 includes a linear infrared detection element group 1A composed of thermopiles 1a, 1d, and 1g, a linear infrared detection element group 1B composed of thermopiles 1b, 1e, and 1h, and thermopiles 1c, 1f, and 1i. The linear infrared detection element group 1C is configured so that the visual field interval between the linear infrared detection element groups 1A and 1B is equal to the visual field interval between the linear infrared detection element groups 1B and 1C. .

その中央に配置された直線状赤外線検出素子群1Bの直線軸2を備えていて、この直線軸2に直交するように図面の左右の方向に、ステッピングモータ13および駆動制御手段14により視野を往復移動するものである。   A linear axis 2 of the linear infrared detecting element group 1B arranged in the center is provided, and the visual field is reciprocated by the stepping motor 13 and the drive control means 14 in the left and right directions of the drawing so as to be orthogonal to the linear axis 2. It is something that moves.

図2において、ステッピングモータ13および駆動制御手段14により各直線状検出素子群1A、1B、1Cを移動させて、その隙間を埋めるようにして温度分布を取得し、例えば図3のような二次元温度分布を検出する。即ち、直線軸2を2−1、2−2、2−3、2−4、2−5と移動させる。   In FIG. 2, the linear detection element groups 1A, 1B, and 1C are moved by the stepping motor 13 and the drive control means 14, and the temperature distribution is acquired so as to fill the gaps. Detect temperature distribution. That is, the linear axis 2 is moved to 2-1, 2-2, 2-3, 2-4, 2-5.

そうすると、サーモパイル1a、1d、1gより成る直線状検出素子群1Aは図3中で、Aの領域の温度分布を検出することになり、サーモパイル1b、1e、1hより成る直線状検出素子群1BはBの領域の温度分布を、サーモパイル1c、1f、1iより成る直線状検出素子群1CはCの領域の温度分布をそれぞれ検出することになって、全体としては、直線軸2の移動より十分広い領域の温度分布を検出することができる。   Then, the linear detection element group 1A composed of the thermopiles 1a, 1d, and 1g detects the temperature distribution in the region A in FIG. 3, and the linear detection element group 1B composed of the thermopile 1b, 1e, and 1h The linear detection element group 1C composed of the thermopiles 1c, 1f, and 1i detects the temperature distribution in the region B, and detects the temperature distribution in the region C, and as a whole, is sufficiently wider than the movement of the linear axis 2. The temperature distribution in the region can be detected.

これにより、従来と比べて、ステッピングモータによる回転角度を十分小さくして、同じ広さの温度分布を検出することができるので、高速で温度分布を検出することが可能となる。   As a result, since the rotation angle by the stepping motor can be made sufficiently small and the temperature distribution of the same width can be detected as compared with the conventional case, the temperature distribution can be detected at high speed.

次に信号処理回路7の構成について図4を用いて説明する。切替え器15A、15B、15Cは一般にマルチプレクサと呼ばれ、切替え信号発生器16からの信号に基づき、いずれかの赤外線検出器を選択して後段の信号処理回路への接続を切替える。   Next, the configuration of the signal processing circuit 7 will be described with reference to FIG. The switchers 15A, 15B, and 15C are generally called multiplexers, and select one of the infrared detectors based on the signal from the switch signal generator 16 to switch the connection to the signal processing circuit at the subsequent stage.

切替え器15Aは、直線状赤外線検出素子群1Aに属するサーモパイル1a、1d、1gの切替えを、切替え器15Bは、直線状赤外線検出素子群1Bに属するサーモパイル1b、1e、1hの切替えを、切替え器15Cは、直線状赤外線検出素子群1Bに属するサーモパイル1c、1f、1iの切替えをそれぞれ行う。   The switch 15A switches the thermopiles 1a, 1d, and 1g belonging to the linear infrared detection element group 1A, and the switch 15B switches the thermopiles 1b, 1e, and 1h that belong to the linear infrared detection element group 1B. 15C performs switching of the thermopiles 1c, 1f, and 1i belonging to the linear infrared detection element group 1B.

増幅回路17A、17B、17Cは、切替え器15A、16A、17Aで接続されたいずれかの各サーモパイルの信号を増幅する。AD変換器18A、18B、18Cは、増幅された各サーモパイルのアナログ信号をデジタル値に変換する。   The amplifier circuits 17A, 17B, and 17C amplify the signal of each thermopile connected by the switchers 15A, 16A, and 17A. The AD converters 18A, 18B, and 18C convert the amplified analog signals of the thermopiles into digital values.

切替え器15A〜15C、増幅回路17A〜17C、AD変換器18A〜18Cは、いずれも直線状赤外線検出素子群1A、1B、1Cと対応しているものであり、サーモパイル1a、1b、1cが同時に選択され、増幅されAD変換され、またサーモパイル1d、1e、1fが同時に、サーモパイル1d、1h、1iが同時に選択され、増幅され、AD変換されるものである。   The switchers 15A to 15C, the amplifier circuits 17A to 17C, and the AD converters 18A to 18C all correspond to the linear infrared detection element groups 1A, 1B, and 1C, and the thermopiles 1a, 1b, and 1c are simultaneously used. It is selected, amplified and A / D converted, and the thermopiles 1d, 1e and 1f are simultaneously selected and the thermopiles 1d, 1h and 1i are simultaneously selected, amplified and A / D converted.

温度換算部19は、AD変換器18A〜18Cでデジタル値に変換された各サーモパイルの信号を基に順次温度の値を算出する。サーモパイル1a〜1iはそれぞれ感度にばらつきがあるので、精度良く温度換算するために感度を予め測定し、その感度に対応した定数を感度記憶部20に記憶している。   The temperature conversion unit 19 sequentially calculates temperature values based on the thermopile signals converted into digital values by the AD converters 18A to 18C. Since the thermopiles 1a to 1i vary in sensitivity, the sensitivity is measured in advance in order to accurately convert the temperature, and a constant corresponding to the sensitivity is stored in the sensitivity storage unit 20.

温度換算部19では、この感度記憶部20に記憶されている感度定数に従い温度換算することで、サーモパイル1a〜1iの視野となっている箇所の温度を精度良く算出する。   In the temperature conversion part 19, the temperature of the location which becomes the visual field of the thermopile 1a-1i is accurately calculated by converting temperature according to the sensitivity constant memorize | stored in this sensitivity memory | storage part 20. FIG.

一般に、サーモパイルは、視野となる対象物の温度の4乗とサーモパイル自身の温度の4乗との差に比例する電圧を出力するものである。   In general, the thermopile outputs a voltage proportional to the difference between the fourth power of the temperature of the object to be viewed and the fourth power of the temperature of the thermopile itself.

従って、接触型の例えばサーミスタなどの温度センサ(図示せず)によりサーモパイル自身の温度T0を測定しその温度T0の4乗を算出して、そこにAD変換器18A〜18Cでデジタル値に変換された各赤外線検出素子の電圧値を定数K倍したものを加算して、その加算した値の4乗根を算出すれば視野となる対象物の温度となる。   Therefore, the temperature T0 of the thermopile itself is measured by a contact-type temperature sensor (not shown) such as a thermistor, the fourth power of the temperature T0 is calculated, and converted into a digital value by the AD converters 18A to 18C. When the voltage value of each infrared detection element multiplied by a constant K is added and the fourth root of the added value is calculated, the temperature of the object to be viewed is obtained.

この定数Kに相当するものが、サーモパイルの感度の逆数に比例するものであり、各サーモパイルには感度のばらつきがあるので、一通りの定数Kではなく、サーモパイル1a〜1iそれぞれに対応した定数Ka〜Kiを感度定数記憶部20に記憶しているのである。   What corresponds to this constant K is proportional to the reciprocal of the sensitivity of the thermopile, and each thermopile has a variation in sensitivity. Therefore, instead of a constant K, a constant Ka corresponding to each thermopile 1a to 1i. ˜Ki are stored in the sensitivity constant storage unit 20.

通信制御部21は、送信器22と受信器23を備えていて、温度換算部19で算出された、各サーモパイル1a〜1iの視野となっている箇所の温度を送信器22より順次シリアル送信していく。   The communication control unit 21 includes a transmitter 22 and a receiver 23, and serially transmits from the transmitter 22 the temperatures at the locations that are the fields of view of the thermopiles 1 a to 1 i calculated by the temperature conversion unit 19. To go.

送信先は、例えばエアコンの冷暖房を制御する制御器や、オーブンレンジの加熱を制御する制御器など、この赤外線センサで検出した温度分布に基づき温度を制御するもので、この通信制御に対応した通信機能を備えているものであり、通信のタイミングを取るために受信器23で送信先からの信号も受信している。   The transmission destination controls the temperature based on the temperature distribution detected by the infrared sensor, such as a controller that controls the heating and cooling of an air conditioner and a controller that controls the heating of the microwave oven. The receiver 23 also receives a signal from the transmission destination in order to take communication timing.

このようにして、リード線9をアナログ電圧によって送電するのでなく、デジタル値をシリアル通信するので、ノイズなどの影響を受けにくい精度の良い温度分布検出ができる。   In this way, since the digital value is serially communicated instead of transmitting the lead wire 9 with the analog voltage, it is possible to detect the temperature distribution with high accuracy that is not easily affected by noise or the like.

(実施の形態2)
次に本発明の実施の形態2について説明する。実施の形態1で説明した図1、図2に示す基本的な構成は変わらないので説明を省略する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. Since the basic configuration shown in FIGS. 1 and 2 described in the first embodiment is not changed, description thereof is omitted.

図2において、ステッピングモータ13および駆動制御手段14により各直線状検出素子群1A、1B、1Cを移動させて、その隙間を埋めるようにして温度分布を取得し、図5のような二次元温度分布を検出する。   In FIG. 2, the linear detection element groups 1A, 1B, and 1C are moved by the stepping motor 13 and the drive control means 14, and the temperature distribution is acquired so as to fill the gaps. As shown in FIG. Detect distribution.

このとき、実施の形態1より移動させるステップを一つ多くしていて、Aの領域の右端とBの領域の左端が重なるように、またBの領域の右端とCの領域の左端が重なるようにしている。即ち、AとBの領域の端で重なる箇所においては、サーモパイル1aとサーモパイル1b、サーモパイル1dとサーモパイル1e、サーモパイル1gとサーモパイル1hは、それぞれ同じ視野の温度を検出することになる。   At this time, the number of steps to be moved is increased by one from the first embodiment so that the right end of area A and the left end of area B overlap, and the right end of area B and the left end of area C overlap. I have to. That is, at the places where the ends of the regions A and B overlap, the thermopile 1a and the thermopile 1b, the thermopile 1d and the thermopile 1e, and the thermopile 1g and the thermopile 1h respectively detect the temperature of the same visual field.

また同様に、BとCの領域の端で重なる箇所においては、サーモパイル1bとサーモパイル1c、サーモパイル1eとサーモパイル1f、サーモパイル1hとサーモパイル1iは、それぞれ同じ視野の温度を検出することになる。   Similarly, in the places where the ends of the regions B and C overlap, the thermopile 1b and the thermopile 1c, the thermopile 1e and the thermopile 1f, and the thermopile 1h and the thermopile 1i respectively detect the temperature of the same visual field.

同時に同じ視野の温度を検出していれば、同じ温度を検出することになるはずである。これが実際にはステッピングモータで視野を移動させているので同時ではないが、十分に短時間であれば、同じ温度を検出しているものとして扱うことができる。   If the temperature of the same visual field is detected at the same time, the same temperature should be detected. This is not simultaneous because the field of view is actually moved by the stepping motor, but if it is sufficiently short, it can be handled as detecting the same temperature.

図6に信号処理回路7の構成を示す。実施の形態1と異なる点は、温度換算部19に補正部24を備えている点である。補正部24がサーモパイル1a〜1iの感度定数Ka〜Kcを補正する。   FIG. 6 shows the configuration of the signal processing circuit 7. The difference from the first embodiment is that the temperature conversion unit 19 includes a correction unit 24. The correction unit 24 corrects the sensitivity constants Ka to Kc of the thermopiles 1a to 1i.

サーモパイル1a、1b、1cの感度定数Ka、Kb、Kcについてであれば、AとBが重なる領域での1aによる検出温度と1bによる検出温度が等しくなるように、そして且つBとCが重なる領域での1bによる検出温度と1cによる検出温度が等しくなるように感度定数Ka、Kb、Kcを再計算して補正するのである。   For the sensitivity constants Ka, Kb, and Kc of the thermopiles 1a, 1b, and 1c, the detection temperature by 1a in the region where A and B overlap is equal to the detection temperature by 1b, and the region where B and C overlap The sensitivity constants Ka, Kb, and Kc are recalculated and corrected so that the detected temperature by 1b and the detected temperature by 1c are equal.

補正の方法はいろいろあるがその一例を説明する。まずサーモパイル1aとサーモパイル1cを比較して、サーモパイル自身の温度との温度差の大きい方を選んで補正する。それが仮にサーモパイル1aであれば、AとBの領域の重なる点でのサーモパイル1aとサーモパイル1bの温度は等しくその平均値であるものとする。   There are various correction methods, but an example will be described. First, the thermopile 1a and the thermopile 1c are compared, and the one having the larger temperature difference from the temperature of the thermopile itself is selected and corrected. If it is the thermopile 1a, the temperatures of the thermopile 1a and the thermopile 1b at the point where the regions A and B overlap are equal to each other and have an average value.

そうすると、正しい温度は二つの平均値であるとして、平均値の温度の4乗とサーモパイル自身の温度の4乗との差、そしてAD変換で得られたサーモパイル1a、1bの出力から再度感度定数Ka、Kbが計算される。そして感度記憶部20に記憶されている感度定数Ka、Kbを書き換える。   Then, assuming that the correct temperature is the average value of the two values, the sensitivity constant Ka is again calculated from the difference between the fourth power of the average temperature and the fourth power of the temperature of the thermopile itself, and the outputs of the thermopiles 1a and 1b obtained by AD conversion. , Kb is calculated. Then, the sensitivity constants Ka and Kb stored in the sensitivity storage unit 20 are rewritten.

次に、この書き換えられたKbを基に計算したサーモパイル1bによる視野の温度と、BとCの領域の重なる点でのサーモパイル1cによる視野の温度は等しいものとして、感度補正されたKbにより計算したサーモパイル1bの温度の4乗とサーモパイル自身の温度の4乗との差、および、AD変換で得られたサーモパイル1cの出力から再度感度定数Kcが計算される。そして感度記憶部20に記憶されている感度定数Kcを書き換える。   Next, the temperature of the visual field by the thermopile 1b calculated based on the rewritten Kb and the temperature of the visual field by the thermopile 1c at the point where the regions B and C overlap are equal to each other, and the calculation was performed by the sensitivity-corrected Kb. The sensitivity constant Kc is calculated again from the difference between the fourth power of the temperature of the thermopile 1b and the fourth power of the temperature of the thermopile itself, and the output of the thermopile 1c obtained by AD conversion. Then, the sensitivity constant Kc stored in the sensitivity storage unit 20 is rewritten.

同様にして、領域の重なる箇所でのサーモパイル1d、1e、1fの温度より、Ke、Kf、Kiを書き換え、また領域の重なる箇所でのサーモパイル1g、1h、1iの温度よりKg、Kh、Kiを書き換える。こうして書き換えた感度定数Ka〜Kiで、次の温
度分布検出を行う。
Similarly, Ke, Kf, and Ki are rewritten from the temperatures of the thermopiles 1d, 1e, and 1f at the overlapping regions, and Kg, Kh, and Ki are calculated from the temperatures of the thermopiles 1g, 1h, and 1i at the overlapping regions. rewrite. The next temperature distribution detection is performed with the sensitivity constants Ka to Ki thus rewritten.

感度は予め測定して感度定数として温度記憶部20に記憶させておくが、実際の環境では温度、湿度、対象物の放射率などにより若干ずれた値をとることがよくある。これが複数のサーモパイルで温度分布を検出する上では、サーモパイルにより違った感度のずれ方をするので、Aの領域とBの領域の境目やBの領域とCの領域の境目で不連続な分布となったりすることもあるが、こうした境目の温度は等しい温度を検出しているということで補正を入れることで、より精度の高い温度分布検出ができるようになる。   Sensitivity is measured in advance and stored in the temperature storage unit 20 as a sensitivity constant. However, in actual environments, the value is often slightly deviated depending on temperature, humidity, emissivity of an object, and the like. When detecting temperature distribution with a plurality of thermopiles, there is a difference in sensitivity depending on the thermopile. Therefore, the distribution of discontinuities at the boundary between the region A and the region B and between the region B and the region C is different. However, it is possible to detect the temperature distribution with higher accuracy by correcting the fact that the temperature at such a boundary is the same temperature.

以上の説明において、赤外線検出素子としてサーモパイルを用いたが、これは他に置き換えても良く、例えば焦電センサとチョッパを使って視野が対象物となっているときとチョッパで遮られているときの出力の差を出力としてもよい。   In the above description, the thermopile is used as the infrared detection element. However, this may be replaced with another, for example, when the field of view is an object using a pyroelectric sensor and a chopper, and when it is blocked by the chopper. The output difference may be the output.

また、3素子で直線状赤外線検出素子群を構成したり、それを3列用いることで二次元赤外線検出素子群としたりしたが、これもその構成に拘るものでなく、直線状赤外線検出素子群を構成する赤外線検出素子数を増やせば、より細かな温度分布を検出できるものであり、列数を増やせばより高速で温度分布検出できるものである。   In addition, a linear infrared detection element group is configured with three elements, or a two-dimensional infrared detection element group is formed by using three rows, but this is not limited to the configuration, and the linear infrared detection element group is used. If the number of infrared detection elements constituting the is increased, a finer temperature distribution can be detected, and if the number of columns is increased, the temperature distribution can be detected at a higher speed.

以上のように、本発明にかかる温度分布検出装置は、赤外線検出素子群の移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能であるので、オーブンレンジなどでの加熱空間の温度分布検出やエアコンなどでの人の居住空間の温度分布検出などの用途に適用可能である。   As described above, in the temperature distribution detection device according to the present invention, the movement range of the infrared detection element group is only the interval between the adjacent linear infrared detection element groups, and the temperature distribution can be obtained at high speed with the movement range being minimized. Since it can be detected, it can be applied to uses such as temperature distribution detection of a heating space in a microwave oven or the like, or temperature distribution detection of a human living space in an air conditioner or the like.

1 二次元赤外線検出素子群
1a〜1i サーモパイル
1A〜1C 直線状赤外線検出素子群
7 信号処理回路
13 駆動手段
14 駆動制御手段
18A〜18C AD変換器
19 温度換算部
21 通信制御部
24 補正部
DESCRIPTION OF SYMBOLS 1 Two-dimensional infrared detection element group 1a-1i Thermopile 1A-1C Linear infrared detection element group 7 Signal processing circuit 13 Drive means 14 Drive control means 18A-18C AD converter 19 Temperature conversion part 21 Communication control part 24 Correction | amendment part

Claims (3)

赤外線を検出する複数の赤外線検出素子を直線状に配置した直線状赤外線検出素子群を複数有し、前記複数の直線状赤外線検出素子群を視野が所定の等間隔となるよう開けて配置した構成の二次元赤外線検出素子群と、前記二次元赤外線検出素子群の各赤外線検出素子からの検出信号を選択し増幅し信号処理する信号処理回路と、前記直線状赤外線検出素子群の直線方向と直交する方向に前記二次元赤外線検出素子群を移動させる駆動手段と、前記駆動手段を制御する駆動制御手段を有し、前記駆動制御手段は前記複数の直線状赤外線検出素子群の視野の間隔の角度だけ前記駆動手段にて往復移動させる温度分布検出装置。 A configuration having a plurality of linear infrared detection element groups in which a plurality of infrared detection elements for detecting infrared rays are linearly arranged, and the plurality of linear infrared detection element groups are arranged so that the visual field is at a predetermined equal interval. A two-dimensional infrared detection element group, a signal processing circuit that selects, amplifies and processes a detection signal from each infrared detection element of the two-dimensional infrared detection element group, and a direction orthogonal to the linear direction of the linear infrared detection element group Driving means for moving the two-dimensional infrared detection element group in a direction to move, and drive control means for controlling the drive means, wherein the drive control means is an angle of the field of view of the plurality of linear infrared detection element groups A temperature distribution detecting device that reciprocates only by the driving means. 前記信号処理回路は、信号をデジタル化するAD変換器と、前記AD変換器のAD変換結果を基に温度情報に換算する温度換算部と、前記温度換算部で換算した温度情報をシリアル通信で出力する通信制御部を有する請求項1に記載の温度分布検出装置。 The signal processing circuit includes an AD converter that digitizes a signal, a temperature conversion unit that converts temperature information based on an AD conversion result of the AD converter, and temperature information converted by the temperature conversion unit through serial communication. The temperature distribution detection device according to claim 1, further comprising a communication control unit that outputs the temperature distribution. 前記駆動制御手段は、往復駆動の端部にて隣接する前記直線状赤外線検出素子群の視野と一致するよう重なる範囲を有して移動するよう制御し、前記信号処理回路は前記往復駆動の端部における隣接する前記直線状赤外線検出素子群の視野が一致する位置の出力に基づき前記温度換算部の温度換算を補正する補正部を有する請求項2に記載の温度分布検出装置。 The drive control means controls to move with an overlapping range so as to coincide with the field of view of the adjacent linear infrared detection element group at the end of the reciprocating drive, and the signal processing circuit controls the end of the reciprocating drive. The temperature distribution detection apparatus according to claim 2, further comprising: a correction unit that corrects temperature conversion of the temperature conversion unit based on an output at a position where the fields of adjacent linear infrared detection element groups in the unit match.
JP2009098692A 2009-04-15 2009-04-15 Temperature distribution detector Expired - Fee Related JP5548936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098692A JP5548936B2 (en) 2009-04-15 2009-04-15 Temperature distribution detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098692A JP5548936B2 (en) 2009-04-15 2009-04-15 Temperature distribution detector

Publications (2)

Publication Number Publication Date
JP2010249626A true JP2010249626A (en) 2010-11-04
JP5548936B2 JP5548936B2 (en) 2014-07-16

Family

ID=43312133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098692A Expired - Fee Related JP5548936B2 (en) 2009-04-15 2009-04-15 Temperature distribution detector

Country Status (1)

Country Link
JP (1) JP5548936B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002124A (en) * 2012-06-21 2014-01-09 Azbil Corp Apparatus and method for specifying temperature detection range
JP2014016223A (en) * 2012-07-09 2014-01-30 Azbil Corp Temperature distribution detection device and method
JP2018077256A (en) * 2013-05-17 2018-05-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Thermal image sensor, and user interface
CN114061126A (en) * 2021-11-01 2022-02-18 美的集团武汉制冷设备有限公司 Air conditioner and control method thereof
JP7426377B2 (en) 2018-08-09 2024-02-01 アウスター インコーポレイテッド Multispectral ranging/imaging sensor arrays and systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280641A (en) * 1994-04-07 1995-10-27 Matsushita Electric Ind Co Ltd Infrared sensor
JPH0875545A (en) * 1994-09-08 1996-03-22 Matsushita Electric Ind Co Ltd Pyroelectric infrared detector
JP2006177848A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Temperature distribution detection device
JP2010249392A (en) * 2009-04-15 2010-11-04 Panasonic Corp Microwave heating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280641A (en) * 1994-04-07 1995-10-27 Matsushita Electric Ind Co Ltd Infrared sensor
JPH0875545A (en) * 1994-09-08 1996-03-22 Matsushita Electric Ind Co Ltd Pyroelectric infrared detector
JP2006177848A (en) * 2004-12-24 2006-07-06 Matsushita Electric Ind Co Ltd Temperature distribution detection device
JP2010249392A (en) * 2009-04-15 2010-11-04 Panasonic Corp Microwave heating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002124A (en) * 2012-06-21 2014-01-09 Azbil Corp Apparatus and method for specifying temperature detection range
JP2014016223A (en) * 2012-07-09 2014-01-30 Azbil Corp Temperature distribution detection device and method
JP2018077256A (en) * 2013-05-17 2018-05-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Thermal image sensor, and user interface
JP7426377B2 (en) 2018-08-09 2024-02-01 アウスター インコーポレイテッド Multispectral ranging/imaging sensor arrays and systems
CN114061126A (en) * 2021-11-01 2022-02-18 美的集团武汉制冷设备有限公司 Air conditioner and control method thereof
CN114061126B (en) * 2021-11-01 2023-10-27 美的集团武汉制冷设备有限公司 Air conditioner and control method thereof

Also Published As

Publication number Publication date
JP5548936B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5548936B2 (en) Temperature distribution detector
KR870001301B1 (en) Temperature measuring apparatus
CN107615093B (en) Distance measurement imaging device, distance measurement method thereof, and solid-state imaging device
JP6777428B2 (en) Temperature measuring device
JP6673199B2 (en) Temperature sensor, device using the same, and temperature measurement method
US20120320189A1 (en) Thermal imager that analyzes temperature measurement calculation accuracy
JPH08159479A (en) Microwave oven
JP2015512041A5 (en)
EP2982940B1 (en) Angle detection device and survey instrument including the same
EP2914973B1 (en) Device and method for measuring distance values and distance images
JP7198507B2 (en) DISTANCE IMAGE MEASURING DEVICE AND DISTANCE IMAGE MEASUREMENT METHOD
JP2677127B2 (en) Thermal image detector
JP5343893B2 (en) Air conditioning control device and human position detection method for air conditioning control device
JP6950276B2 (en) Distance measuring device
JP5470997B2 (en) Microwave heating device
CN107429921A (en) Heating device
WO2019058897A1 (en) Position detection sensor and position measurement device
JP6682147B2 (en) Flame detector
JP4672470B2 (en) Infrared imaging device
JP2008076373A (en) Infrared ray detector
JP6279407B2 (en) Human body detection device
US20100092094A1 (en) Brightness detection system
WO2016185698A1 (en) Infrared imaging device
JP6134026B1 (en) Flame detector
CN112204953B (en) Infrared imaging element and air conditioner provided with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

LAPS Cancellation because of no payment of annual fees