JP2010249366A - Storage water heater system - Google Patents

Storage water heater system Download PDF

Info

Publication number
JP2010249366A
JP2010249366A JP2009097689A JP2009097689A JP2010249366A JP 2010249366 A JP2010249366 A JP 2010249366A JP 2009097689 A JP2009097689 A JP 2009097689A JP 2009097689 A JP2009097689 A JP 2009097689A JP 2010249366 A JP2010249366 A JP 2010249366A
Authority
JP
Japan
Prior art keywords
hot water
heat
insulation performance
heat insulation
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009097689A
Other languages
Japanese (ja)
Other versions
JP5030990B2 (en
Inventor
Satoshi Akagi
智 赤木
Masaki Toyoshima
正樹 豊島
Fumitake Unezaki
史武 畝崎
Akihiro Nishida
明広 西田
So Hiraoka
宗 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009097689A priority Critical patent/JP5030990B2/en
Publication of JP2010249366A publication Critical patent/JP2010249366A/en
Application granted granted Critical
Publication of JP5030990B2 publication Critical patent/JP5030990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage type water heater system for suppressing increase of energy consumption without running out of hot water when the heat insulation performance is deteriorated. <P>SOLUTION: The system includes a hot water storage tank 1, heat insulating material 5 covering the hot water storage tank 1, a heating means 2 for adding a heat to hot water in the hot water storage tank 1, a heat storage quantity calculation means 101 for calculating a heat storage quantity in the hot water in the hot water storage tank 1, a heat insulation performance detection means 102 for detecting the heat insulation performance of the heat insulating material 5 based on the heat storage quantity, and a control means 103 which determines whether the heat insulation performance is deteriorated or not based on the heat insulation performance detected by the heat insulation performance detection means 102, determines the heat to be added to the hot water during a specific time zone according to the determined deterioration of the heat insulation performance, and carries out heating control of the heating means 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、加熱手段により沸上げられた給湯用の湯水を貯める貯湯タンクを備える貯湯式給湯システムに関するものである。特に、貯湯タンクを保温する断熱材による断熱性能の劣化に応じて、加熱手段の制御を変化させることを特徴とするシステムに関するものである。   The present invention relates to a hot water storage type hot water supply system including a hot water storage tank for storing hot water for hot water supply boiled by a heating means. In particular, the present invention relates to a system characterized in that the control of the heating means is changed in accordance with the deterioration of the heat insulating performance by the heat insulating material that keeps the hot water storage tank warm.

貯湯式給湯システムは、加熱手段の加熱能力が瞬間式などに比べて比較的小さい場合や、加熱手段の起動時の能力の立ち上りが瞬間式などに比べて遅い場合に適用されるシステムである。給湯負荷の発生に対して湯切れの生じることのないように、事前に加熱手段により沸上げられた給湯用の湯水(湯または水)を貯湯タンクに貯めておき、当該貯湯タンクから給湯を行うようにしている。   The hot water storage type hot water supply system is a system that is applied when the heating capability of the heating means is relatively small compared to the instantaneous type or the like, or when the rising of the capability at the time of starting the heating unit is slower than the instantaneous type. Hot water for hot water (hot water or water) boiled in advance by the heating means is stored in a hot water storage tank and hot water is supplied from the hot water storage tank so that hot water does not run out due to the occurrence of hot water supply load. I am doing so.

このようなシステムでは、需要側で給湯が行われる前に湯を沸上げるため、貯湯タンク内の湯を保温しておく必要がある。そこで、貯湯タンクを断熱材によって覆って保温することが一般的である。しかし、経年劣化などによって断熱材の断熱性能が低下すると、貯湯タンクから外界に無駄に放出される熱量が増加する。   In such a system, since hot water is boiled before hot water is supplied on the demand side, it is necessary to keep the hot water in the hot water storage tank warm. Therefore, it is common to keep the hot water storage tank covered with a heat insulating material. However, when the heat insulating performance of the heat insulating material is lowered due to deterioration over time or the like, the amount of heat released from the hot water storage tank to the outside world increases.

これに対しては、例えば断熱性能の劣化を検知して警報を発する方法が知られている(例えば特許文献1参照)。   In response to this, for example, a method is known in which deterioration of heat insulation performance is detected and an alarm is issued (see, for example, Patent Document 1).

また、例えば貯湯タンクから外界への放熱により蓄熱量が不足して需要側で湯切れが生じることを回避するために、断熱性能の劣化を検知して、貯湯タンク内の温度を上昇させる方法が知られている。   In addition, for example, in order to avoid a shortage of hot water on the demand side due to insufficient heat storage due to heat radiation from the hot water storage tank to the outside world, there is a method of detecting the deterioration of the heat insulation performance and increasing the temperature in the hot water storage tank. Are known.

特開2007−132599号公報JP 2007-132599 A 特開2007−155154号公報JP 2007-155154 A

しかしながら、上記の特許文献1によれば、断熱性能の劣化を検知してからメンテナンスが行われるまでの間、加熱手段側の運転に変更を施さないため、需要側で湯切れが発生する危険性があった。   However, according to the above-mentioned Patent Document 1, since the operation on the heating means side is not changed until the maintenance is performed after the deterioration of the heat insulation performance is detected, there is a risk that the hot water runs out on the demand side. was there.

また、特許文献2によれば、湯切れの危険性は低下されるものの、貯湯タンクから外界へ放出される熱量は大きく増加し、加熱手段は、その分も余分に湯を沸上げる必要があるため、システムの効率が非常に低下するという問題があった。   Further, according to Patent Document 2, although the risk of running out of hot water is reduced, the amount of heat released from the hot water storage tank to the outside greatly increases, and the heating means needs to boil hot water by that much. Therefore, there has been a problem that the efficiency of the system is extremely lowered.

本発明は、上記のような課題を解決するためになされたもので、本発明の目的は、断熱性能が劣化した場合に、湯切れを生じさせずに、エネルギー消費量の増加を抑える貯湯式給湯システムを提供することである。   The present invention was made to solve the above-described problems, and an object of the present invention is to provide a hot water storage system that suppresses an increase in energy consumption without causing hot water shortage when the heat insulation performance deteriorates. It is to provide a hot water supply system.

上記課題を解決するため、本発明に関わる貯湯式給湯システムは、貯湯タンクと、貯湯タンクを覆う断熱材と、貯湯タンク内の湯水に熱量を加える加熱手段と、貯湯タンク内の湯水における蓄熱量を算出する蓄熱量算出手段と、蓄熱量に基づいて、断熱材の断熱性能を検出する断熱性能検出手段と、断熱性能検出手段が検出した断熱性能に基づいて、断熱性能が劣化しているかどうかを判定し、判定による断熱性能の劣化に応じて、特定の時間帯に湯水に加える熱量を決定し、加熱手段の加熱制御を行う制御手段とを備える。   In order to solve the above problems, a hot water storage hot water system according to the present invention includes a hot water storage tank, a heat insulating material covering the hot water storage tank, a heating means for adding heat to the hot water in the hot water storage tank, and a heat storage amount in the hot water in the hot water storage tank. Whether the heat insulation performance has deteriorated based on the heat insulation performance detection means for detecting the heat insulation performance of the heat insulating material based on the heat storage amount, and the heat insulation performance detected by the heat insulation performance detection means. Control means for determining the amount of heat to be added to the hot water in a specific time zone according to the deterioration of the heat insulation performance due to the determination, and performing heating control of the heating means.

本発明によれば、蓄熱量算出手段が算出した蓄熱量に基づいて、断熱性能検出手段が断熱性能を検出し、制御手段が検出結果に基づいて断熱性能が劣化していると判定した場合は、特定の時間帯に前記湯水に加える熱量を決定するようにしたので、例えば深夜時間帯のような給湯負荷の発生より長時間前に沸上げる蓄熱量を減少させ、より給湯負荷の発生に近い時間帯に沸上げる熱量を増加させることができ、貯湯タンクから外界への放熱量を減少することができる。このため、断熱材の断熱性能が劣化しても、湯切れを生じさせず、必要なエネルギー消費量の増加を抑えることができ、省エネルギー性を向上させることができる。   According to the present invention, when the heat insulation performance detection means detects the heat insulation performance based on the heat storage amount calculated by the heat storage amount calculation means, and when the control means determines that the heat insulation performance is deteriorated based on the detection result, Since the amount of heat to be added to the hot water in a specific time zone is determined, for example, the amount of stored heat that is boiled for a long time before the occurrence of a hot water supply load such as in the midnight time zone is reduced, and it is closer to the occurrence of a hot water supply load. It is possible to increase the amount of heat that is boiled in the time zone, and to reduce the amount of heat released from the hot water storage tank to the outside world. For this reason, even if the heat insulation performance of the heat insulating material deteriorates, hot water does not run out, an increase in necessary energy consumption can be suppressed, and energy saving performance can be improved.

本発明に関わる貯湯式給湯システムの構成図。The block diagram of the hot water storage type hot-water supply system in connection with this invention. 本発明における、信号の流れを表すブロック図。The block diagram showing the flow of the signal in this invention. 給湯負荷の一例を示したタイムチャート。The time chart which showed an example of the hot water supply load. 断熱性能が正常な状態での、貯湯タンク熱量のタイムチャート。Time chart of hot water storage tank calorific value with normal insulation performance. 断熱材異常状態での貯湯タンク熱量タイムチャート。Heat storage tank calorie time chart under abnormal insulation conditions. 貯湯タンクから外界への積算放熱量タイムチャート。Accumulated heat dissipation time chart from hot water storage tank to the outside world. 本発明の実施の形態2におけるリモコン400の概要図。FIG. 6 is a schematic diagram of a remote control 400 in Embodiment 2 of the present invention. 本発明の実施の形態2における運転モード選択による制御動作の概要図。The schematic diagram of the control action by the operation mode selection in Embodiment 2 of this invention. 本発明の実施の形態2における運転モード選択による積算放熱量の概要図。The schematic diagram of the integrated heat radiation amount by the operation mode selection in Embodiment 2 of this invention.

実施の形態1.
図1は本発明の実施の形態1における貯湯式給湯システムの給湯に係る構成を表す図である。本発明に関わる貯湯式給湯システムにおいて、貯湯タンク1は湯水を貯めるためのタンクであり、沸き上げた湯を長時間にわたって有効に保温するために断熱材5で覆っている。加熱用配管301は、貯湯タンク1の下部と上部とを接続する配管である。加熱手段2は、加熱用配管301の途中において加熱用配管301を流れる湯水を加熱する(熱量を加える)。循環ポンプ3は、加熱用配管301に流す湯水(以下、湯または水として記載する場合もある)の流れを形成する。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration relating to hot water supply of a hot water storage type hot water supply system according to Embodiment 1 of the present invention. In the hot water storage type hot water supply system according to the present invention, the hot water storage tank 1 is a tank for storing hot water, and is covered with a heat insulating material 5 in order to keep the heated hot water effectively for a long time. The heating pipe 301 is a pipe that connects the lower part and the upper part of the hot water storage tank 1. The heating means 2 heats hot water flowing through the heating pipe 301 in the middle of the heating pipe 301 (adds heat). Circulation pump 3 forms a flow of hot water (hereinafter also referred to as hot water or water) that flows through heating pipe 301.

一方、給水用配管302は、貯湯タンク1の下部に接続され、外部から水を供給するための配管である。また、導出用配管303は、貯湯タンク1の上部に接続され、貯湯タンク1から湯を導出するための配管である。そして、混合用配管304は、給水用配管302から水を分岐させる配管である。さらに、給湯用配管305は、使用される負荷側に湯を供給するための配管である。そして、混合手段4に、導出用配管303、混合用配管304および給湯用配管305を接続して、導出用配管303を流れる湯と混合用配管304を流れる水とを混合させた湯を給湯用配管305に流すようにする。   On the other hand, the water supply pipe 302 is connected to the lower part of the hot water storage tank 1 and is a pipe for supplying water from the outside. The lead-out pipe 303 is connected to the upper part of the hot water storage tank 1 and is a pipe for leading hot water from the hot water storage tank 1. The mixing pipe 304 is a pipe that branches water from the water supply pipe 302. Furthermore, the hot water supply pipe 305 is a pipe for supplying hot water to the load side to be used. Then, the derivation pipe 303, the mixing pipe 304, and the hot water supply pipe 305 are connected to the mixing means 4, and hot water in which hot water flowing through the derivation pipe 303 and water flowing through the mixing pipe 304 are mixed is used for hot water supply. It is made to flow through the pipe 305.

また、貯湯タンク1には、高さ方向(上下方向。ここでは、特に貯湯タンク1上部から下部に向かっての高さとする)に例えば一定の間隔をおいて、それぞれの位置における温度(湯温)を検出するための複数の貯湯温度センサー501a〜501fが設けられている。ここでは簡易的に、貯湯温度センサーの個数を6としたが、この数に限定するものではない。基本的には、貯湯タンク1の内部の温度分布を測るのに充分な数の温度センサーを設けるようにする。一方、加熱用配管301には加熱手段2の下流側にて加熱後の湯温を検出するための沸上げ温度センサー502が設けられている。さらに、導出用配管303には貯湯タンク1から導出される湯温を検出するための導出温度センサー503が設けられ、給水用配管302(または混合用配管304)には給水温度を検出するための給水温度センサー504が設けられている。そして、給湯用配管305には負荷側に供給する湯温を検出するための給湯温度センサー505が設けられる。また、給湯用配管305には負荷側で使用される湯量を検出する給湯流量センサー601が設けられている。   Further, the hot water storage tank 1 has a temperature (hot water temperature) at each position at a certain interval, for example, in a height direction (vertical direction, in this case, in particular, the height from the upper part to the lower part of the hot water tank 1). A plurality of hot water storage temperature sensors 501a to 501f are provided. Here, the number of hot water storage temperature sensors is simply six, but the number is not limited to this number. Basically, a sufficient number of temperature sensors are provided to measure the temperature distribution inside the hot water storage tank 1. On the other hand, the heating pipe 301 is provided with a boiling temperature sensor 502 for detecting the hot water temperature after heating on the downstream side of the heating means 2. Furthermore, a derivation temperature sensor 503 for detecting the hot water temperature derived from the hot water storage tank 1 is provided in the derivation pipe 303, and the water supply pipe 302 (or the mixing pipe 304) is provided for detecting the water supply temperature. A water supply temperature sensor 504 is provided. The hot water supply pipe 305 is provided with a hot water supply temperature sensor 505 for detecting the temperature of hot water supplied to the load side. The hot water supply pipe 305 is provided with a hot water supply flow rate sensor 601 for detecting the amount of hot water used on the load side.

図2は貯湯式給湯システムの制御に係る信号の流れを示すブロック図である。図2において、タイマー701は時刻検出手段である。タイマー701、貯湯温度センサー501a〜501f、および、沸上げ温度センサー502、導出温度センサー503、給水温度センサー504、給湯温度センサー505、並びに、給湯流量センサー601が検出したデータを含む信号は制御装置100に送られる。制御装置100は、これらのデータに基づいて、演算、判定等を行い、加熱手段2、循環ポンプ3および混合手段4を制御する。   FIG. 2 is a block diagram showing a signal flow related to the control of the hot water storage type hot water supply system. In FIG. 2, a timer 701 is time detection means. The signal including the data detected by the timer 701, the hot water storage temperature sensors 501a to 501f, the boiling temperature sensor 502, the derived temperature sensor 503, the feed water temperature sensor 504, the hot water temperature sensor 505, and the hot water flow rate sensor 601 is the control device 100. Sent to. The control device 100 performs calculations, determinations, and the like based on these data, and controls the heating unit 2, the circulation pump 3, and the mixing unit 4.

制御装置100は、蓄熱量算出手段101、断熱性能検出手段102、制御手段103および記憶手段104を有している。蓄熱量算出手段101は、貯湯タンク1内の蓄熱量を算出する。また、断熱性能検出手段102は、貯湯タンク1を覆う断熱材の断熱性能を検出する。制御手段103は、加熱手段2、循環ポンプ3および混合手段4を制御するための処理を行う。各手段が行う処理の詳細については後述する。また、制御装置100は、装置内の各手段が処理を行うために必要なデータを一時的にまたは長期的に記憶する記憶手段104を有している。ここでは、制御装置100を各手段を有する装置として構成しているが、例えば、それぞれ異なる専用機器(ハードウェア)に分けて構成することもできる。   The control device 100 includes a heat storage amount calculation unit 101, a heat insulation performance detection unit 102, a control unit 103, and a storage unit 104. The heat storage amount calculation means 101 calculates the heat storage amount in the hot water storage tank 1. Further, the heat insulation performance detecting means 102 detects the heat insulation performance of the heat insulating material covering the hot water storage tank 1. The control means 103 performs a process for controlling the heating means 2, the circulation pump 3 and the mixing means 4. Details of processing performed by each means will be described later. In addition, the control device 100 includes a storage unit 104 that temporarily or long-term stores data necessary for each unit in the device to perform processing. Here, the control device 100 is configured as a device having each means. However, for example, the control device 100 may be configured separately for different dedicated devices (hardware).

次に、本発明に関わる貯湯式給湯システムの基本的な動作を、湯水の流れに基づいて説明する。まず貯湯タンク1の下部から給水用配管302を通じて低温の水が流入して貯められる。貯湯タンク1の下部の低温の水は、循環ポンプ3によって加熱用配管301に引き込まれて加熱手段2に導かれ、加熱手段2が熱量を付加することで高温の湯に沸上げられる。沸上げられた高温の湯は、加熱用配管301を通じて貯湯タンク1の上部から流入して貯められる。   Next, the basic operation of the hot water storage type hot water supply system according to the present invention will be described based on the flow of hot water. First, low temperature water flows from the lower part of the hot water storage tank 1 through the water supply pipe 302 and is stored. The low-temperature water in the lower part of the hot water storage tank 1 is drawn into the heating pipe 301 by the circulation pump 3 and guided to the heating means 2, and the heating means 2 adds heat to boil the hot water. The boiled hot water flows from the upper part of the hot water storage tank 1 through the heating pipe 301 and is stored.

貯湯タンク1の上部に貯められた湯は、湯を使用する負荷側の要求に応じて、導出用配管303から流出し、混合手段4に導かれる。給水用配管302から分岐されて混合用配管304を通過した水と貯湯タンク1から導いた湯とが混合手段4において混合され、給湯用配管305を通じて負荷側へ供給される。   The hot water stored in the upper part of the hot water storage tank 1 flows out from the outlet pipe 303 and is guided to the mixing means 4 according to the demand on the load side where hot water is used. The water branched from the water supply pipe 302 and passed through the mixing pipe 304 and the hot water guided from the hot water storage tank 1 are mixed in the mixing means 4 and supplied to the load side through the hot water supply pipe 305.

これにより、低温の水を加熱手段2で沸上げて貯湯タンク1に高温の湯を貯えると共に、貯湯タンク1に貯えた湯を負荷側へ送ることができる。   Thereby, low-temperature water is boiled by the heating means 2 and hot water is stored in the hot water storage tank 1, and hot water stored in the hot water storage tank 1 can be sent to the load side.

図3は一日の給湯負荷(供給熱量)を積算した場合のタイムチャートの一例を表す図である。ここでは熱量を表す単位として、平均的な給湯温度(例えば42℃)での湯量に換算して[L]で表すものとする。例えば、図3では、00:00から07:00までは給湯の需要がなく、一方で、21:00から22:00までの間に需要が増大することがわかる。次に、本発明に係り、制御装置100が行う、所定期間(例えば1日)に必要となる湯を貯湯タンク1に貯めるための加熱手段2の加熱制御について説明する。   FIG. 3 is a diagram illustrating an example of a time chart in the case where the daily hot water supply load (supplied heat amount) is integrated. Here, the unit of heat quantity is expressed as [L] in terms of the amount of hot water at an average hot water supply temperature (for example, 42 ° C.). For example, in FIG. 3, it can be seen that there is no demand for hot water supply from 00:00 to 07:00, while the demand increases from 21:00 to 22:00. Next, the heating control of the heating means 2 for storing hot water required for a predetermined period (for example, one day) in the hot water storage tank 1 performed by the control device 100 according to the present invention will be described.

まず、蓄熱量算出手段101は、貯湯タンク蓄熱量Qを例えば給水温度Tsを基準にして次式(1)に示すように算出する。ここで、貯湯温度センサー501a〜501fの検出に係る温度値をそれぞれTwa〜Twfとする。また、各貯湯温度センサー501a〜501fのそれぞれのセンサーの設置位置に基づき、例えば貯湯タンク1上端から各貯湯温度センサーの高さ部分までの貯湯タンク1の内容積をそれぞれVa〜Vfとする。内容積Va〜Vfに係るデータは、あらかじめ記憶手段104に記憶されているものとする。   First, the heat storage amount calculation means 101 calculates the hot water storage tank heat storage amount Q, for example, as shown in the following equation (1) with reference to the water supply temperature Ts. Here, the temperature values related to the detection of the hot water storage temperature sensors 501a to 501f are Twa to Twf, respectively. Moreover, based on the installation position of each of the hot water storage temperature sensors 501a to 501f, for example, the internal volume of the hot water storage tank 1 from the upper end of the hot water storage tank 1 to the height of each hot water storage temperature sensor is set to Va to Vf, respectively. It is assumed that data relating to the internal volumes Va to Vf is stored in the storage unit 104 in advance.

Q=Va×(Twa−Ts)×密度×比熱
+(Vb−Va)×{(Twa+Twb)/2−Ts}×密度×比熱
+…+(Vf−Ve)×{(Twe+Twf)/2−Ts}×密度×比熱
+(タンク容量−Vf)×(Twf−Ts}×密度×比熱 …(1)
Q = Va × (Twa−Ts) × density × specific heat
+ (Vb−Va) × {(Twa + Twb) / 2−Ts} × density × specific heat +... + (Vf−Ve) × {(Twe + Twf) / 2−Ts} × density × specific heat + (tank capacity−Vf) × (Twf−Ts} × density × specific heat (1)

ここで、貯湯タンク1の高さ方向について、湯温(水温)が急激に変化する温度境界層を含めて(1)式の演算を行った場合、算出精度が低下することが知られている。このため、基本的には温度境界層を含まない部分について、貯湯タンク蓄熱量Qを算出することが望ましい。例えば最上部の貯湯温度センサー(例えば501a)と、所定温度以内の検出値を示す最も低い位置の貯湯温度センサー(例えば501e)の高さに至るまでを温度境界層を含まない部分として貯湯タンク蓄熱量Qを次式(2)のように算出してもよい。ここでは温度境界層を含まない最も低い位置の貯湯温度センサーを501eとしているが、温度境界層に対する安全をとって、さらに上の位置にある貯湯温度センサーとして設定してもよい。   Here, with respect to the height direction of the hot water storage tank 1, it is known that the calculation accuracy decreases when the calculation of the equation (1) is performed including the temperature boundary layer in which the hot water temperature (water temperature) changes rapidly. . For this reason, it is basically desirable to calculate the hot water storage tank heat storage amount Q for a portion not including the temperature boundary layer. For example, the hot water storage tank heat storage is performed by using the uppermost hot water storage temperature sensor (for example, 501a) and the lowest hot water storage temperature sensor (for example, 501e) indicating the detection value within a predetermined temperature as a portion not including the temperature boundary layer. The quantity Q may be calculated as in the following equation (2). Here, the hot water storage temperature sensor at the lowest position not including the temperature boundary layer is set to 501e. However, it may be set as a hot water storage temperature sensor at an upper position for safety with respect to the temperature boundary layer.

Q=Va×(Twa−Ts)×密度×比熱
+(Vb−Va)×{(Twa+Twb)/2−Ts}×密度×比熱
+…+(Ve−Vd)×{(Twd+Twe)/2−Ts}×密度×比熱…(2)
Q = Va × (Twa−Ts) × density × specific heat + (Vb−Va) × {(Twa + Twb) / 2−Ts} × density × specific heat +... + (Ve−Vd) × {(Twd + Twe) / 2−Ts } X density x specific heat (2)

ここで、給水温度Tsについて、給水温度センサー504の検出に係る時々刻々の温度変化を反映させると、現実にはタンク蓄熱量が変化しなくとも、給水温度Tsが変化することによって、貯湯タンク蓄熱量Qの算出結果が変化することになる。このため、例えば貯湯タンク蓄熱量Qの算出に用いる給水温度Tsは、例えば断熱性能検出手段102が断熱性能を検出している途中等の期間中は変化させないようにしても良い。また、貯湯タンク蓄熱量Qを算出する際の温度基準を、給水温度Tsではなく、単に固定温度値(例えば0℃)としても良い。   Here, with respect to the water supply temperature Ts, if the change in the temperature every time according to the detection of the water supply temperature sensor 504 is reflected, even if the amount of heat stored in the tank does not actually change, the water supply temperature Ts changes, so The calculation result of the quantity Q changes. For this reason, for example, the water supply temperature Ts used for the calculation of the heat storage amount Q of the hot water storage tank may not be changed, for example, during a period in which the heat insulation performance detecting means 102 is detecting the heat insulation performance. Further, the temperature reference for calculating the hot water storage tank heat storage amount Q may be simply a fixed temperature value (for example, 0 ° C.) instead of the water supply temperature Ts.

また、貯湯タンク蓄熱量Qを算出するのに用いる貯湯温度センサーの選択も、例えば断熱性能検出手段102が断熱性能を検出している途中等の期間中は変化させないようにする。   Further, the selection of the hot water storage temperature sensor used for calculating the hot water storage tank heat storage amount Q is not changed during the period when the heat insulation performance detecting means 102 is detecting the heat insulation performance, for example.

断熱性能検出手段102は、例えば需要側への給湯、加熱手段2による沸上げ等がないときに、次式(3)に基づいて断熱性能Rを算出して断熱性能の検出を行う。ここで、タイマー701からの信号に基づいて得られる、検出に係る開始時刻をt1とする。また、開始時刻t1における貯湯温度センサー501a〜501fの検出に係る温度値をそれぞれTwa1〜Twf1とする。Twa1〜Twf1に基づいて蓄熱量算出手段101が算出した貯湯タンク蓄熱量をQ1とする。そして、貯湯タンク蓄熱量Q1を算出するために用いた温度値の平均値をTw1とし、外気温度検出手段(図示せず)が検出した温度値をTa1とする。また、タイマー701からの信号に基づいて得られる、検出に係る終了時刻をt2としたときの貯湯温度センサー501a〜501fの検出に係る温度値をそれぞれTwa2〜Twf2とする。Twa2〜Twf2に基づいて蓄熱量算出手段101が算出した貯湯タンク蓄熱量をQ2とする。そして、貯湯タンク蓄熱量Q2を算出するために用いた温度値の平均値をTw2とし、外気温度検出手段が検出した温度値をTa2とする。さらに、例えば貯湯タンク1上端から各貯湯温度センサー501a〜501fの高さまでの貯湯タンク1の表面積をそれぞれAa〜Afとし、貯湯タンク蓄熱量Q1、Q2を算出するために用いた貯湯温度センサー501までの表面積AをAa〜Afから選択する。例えば、貯湯温度センサー501a〜501eを使用した場合、A=Aeとする。表面積Aa〜Afに係るデータは、あらかじめ記憶手段104に記憶されている。
(1/R) = {(Q1−Q2)/(t2−t1)}/
A・〔{(Tw1−Ta1)+(Tw2−Ta2)}/2〕 …(3)
The adiabatic performance detecting means 102 detects the adiabatic performance by calculating the adiabatic performance R based on the following equation (3) when there is no hot water supply to the demand side, no boiling by the heating means 2, and the like. Here, the detection start time obtained based on the signal from the timer 701 is defined as t1. Moreover, let the temperature value which concerns on the detection of the hot water storage temperature sensors 501a-501f in the start time t1 be Twa1-Twf1, respectively. The hot water storage tank heat storage amount calculated by the heat storage amount calculation means 101 based on Twa1 to Twf1 is defined as Q1. And let the average value of the temperature value used in order to calculate the hot water storage tank heat storage amount Q1 be Tw1, and let the temperature value which the outside temperature detection means (not shown) detected be Ta1. Further, the temperature values related to the detection of the hot water storage temperature sensors 501a to 501f when the end time related to the detection obtained based on the signal from the timer 701 is t2 are Twa2 to Twf2, respectively. Let Q2 be the hot water storage tank heat storage amount calculated by the heat storage amount calculation means 101 based on Twa2 to Twf2. And let the average value of the temperature value used in order to calculate the hot water storage tank heat storage amount Q2 be Tw2, and let the temperature value which the outdoor temperature detection means detected be Ta2. Furthermore, for example, the surface area of the hot water storage tank 1 from the upper end of the hot water storage tank 1 to the height of each of the hot water storage temperature sensors 501a to 501f is Aa to Af, respectively, and the hot water storage temperature sensor 501 used to calculate the hot water storage tank heat storage amounts Q1 and Q2. Is selected from Aa to Af. For example, when hot water storage temperature sensors 501a to 501e are used, A = Ae. Data relating to the surface areas Aa to Af is stored in the storage unit 104 in advance.
(1 / R) = {(Q1-Q2) / (t2-t1)} /
A. [{(Tw1-Ta1) + (Tw2-Ta2)} / 2] (3)

(3)式に基づけば、断熱性能Rは単位時間当たりの給湯タンク1における放熱量を、貯湯タンク1の温度と外気温度との温度差の平均値と貯湯タンク1の表面積との積で割った値の逆数となる。このため、断熱性能Rは概して貯湯タンク1内の湯と外気との間の単位面積あたりの熱抵抗を表すことになる。   Based on the equation (3), the heat insulation performance R is obtained by dividing the amount of heat released in the hot water tank 1 per unit time by the product of the average value of the temperature difference between the temperature of the hot water tank 1 and the outside air temperature and the surface area of the hot water tank 1. The reciprocal of the value obtained. For this reason, the heat insulation performance R generally represents the thermal resistance per unit area between the hot water in the hot water storage tank 1 and the outside air.

また、断熱性能検出手段102は、需要側への給湯や加熱手段2による沸上げが含まれる時間帯においても断熱性能Rを算出することもできる。この場合は上記の各値に加えて、加熱手段2の加熱能力の積算値Qhpと給湯負荷の積算値Qldとを用いて行う。   Moreover, the heat insulation performance detection means 102 can also calculate the heat insulation performance R even in a time zone including hot water supply to the demand side and boiling by the heating means 2. In this case, in addition to the above values, the integrated value Qhp of the heating capacity of the heating means 2 and the integrated value Qld of the hot water supply load are used.

加熱能力の積算値Qhpは、次式(4)に基づいて算出する。ここで、Whpは加熱手段循環流量検出手段(図示せず)の検出に係る加熱用配管301を流れる水の流量(例えば体積流量)である。また、流入温度Thpiは加熱手段入口水温検出手段(図示せず)の検出に係る加熱手段2へ流入する水の温度である。また、流出温度Thpoは、沸上温度センサー502の検出に係る温度である。   The integrated value Qhp of the heating capacity is calculated based on the following equation (4). Here, Whp is a flow rate (for example, volumetric flow rate) of water flowing through the heating pipe 301 according to detection by a heating unit circulation flow rate detection unit (not shown). The inflow temperature Thpi is the temperature of water flowing into the heating means 2 related to detection by the heating means inlet water temperature detection means (not shown). The outflow temperature Thpo is a temperature related to detection by the boiling temperature sensor 502.

Figure 2010249366
Figure 2010249366

また、給湯負荷の積算値Qldは、次式(5)に基づいて算出する。ここで、Wldは、給湯流量センサー601の検出に係る流量である。また、給水温度Tldiは給水温度センサー504の検出に係る温度であり、給湯温度Tldoは給湯温度センサー505の検出に係る温度である。   Further, the integrated value Qld of the hot water supply load is calculated based on the following equation (5). Here, Wld is a flow rate related to detection by the hot water supply flow rate sensor 601. The water supply temperature Tldi is a temperature related to detection by the water supply temperature sensor 504, and the hot water supply temperature Tldo is a temperature related to detection by the hot water supply temperature sensor 505.

Figure 2010249366
Figure 2010249366

需要側への給湯や加熱手段2による沸上げが含まれる場合、単位時間当たりの給湯タンク1における放熱量は、貯湯タンク蓄熱量Q1と加熱能力の積算値Qhpとの和から、貯湯タンク蓄熱量Q2および給湯負荷の積算値Qldを引いたものとなる。そのため、断熱性能Rは次式(6)で表される。
(1/R) = {(Q1−Q2+Qhp−Qld)/(t2−t1)}/
A・〔{(Tw1−Ta1)+(Tw2−Ta2)}/2〕 …(6)
When hot water supply to the demand side or boiling by the heating means 2 is included, the heat dissipation amount in the hot water supply tank 1 per unit time is calculated based on the sum of the hot water storage tank heat storage amount Q1 and the integrated value Qhp of the heating capacity. It is obtained by subtracting the integrated value Qld of Q2 and the hot water supply load. Therefore, the heat insulation performance R is represented by the following formula (6).
(1 / R) = {(Q1-Q2 + Qhp-Qld) / (t2-t1)} /
A. [{(Tw1-Ta1) + (Tw2-Ta2)} / 2] (6)

制御手段103は、断熱性能検出手段102の算出により検出した断熱性能Rに基づいて、例えば設計段階で定める基準値との関係によって断熱性能が劣化しているかどうかを判定する。例えば断熱材が真空断熱材の場合、断熱性能が劣化していない正常時は0.002W/mK程度の値を示すが、ピンホールなどで真空状態が損なわれた場合、グラスウールなどと同程度の0.03W/mK程度の値まで劣化する。従って、例えば厚さ8mmの真空断熱材で断熱材を構成した場合、正常時の断熱性能Rの理論値は0.008/0.002=4[m2 K/W]となる。一方、真空状態が損なわれた場合の断熱性能Rの理論値は0.008/0.03=0.267[m2 K/W]となる。この場合、例えば4と0.267の間の値を基準値とし、断熱性能Rとの大小関係によって、断熱性能の劣化を判定することが出来る。基準値のデータについては、例えば貯湯タンク1を覆う断熱材、貯湯タンク1の大きさ等に応じてあらかじめシステム構成により定めておき、記憶手段104に記憶する。 Based on the heat insulation performance R detected by the calculation of the heat insulation performance detection means 102, the control means 103 determines whether or not the heat insulation performance is deteriorated depending on the relationship with a reference value determined at the design stage, for example. For example, when the heat insulating material is a vacuum heat insulating material, it shows a value of about 0.002 W / mK at normal time when the heat insulating performance is not deteriorated. It deteriorates to a value of about 0.03 W / mK. Therefore, for example, when the heat insulating material is constituted by a vacuum heat insulating material having a thickness of 8 mm, the theoretical value of the heat insulating performance R in a normal state is 0.008 / 0.002 = 4 [m 2 K / W]. On the other hand, the theoretical value of the heat insulation performance R when the vacuum state is impaired is 0.008 / 0.03 = 0.267 [m 2 K / W]. In this case, for example, a value between 4 and 0.267 is used as a reference value, and deterioration of the heat insulation performance can be determined based on the magnitude relationship with the heat insulation performance R. The reference value data is determined in advance by the system configuration according to, for example, a heat insulating material that covers the hot water tank 1, the size of the hot water tank 1, and the like, and is stored in the storage unit 104.

制御手段103は、断熱性能の劣化の判定結果に基づいて、加熱手段2を制御する。ここで、最初の判定が行われるまでは劣化していないものと仮定して加熱手段2の制御をしてもよいし、劣化しているものとして加熱手段2の制御をしてもよい。   The control means 103 controls the heating means 2 based on the determination result of the deterioration of the heat insulation performance. Here, the heating means 2 may be controlled on the assumption that it has not deteriorated until the first determination is made, or the heating means 2 may be controlled as being deteriorated.

図4は、断熱材による断熱性能が劣化していない正常な場合の沸上げ制御を表すための図である。制御手段103は、深夜時間帯において、加熱手段2に水を加熱させて所定の熱量(一括沸上げ熱量)を加え、一括で沸上げる制御を行う。一括で沸上げる制御を行う場合、料金が低い深夜時間帯に沸き上げて貯湯するというコスト面のメリットおよび加熱手段2の発停回数の増加に伴う機器寿命の低下や低効率運転の増加を回避するメリットがある。   FIG. 4 is a diagram for illustrating boiling control in a normal case where the heat insulating performance by the heat insulating material is not deteriorated. The control means 103 performs heating control by heating the water to the heating means 2 and adding a predetermined amount of heat (collective boiling heat amount) in the late-night time zone, and boiling it collectively. In the case of batch boiling control, the cost advantage of boiling and storing hot water in the midnight hours when the charge is low, and the reduction in equipment life and the increase in low-efficiency operation due to the increase in the number of starts and stops of the heating means 2 are avoided. There is merit to do.

ここで、一括沸上げ熱量は、既定の値を採用してもよいし、一日に必要と推測される積算給湯負荷を基準に定めてもよい。ここで、一日に必要と推測される積算給湯負荷は、既定の値を採用してもよいし、過去の給湯負荷実績から予測するようにしてもよい。図4では、当日に必要な積算給湯負荷を400Lと予測し、一日の終わり時点における貯湯タンク1の蓄熱量が100Lとなるように、深夜時間帯に約500L程度まで一括沸上げ熱量を加えて沸上げた場合を示している。   Here, a predetermined value may be adopted as the collective boiling heat amount, or it may be determined on the basis of the integrated hot water supply load estimated to be necessary for one day. Here, the integrated hot water supply load estimated to be necessary for one day may adopt a predetermined value, or may be predicted from the past hot water supply load results. In FIG. 4, the accumulated hot water supply load required on the day is predicted to be 400L, and the total boiling heat amount is added to about 500L in the midnight hours so that the heat storage amount of the hot water storage tank 1 at the end of the day is 100L. Shows the case of boiling.

また、例えば、上記の一括沸き上げ時以外の時間帯における貯湯タンク1内の蓄熱量の下限値を起動蓄熱量とし、上限値を停止蓄熱量として定め、記憶手段104に記憶させておくようにしてもよい。そして、一括沸き上げ時以外の時間帯において、制御手段103は、貯湯タンク蓄熱量Qが起動蓄熱量(例えば50L)以下となったものと判断すると、加熱手段2、循環ポンプ3を起動させて水を加熱させ、停止蓄熱量(例えば100L)以上となったものと判断すると加熱手段2、循環ポンプ3を停止させるように制御してもよい。これによって、貯湯タンク1内に所定の範囲の蓄熱量の湯を貯め、需要に対して湯切れを生じさせない蓄熱量維持制御を行うことができる。一括沸上げは給湯需要に対して不足する場合に対応する。   Further, for example, the lower limit value of the heat storage amount in the hot water storage tank 1 in the time zone other than the above-mentioned batch boiling is set as the start heat storage amount, and the upper limit value is set as the stop heat storage amount and stored in the storage unit 104. May be. When the control unit 103 determines that the hot water storage tank heat storage amount Q is equal to or less than the startup heat storage amount (for example, 50 L) in the time zone other than the time of batch boiling, the control unit 103 starts the heating unit 2 and the circulation pump 3. If the water is heated and it is determined that the amount of stored heat is not less than 100 L (for example, 100 L), the heating means 2 and the circulation pump 3 may be controlled to stop. Thereby, the hot water storage amount in a predetermined range is stored in the hot water storage tank 1, and the heat storage amount maintenance control that does not cause hot water shortage with respect to demand can be performed. Collective boiling corresponds to the case where the hot water supply demand is insufficient.

図5は、断熱性能が劣化したと判定したときの沸上げ制御を表すための図である。図5では、従来技術(断熱材異常時に貯湯タンク温度を増加する特許文献2に関わる技術)による沸上げ制御動作と共に示している。ここで、図5では断熱性能が正常時の値の1/5程度まで劣化した場合を示している。   FIG. 5 is a diagram for illustrating boiling control when it is determined that the heat insulation performance has deteriorated. In FIG. 5, it shows with the boiling-up control operation | movement by the prior art (technology regarding the patent document 2 which increases the hot water storage tank temperature at the time of abnormality of a heat insulating material). Here, FIG. 5 shows a case where the heat insulation performance has deteriorated to about 1/5 of the normal value.

本発明では、断熱性能が劣化したと判定したときに、一括沸上げ熱量を、正常な場合のときよりも減少させる。そして、その熱量分を蓄熱量維持制御によって沸上げるように制御する。図5では、深夜時間帯における蓄熱量を約150Lまで減少させている。そして、湯張りや入浴などの給湯の需要が高いと予想される21:00からの時間帯前の17:00〜21:00の時間帯は、蓄熱量が約300Lとなるまで沸き上げる。それ以外の時間帯は、制御手段103は起動蓄熱量である50L以下となったものと判断すると、加熱手段2、循環ポンプ3を起動させて水を加熱させて熱量を加え、停止蓄熱量である100L以上となったものと判断すると加熱手段2、循環ポンプ3を停止させるように制御する。   In the present invention, when it is determined that the heat insulation performance has deteriorated, the amount of heat for boil-up is reduced as compared with the normal case. Then, the amount of heat is controlled to be boiled by heat storage amount maintenance control. In FIG. 5, the heat storage amount in the midnight time zone is reduced to about 150L. Then, in the time zone from 17:00 to 21:00 before the time zone from 21:00 where demand for hot water supply such as hot water filling and bathing is expected to be high, the water is boiled until the heat storage amount is about 300L. In other time periods, if the control means 103 determines that the starting heat storage amount is 50 L or less, the heating means 2 and the circulation pump 3 are started to heat the water, add heat, and stop heat storage amount. When it is determined that the pressure is 100 L or more, the heating means 2 and the circulation pump 3 are controlled to be stopped.

図6は実施の形態1に関わる貯湯タンク1から外界への積算放熱量のグラフを表す図である。図6では、図4、図5に示す制御について、断熱性能が劣化していない場合の制御、断熱性能が劣化している場合の従来技術における制御、本発明に係る制御の3パターンに対して示している。図6から、本発明に関わる制御装置100が行った演算、制御等によって、貯湯タンク1からの積算放熱量が従来技術における放熱量よりも減少していることがわかる。   FIG. 6 is a graph showing a cumulative heat radiation amount from the hot water storage tank 1 to the outside world according to the first embodiment. In FIG. 6, with respect to the control shown in FIGS. 4 and 5, the control when the heat insulation performance is not deteriorated, the control according to the prior art when the heat insulation performance is deteriorated, and the control according to the present invention are three patterns. Show. From FIG. 6, it can be seen that the integrated heat radiation amount from the hot water storage tank 1 is smaller than the heat radiation amount in the prior art by the calculation, control, and the like performed by the control device 100 according to the present invention.

ここで、一括沸上げ熱量を150Lとして任意の固定値を用いたが、断熱性能の劣化の程度に応じて演算等により定めるようにしても良い。例えば、断熱性能Rが基準値のα倍に劣化していると判定したような場合には、基準値における一括沸上げ熱量のα倍にするなど、αの関数として定めるようにしてもよい。   Here, an arbitrary fixed value is used with the collective boiling heat amount being 150 L, but it may be determined by calculation or the like according to the degree of deterioration of the heat insulation performance. For example, when it is determined that the heat insulation performance R has deteriorated to α times the reference value, the heat insulation performance R may be determined as a function of α, such as α times the collective boiling heat amount at the reference value.

また、制御手段103は、本発明にて断熱性能の劣化を判断した場合には、加熱手段2の加熱能力を増加させて、湯切れに対する安全性を高めるように運転しても良い。   Moreover, when the deterioration of the heat insulation performance is determined in the present invention, the control means 103 may be operated so as to increase the heating capability of the heating means 2 and increase the safety against running out of hot water.

さらに、加熱手段2の加熱能力を増加させるとともに、上述した起動蓄熱量、停止蓄熱量の少なくとも一方を減少させるようにしてもよい。これにより、湯切れの安全性を出来るだけ損なうことなく、貯湯タンク1における放熱量を低減することができる。   Furthermore, while increasing the heating capability of the heating means 2, you may make it reduce at least one of the starting heat storage amount and the stop heat storage amount mentioned above. Thereby, the heat radiation amount in the hot water storage tank 1 can be reduced without impairing the safety of running out of hot water as much as possible.

以上のように、実施の形態1の貯湯式給湯システムによれば、蓄熱量算出手段101が算出した貯湯タンク蓄熱量Qと貯湯温度センサー501a〜501fの検出に係る温度値に基づいて、断熱性能検出手段102が断熱性能を検出し、制御手段103は、検出結果に基づいて断熱性能が劣化していると判定した場合は、特定の時間帯に前記湯水に加える熱量を決定し、これにより、例えば深夜時間帯のような給湯負荷の発生より長時間前に沸上げる蓄熱量を減少させ、より給湯負荷の発生に近い時間帯に沸上げる熱量を増加させるようにしたので、貯湯タンク1から外界への放熱量を減少することができ、断熱材の断熱性能が劣化によって、必要なエネルギー消費量の増加を抑えることができ、省エネルギー性を向上させることができる。   As described above, according to the hot water storage type hot water supply system of the first embodiment, the heat insulation performance is based on the heat storage tank heat storage amount Q calculated by the heat storage amount calculation means 101 and the temperature values related to the detection of the hot water storage temperature sensors 501a to 501f. When the detection means 102 detects the heat insulation performance, and the control means 103 determines that the heat insulation performance is deteriorated based on the detection result, it determines the amount of heat to be added to the hot water in a specific time zone, For example, the amount of heat stored in the boiling time is reduced before the occurrence of a hot water supply load such as at midnight, and the amount of heat heated up in the time zone closer to the occurrence of a hot water load is increased. The amount of heat released to the heat source can be reduced, and the increase in required energy consumption can be suppressed due to the deterioration of the heat insulation performance of the heat insulating material, thereby improving the energy saving performance.

また、検出した断熱性能に基づいて、前記加熱手段の能力を増加させるようにしたので、湯切れの危険性を低下させると共に、従来発明よりも貯湯タンク1からの放熱量を低減させて省エネルギー性を向上させることが出来る。   Moreover, since the capability of the heating means is increased based on the detected heat insulation performance, the risk of running out of hot water is reduced, and the amount of heat released from the hot water storage tank 1 is reduced as compared with the conventional invention to save energy. Can be improved.

さらに、特定の時間帯以外における貯湯タンク1の蓄熱量に関する上限値である停止蓄熱量と下限値である起動蓄熱量とを定めておき、貯湯タンク1の蓄熱量がその範囲内となるように、制御手段103が加熱手段2の加熱制御を行うようにしたので、湯切れを起こす可能性を低くして安定した給湯を行うことができる。そして、断熱性能が劣化していると判定した場合は、制御手段103は、停止蓄熱量、起動蓄熱量の少なくとも一方の値を下げて制御を行うようにしたので、湯切れの危険性は同等程度に維持したまま、貯湯タンク1からの放熱量を低減し、省エネルギー性を向上させることができる。   Furthermore, a stop heat storage amount that is an upper limit value and a start heat storage amount that is a lower limit value regarding the heat storage amount of the hot water storage tank 1 other than a specific time period are determined, and the heat storage amount of the hot water storage tank 1 is within that range. Since the control means 103 controls the heating of the heating means 2, it is possible to reduce the possibility of running out of hot water and perform stable hot water supply. And when it determines with the heat insulation performance having deteriorated, since the control means 103 was made to control by lowering at least one value of a stop heat storage amount and a starting heat storage amount, the danger of a hot water runout is equivalent. While maintaining the degree, the amount of heat released from the hot water storage tank 1 can be reduced and the energy saving performance can be improved.

実施の形態2.
以下、図7〜図9を用いて本発明の実施の形態2について説明する。ここで実施の形態1と同様の部分は説明を省略する。
Embodiment 2. FIG.
The second embodiment of the present invention will be described below with reference to FIGS. Here, the description of the same parts as those in Embodiment 1 is omitted.

図7は実施の形態2における、ユーザーが制御動作を規定するためのリモートコントローラー400(以下、リモコン400という)を表す図である。当該リモコン400は、運転モード選択ボタン401を有し、ユーザー側にて2つ以上の運転モードから、所定の運転モードを選択して制御装置100に指示できるようになっている。ここで、運転モードは、本発明に関わる貯湯式給湯システムにて、トレードオフの関係にある省エネルギー性と省コスト性のどちらを優先するかを、択一的もしくは段階的に設定することができる。例えば、図7(b)においては1:省エネモード 、…、 n:省コストモードとして、選択することができる。   FIG. 7 is a diagram showing a remote controller 400 (hereinafter referred to as a remote controller 400) for the user to define a control operation in the second embodiment. The remote controller 400 includes an operation mode selection button 401, and a user can select a predetermined operation mode from two or more operation modes and instruct the control device 100. Here, in the hot water storage type hot water supply system according to the present invention, the operation mode can be set alternatively or step by step to prioritize energy saving or cost saving which are in a trade-off relationship. . For example, in FIG. 7B, it can be selected as 1: energy saving mode,..., N: cost saving mode.

制御手段103は、実施の形態1で説明したように、断熱性能が劣化したと判定した場合には、一括沸上げ熱量を減少させるが、その減少量を、ユーザーがリモコン400を介して選択した運転モードに基づいて変更するようにする。例えば、制御手段103が断熱性能が劣化しているものと判定した場合、ユーザーが選択した運転モードが最も省エネルギーを優先させるモードであれば、一括沸上げ熱量を大幅に減少させる。一方、ユーザーが選択した運転モードが最も省コストを優先させるモードであれば一括沸上げ熱量を正常時と同じとするように制御する。   As described in the first embodiment, when it is determined that the heat insulation performance has deteriorated, the control means 103 reduces the total boiling heat amount, but the user selects the decrease amount via the remote controller 400. Change based on the operation mode. For example, when the control means 103 determines that the heat insulation performance has deteriorated, if the operation mode selected by the user is the mode in which energy saving is prioritized most, the batch boiling heat amount is greatly reduced. On the other hand, if the operation mode selected by the user is a mode in which cost saving is prioritized most, the batch boiling heat quantity is controlled to be the same as in the normal state.

図8は、各運転モードの沸上げ制御を表すための図である。図8に示すように、ユーザーの選択した運転モードが省エネルギーを優先させるモードであるほど、断熱性能が劣化したと判定した場合の一括沸上げ熱量が減少するように設定され、給湯需要が多くなる時間帯での沸上げにおいて加える熱量を増加させる。   FIG. 8 is a diagram for illustrating boiling control in each operation mode. As shown in FIG. 8, as the operation mode selected by the user is a mode in which energy saving is prioritized, the heat amount is set so that the total boiling heat amount when it is determined that the heat insulation performance is deteriorated, and the hot water supply demand increases. Increase the amount of heat applied during boiling in time.

図9は実施の形態2に関わる貯湯タンク1から外界への積算放熱量のグラフを表す図である。図9に示すように省エネルギーを優先させるモードであるほど、貯湯タンク1からの積算放熱量が減少していることがわかる。   FIG. 9 is a graph showing a cumulative heat release amount from the hot water storage tank 1 to the outside world according to the second embodiment. As shown in FIG. 9, it can be understood that the integrated heat radiation amount from the hot water storage tank 1 decreases as the mode in which energy saving is prioritized.

また、図7のリモコン400は、ユーザーが運転モードを選択する際の判断材料となるように、貯湯タンク1からの放熱量の程度が表示される放熱レベル表示部402を有している。ここで、放熱レベルについては、(3)式、(6)式等に示す放熱量に基づいて決定する。放熱レベルは、単位期間中の沸上げ熱量の何%が外界に放熱しているかという形で示しても良いし、断熱性能から推定して現在の放熱量が正常状態での放熱量の何%になっているかという形で示しても良い。また、放熱レベルではなく、断熱性能の高低を、例えば基準値との比の形で示しても良い。   In addition, the remote control 400 of FIG. 7 has a heat dissipation level display unit 402 that displays the degree of heat dissipation from the hot water storage tank 1 so as to be a determination material when the user selects an operation mode. Here, the heat radiation level is determined based on the heat radiation amount shown in the equations (3), (6), and the like. The heat dissipation level may be expressed in terms of how much of the boiling heat amount during the unit period is dissipated to the outside world, or estimated from the heat insulation performance and what percentage of the heat dissipation amount in the normal state is the current heat dissipation amount. It may be shown in the form of Moreover, you may show not the heat dissipation level but the level of heat insulation performance, for example in the form of ratio with a reference value.

また、貯湯式給湯システムは、断熱性能検出手段102の検出値が所定の範囲を越えて低下したときに、断熱性能の劣化を報知する、報知手段(図示せず)を備えるようにしてもよい。例えば、警報音を用いて加熱手段2の付近に放置する方式としても良いし、リモコン400から警報音を発する方式としても良い。また、リモコン400の有する表示部403にその旨を表示させる方式としても良い。また、電気通信回線、無線等を用いてサービスセンター等に通報する方式としても良い。   Further, the hot water storage type hot water supply system may be provided with a notifying means (not shown) for notifying the deterioration of the heat insulation performance when the detection value of the heat insulation performance detection means 102 falls below a predetermined range. . For example, it is possible to use a warning sound in the vicinity of the heating means 2 or a method of generating a warning sound from the remote control 400. Further, a method for displaying the fact on the display unit 403 of the remote controller 400 may be used. Moreover, it is good also as a system which reports to a service center etc. using a telecommunication line, a radio | wireless, etc.

以上のように、実施の形態2に関わる貯湯式給湯システムは、運転モード選択ボタン401を有するリモコン400を介して、例えば、省エネルギー性を優先した運転と省コスト性を優先した運転とを択一的又は段階的にユーザーが選択できるようにしたので、ユーザーの意向に沿った形で省エネルギー性を向上させることができる。   As described above, the hot water storage type hot water supply system according to the second embodiment selects, for example, an operation that prioritizes energy saving and an operation that prioritizes cost saving via the remote control 400 having the operation mode selection button 401. Since the user can select the target in stages or in steps, the energy saving performance can be improved in accordance with the user's intention.

また、放熱レベル表示部402、表示部403を設けて、ユーザーに向けて表示を行うようにしたので、ユーザーが現在の放熱レベルに基づいて運転モードを選択することができ、よりユーザーの意向に沿った形で省エネルギー性を向上させることができる。   In addition, since the heat radiation level display unit 402 and the display unit 403 are provided to display to the user, the user can select the operation mode based on the current heat radiation level, and more to the user's intention. Energy savings can be improved along the shape.

さらに、報知手段を備えるようにしたので、断熱材の性能劣化を検出してから、ユーザーやメンテナンス業者が対策を講じるまでの時間を短期間にすることができる。そのため、貯湯タンク1から外界への放熱によるエネルギーロスを低減することが期待できるので、省エネルギー性を向上させることができる。   Furthermore, since the notification means is provided, it is possible to shorten the time from when the performance deterioration of the heat insulating material is detected until the user or the maintenance company takes measures. Therefore, it can be expected that energy loss due to heat radiation from the hot water storage tank 1 to the outside world can be reduced, so that energy saving can be improved.

1 貯湯タンク、2 加熱手段、3 循環ポンプ、4 混合手段、5 断熱材、100 制御手段、101 蓄熱量算出手段、201 断熱性能検出手段、301 加熱用配管、302 給水用配管、303 導出用配管、304 混合用配管、305 給湯用配管、400 リモコン、401 運転モード選択ボタン、402 放熱レベル表示部、403 表示部、501a〜501f 貯湯温度センサー、502 沸上げ温度センサー、503 導出温度センサー、504 給水温度センサー、505 給湯温度センサー、601 給湯流量センサー、701 タイマー。   DESCRIPTION OF SYMBOLS 1 Hot water storage tank, 2 Heating means, 3 Circulation pump, 4 Mixing means, 5 Heat insulation material, 100 Control means, 101 Heat storage amount calculation means, 201 Thermal insulation performance detection means, 301 Heating piping, 302 Water supply piping, 303 Outlet piping , 304 Mixing pipe, 305 Hot water supply pipe, 400 Remote control, 401 Operation mode selection button, 402 Heat release level display section, 403 Display section, 501a to 501f Hot water storage temperature sensor, 502 Boiling temperature sensor, 503 Derived temperature sensor, 504 Water supply Temperature sensor, 505 Hot water temperature sensor, 601 Hot water flow rate sensor, 701 timer.

Claims (7)

貯湯タンクと、
該貯湯タンクを覆う断熱材と、
前記貯湯タンク内の湯水に熱量を加える加熱手段と、
前記貯湯タンク内の湯水における蓄熱量を算出する蓄熱量算出手段と、
前記蓄熱量に基づいて、前記断熱材の断熱性能を検出する断熱性能検出手段と、
該断熱性能検出手段が検出した前記断熱性能に基づいて、断熱性能が劣化しているかどうかを判定し、該判定による前記断熱性能の劣化に応じて、特定の時間帯に前記湯水に加える熱量を決定し、前記加熱手段の加熱制御を行う制御手段と
を備えることを特徴とする貯湯式給湯システム。
A hot water storage tank,
A heat insulating material covering the hot water storage tank;
Heating means for applying heat to the hot water in the hot water storage tank;
A heat storage amount calculating means for calculating a heat storage amount in the hot water in the hot water storage tank;
Based on the heat storage amount, heat insulation performance detecting means for detecting the heat insulation performance of the heat insulating material,
Based on the heat insulation performance detected by the heat insulation performance detection means, it is determined whether the heat insulation performance is deteriorated, and the amount of heat applied to the hot water in a specific time zone is determined according to the deterioration of the heat insulation performance by the determination. A hot water storage hot water supply system comprising: control means for determining and controlling heating of the heating means.
前記断熱性能検出手段が検出した断熱性能に基づいて、前記加熱手段の能力を増加させることを特徴とする請求項1に記載の貯湯式給湯システム。   The hot water storage type hot water supply system according to claim 1, wherein the capacity of the heating means is increased based on the heat insulation performance detected by the heat insulation performance detection means. 前記制御手段は、前記特定の時間帯以外の時間帯には、前記蓄熱量があらかじめ定めた下限値以下であると判断すると、前記加熱手段に加熱させ、前記蓄熱量があらかじめ定めた上限値以上であると判断すると、前記加熱手段を停止させる制御を行うことを特徴とする請求項1又は2に記載の貯湯式給湯システム。   When the control unit determines that the heat storage amount is equal to or less than a predetermined lower limit value in a time zone other than the specific time zone, the control unit causes the heating unit to heat and the heat storage amount is equal to or greater than a predetermined upper limit value. If it judges that it is, control which stops the said heating means is performed, The hot water storage type hot-water supply system of Claim 1 or 2 characterized by the above-mentioned. 前記断熱性能検出手段が検出した断熱性能に基づいて、前記下限値、前記上限値の少なくとも一方の値を小さくすることを特徴とする請求項3に記載の貯湯式給湯システム。   The hot water storage hot water supply system according to claim 3, wherein at least one of the lower limit value and the upper limit value is reduced based on the heat insulation performance detected by the heat insulation performance detecting means. 省エネルギー性を重視した運転を行うか、省コスト性を重視した運転を行うかを、択一的または段階的に選択するための可能な運転モード指定手段をさらに備え、
前記制御手段は、前記省エネルギー性重視した運転が選択されたものと判断すると、
該判定による前記断熱性能の劣化に応じて、前記特定の時間帯に前記湯水に加える熱量を決定し、前記加熱手段の加熱制御を行うことを特徴とする請求項1から請求項4の何れかに記載の貯湯式給湯システム。
It further comprises a possible operation mode designation means for selecting alternatively or stepwise whether to perform an operation with an emphasis on energy saving or an operation with an emphasis on cost saving.
When the control means determines that the operation with an emphasis on energy saving is selected,
5. The heating control of the heating means is performed by determining the amount of heat to be added to the hot water during the specific time period according to the deterioration of the heat insulation performance by the determination. The hot water storage hot water supply system described in 1.
前記運転モード指定手段は、少なくとも指定された運転モード、前記貯湯タンクからの放熱量とを表示するための表示部を有することを特徴とする請求項5に記載の貯湯式給湯システム。   6. The hot water storage hot water supply system according to claim 5, wherein the operation mode designating unit has a display unit for displaying at least the designated operation mode and the amount of heat released from the hot water storage tank. 報知を行うための報知手段をさらに備え、
前記制御手段は、前記断熱性能検出手段が検出した前記断熱性能に基づいて、前記断熱性能の劣化度合いが所定値以下となったものと判断すると、前記報知手段に報知させることを特徴とする請求項1〜6の何れかに記載の貯湯式給湯システム。
It further comprises a notification means for performing notification,
The said control means makes it alert | report to the said alerting | reporting means, if it judges that the deterioration degree of the said heat insulation performance became below predetermined value based on the said heat insulation performance which the said heat insulation performance detection means detected. Item 7. A hot water storage hot water supply system according to any one of Items 1 to 6.
JP2009097689A 2009-04-14 2009-04-14 Hot water storage hot water supply system Active JP5030990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097689A JP5030990B2 (en) 2009-04-14 2009-04-14 Hot water storage hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097689A JP5030990B2 (en) 2009-04-14 2009-04-14 Hot water storage hot water supply system

Publications (2)

Publication Number Publication Date
JP2010249366A true JP2010249366A (en) 2010-11-04
JP5030990B2 JP5030990B2 (en) 2012-09-19

Family

ID=43311905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097689A Active JP5030990B2 (en) 2009-04-14 2009-04-14 Hot water storage hot water supply system

Country Status (1)

Country Link
JP (1) JP5030990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107832A (en) * 2010-11-18 2012-06-07 Mitsubishi Electric Corp Storage type hot water supply system
JP2012255568A (en) * 2011-06-07 2012-12-27 Mitsubishi Heavy Ind Ltd Storage type water heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200766A (en) * 2005-01-18 2006-08-03 Corona Corp Control device of electric apparatus
JP2007132599A (en) * 2005-11-10 2007-05-31 Corona Corp Controller for storage water heater
JP2007155154A (en) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2008070020A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2008132599A (en) * 2006-11-27 2008-06-12 Seiko Epson Corp Printer, printing method, font install program, and font protect program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006200766A (en) * 2005-01-18 2006-08-03 Corona Corp Control device of electric apparatus
JP2007132599A (en) * 2005-11-10 2007-05-31 Corona Corp Controller for storage water heater
JP2007155154A (en) * 2005-12-01 2007-06-21 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2008070020A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2008132599A (en) * 2006-11-27 2008-06-12 Seiko Epson Corp Printer, printing method, font install program, and font protect program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107832A (en) * 2010-11-18 2012-06-07 Mitsubishi Electric Corp Storage type hot water supply system
JP2012255568A (en) * 2011-06-07 2012-12-27 Mitsubishi Heavy Ind Ltd Storage type water heater

Also Published As

Publication number Publication date
JP5030990B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
US9752798B2 (en) Water heater control using external temperature sensor
JP2006286450A (en) Fuel cell system, its control method, and its control device
JP2008196810A (en) Hot water supply device and control device for hot water supply device
JP5862465B2 (en) Hot water storage water heater
JP2019027740A (en) Hot water supply system
JP4893020B2 (en) Hot water storage water heater
JP5030990B2 (en) Hot water storage hot water supply system
JP4525744B2 (en) Operation control device for hot water storage type water heater
JP4839879B2 (en) Hot water storage water heater
JP4788372B2 (en) Hot water storage water heater
JP5734882B2 (en) Hot water storage water heater
JP4839878B2 (en) Hot water storage water heater
JP6906164B2 (en) Cogeneration system and its operation method
JP4876606B2 (en) Hot water storage water heater
JP4839871B2 (en) Hot water storage water heater
JP2020076527A (en) Hot water storage type water heater
JP2010032212A (en) Control device for storage type water heater
JP4893005B2 (en) Hot water storage water heater
JP4876607B2 (en) Hot water storage water heater
JP4788373B2 (en) Hot water storage water heater
JP2013050251A (en) Electric water heater
JP4788374B2 (en) Hot water storage water heater
JP2017203577A (en) Hot water supply system
JP4893006B2 (en) Hot water storage water heater
JP4893010B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Ref document number: 5030990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250