JP2010249218A - Fluid bearing device and method of manufacturing the same - Google Patents

Fluid bearing device and method of manufacturing the same Download PDF

Info

Publication number
JP2010249218A
JP2010249218A JP2009098997A JP2009098997A JP2010249218A JP 2010249218 A JP2010249218 A JP 2010249218A JP 2009098997 A JP2009098997 A JP 2009098997A JP 2009098997 A JP2009098997 A JP 2009098997A JP 2010249218 A JP2010249218 A JP 2010249218A
Authority
JP
Japan
Prior art keywords
bearing
gap
bearing member
axial
lid member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009098997A
Other languages
Japanese (ja)
Inventor
Toshiaki Niwa
稔明 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009098997A priority Critical patent/JP2010249218A/en
Publication of JP2010249218A publication Critical patent/JP2010249218A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately form an axial clearance to be arranged in a fluid bearing device. <P>SOLUTION: A flange part 2b as an engaging part K arranged in a shaft member 2, is arranged on the inner diameter side of a cylinder part 10b for constituting a cover member 10. In a stopping state, a second axial clearance δ2 as the axial clearance is arranged between an upper side end surface 2b1 of the flange part 2b and a lower side end surface 7a5 of a bearing member 7. A first axial clearance δ1 is arranged between an upper side end surface 10b1 of the cylinder part 10b and a step height surface 7a4 of the bearing member 7. A relative position in the axial direction of the cover member 10 to the bearing member 7 is set constant, that is, a clearance width of the second axial clearance δ2 is set constant, by adjusting a clearance width of this first axial clearance δ1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は流体軸受装置およびその製造方法に関するものである。   The present invention relates to a hydrodynamic bearing device and a manufacturing method thereof.

流体軸受装置は、軸受隙間に形成される油膜で軸部材を回転自在に支持するものである。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器をはじめ種々の電気機器に搭載されるモータ用の軸受装置として、より具体的には、HDD等の磁気ディスク装置やCD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、PC等のファンモータなどのモータ用軸受装置として好適に使用されている。   The hydrodynamic bearing device supports a shaft member rotatably with an oil film formed in a bearing gap. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, the hydrodynamic bearing device has been utilized as a motor bearing device for motors mounted on various electrical devices including information devices. More specifically, spindle motors for magnetic disk devices such as HDD, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROM / RAM, etc., polygon scanner motors for laser beam printers (LBP), PCs It is suitably used as a motor bearing device such as a fan motor.

上記モータのうち、スピンドルモータ用の流体軸受装置の一例として、特開2006−226250号公報(特許文献1)に開示されたものが公知である。この特許文献1に記載の流体軸受装置は、両端が開口した軸受部材と、軸受部材の内周に挿入された軸部材と、軸受部材に嵌合されて軸受部材の一端開口を閉塞する蓋部材とを主要な構成部材として具備するものである。この流体軸受装置では、軸受部材の一端面で軸部材をスラスト一方向に支持する動圧軸受からなるスラスト軸受部が形成され、蓋部材の一端面で軸部材をスラスト他方向に支持する動圧軸受からなるスラスト軸受部が形成される。   As an example of the hydrodynamic bearing device for the spindle motor among the above motors, one disclosed in Japanese Patent Laid-Open No. 2006-226250 (Patent Document 1) is known. The hydrodynamic bearing device described in Patent Document 1 includes a bearing member that is open at both ends, a shaft member that is inserted into the inner periphery of the bearing member, and a lid member that is fitted to the bearing member and closes one end opening of the bearing member. As main constituent members. In this hydrodynamic bearing device, a thrust bearing portion comprising a dynamic pressure bearing that supports a shaft member in one thrust direction is formed on one end surface of the bearing member, and a dynamic pressure that supports the shaft member in the other thrust direction on one end surface of the lid member. A thrust bearing portion comprising a bearing is formed.

この種の流体軸受装置の軸部材には、ディスクを保持するためのディスクハブが設けられる。軸受部材に対する軸部材の軸方向の相対移動量が大きくなると、ディスク装置のヘッドとディスクハブに保持されたディスクとが干渉し、最悪の場合ディスク装置が機能しなくなるおそれがある。そのため、スラスト軸受部を動圧軸受あるいはピボット軸受の何れで構成するかに関わらず、軸受部材と軸方向に係合する係合部(上記特許文献1ではフランジ部)を軸部材に設け、軸部材の軸方向移動を規制するのが通例である。但し、係合部と軸受部材とが摺動接触すると、軸部材が円滑に回転できないおそれがある。そのため、係合部と軸受部材の間には所定幅の軸方向隙間(アキシャル隙間)が設けられる。   The shaft member of this type of hydrodynamic bearing device is provided with a disk hub for holding the disk. If the amount of axial movement of the shaft member relative to the bearing member increases, the head of the disk device and the disk held by the disk hub interfere with each other, and in the worst case, the disk device may not function. Therefore, regardless of whether the thrust bearing portion is composed of a dynamic pressure bearing or a pivot bearing, an engaging portion (a flange portion in Patent Document 1) that engages with the bearing member in the axial direction is provided on the shaft member. It is customary to restrict the axial movement of the member. However, if the engaging portion and the bearing member are in sliding contact, the shaft member may not be able to rotate smoothly. For this reason, an axial gap (axial gap) having a predetermined width is provided between the engaging portion and the bearing member.

例えば、上記特許文献1に記載のように二つのスラスト軸受部を動圧軸受で構成する場合、上記アキシャル隙間の隙間幅は、両スラスト軸受部のスラスト軸受隙間の隙間幅を合算した値とされる。かかるアキシャル隙間の幅設定を簡便に行うべく、上記特許文献1の流体軸受装置では、蓋部材に軸方向に延びる筒部を設け、該筒部の内周に係合部としてのフランジ部を配置すると共に、筒部の軸方向寸法を、フランジ部の厚みと、両スラスト軸受隙間の隙間幅とを合算した値に設定している。このようにすれば、筒部と軸受部材の端面同士を当接させるように蓋部材を軸受部材に嵌合するだけで、アキシャル隙間(スラスト軸受隙間)の幅設定を完了することができる。   For example, when two thrust bearing parts are constituted by a dynamic pressure bearing as described in Patent Document 1, the gap width of the axial gap is a value obtained by adding the gap widths of the thrust bearing gaps of both thrust bearing parts. The In order to easily set the width of the axial gap, in the hydrodynamic bearing device of Patent Document 1, a cylindrical portion extending in the axial direction is provided on the lid member, and a flange portion as an engaging portion is disposed on the inner periphery of the cylindrical portion. In addition, the axial dimension of the cylindrical portion is set to a value obtained by adding the thickness of the flange portion and the gap width of both thrust bearing gaps. In this way, the width setting of the axial gap (thrust bearing gap) can be completed only by fitting the lid member to the bearing member so that the end faces of the cylindrical portion and the bearing member are brought into contact with each other.

特開2006−226250号公報JP 2006-226250 A

しかしながら、各部材には寸法公差が設けられているため、各部材は必ずしも同一寸法に製作されるわけではない。そのため、例えば、筒部の軸方向寸法が寸法公差の上限値に形成された蓋部材と、フランジ部の厚みが寸法公差の下限値に形成されたものとを組み合わせた場合には、スラスト軸受隙間の隙間幅が大となり、スラスト軸受部の軸受剛性が低下するおそれがある。またこれとは逆にスラスト軸受隙間の隙間幅が小となると、トルク増大を招くおそれがある。例えば、アキシャル隙間の隙間幅が最適となるように部材同士のマッチングを行えば上記の問題は解消可能であるが、製造工程が煩雑となりコスト増の問題が生じる。   However, since each member is provided with a dimensional tolerance, each member is not necessarily manufactured to the same size. Therefore, for example, when a lid member in which the axial dimension of the cylinder portion is formed at the upper limit value of the dimensional tolerance and a member having the flange portion formed at the lower limit value of the dimensional tolerance are combined, the thrust bearing gap There is a risk that the bearing width of the thrust bearing portion will be reduced. On the other hand, if the gap width of the thrust bearing gap is small, the torque may increase. For example, if the members are matched so that the gap width of the axial gap is optimum, the above problem can be solved, but the manufacturing process becomes complicated and the problem of cost increase arises.

本発明の目的は、この種の流体軸受装置において、アキシャル隙間の幅設定を容易かつ精度良く行うことを可能とし、もって回転精度の更なる向上を図ることにある。   An object of the present invention is to make it possible to easily and accurately set the width of the axial gap in this type of hydrodynamic bearing device, thereby further improving the rotational accuracy.

上記の目的を達成するため、本発明では、両端が開口した軸受部材と、軸受部材の内周に挿入され、軸受部材と軸方向に係合する係合部を有する軸部材と、軸受部材の内周面と軸部材の外周面との間に形成されるラジアル軸受隙間に形成される油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸受部材に嵌合されて軸受部材の一端開口を閉塞し、軸部材をスラスト方向に支持するスラスト軸受部を形成する蓋部材とを備え、蓋部材が軸方向に延びる筒部を有し、この筒部の内径側に係合部を配置した流体軸受装置において、軸受部材と蓋部材の筒部との間に軸方向隙間を介在させ、軸受部材に対する蓋部材の軸方向相対位置を一定にしたことを特徴とする流体軸受装置を提供する。   In order to achieve the above object, in the present invention, a bearing member having both ends opened, a shaft member having an engagement portion inserted in the inner periphery of the bearing member and engaged in the axial direction with the bearing member, A radial bearing that supports the shaft member in the radial direction with an oil film formed in a radial bearing gap formed between the inner peripheral surface and the outer peripheral surface of the shaft member, and one end opening of the bearing member that is fitted to the bearing member And a lid member that forms a thrust bearing portion that supports the shaft member in the thrust direction. The lid member has a cylindrical portion that extends in the axial direction, and an engaging portion is disposed on the inner diameter side of the cylindrical portion. In the fluid dynamic bearing device, there is provided a fluid dynamic bearing device characterized in that an axial gap is interposed between the bearing member and the cylindrical portion of the lid member so that the axial relative position of the lid member with respect to the bearing member is constant.

このように、軸受部材と蓋部材の筒部との間に軸方向隙間を介在させれば、アキシャル隙間の隙間幅を決定付ける各部材の寸法のばらつきを上記軸方向隙間で吸収することができる。具体的には、上記軸方向隙間の隙間幅を、軸受部材と係合部、および軸部材の軸受閉塞側一端(図2に示すように、係合部としてのフランジ部が軸部材の軸受閉塞側一端に設けられている場合には、係合部の他端)と蓋部材とが軸方向に相互に当接するまで軸受部材と蓋部材の軸方向の接近移動を許容する値に設定すれば良い。そして、このような軸方向隙間を介在させて、軸受部材に対する蓋部材の軸方向相対位置が一定とされることから、各部材の製作精度に関わらず、軸部材の係合部と軸受部材との間に所定幅のアキシャル隙間を設けることができる。   In this way, if the axial gap is interposed between the bearing member and the cylindrical portion of the lid member, variations in the dimensions of the members that determine the gap width of the axial gap can be absorbed by the axial gap. . Specifically, the gap width of the axial gap is defined as the bearing member, the engaging portion, and one end of the shaft member on the bearing closing side (as shown in FIG. 2, the flange portion as the engaging portion is the bearing blocking of the shaft member). If it is provided at one end of the side, the bearing member and the lid member are allowed to approach each other in the axial direction until the other end of the engaging portion and the lid member abut each other in the axial direction. good. Since the axial relative position of the lid member with respect to the bearing member is made constant by interposing such an axial gap, the engaging portion of the shaft member and the bearing member An axial gap having a predetermined width can be provided between the two.

本発明に係る流体軸受装置のように、蓋部材でスラスト軸受部を形成するものにおいて所期の軸受性能を確保する上では、軸受部材の外周面に対する蓋部材の外底面の直角度(JIS B 0621)を10μm以下に設定するのが望ましい。   In the case where the thrust bearing portion is formed by the lid member as in the fluid dynamic bearing device according to the present invention, in order to ensure the desired bearing performance, the perpendicularity of the outer bottom surface of the lid member to the outer peripheral surface of the bearing member (JIS B It is desirable to set 0621) to 10 μm or less.

また、以上に示す本発明の構成を採用すれば、軸受部材に対する蓋部材の軸方向相対位置の公差、換言するとアキシャル隙間の隙間幅の誤差を、±5μm(−5μm以上、+5μm以下)に設定した場合であっても、かかる精度内で両者を確実に固定することができる。   Further, if the configuration of the present invention described above is adopted, the tolerance of the axial relative position of the lid member with respect to the bearing member, in other words, the error of the gap width of the axial gap is set to ± 5 μm (−5 μm or more, +5 μm or less). Even if it is a case, both can be reliably fixed within this precision.

ところで、近年のディスク装置の大容量化に伴って軸部材に搭載されるディスク枚数が増加している分、軸受運転中等に衝撃荷重が加わった際に、軸部材の端部から蓋部材に加わる衝撃荷重も増大する傾向にある。そのため、軸受性能、特にスラスト軸受部の軸受性能を安定維持するには、蓋部材の耐抜け強度を高める必要がある。上記特許文献1に記載のように軸受部材の内周面に蓋部材の筒部を嵌合、固定する場合、筒部の軸方向寸法を長大化すれば軸受部材に対する蓋部材の固定面積が増大する分、軸受部材に対する蓋部材の固定強度を高めることができる。しかし、筒部の軸方向寸法を長大化すると、軸受部材の形状が複雑化して軸受部材の製造コストが増大するおそれがある。また、軸受部材の内周面に筒部を嵌合した場合、係合部(フランジ部)の外径側に蓋部材の筒部と軸受部材とが連続配置されるため、係合部が必然的に小径化する。そのため、特に係合部の端面で動圧軸受からなるスラスト軸受部を形成する場合に支持面積の縮小を招き、スラスト方向の支持能力が低下するおそれがある。   By the way, since the number of disks mounted on the shaft member has increased with the recent increase in capacity of the disk device, it is applied to the lid member from the end of the shaft member when an impact load is applied during bearing operation or the like. The impact load also tends to increase. Therefore, in order to stably maintain the bearing performance, particularly the bearing performance of the thrust bearing portion, it is necessary to increase the slip-proof strength of the lid member. When the cylindrical portion of the lid member is fitted and fixed to the inner peripheral surface of the bearing member as described in Patent Document 1, if the axial dimension of the cylindrical portion is increased, the fixing area of the lid member with respect to the bearing member increases. Accordingly, the fixing strength of the lid member with respect to the bearing member can be increased. However, when the axial dimension of the cylindrical portion is increased, the shape of the bearing member may be complicated and the manufacturing cost of the bearing member may increase. Further, when the cylindrical portion is fitted to the inner peripheral surface of the bearing member, the cylindrical portion of the lid member and the bearing member are continuously arranged on the outer diameter side of the engaging portion (flange portion). The diameter is reduced. For this reason, particularly when a thrust bearing portion made of a dynamic pressure bearing is formed on the end face of the engaging portion, the support area may be reduced, and the support capability in the thrust direction may be reduced.

以上の事態を鑑みると、蓋部材の筒部を軸受部材の外周面に嵌合するのが望ましい。このようにすれば、蓋部材の筒部を軸受部材の内周面に固定する場合に比べて、内周面と外周面の径差分だけ固定面積を増すことができ、しかも軸受部材に対する固定面積を拡大するには、筒部の軸方向寸法を長大化すれば足り、軸受部材の形状が特段複雑化することもない。また、係合部の外径側には蓋部材の筒部のみを配置した構成にすることができるため、係合部を大径化することができる。そのため、スラスト軸受部を動圧軸受で構成した場合には、支持面積を拡大して、スラスト方向の支持能力を高めることができる。   In view of the above situation, it is desirable to fit the cylindrical portion of the lid member to the outer peripheral surface of the bearing member. In this way, the fixed area can be increased by the difference in diameter between the inner peripheral surface and the outer peripheral surface, compared with the case where the cylindrical portion of the lid member is fixed to the inner peripheral surface of the bearing member, and the fixed area with respect to the bearing member is increased. In order to enlarge the length, it is sufficient to increase the axial dimension of the cylindrical portion, and the shape of the bearing member is not particularly complicated. Moreover, since it can be set as the structure which has arrange | positioned only the cylinder part of a cover member in the outer diameter side of an engaging part, an engaging part can be enlarged in diameter. Therefore, when a thrust bearing part is comprised with a dynamic pressure bearing, a support area can be expanded and the support capability of a thrust direction can be improved.

また、流体軸受装置はモータの内周に取り付け固定されるが、上記構成とすれば、蓋部材をモータのベースとなる部材、例えばモータブラケットへの取り付け部として活用することができる。コスト面を考慮すると軸受部材を樹脂製とするのが有効であるが、これでは、通常金属製とされるモータブラケットに接着固定する場合に、必要とされる固定強度を確保することが難しくなる。一方、軸受部材を金属製とすれば固定強度を満足することはできるものの、樹脂製とする場合に比べコスト高となることは否めない。これに対し、上記構成とすれば、蓋部材をモータブラケットとの接着性に富む金属材料で形成してモータブラケットに対する流体軸受装置の固定強度を満足しつつ、軸受部材を樹脂で形成してコスト低減の要求も満足することができる。   The hydrodynamic bearing device is attached and fixed to the inner periphery of the motor. With the above configuration, the lid member can be used as an attachment portion to a member that serves as a base of the motor, for example, a motor bracket. Considering the cost, it is effective to make the bearing member made of resin. However, in this case, it is difficult to secure the required fixing strength when adhesively fixing to a motor bracket that is usually made of metal. . On the other hand, if the bearing member is made of metal, the fixing strength can be satisfied, but it cannot be denied that the cost is higher than that of the resin member. On the other hand, with the above configuration, the lid member is made of a metal material having high adhesiveness to the motor bracket, and the bearing member is made of resin while satisfying the fixing strength of the hydrodynamic bearing device to the motor bracket. The demand for reduction can also be satisfied.

このように軸受部材の外周面に蓋部材を嵌合する場合、両者の固定方法に検討を要する。例えば大きな圧入代でもって軸受部材の外周面に蓋部材を固定すると、圧入に伴う軸受部材の外周面の変形が軸受部材のラジアル軸受隙間の外径寸法を規定する面(ラジアル軸受面)にも及び、ラジアル軸受部の軸受性能を低下させるおそれがある。この問題は、蓋部材の筒部と前記ラジアル軸受面の一部又は全部とを軸方向でオーバーラップさせた場合(例えば図2を参照)に特に顕著となる。   Thus, when fitting a cover member to the outer peripheral surface of a bearing member, examination is required for the fixing method of both. For example, if a lid member is fixed to the outer peripheral surface of the bearing member with a large press-fitting allowance, the deformation of the outer peripheral surface of the bearing member due to press-fitting also occurs on the surface that defines the outer diameter dimension of the radial bearing gap of the bearing member (radial bearing surface) And there exists a possibility of reducing the bearing performance of a radial bearing part. This problem is particularly noticeable when the cylindrical portion of the lid member and a part or all of the radial bearing surface are overlapped in the axial direction (see, for example, FIG. 2).

そのため、軸受部材の外周面に蓋部材を嵌合する場合、蓋部材を、ラジアル軸受面の面精度に影響を与えない締め代で軸受部材の外周面に嵌合し、蓋部材と軸受部材を接着固定するのが望ましい。このようにすれば、ラジアル軸受部の軸受性能の低下を回避しつつ、軸受部材の一端開口部を確実に閉塞することが可能となる。蓋部材と軸受部材の接着固定は、蓋部材の筒部の内周面と軸受部材の外周面との間に接着剤を介在させることで行うことができる。「面精度に影響を与えない締め代」には、正の締め代を有する軽圧入の状態の他、締め代が0の状態、さらには締め代が負となる隙間嵌めの状態の何れも含む。「隙間嵌め」は、寸法公差を想定しても必ず両者間に隙間ができる状態をいう(JIS B 0401)。   Therefore, when the lid member is fitted to the outer peripheral surface of the bearing member, the lid member is fitted to the outer peripheral surface of the bearing member with a tightening margin that does not affect the surface accuracy of the radial bearing surface, and the lid member and the bearing member are It is desirable to bond and fix. If it does in this way, it will become possible to block | close the one end opening part of a bearing member reliably, avoiding the fall of the bearing performance of a radial bearing part. The lid member and the bearing member can be bonded and fixed by interposing an adhesive between the inner peripheral surface of the cylindrical portion of the lid member and the outer peripheral surface of the bearing member. The “tightening allowance that does not affect the surface accuracy” includes both a light press-fit state having a positive fastening allowance, a state where the fastening allowance is 0, and a gap fitting state in which the fastening allowance is negative. . “Gap fitting” refers to a state in which there is always a gap (JIS B 0401) even when dimensional tolerance is assumed.

係合部の一端面とこれに対向する軸受部材の端面との間に第1スラスト軸受部のスラスト軸受隙間を形成すると共に、係合部の他端面とこれに対向する蓋部材の端面との間に第2スラスト軸受部のスラスト軸受隙間を形成することができる。これにより、軸部材を、スラスト両方向に回転精度等に優れた動圧軸受で支持することができる。このとき、第1スラスト軸受部のスラスト軸受隙間の隙間幅と、第2スラスト軸受部のスラスト軸受隙間の隙間幅とを略同一幅に設定すれば、第1スラスト軸受部と第2スラスト軸受部の間の支持能力をバランスさせることができるので、スラスト方向の回転精度の安定化が図られる。   A thrust bearing gap of the first thrust bearing portion is formed between one end surface of the engaging portion and the end surface of the bearing member facing the engaging portion, and the other end surface of the engaging portion and the end surface of the lid member facing the first thrust bearing portion. A thrust bearing gap of the second thrust bearing portion can be formed therebetween. Thereby, a shaft member can be supported by a dynamic pressure bearing excellent in rotational accuracy in both thrust directions. At this time, if the gap width of the thrust bearing gap of the first thrust bearing portion and the gap width of the thrust bearing gap of the second thrust bearing portion are set to substantially the same width, the first thrust bearing portion and the second thrust bearing portion. As a result, the rotational accuracy in the thrust direction can be stabilized.

上記構成の流体軸受装置は、例えば、蓋部材の外底面をベース上に載置した治具で支持した状態で軸受部材と係合部、および軸部材の軸受閉塞側一端と蓋部材とを軸方向に相互に当接させた後(換言すると、アキシャル隙間の隙間幅をゼロにした後)、軸受部材の軸方向移動を規制した状態で治具を取り外す工程を経て製造することができる。この場合、上記治具の厚みを形成すべきアキシャル隙間の隙間幅と同一寸法としておけば、上記治具の取り外しによって、蓋部材をアキシャル隙間の隙間幅分だけ軸受部材から離隔する方向に移動させることができる。そして、治具の取り外しは軸受部材の軸方向移動を規制した状態で行われ、しかも蓋部材は、これがベースに当接した時点でそれ以上軸方向移動することもない。従って、軸受部材に対する蓋部材の軸方向移動量を精度良く管理することができる。そして、軸受部材に対する蓋部材の軸方向相対移動が完了した後、蓋部材を軸受部材に対して完全に固定すれば、アキシャル隙間の隙間幅を規定値に設定することができる。   The hydrodynamic bearing device having the above-described configuration is configured such that, for example, the bearing member and the engaging portion, and the bearing member closing side end of the shaft member and the lid member are pivoted while the outer bottom surface of the lid member is supported by a jig placed on the base. It can be manufactured through a process of removing the jig in a state in which the axial movement of the bearing member is restricted after the contact with each other in the direction (in other words, after the gap width of the axial gap is made zero). In this case, if the thickness of the jig is the same as the gap width of the axial gap to be formed, the lid member is moved away from the bearing member by the gap width of the axial gap by removing the jig. be able to. The jig is removed in a state where the axial movement of the bearing member is restricted, and the lid member does not move further in the axial direction when it comes into contact with the base. Therefore, the axial movement amount of the lid member relative to the bearing member can be managed with high accuracy. If the lid member is completely fixed to the bearing member after the axial relative movement of the lid member with respect to the bearing member is completed, the gap width of the axial gap can be set to a specified value.

またあるいは、蓋部材の外底面を治具で支持した状態で軸受部材と係合部、および軸部材の軸受閉塞側一端と蓋部材とを軸方向に相互に当接させた後、軸受部材の軸方向移動を規制した状態で治具を軸受部材から離反する方向に所定量移動させる工程を経て製造することができる。この場合、治具の移動可能量を形成すべきアキシャル隙間の隙間幅と同一寸法としておけば、上記治具の軸方向移動に伴って蓋部材をアキシャル隙間の隙間幅分だけ軸受部材から離反する方向に移動させることができる。そして、治具の軸方向移動は、軸受部材の軸方向移動を規制した状態で行われ、しかも蓋部材は、治具の軸方向移動が完了することによってそれ以上軸方向移動することもない。従って、軸受部材に対する蓋部材の軸方向移動量を精度良く管理することができる。そして、軸受部材に対する蓋部材の軸方向相対移動が完了した後、蓋部材を軸受部材に対して完全に固定すれば、アキシャル隙間の隙間幅を規定値に設定することができる。   Alternatively, after the bearing member and the engaging portion, and the bearing closing side end of the shaft member and the lid member are in contact with each other in the axial direction with the outer bottom surface of the lid member supported by a jig, The jig can be manufactured through a step of moving a predetermined amount in a direction away from the bearing member in a state where the axial movement is restricted. In this case, if the movable amount of the jig is the same as the gap width of the axial gap to be formed, the lid member is separated from the bearing member by the gap width of the axial gap as the jig moves in the axial direction. Can be moved in the direction. The axial movement of the jig is performed in a state where the axial movement of the bearing member is restricted, and the lid member does not move further in the axial direction when the axial movement of the jig is completed. Therefore, the axial movement amount of the lid member relative to the bearing member can be managed with high accuracy. If the lid member is completely fixed to the bearing member after the axial relative movement of the lid member with respect to the bearing member is completed, the gap width of the axial gap can be set to a specified value.

なお、治具の離反方向移動は、蓋部材を治具に吸着させた状態で行うこともできる。このようにすれば、治具の軸方向移動量分だけ蓋部材を確実に軸方向移動させることができるので、軸受部材に対する蓋部材の軸方向移動量を一層精度良く管理することができる。   The movement of the jig in the separation direction can also be performed in a state where the lid member is attracted to the jig. In this way, the lid member can be reliably moved in the axial direction by the amount of movement of the jig in the axial direction, so that the amount of axial movement of the lid member relative to the bearing member can be managed with higher accuracy.

この種の流体軸受装置におけるアキシャル隙間の幅設定は、軸受部材に対する蓋部材の軸方向相対位置をマイクロオーダーレベルで調整することによって行われる。そのため、軸受部材に対して蓋部材を隙間嵌めした場合、アキシャル隙間の幅設定を精度良く行うには、両者が滑らかに相対移動できない程度に、両者を接着剤等で仮固定する必要があった。しかしながら、これでは、アキシャル隙間の幅設定に際して多工程を要し、製造コストが増大するという問題がある他、アキシャル隙間の幅設定を精度良く行うことができないおそれがある。これに対し、以上に示す各方法であれば、軸受部材に対して蓋部材を隙間嵌めしたとしても、蓋部材を軸受部材に仮固定することなくアキシャル隙間の幅設定を容易かつ精度良く行うことができる。   In this type of hydrodynamic bearing device, the width of the axial gap is set by adjusting the axial relative position of the lid member with respect to the bearing member at a micro-order level. Therefore, when the lid member is fitted to the bearing member, in order to accurately set the width of the axial gap, it is necessary to temporarily fix both with an adhesive or the like to the extent that the two cannot smoothly move relative to each other. . However, in this case, there are problems that a multi-step process is required for setting the width of the axial gap and the manufacturing cost increases, and the width of the axial gap may not be set with high accuracy. On the other hand, with each of the methods described above, even if the gap member is fitted to the bearing member, the width of the axial gap can be set easily and accurately without temporarily fixing the lid member to the bearing member. Can do.

以上より、本発明によれば、この種の流体軸受装置において、アキシャル隙間の幅設定を容易かつ精度良く行うことが可能となる。これにより、特にスラスト方向の回転精度を一層高めた流体軸受装置を提供することができる。   As described above, according to the present invention, in this type of hydrodynamic bearing device, it is possible to easily and accurately set the width of the axial gap. As a result, it is possible to provide a hydrodynamic bearing device that further increases the rotational accuracy in the thrust direction.

ディスク装置用のスピンドルモータを概念的に示す断面図である。It is sectional drawing which shows notionally the spindle motor for disk apparatuses. 本発明の第1実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on 1st Embodiment of this invention. 軸受部材の断面図である。It is sectional drawing of a bearing member. 軸受部材の下側端面を示す図である。It is a figure which shows the lower end surface of a bearing member. 蓋部材のプレート部の上側端面を示す図である。It is a figure which shows the upper side end surface of the plate part of a cover member. 図2に示す流体軸受装置の要部拡大断面図である。It is a principal part expanded sectional view of the hydrodynamic bearing apparatus shown in FIG. 流体軸受装置の組み立て工程を示す概略図である。It is the schematic which shows the assembly process of a hydrodynamic bearing apparatus. (a)図は、流体軸受装置の各構成部材の位置決め状態を示す概略図、(b)図は(a)図の要部拡大断面図である。(A) is a schematic diagram showing the positioning of each component of the hydrodynamic bearing device, and (b) is an enlarged cross-sectional view of the main part of FIG. (a)図は、流体軸受装置の組み立て工程の他例を示す概略図、(b)図は、(a)図に示す組立治具を用いた場合における各構成部材の位置決め状態を示す概略図である。(A) is a schematic diagram showing another example of the assembly process of the hydrodynamic bearing device, (b) is a schematic diagram showing a positioning state of each component when the assembly jig shown in (a) is used. It is. 本発明の第2実施形態に係る流体軸受装置を示す断面図である。It is sectional drawing which shows the hydrodynamic bearing apparatus which concerns on 2nd Embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、流体軸受装置を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2の一端に設けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ベース部材としてのモータブラケット6とを備えている。ステータコイル4はモータブラケット6の外周に取り付けられ、ロータマグネット5はディスクハブ3の内周に取り付けられる。流体軸受装置1の軸受部材7は、モータブラケット6の内周に固定される。ディスクハブ3には磁気ディスク等のディスクDが一又は複数枚(図示例は2枚)保持され、ディスクDは図示しないクランプ機構で固定される。以上の構成において、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows one configuration example of a spindle motor for information equipment incorporating a fluid dynamic bearing device. The spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 provided at one end of the shaft member 2, and a radial direction, for example. A stator coil 4 and a rotor magnet 5 that are opposed to each other through a gap, and a motor bracket 6 as a base member are provided. The stator coil 4 is attached to the outer periphery of the motor bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bearing member 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 6. One or a plurality (two in the illustrated example) of disks D such as magnetic disks are held on the disk hub 3, and the disks D are fixed by a clamp mechanism (not shown). In the above configuration, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the disk D held by the disk hub 3 are rotated. It rotates integrally with the shaft member 2.

図2は、本発明の第1実施形態に係る流体軸受装置1を示すものである。この流体軸受装置1は、軸方向両端が開口した略円筒状の軸受部材7と、軸受部材7の内周に挿入された軸部材2と、軸受部材7の一端開口を閉塞する蓋部材10とを構成部材として備え、軸受部材7の内部空間には、流体としての潤滑油が充満されている。なお、以下では、便宜上、蓋部材10が設けられた側を下側、その軸方向反対側を上側として説明を進める。   FIG. 2 shows the hydrodynamic bearing device 1 according to the first embodiment of the present invention. The hydrodynamic bearing device 1 includes a substantially cylindrical bearing member 7 having both axial ends open, a shaft member 2 inserted into the inner periphery of the bearing member 7, and a lid member 10 that closes one end opening of the bearing member 7. And the internal space of the bearing member 7 is filled with lubricating oil as a fluid. In the following, for the sake of convenience, the description will be given with the side on which the lid member 10 is provided as the lower side and the opposite side in the axial direction as the upper side.

軸部材2は、軸受部材7の内周に挿入された軸部2aと、軸受部材7の下方に配置され、軸受部材7と軸方向に係合する係合部Kとしてのフランジ部2bとを有する。軸部2aおよびフランジ部2bの双方は、耐摩耗性に富む金属材料、例えばステンレス鋼で形成される。軸部2aの下端には小径部2a2が形成され、この小径部2a2を環状のフランジ部2bの内周に嵌合固定することで軸部材2が形成される。軸部2aとフランジ部2bの固定方法は両者間に所定の固定強度を確保し得る限りにおいて任意であり、圧入、接着、溶接(特にレーザ溶接)等を採用することができる。軸部材2は、上記のように、個別に製作した軸部2aおよびフランジ部2bを適宜の手段で一体化したものの他、両者を鍛造等で一体成形したものを使用することもできる。   The shaft member 2 includes a shaft portion 2 a inserted into the inner periphery of the bearing member 7, and a flange portion 2 b as an engaging portion K that is disposed below the bearing member 7 and engages the bearing member 7 in the axial direction. Have. Both the shaft portion 2a and the flange portion 2b are made of a metal material having high wear resistance, such as stainless steel. A small diameter portion 2a2 is formed at the lower end of the shaft portion 2a, and the shaft member 2 is formed by fitting and fixing this small diameter portion 2a2 to the inner periphery of the annular flange portion 2b. The method of fixing the shaft portion 2a and the flange portion 2b is arbitrary as long as a predetermined fixing strength can be secured between them, and press-fitting, adhesion, welding (particularly laser welding) and the like can be employed. As the shaft member 2, as described above, the shaft portion 2 a and the flange portion 2 b that are individually manufactured may be integrated by an appropriate means, or those that are integrally formed by forging or the like may be used.

軸受部材7は、軸方向両端が開口した円筒状をなし、円筒状の本体部7aと、本体部7aの上端内径側に配置された円筒状のシール部7bとを一体に有する。本体部7aは、その内周面7a1が径一定の円筒面状に形成される一方、その外周面が、軸方向で大径外周面7a2と小径外周面7a3とに区画された段付き形状とされる。両外周面7a2,7a3は軸線と直交する方向に延びる段差面7a4で繋がっている。   The bearing member 7 has a cylindrical shape with both axial ends open, and integrally includes a cylindrical main body portion 7a and a cylindrical seal portion 7b disposed on the upper end inner diameter side of the main body portion 7a. The main body portion 7a has a stepped shape in which the inner peripheral surface 7a1 is formed in a cylindrical surface shape having a constant diameter, and the outer peripheral surface thereof is partitioned into a large-diameter outer peripheral surface 7a2 and a small-diameter outer peripheral surface 7a3 in the axial direction. Is done. Both outer peripheral surfaces 7a2, 7a3 are connected by a step surface 7a4 extending in a direction orthogonal to the axis.

シール部7bの内周面7b1は、対向する軸部2aの外周面2a1との間にシール空間Sを形成する。シール部7bの内周面7b1は下方に向かって漸次縮径したテーパ面状に形成される一方、軸部2aの外周面2a1は径一定の円筒面状に形成されている。従い、シール空間Sは下方に向けて径方向寸法を漸次縮小させたテーパ形状を呈する。   A seal space S is formed between the inner peripheral surface 7b1 of the seal portion 7b and the outer peripheral surface 2a1 of the opposed shaft portion 2a. The inner peripheral surface 7b1 of the seal portion 7b is formed in a tapered surface shape whose diameter is gradually reduced downward, while the outer peripheral surface 2a1 of the shaft portion 2a is formed in a cylindrical surface shape having a constant diameter. Accordingly, the seal space S has a tapered shape in which the radial dimension is gradually reduced downward.

軸受部材7の本体部7aの内周面7a1には、図3に示すように、対向する軸部2aの外周面2a1との間にラジアル軸受隙間を形成するラジアル軸受面A1,A2が軸方向の二箇所に離隔して設けられ、該ラジアル軸受面A1,A2には、それぞれ、複数の動圧溝Aa1,Aa2をヘリングボーン形状に配列してなるラジアル動圧発生部が形成される。これらラジアル軸受面A1,A2が、本発明でいうラジアル軸受隙間の外径寸法を規定する面となる。上側の動圧溝Aa1は、軸方向中心mよりも上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなった軸方向非対称に形成される一方、下側の動圧溝Aa2は軸方向対称に形成され、その上下領域の軸方向寸法は上記軸方向寸法X2と等しくなっている。かかる構成により、軸部材2の回転時には、軸受部材7の内周面7a1と軸部2aの外周面2a1との間に充満された潤滑油が下方に押し込まれる(ポンピング能力のアンバランス)。   As shown in FIG. 3, radial bearing surfaces A <b> 1 and A <b> 2 that form radial bearing gaps between the inner circumferential surface 7 a <b> 1 of the main body portion 7 a of the bearing member 7 and the outer circumferential surface 2 a <b> 1 of the opposed shaft portion 2 a are axially provided. The radial bearing surfaces A1 and A2 are respectively provided with radial dynamic pressure generating portions formed by arranging a plurality of dynamic pressure grooves Aa1 and Aa2 in a herringbone shape. These radial bearing surfaces A1 and A2 are surfaces that define the outer diameter dimension of the radial bearing gap in the present invention. The upper dynamic pressure groove Aa1 is formed asymmetrically in the axial direction in which the axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region with respect to the axial center m. Aa2 is formed symmetrically in the axial direction, and the axial dimension of the upper and lower regions thereof is equal to the axial dimension X2. With this configuration, when the shaft member 2 rotates, the lubricating oil filled between the inner peripheral surface 7a1 of the bearing member 7 and the outer peripheral surface 2a1 of the shaft portion 2a is pushed downward (unbalanced pumping ability).

本体部7aの下側端面7a5には、対向するフランジ部2bの上側端面2b1との間に第1スラスト軸受隙間を形成するスラスト軸受面Bが設けられ、該スラスト軸受面Bにはスラスト動圧発生部が形成される。スラスト動圧発生部は、図4に示すようなヘリングボーン形状で、V字状に屈曲した複数の動圧溝Baと、これを区画する図中クロスハッチングで示す丘部とを円周方向で交互に配して構成される。   The lower end surface 7a5 of the main body 7a is provided with a thrust bearing surface B that forms a first thrust bearing gap between the lower end surface 7a5 and the upper end surface 2b1 of the opposing flange portion 2b, and the thrust bearing surface B has a thrust dynamic pressure. A generating part is formed. The thrust dynamic pressure generating portion has a herringbone shape as shown in FIG. 4 and includes a plurality of dynamic pressure grooves Ba bent in a V shape and a hill portion shown by cross hatching in the drawing to divide the groove in the circumferential direction. Alternatingly arranged.

以上の構成からなる軸受部材7は樹脂材料で射出成形され、ラジアル軸受面A1,A2に設けられるラジアル動圧発生部、およびスラスト軸受面Bに設けられるスラスト動圧発生部も射出成形と同時に型成形される。軸受部材7の成形に用いる樹脂材料は射出成形可能であれば特段の限定はなく、例えばポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)等の結晶性樹脂、あるいはポリフェニルサルフォン(PPSU)等の非晶性樹脂をベース樹脂としたものを用いることができる。この樹脂材料には、必要に応じて各種充填材、例えば、ガラス繊維等の強化材やカーボンブラック、黒鉛、カーボンナノマテリアル等の導電性充填材を配合することも可能であるが、後述するように、本実施形態においては蓋部材10で導電性が確保されるので、導電性充填材は基本的に不要である。但し、軸受部材7の成形性等に悪影響を及ぼさず、コスト面でも支障がなければ、導電性充填材を配合しても良い。   The bearing member 7 having the above configuration is injection-molded with a resin material, and the radial dynamic pressure generating portion provided on the radial bearing surfaces A1 and A2 and the thrust dynamic pressure generating portion provided on the thrust bearing surface B are simultaneously molded with the mold. Molded. The resin material used for molding the bearing member 7 is not particularly limited as long as it can be injection-molded. For example, a crystalline resin such as polyphenylene sulfide (PPS) or liquid crystal polymer (LCP), or polyphenylsulfone (PPSU) is used. What used amorphous resin as base resin can be used. This resin material can be blended with various fillers as necessary, for example, reinforcing materials such as glass fibers, and conductive fillers such as carbon black, graphite, and carbon nanomaterials. In addition, in the present embodiment, since the conductivity is ensured by the lid member 10, a conductive filler is basically unnecessary. However, if there is no adverse effect on the formability of the bearing member 7 and there is no problem in terms of cost, a conductive filler may be blended.

蓋部材10は、導電性を有する金属材料で形成され、例えば金属板をプレス加工することにより、円盤状のプレート部10aと、プレート部10aの外径端から上方へ延びた円筒状の筒部10bとを一体に有するコップ状に形成される。詳細は後述するが、この蓋部材10は、軸受部材7(本体部7a)の小径外周面7a3に隙間接着で固定され、これにより軸受部材7の下側開口を閉塞する。筒部10bの内周面10b2は、軸受部材7の内周面7a1に設けられたラジアル軸受面A2(下側のラジアル動圧発生部)の一部または全部と軸方向でオーバーラップしている。   The lid member 10 is formed of a conductive metal material, and for example, by pressing a metal plate, a disk-shaped plate portion 10a and a cylindrical tube portion extending upward from the outer diameter end of the plate portion 10a. 10b is integrally formed. Although the details will be described later, the lid member 10 is fixed to the small-diameter outer peripheral surface 7a3 of the bearing member 7 (main body portion 7a) with a gap, thereby closing the lower opening of the bearing member 7. The inner peripheral surface 10b2 of the cylindrical portion 10b overlaps with a part or all of the radial bearing surface A2 (lower radial dynamic pressure generating portion) provided on the inner peripheral surface 7a1 of the bearing member 7 in the axial direction. .

プレート部10aの上側端面10a1(蓋部材10の内底面)には、対向するフランジ部2bの下側端面2b2との間に第2スラスト軸受隙間を形成するスラスト軸受面Cが設けられ、このスラスト軸受面Cにはスラスト動圧発生部が形成される。スラスト動圧発生部は、図5に示すようなヘリングボーン形状で、V字状に屈曲した複数の動圧溝Caと、これを区画する図中クロスハッチングで示す丘部とを円周方向で交互に配して構成される。   A thrust bearing surface C is provided on the upper end surface 10a1 of the plate portion 10a (inner bottom surface of the lid member 10) to form a second thrust bearing gap with the lower end surface 2b2 of the opposing flange portion 2b. A thrust dynamic pressure generating portion is formed on the bearing surface C. The thrust dynamic pressure generating portion has a herringbone shape as shown in FIG. 5, and a plurality of dynamic pressure grooves Ca bent in a V shape and hill portions shown by cross hatching in the drawing to divide the groove in the circumferential direction. Alternatingly arranged.

上記のように、蓋部材10のプレート部10aは、第2スラスト軸受部T2を形成するものであるから、所期の軸受性能、ひいてはモータ性能を確保する上では軸受部材7の大径外周面7a2に対する蓋部材10のプレート部10aの下側端面(蓋部材10の外底面)10a2の直角度が重要となる。そのため、当該直角度は10μm以下に設定される。   As described above, since the plate portion 10a of the lid member 10 forms the second thrust bearing portion T2, the large-diameter outer peripheral surface of the bearing member 7 is required in order to ensure the desired bearing performance and thus the motor performance. The perpendicularity of the lower end surface (the outer bottom surface of the lid member 10) 10a2 of the plate portion 10a of the lid member 10 with respect to 7a2 is important. Therefore, the perpendicularity is set to 10 μm or less.

なお、上記直角度は、JIS B 0621に規定の直角度を意図したものであるが、本実施形態では、以下の手順で測定することによって得られた直角度が10μm以下となるようにしている。まず、流体軸受装置1を倒立状態で回転させながら、軸受部材7の外径側に配置した測定子を用いて軸受部材7の大径外周面7a2の円筒度(外径寸法)を軸方向3箇所で測定し、この測定データに基づいて仮想中心軸を設定する。次いで、流体軸受装置1を回転させながら蓋部材10の径方向所定位置における振れ量(厳密には、上記仮想中心軸に直交する仮想平面に対する振れ量)を、蓋部材10の底側に配置した測定子で測定する。そして、上記の各測定データを基にして解析を行い、直角度を算出する。   In addition, although the said perpendicularity intends the squareness prescribed | regulated to JISB0621, in this embodiment, the perpendicularity obtained by measuring with the following procedures is made to become 10 micrometers or less. . First, while rotating the hydrodynamic bearing device 1 in an inverted state, the cylindricity (outer diameter dimension) of the large-diameter outer peripheral surface 7a2 of the bearing member 7 is set in the axial direction 3 by using a probe arranged on the outer diameter side of the bearing member 7. Measurement is performed at a location, and a virtual central axis is set based on the measurement data. Next, the amount of deflection at the predetermined position in the radial direction of the lid member 10 (strictly speaking, the amount of deflection with respect to a virtual plane orthogonal to the virtual central axis) is arranged on the bottom side of the lid member 10 while rotating the hydrodynamic bearing device 1. Measure with a probe. Then, an analysis is performed based on each measurement data described above, and a squareness is calculated.

筒部10bの上側端面10b1と軸受部材7の段差面7a4とは所定幅の第1軸方向隙間δ1を介して軸方向に対向している。この第1軸方向隙間δ1は、その隙間幅がフランジ部2bの上側端面2b1と軸受部材7の下側端面7a5、およびフランジ部2bの下側端面2b2と蓋部材10のプレート部10aの上側端面10a1とが軸方向に相互に当接するまで蓋部材10と軸受部材7の軸方向の接近移動を許容する値に設定され、後述するスラスト軸受隙間の幅設定により形成される。第1軸方向隙間δ1には接着剤が充填され、これによりこの第1軸方向隙間δ1は完全に封止されている。   The upper end surface 10b1 of the cylindrical portion 10b and the step surface 7a4 of the bearing member 7 face each other in the axial direction with a first axial gap δ1 having a predetermined width. The first axial gap δ1 has a gap width of the upper end surface 2b1 of the flange portion 2b and the lower end surface 7a5 of the bearing member 7, and the lower end surface 2b2 of the flange portion 2b and the upper end surface of the plate portion 10a of the lid member 10. It is set to a value that allows the axial movement of the lid member 10 and the bearing member 7 until they abut against each other in the axial direction, and is formed by setting the width of a thrust bearing gap described later. The first axial gap δ1 is filled with an adhesive, whereby the first axial gap δ1 is completely sealed.

以上の構成部材からなる流体軸受装置1の停止状態において、軸部材2のフランジ部2bは、その下側端面2b2が蓋部材10のプレート部10aの上側端面10a1に当接しており、このとき、フランジ部2bの上側端面2b1と軸受部材7の下側端面7a5との間には、図2中の拡大図に示すように、所定幅の第2軸方向隙間δ2が設けられる(この第2軸方向隙間δ2が、上述したアキシャル隙間に相当する)。この第2軸方向隙間δ2の隙間幅は、軸部材2の回転時に、フランジ部2bの上側端面2b1と軸受部材7の下側端面7a5との間、およびフランジ部2bの下側端面2b2と蓋部材10のプレート部10aの上側端面10a1との間にそれぞれ形成される第1および第2スラスト軸受隙間の隙間幅の合計量に等しく、本実施形態では20μmに設定される。   In the stopped state of the hydrodynamic bearing device 1 composed of the above constituent members, the lower end surface 2b2 of the flange portion 2b of the shaft member 2 is in contact with the upper end surface 10a1 of the plate portion 10a of the lid member 10, A second axial gap δ2 having a predetermined width is provided between the upper end surface 2b1 of the flange portion 2b and the lower end surface 7a5 of the bearing member 7 as shown in an enlarged view in FIG. 2 (this second shaft). The direction gap δ2 corresponds to the above-described axial gap). When the shaft member 2 rotates, the gap width of the second axial gap δ2 is between the upper end surface 2b1 of the flange portion 2b and the lower end surface 7a5 of the bearing member 7, and the lower end surface 2b2 of the flange portion 2b and the lid. It is equal to the total amount of gap widths of the first and second thrust bearing gaps formed between the upper end surface 10a1 of the plate portion 10a of the member 10 and is set to 20 μm in this embodiment.

以上の構成からなる流体軸受装置1において、軸部材2が回転すると、軸受部材7の内周面7a1の上下2箇所に離隔して設けられたラジアル軸受面A1,A2と、これに対向する軸部2aの外周面2a1との間にそれぞれラジアル軸受隙間が形成される。そして軸部材2の回転に伴い、両ラジアル軸受隙間の油膜圧力が動圧溝Aa1,Aa2の動圧作用によって高められる結果、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。これと同時に、軸受部材7の下側端面7a5に設けられたスラスト軸受面Bとフランジ部2bの上側端面2b1との間、および、フランジ部2bの下側端面2b2とプレート部10aの上側端面10a1に設けたスラスト軸受面Cとの間に、それぞれ第1および第2スラスト軸受隙間が形成される。そして、軸部材2の回転に伴い、両スラスト軸受隙間の油膜圧力が、動圧溝Ba,Caの動圧作用によって高められる結果、軸部材2をスラスト両方向に非接触支持する第1スラスト軸受部T1および第2スラスト軸受部T2が形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the radial bearing surfaces A1 and A2 provided at two positions above and below the inner peripheral surface 7a1 of the bearing member 7 and the shafts opposed thereto. Radial bearing gaps are formed between the outer peripheral surface 2a1 of the portion 2a. As the shaft member 2 rotates, the oil film pressure in the radial bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves Aa1 and Aa2. As a result, the radial bearing portions R1 and R2 that support the shaft member 2 in the radial direction in a non-contact manner. Separately formed at two positions in the axial direction. At the same time, between the thrust bearing surface B provided on the lower end surface 7a5 of the bearing member 7 and the upper end surface 2b1 of the flange portion 2b, and between the lower end surface 2b2 of the flange portion 2b and the upper end surface 10a1 of the plate portion 10a. The first and second thrust bearing gaps are respectively formed between the thrust bearing surface C and the thrust bearing surface C. As the shaft member 2 rotates, the oil film pressure in the thrust bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves Ba and Ca. As a result, the first thrust bearing portion that supports the shaft member 2 in a non-contact manner in both thrust directions. T1 and second thrust bearing portion T2 are formed.

なお、第1スラスト軸受部T1と第2スラスト軸受部T2の間の支持能力をバランスさせ、スラスト方向の回転精度の安定化を図るべく、第1スラスト軸受隙間の隙間幅と、第2スラスト軸受隙間の隙間幅とは略均一幅(本実施形態で言えば、両者共に10μm)に設定される。   In order to balance the support capability between the first thrust bearing portion T1 and the second thrust bearing portion T2 and stabilize the rotational accuracy in the thrust direction, the clearance width of the first thrust bearing gap and the second thrust bearing The gap width of the gap is set to a substantially uniform width (in this embodiment, both are 10 μm).

また、シール空間Sが、下方(軸受部材7の内部側)に向かって径方向寸法を漸次縮小したテーパ形状を呈しているため、シール空間S内の潤滑油は毛細管力による引き込み作用によってシール空間Sが狭くなる方向、すなわち軸受部材7の内部側に向けて引き込まれる。また、シール空間Sは、軸受部材7の内部空間を満たす潤滑油の温度変化に伴う容積変化量の吸収機能(バッファ機能)を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール空間S内に保持する。これらの構成から、軸受部材7内部からの潤滑油漏れが効果的に防止される。   Further, since the seal space S has a tapered shape with the radial dimension gradually reduced downward (inside the bearing member 7), the lubricating oil in the seal space S is pulled into the seal space by a capillary force action. S is pulled toward the narrowing direction, that is, toward the inside of the bearing member 7. Further, the seal space S has an absorption function (buffer function) of a volume change amount associated with a temperature change of the lubricating oil that fills the internal space of the bearing member 7, and the oil level of the lubricating oil is within a range of the assumed temperature change. Is always held in the seal space S. From these configurations, lubricating oil leakage from the bearing member 7 is effectively prevented.

軸部材2の回転時において、軸受部材7の内周面7a1と軸部2aの外周面2a1との間に形成される隙間に充満された潤滑油は、ラジアル動圧発生部のポンピング能力のアンパランスによって下方に押し込まれる。この場合、軸受内部の閉塞側の空間、特に第2スラスト軸受隙間の内径側の空間(底面空間P、図6を参照)で圧力が高くなり、軸部材2に作用する上向きの浮上力が過剰となる結果、両スラスト軸受部T1,T2間でのスラスト支持力をバランスさせることが難しくなる。この点に鑑み、本実施形態では、図6にも拡大して示すように、フランジ部2bの両端面2b1,2b2に開口した連通孔9を設けている。これにより、連通孔9を介して両スラスト軸受隙間間で潤滑油が行き来可能となるので、両スラスト軸受隙間間での圧力バランスの崩れを早期に解消し、両スラスト軸受部T1,T2間でのスラスト支持力をバランスさせることができる。   When the shaft member 2 rotates, the lubricating oil filled in the gap formed between the inner peripheral surface 7a1 of the bearing member 7 and the outer peripheral surface 2a1 of the shaft portion 2a is unbalanced in the pumping ability of the radial dynamic pressure generating portion. Is pushed down by. In this case, the pressure increases in the space on the closed side inside the bearing, particularly the space on the inner diameter side of the second thrust bearing gap (bottom space P, see FIG. 6), and the upward levitation force acting on the shaft member 2 is excessive. As a result, it becomes difficult to balance the thrust support force between the thrust bearing portions T1, T2. In view of this point, in the present embodiment, as shown in FIG. 6 in an enlarged manner, the communication holes 9 that are opened in both end faces 2b1 and 2b2 of the flange portion 2b are provided. As a result, the lubricating oil can go back and forth between the thrust bearing gaps via the communication hole 9, so that the collapse of the pressure balance between the thrust bearing gaps can be eliminated quickly, and the thrust bearing portions T1 and T2 can be The thrust support force can be balanced.

本実施形態の連通孔9は、径方向部9aと軸方向部9bとで構成され、両スラスト軸受面B,C(スラスト動圧発生部)の形成領域を避けてその内径側に開口させるため、屈曲した形状を呈する。より詳細には、径方向部9aの外径端がフランジ部2bの上側端面2b1と軸受部材7の下端側内周チャンファ(面取り)と軸部2aの下端に設けられたヌスミ部2a3とで形成される空間に開口し、径方向部9aの内径端に繋がった軸方向部9bが軸部2aの小径部2a2の外周面に沿って延び、第2スラスト軸受部T2の内径側に開口している。かかる構成は、円環状のフランジ部2bの内周面に軸方向溝を形成すると共に、フランジ部2bの上側端面2b1に前記軸方向溝に通じる半径方向溝を形成し、その後、フランジ部2bの内周に軸部2aの小径部2a2を嵌合することによって形成することができる。なお、連通孔9は、円周方向の一箇所に設ける他、円周方向の複数箇所に設けることもできる。   The communication hole 9 of this embodiment is composed of a radial portion 9a and an axial portion 9b, and is opened to the inner diameter side of the thrust bearing surfaces B and C (thrust dynamic pressure generating portions) while avoiding the formation region. It exhibits a bent shape. More specifically, the outer diameter end of the radial direction portion 9a is formed by the upper end surface 2b1 of the flange portion 2b, the lower end side inner peripheral chamfer (chamfering) of the bearing member 7, and the crushed portion 2a3 provided at the lower end of the shaft portion 2a. The axial direction portion 9b connected to the inner diameter end of the radial direction portion 9a extends along the outer peripheral surface of the small diameter portion 2a2 of the shaft portion 2a, and opens to the inner diameter side of the second thrust bearing portion T2. Yes. In such a configuration, an axial groove is formed on the inner peripheral surface of the annular flange portion 2b, and a radial groove communicating with the axial groove is formed on the upper end surface 2b1 of the flange portion 2b. It can be formed by fitting the small diameter portion 2a2 of the shaft portion 2a to the inner periphery. In addition, the communication hole 9 can be provided in one place in the circumferential direction, or can be provided in a plurality of places in the circumferential direction.

また、上記のように、本実施形態に係る流体軸受装置1では、底面空間Pの圧力が高くなる傾向にあるので、第2スラスト軸受部T2を形成する動圧溝Caを、従来多用されてきたポンプインタイプのスパイラル形状に配列すると、第2スラスト軸受隙間内に充満された潤滑油が内径側に押し込まれるため、底面空間Pの圧力増大を助長することとなる。これを回避するため、第2スラスト軸受部T2を形成する動圧溝Caは、図5に示すヘリングボーン形状に形成するのが望ましい。一方、第1スラスト軸受部T1では、この種の問題が生じないので、動圧溝Baを、図4に示すヘリングボーン形状ではなく、ポンプインタイプのスパイラル形状に形成しても良い。   Further, as described above, in the hydrodynamic bearing device 1 according to the present embodiment, since the pressure in the bottom space P tends to increase, the dynamic pressure groove Ca that forms the second thrust bearing portion T2 has been frequently used conventionally. If the pump-in type is arranged in a spiral shape, the lubricating oil filled in the second thrust bearing gap is pushed into the inner diameter side, which helps increase the pressure in the bottom space P. In order to avoid this, it is desirable to form the dynamic pressure groove Ca forming the second thrust bearing portion T2 in the herringbone shape shown in FIG. On the other hand, in the first thrust bearing portion T1, since this type of problem does not occur, the dynamic pressure groove Ba may be formed in a pump-in type spiral shape instead of the herringbone shape shown in FIG.

以上の構成からなる流体軸受装置1は、蓋部材10の筒部10bの外周面、および軸受部材7の大径外周面7a2を、アルミ合金等の金属材料で形成されたモータブラケット6(図1を参照)の内周面に例えば接着固定することでモータに組み込まれる。このとき、軸受部材7と蓋部材10の外径寸法を等しくしておけば、これらをモータブラケット6の内周面に確実に固定することができる。そして、蓋部材10とモータブラケット6の双方を金属製とした本実施形態では両者間に高い接着強度を確保することができる。従って、流体軸受装置1はモータブラケット6に対して高い接着強度でもって固定することができる。なお、蓋部材10とモータブラケット6との間で十分な接着強度を確保できるのであれば、軸受部材7をモータブラケット6に対して必ずしも接着固定する必要はない。   The hydrodynamic bearing device 1 having the above configuration includes a motor bracket 6 (FIG. 1) in which the outer peripheral surface of the cylindrical portion 10b of the lid member 10 and the large-diameter outer peripheral surface 7a2 of the bearing member 7 are formed of a metal material such as an aluminum alloy. For example, by adhering and fixing to the inner peripheral surface of the motor. At this time, if the outer diameters of the bearing member 7 and the lid member 10 are made equal, they can be reliably fixed to the inner peripheral surface of the motor bracket 6. And in this embodiment which made both the cover member 10 and the motor bracket 6 metal, high adhesive strength can be ensured between both. Therefore, the hydrodynamic bearing device 1 can be fixed to the motor bracket 6 with high adhesive strength. The bearing member 7 does not necessarily need to be bonded and fixed to the motor bracket 6 as long as sufficient adhesive strength can be secured between the lid member 10 and the motor bracket 6.

以上の構成からなる流体軸受装置1は、例えば以下のようにして組み立てられる。   The hydrodynamic bearing device 1 having the above configuration is assembled as follows, for example.

図7は、流体軸受装置1の組立工程を示すものである。同図に示す組立治具は、ベース20上に載置された第1治具21と、図示しない適当な駆動機構で縮拡径可能に構成された第2治具22と、同じく図示しない適当な駆動機構で昇降可能に設けられた第3治具23とで主要部が構成される。第1治具21は、その肉厚が、第2軸方向隙間δ2の隙間幅と同一寸法に設定されている。従い、第2軸方向隙間δ2の隙間幅が20μmとされる本実施形態では、第1治具21の肉厚は20μmとされる。なお、図7では、理解の容易化のために第1治具21の厚みを誇張して描いている。   FIG. 7 shows an assembly process of the hydrodynamic bearing device 1. The assembly jig shown in the figure includes a first jig 21 placed on the base 20, a second jig 22 configured to be able to be expanded and contracted by a suitable drive mechanism (not shown), and a suitable jig (not shown). The main part is composed of the third jig 23 that can be moved up and down by a simple driving mechanism. The thickness of the first jig 21 is set to the same dimension as the gap width of the second axial gap δ2. Therefore, in the present embodiment in which the gap width of the second axial gap δ2 is 20 μm, the thickness of the first jig 21 is 20 μm. In FIG. 7, the thickness of the first jig 21 is exaggerated for easy understanding.

以上の構成からなる組立治具において、まず、第1治具21上に蓋部材10を載置し、蓋部材10のプレート部10a上に軸部材2を載置する。次いで、軸受部材7の小径外周面7a3および筒部10bの内周面10b2の少なくとも一方に接着剤(本実施形態ではエポキシ系接着剤)を塗布し、筒部10bの内周面10b2に軸受部材7の小径外周面7a3を嵌合する。   In the assembly jig having the above configuration, first, the lid member 10 is placed on the first jig 21, and the shaft member 2 is placed on the plate portion 10 a of the lid member 10. Next, an adhesive (an epoxy adhesive in the present embodiment) is applied to at least one of the small-diameter outer peripheral surface 7a3 of the bearing member 7 and the inner peripheral surface 10b2 of the cylindrical portion 10b, and the bearing member is applied to the inner peripheral surface 10b2 of the cylindrical portion 10b. 7 small diameter outer peripheral surface 7a3 is fitted.

筒部10bの内周面10b2に軸受部材7の小径外周面7a3を嵌合した後、軸受部材7を押し進めて、フランジ部2bの上側端面2b1に軸受部材7の下側端面7a5を当接させ、二つのスラスト軸受隙間の隙間幅(第2軸方向隙間δ2の隙間幅)を0にする。この時、筒部10bの上側端面10b1と軸受部材7の段差面7a4とが当接しないように、すなわち、これら軸方向対向二面間に所定幅の第1軸方向隙間δ1が形成されるように、筒部10bの軸方向寸法を、軸受部材7の薄肉部(小径外周面7a3を有する部分)の軸方向寸法とフランジ部2bの厚みとを合算した値よりも所定量小さく設定しておく。   After fitting the small-diameter outer peripheral surface 7a3 of the bearing member 7 to the inner peripheral surface 10b2 of the cylindrical portion 10b, the bearing member 7 is pushed forward to bring the lower end surface 7a5 of the bearing member 7 into contact with the upper end surface 2b1 of the flange portion 2b. The gap width between the two thrust bearing gaps (the gap width of the second axial gap δ2) is set to zero. At this time, the upper end surface 10b1 of the cylindrical portion 10b and the stepped surface 7a4 of the bearing member 7 are not in contact with each other, that is, a first axial gap δ1 having a predetermined width is formed between these two axially opposed surfaces. In addition, the axial dimension of the cylindrical portion 10b is set to be a predetermined amount smaller than the sum of the axial dimension of the thin portion of the bearing member 7 (the portion having the small-diameter outer peripheral surface 7a3) and the thickness of the flange portion 2b. .

ここで、軸受部材7と蓋部材10とが隙間接着される本実施形態においては、軸受部材7の小径外周面7a3に対して筒部10bの内周面10b2が隙間嵌め状態とされ、従い、両者間には所定幅の半径方向隙間が形成される(この時の幅は、筒部10bの内周面10b2の半径寸法から小径外周面7a3の半径寸法を減じた値である)。   Here, in the present embodiment in which the bearing member 7 and the lid member 10 are bonded to each other with a gap, the inner peripheral surface 10b2 of the cylindrical portion 10b is in a gap-fitted state with respect to the small-diameter outer peripheral surface 7a3 of the bearing member 7, and accordingly, A gap in the radial direction having a predetermined width is formed between them (the width at this time is a value obtained by subtracting the radial dimension of the small-diameter outer peripheral surface 7a3 from the radial dimension of the inner peripheral surface 10b2 of the cylindrical portion 10b).

次いで、図8(a)に示すように、第2治具22を縮径させて軸受部材7の大径外周面7a2を拘束し、軸受部材7の軸方向移動を規制した状態で、ベース20と蓋部材10の間に介在する第1治具21を取り外す。第1治具21を取り外した後、第3治具23を下降させて軸部材2を下方に加圧すると、軸部材2の加圧力を受けて蓋部材10が下降し、蓋部材10の外底面10b2がベース20に当接する。これにより、図8(b)に示すように、フランジ部2bの上側端面2b1と軸受部材7の下側端面7a5との間に所定幅(本実施形態では20μm)の第2軸方向隙間δ2が形成される。このようにすれば、軸受部材7に対する蓋部材10の軸方向相対位置は常に一定に管理される。そして、軸受部材7に対して蓋部材10を隙間嵌めした本実施形態においても、蓋部材10を軸受部材7に仮固定することなく第2軸方向隙間δ2の幅設定を容易かつ精度良く行うことができる。   Next, as shown in FIG. 8A, the diameter of the second jig 22 is reduced to constrain the large-diameter outer peripheral surface 7a2 of the bearing member 7, and the axial movement of the bearing member 7 is restricted. The first jig 21 interposed between the lid member 10 and the lid member 10 is removed. After removing the first jig 21 and lowering the third jig 23 to pressurize the shaft member 2 downward, the lid member 10 is lowered by the pressure applied by the shaft member 2 and the outside of the lid member 10 is removed. The bottom surface 10b2 contacts the base 20. Accordingly, as shown in FIG. 8B, a second axial gap δ2 having a predetermined width (20 μm in this embodiment) is formed between the upper end surface 2b1 of the flange portion 2b and the lower end surface 7a5 of the bearing member 7. It is formed. In this way, the axial relative position of the lid member 10 with respect to the bearing member 7 is always managed to be constant. Even in this embodiment in which the lid member 10 is fitted into the bearing member 7 with a gap, the width of the second axial gap δ2 can be easily and accurately set without temporarily fixing the lid member 10 to the bearing member 7. Can do.

なお、軸受部材7の外周に蓋部材10が隙間嵌めされている本実施形態においては、第1治具21を取り外すと、蓋部材10および軸部材2を、これらの自重でもって自然に下降させることも可能である。そのため、必ずしも第3治具23で軸部材2を下方に加圧する必要はない。但し、軸受部材7の内周面7a1に形成した下側のラジアル軸受面A2(ラジアル動圧発生部)の面精度に悪影響を及ぼさない程度であれば、筒部10bの内周面10b2を軸受部材7の小径外周面7a3に軽圧入することも可能である。このような場合には、蓋部材10を、その自重でもって自然に下降させることが難しいので、第3治具23を用いて軸部材2、さらには蓋部材10を下降させるのが望ましい。   In this embodiment in which the lid member 10 is fitted to the outer periphery of the bearing member 7, when the first jig 21 is removed, the lid member 10 and the shaft member 2 are naturally lowered by their own weights. It is also possible. Therefore, it is not always necessary to press the shaft member 2 downward with the third jig 23. However, the inner peripheral surface 10b2 of the cylindrical portion 10b is used as a bearing as long as the surface accuracy of the lower radial bearing surface A2 (radial dynamic pressure generating portion) formed on the inner peripheral surface 7a1 of the bearing member 7 is not adversely affected. It is also possible to lightly press into the small-diameter outer peripheral surface 7a3 of the member 7. In such a case, it is difficult to naturally lower the lid member 10 with its own weight, so it is desirable to lower the shaft member 2 and further the lid member 10 using the third jig 23.

以上のようにして第2軸方向隙間δ2の幅設定を行うことにより、蓋部材10の筒部10bの端面10b1と軸受部材7の段差面7a4との間に第1軸方向隙間δ1が形成される(図2を参照)。この状態を保持したまま第1軸方向隙間δ1にエポキシ系接着剤を供給し、その後ベーキングを行うと、第2軸方向隙間δ2(第1および第2スラスト軸受隙間)の幅設定作業が完了するのと同時に、蓋部材10と軸受部材7が完全に接着固定される。そして、軸受部材7の内部空間に、流体としての潤滑油を充満することにより、図2に示す流体軸受装置1が完成する。このとき、第1軸方向隙間δ1が接着剤によって封止されていることから、筒部10bの内周面10b2と軸受部材7の小径外周面7a3との嵌合部からの油漏れは確実に防止される。   By setting the width of the second axial gap δ2 as described above, the first axial gap δ1 is formed between the end surface 10b1 of the cylindrical portion 10b of the lid member 10 and the step surface 7a4 of the bearing member 7. (See FIG. 2). When the epoxy adhesive is supplied to the first axial gap δ1 while this state is maintained, and then baking is performed, the width setting operation of the second axial gap δ2 (first and second thrust bearing gaps) is completed. At the same time, the lid member 10 and the bearing member 7 are completely bonded and fixed. Then, the fluid bearing device 1 shown in FIG. 2 is completed by filling the internal space of the bearing member 7 with lubricating oil as a fluid. At this time, since the first axial gap δ1 is sealed with the adhesive, oil leakage from the fitting portion between the inner peripheral surface 10b2 of the cylindrical portion 10b and the small-diameter outer peripheral surface 7a3 of the bearing member 7 is ensured. Is prevented.

以上では、エポキシ系接着剤を用いて蓋部材10と軸受部材7とを接着固定する場合について説明を行ったが、両者間に所定の固定強度(接着強度)を確保できるのであればエポキシ系接着剤以外の接着剤、例えば嫌気性接着剤や紫外線硬化型接着剤等を使用することも可能である。   In the above description, the case where the lid member 10 and the bearing member 7 are bonded and fixed using an epoxy adhesive has been described. However, if a predetermined fixing strength (adhesive strength) can be secured between the two, the epoxy adhesive is used. It is also possible to use an adhesive other than the adhesive, such as an anaerobic adhesive or an ultraviolet curable adhesive.

また、以上とは異なる手順で軸受部材7と蓋部材10を接着固定することも可能である。具体的な手順は以下のとおりである。まず、蓋部材10の筒部10bを軸受部材7の外周に嵌合して第2軸方向隙間δ2の幅設定を行った後、第1軸方向隙間δ1から接着剤を供給し、軸受部材7の小径外周面7a3と筒部10bの内周面10b2との間の径方向隙間の毛細管力を利用してこの径方向隙間に接着剤を引き込む。その後、径方向隙間、さらには第1軸方向隙間δ1に介在する接着剤を硬化させることで両者を接着固定する。   Further, the bearing member 7 and the lid member 10 can be bonded and fixed by a procedure different from the above. The specific procedure is as follows. First, after fitting the cylindrical portion 10b of the lid member 10 to the outer periphery of the bearing member 7 to set the width of the second axial gap δ2, an adhesive is supplied from the first axial gap δ1, and the bearing member 7 is set. The adhesive is drawn into the radial gap by utilizing the capillary force of the radial gap between the small-diameter outer peripheral surface 7a3 and the inner peripheral surface 10b2 of the cylindrical portion 10b. Thereafter, the adhesive interposed between the radial gap and further the first axial gap δ1 is cured to fix them together.

以上に示すように、軸受部材7と蓋部材10の筒部10bとの間に所定幅(具体的には、軸受部材7、係合部Kとしてのフランジ部2b、および蓋部材10が軸方向に相互に当接するまで軸受部材7と蓋部材10の軸方向の接近移動を許容する値)の第1軸方向隙間δ1を介在させれば、第2軸方向隙間δ2の隙間幅を決定付ける各部材の軸方向寸法のばらつきを第1軸方向隙間δ1で吸収することができる。そのため、第1軸方向隙間δ1の隙間幅を十分に確保しておきさえすれば、軸受部材7に対する蓋部材10の軸方向相対位置を一定とすることができるから、各部材の製作精度に関わらず、軸部材2のフランジ部2bの上側端面2b1と軸受部材7の下側端面7a5との間に常時所定幅の第2軸方向隙間δ2を設けることができる。スラスト軸受部が動圧軸受で構成される本実施形態においては、第2軸方向隙間δ2の隙間幅は、第1および第2スラスト軸受隙間の隙間幅の合計量である。従って、両スラスト軸受隙間の隙間幅を確実に所定値に管理することができるため、スラスト方向の回転精度の更なる向上を図ることができる。   As described above, a predetermined width between the bearing member 7 and the cylindrical portion 10b of the lid member 10 (specifically, the bearing member 7, the flange portion 2b as the engaging portion K, and the lid member 10 are in the axial direction. Each of which determines the gap width of the second axial gap δ2 by interposing the first axial gap δ1 of a value that allows the axial movement of the bearing member 7 and the lid member 10 until they contact each other. Variations in the axial dimension of the member can be absorbed by the first axial gap δ1. Therefore, the axial relative position of the lid member 10 with respect to the bearing member 7 can be made constant as long as the gap width of the first axial gap δ1 is sufficiently secured. Instead, the second axial gap δ2 having a predetermined width can be always provided between the upper end surface 2b1 of the flange portion 2b of the shaft member 2 and the lower end surface 7a5 of the bearing member 7. In the present embodiment in which the thrust bearing portion is constituted by a dynamic pressure bearing, the gap width of the second axial gap δ2 is the total amount of the gap widths of the first and second thrust bearing gaps. Therefore, since the gap width between the thrust bearing gaps can be reliably managed to a predetermined value, the rotational accuracy in the thrust direction can be further improved.

十分なスラスト方向の支持精度を確保すべく、この種の流体軸受装置における軸受部材7に対する蓋部材10の軸方向相対位置の交差、すなわち第2軸方向隙間δ2の隙間幅のばらつきは±5μm以内(−5μm以上、+5μm以下)に設定されるが、上記本発明の構成であれば、かかる要求精度も容易に満足することができる。   In order to ensure sufficient support accuracy in the thrust direction, the crossing of the axial relative position of the lid member 10 with respect to the bearing member 7 in this type of hydrodynamic bearing device, that is, the variation in the gap width of the second axial gap δ2 is within ± 5 μm. Although it is set to (-5 μm or more and +5 μm or less), the required accuracy can be easily satisfied with the configuration of the present invention.

また、蓋部材10の筒部10bを軸受部材7の外周面(小径外周面7a3)に固定しているので、従来のように蓋部材の筒部を軸受部材(ハウジング)の内周面に固定する場合に比べ、内周面と外周面の径差分だけ両部材間の固定面積を増すことができ、しかも軸受部材7に対する固定面積を拡大するには、筒部10bの軸方向寸法を長大化すれば足り、軸受部材7の形状が特段複雑化することもない。また、係合部Kとしてのフランジ部2bの外径側には蓋部材10の筒部10bのみが配置されるため、フランジ部2bを大径化することができる。そのため、スラスト軸受部T1,T2の支持面積を拡大して、スラスト方向の支持能力を高めることができる。   Further, since the cylindrical portion 10b of the lid member 10 is fixed to the outer peripheral surface (small-diameter outer peripheral surface 7a3) of the bearing member 7, the cylindrical portion of the lid member is fixed to the inner peripheral surface of the bearing member (housing) as in the prior art. Compared to the case, the fixed area between the two members can be increased by the difference in diameter between the inner peripheral surface and the outer peripheral surface, and the axial dimension of the cylindrical portion 10b is increased in order to increase the fixed area for the bearing member 7. This is sufficient, and the shape of the bearing member 7 is not particularly complicated. Moreover, since only the cylinder part 10b of the cover member 10 is arrange | positioned at the outer diameter side of the flange part 2b as the engaging part K, the flange part 2b can be enlarged in diameter. Therefore, the support area in the thrust direction can be increased by increasing the support area of the thrust bearing portions T1 and T2.

また、蓋部材10は金属材料で形成されているので、ディスクDが回転することによって帯電した静電気を、軸部材2→蓋部材10→モータブラケット6という経路を介して確実に接地側に放電することができる。但し、蓋部材10とモータブラケット6とを接着固定した本実施形態においては、接着剤(通常は絶縁体)によって導電経路が遮断される事態を防止するため、必要に応じて蓋部材10の下端外径端部とブラケット6の下端内径端部とにまたがって適当な導電材を塗布し、導電性被膜を形成するのが望ましい。   Further, since the lid member 10 is made of a metal material, the static electricity charged by the rotation of the disk D is surely discharged to the ground side via the path of the shaft member 2 → the lid member 10 → the motor bracket 6. be able to. However, in the present embodiment in which the lid member 10 and the motor bracket 6 are bonded and fixed, in order to prevent a situation where the conductive path is blocked by an adhesive (usually an insulator), the lower end of the lid member 10 is necessary. It is desirable to apply a suitable conductive material across the outer diameter end and the lower end inner diameter end of the bracket 6 to form a conductive coating.

このように蓋部材10で導電経路を構成すれば、軸受部材7の導電性を考慮せずとも足りるため、軸受部材7の成形材料を検討する際に材料選択の余地が広がり、流体軸受装置1の設計自由度が増す。樹脂製とした軸受部材7に導電性を持たせる場合には樹脂材料中に高価な導電性充填材を配合するのが通例であるが、本発明では、この種の導電性充填材の配合を不要とし、あるいは配合量を少なくすることができるので、材料コストの高騰を抑制することができる。   If the conductive path is constituted by the lid member 10 in this way, it is not necessary to consider the conductivity of the bearing member 7, so that the room for material selection is widened when examining the molding material of the bearing member 7, and the hydrodynamic bearing device 1. Design freedom increases. In order to impart conductivity to the bearing member 7 made of resin, it is customary to blend an expensive conductive filler in the resin material, but in the present invention, this kind of conductive filler is blended. Since it can be made unnecessary or the blending amount can be reduced, an increase in material cost can be suppressed.

なお、以上に示す構成の流体軸受装置1は、以下のようにして組み立てることも可能である。但し、以下では、上述した手順と異なる点を中心に説明を行い、重複する点については適宜説明を省略する。   The hydrodynamic bearing device 1 having the above-described configuration can also be assembled as follows. However, below, it demonstrates centering on a different point from the procedure mentioned above, and abbreviate | omits description suitably about the overlapping point.

図9(a)は、図7に示す組立治具の変形例であり、主に、蓋部材10の外底面10a2を支持する第1治具21が、図示しない適当な駆動機構で昇降可能に設けられた点、および第1治具21の下降量を規制する規制部材24が設けられた点において、図7に示す組立治具と構成を異にしている。第1治具21には、一端が第1治具21の上面に開口し、他端が図示しない吸引装置に接続された吸気路21aと、規制部材24と軸方向に係合(当接)する係合部21bとが設けられている。第1治具21が原点位置にある状態において、第1治具21の係合部21bと規制部材24との間の軸方向離間距離ε1、すなわち第1治具21の下降可能量は、形成すべき第2軸方向隙間δ2の隙間幅と同一寸法に設定されている。   FIG. 9A is a modification of the assembly jig shown in FIG. 7, and the first jig 21 that supports the outer bottom surface 10a2 of the lid member 10 can be moved up and down by an appropriate drive mechanism (not shown). The configuration of the assembly jig shown in FIG. 7 is different from that of the assembly jig shown in FIG. 7 in that it is provided and a restriction member 24 that regulates the descending amount of the first jig 21 is provided. One end of the first jig 21 is opened on the upper surface of the first jig 21, and the other end is engaged (contacted) with the intake passage 21a connected to a suction device (not shown) and the regulating member 24 in the axial direction. Engaging portion 21b is provided. In the state where the first jig 21 is at the origin position, the axial separation distance ε1 between the engaging portion 21b of the first jig 21 and the regulating member 24, that is, the descendable amount of the first jig 21 is formed. It is set to the same dimension as the gap width of the second axial gap δ2.

以上の構成からなる組立治具において、まず、上述した組立方法と同様に、第1治具21上に蓋部材10および軸部材2を順に配置し、軸受部材7の小径外周面7a3を蓋部材10の筒部10b内周に嵌合した後、蓋部材10、軸部材2のフランジ部2b、および軸受部材7を軸方向に相互に当接させて二つのスラスト軸受隙間の隙間幅をゼロにする。次いで、図9(b)に示すように、第2治具22を縮径させて軸受部材7の大径外周面7a2を拘束し、軸受部材7の軸方向移動を規制した状態で、係合部21bが規制部材24と軸方向に係合(当接)するまで第1治具21を下降させる。このとき、図示しない吸引装置から吸気路21aを介して蓋部材10に対して吸引力を付与して蓋部材10を第1治具21に吸着させつつ、第3治具23を下降させて軸部材2を下方に押し進めることにより、蓋部材10を第1治具21と一体的に下降させる。これにより、フランジ部2bの上側端面2b1と軸受部材7の下側端面7a5との間に所定幅(本実施形態では20μm)の第2軸方向隙間δ2が形成される。   In the assembly jig having the above configuration, first, similarly to the above-described assembly method, the lid member 10 and the shaft member 2 are sequentially arranged on the first jig 21, and the small-diameter outer peripheral surface 7a3 of the bearing member 7 is disposed on the lid member. 10 is fitted to the inner periphery of the cylinder portion 10b, and then the lid member 10, the flange portion 2b of the shaft member 2, and the bearing member 7 are brought into contact with each other in the axial direction so that the gap width between the two thrust bearing gaps becomes zero. To do. Next, as shown in FIG. 9B, the second jig 22 is reduced in diameter to restrain the large-diameter outer peripheral surface 7a2 of the bearing member 7, and the engagement of the bearing member 7 is restricted in the axial direction. The first jig 21 is lowered until the portion 21b engages (contacts) with the regulating member 24 in the axial direction. At this time, a suction force is applied from the suction device (not shown) to the lid member 10 through the intake passage 21a to attract the lid member 10 to the first jig 21, and the third jig 23 is lowered to move the shaft. The lid member 10 is lowered integrally with the first jig 21 by pushing the member 2 downward. Thus, a second axial gap δ2 having a predetermined width (20 μm in this embodiment) is formed between the upper end surface 2b1 of the flange portion 2b and the lower end surface 7a5 of the bearing member 7.

なお、蓋部材10を第1治具21に吸着させた状態で第1治具21を下降させれば、蓋部材10の下降量、すなわち第2軸方向隙間δ2の隙間幅を精度良く管理することが可能であるが、蓋部材10の吸着と、第3治具23による軸部材2の加圧とを必ずしも併用する必要はなく、何れか一方のみを利用するようにしても良い。   If the first jig 21 is lowered while the lid member 10 is attracted to the first jig 21, the amount by which the lid member 10 is lowered, that is, the gap width of the second axial gap δ2 is accurately managed. However, it is not always necessary to use the suction of the lid member 10 and the pressurization of the shaft member 2 by the third jig 23, and only one of them may be used.

そして、第2軸方向隙間δ2を形成するのと同時に蓋部材10の筒部10bの端面10b1と軸受部材7の段差面7a4との間に形成される第1軸方向隙間δ1に接着剤を供給し、その後ベーキングを行うと、蓋部材10と軸受部材7が完全に接着固定されるのと同時に第2軸方向隙間δ2(第1および第2スラスト軸受隙間)の幅設定作業も完了する。   At the same time when the second axial gap δ2 is formed, an adhesive is supplied to the first axial gap δ1 formed between the end surface 10b1 of the cylindrical portion 10b of the lid member 10 and the stepped surface 7a4 of the bearing member 7. Then, after baking, the lid member 10 and the bearing member 7 are completely bonded and fixed, and at the same time, the width setting operation of the second axial gap δ2 (first and second thrust bearing gaps) is completed.

以上に示すような組立方法を採用すれば、上記同様、軸受部材7に対して蓋部材10を隙間嵌めする場合であっても、蓋部材10を軸受部材7に仮固定することなく第2軸方向隙間δ2の幅設定を容易かつ精度良く行うことができる。   If the assembling method as described above is employed, the second shaft can be secured without temporarily fixing the lid member 10 to the bearing member 7 even when the lid member 10 is clearance-fitted to the bearing member 7 as described above. The width of the direction gap δ2 can be easily and accurately set.

図10は、本発明を適用した流体軸受装置1の第2実施形態を示すものである。同図に示す流体軸受装置1は、主に、軸部材2をスラスト方向に支持するスラスト軸受部Tを、いわゆるピボット軸受で構成した点、すなわち、軸部2aの下端面2a3が凸球状に形成され、この凸球状下端面2a3が蓋部材10のプレート部10aの上側端面10a1で接触支持される点において、図2に示す実施形態と構成を異にしている。この実施形態においても、軸部材2には軸受部材7と軸方向に係合する係合部Kとしてのフランジ部2bが一体又は別体に設けられており、軸受停止時には、フランジ部2bの上側端面2b1と軸受部材7の下側端面7a5との間に所定幅の第2軸方向隙間(アキシャル隙間)δ2が形成される。   FIG. 10 shows a second embodiment of a hydrodynamic bearing device 1 to which the present invention is applied. The hydrodynamic bearing device 1 shown in the figure mainly has a thrust bearing portion T that supports the shaft member 2 in the thrust direction, that is, a so-called pivot bearing, that is, the lower end surface 2a3 of the shaft portion 2a is formed in a convex spherical shape. 2 is different from the embodiment shown in FIG. 2 in that the convex spherical lower end surface 2a3 is contacted and supported by the upper end surface 10a1 of the plate portion 10a of the lid member 10. Also in this embodiment, the shaft member 2 is provided with a flange portion 2b as an engagement portion K that engages with the bearing member 7 in the axial direction integrally or separately, and when the bearing is stopped, an upper side of the flange portion 2b is provided. A second axial gap (axial gap) δ2 having a predetermined width is formed between the end face 2b1 and the lower end face 7a5 of the bearing member 7.

詳細な図示は省略するが、この実施形態の流体軸受装置1においても、上述した方法で組み立てることにより、所定幅の第2軸方向隙間δ2を形成することができる。   Although detailed illustration is omitted, also in the hydrodynamic bearing device 1 of this embodiment, the second axial gap δ2 having a predetermined width can be formed by assembling by the above-described method.

以上の実施形態では、軸受部材7の成形材料として樹脂を使用しているが、コスト面等で問題がなければ、例えば、マグネシウム合金やアルミニウム合金等の低融点金属材料を使用して軸受部材7を射出成形することも可能である。   In the above embodiment, resin is used as the molding material for the bearing member 7. However, if there is no problem in cost and the like, for example, a low melting point metal material such as magnesium alloy or aluminum alloy is used for the bearing member 7. It is also possible to injection mold.

また、以上の実施形態では、軸受部材7を、ラジアル軸受隙間、スラスト軸受隙間、およびシール空間Sをそれぞれ形成する面(ラジアル軸受面、スラスト軸受面、およびシール面)、さらにはモータブラケット6に対する取り付け面も一体に有するものとしているが、本発明を適用可能な流体軸受装置1は、軸受部材7が上記構成のものに限られない。詳細な図示は省略するが、例えば、少なくともラジアル軸受隙間を形成する面を有する部分(スリーブ部)と、当該スリーブ部を内周に配置し、モータブラケット6に対する取り付け面を有するハウジング部とを備える軸受部材を用いる流体軸受装置についても、本発明は好適に採用可能である。   Further, in the above-described embodiment, the bearing member 7 is formed with respect to the surfaces (radial bearing surface, thrust bearing surface, and seal surface) that form the radial bearing gap, the thrust bearing gap, and the seal space S, respectively, and further to the motor bracket 6. Although the mounting surface is also integrally formed, the fluid bearing device 1 to which the present invention can be applied is not limited to the bearing member 7 having the above-described configuration. Although detailed illustration is omitted, for example, a portion (sleeve portion) having at least a surface that forms a radial bearing gap, and a housing portion that has the sleeve portion disposed on the inner periphery and has a mounting surface for the motor bracket 6 are provided. The present invention can also be suitably applied to a hydrodynamic bearing device that uses a bearing member.

また、以上の実施形態では、ラジアル軸受隙間およびスラスト軸受隙間に動圧作用を発生させる動圧発生部を、それぞれ軸受部材7(本体部7a)の内周面7a1、下側端面7a5、および蓋部材10のプレート部10aの上側端面10a1に形成したが、これら動圧発生部の一部又は全部は、軸受隙間を介して対向する面、すなわち軸部2aの外周面2a1、フランジ部2bの端面2b1,2b2に形成してもよい。   In the above embodiment, the dynamic pressure generating portions that generate the dynamic pressure action in the radial bearing gap and the thrust bearing gap are the inner peripheral surface 7a1, the lower end surface 7a5, and the lid of the bearing member 7 (main body portion 7a), respectively. Although formed on the upper end surface 10a1 of the plate portion 10a of the member 10, a part or all of these dynamic pressure generating portions are opposed to each other through a bearing gap, that is, the outer peripheral surface 2a1 of the shaft portion 2a and the end surface of the flange portion 2b. You may form in 2b1, 2b2.

また、以上の実施形態では、ヘリングボーン形状等の動圧溝による動圧作用により動圧軸受からなるラジアル軸受部R1,R2を構成した場合について説明を行ったが、いわゆる多円弧軸受、ステップ軸受、および波型軸受等、公知のその他の動圧軸受でラジアル軸受部を構成することも可能である。また、ラジアル軸受隙間を介して対向する二面の双方を円筒面とした、いわゆる真円軸受でラジアル軸受部を構成することもできる。   Further, in the above embodiment, the case where the radial bearing portions R1 and R2 including the dynamic pressure bearing are configured by the dynamic pressure action by the dynamic pressure groove having a herringbone shape or the like has been described. It is also possible to configure the radial bearing portion with other known hydrodynamic bearings such as a wave bearing and the like. Moreover, a radial bearing part can also be comprised with what is called a perfect-circle bearing which made both two surfaces which oppose through a radial bearing clearance | interval the cylindrical surface.

また、図2に示す実施形態では、ヘリングボーン形状等の動圧溝による動圧作用により動圧軸受からなるスラスト軸受部T1,T2を構成した場合について説明を行ったが、いわゆるステップ軸受や波型軸受等、公知のその他の動圧軸受でスラスト軸受部T1,T2の何れか一方又は双方を構成することもできる。   In the embodiment shown in FIG. 2, the case where the thrust bearing portions T1 and T2 made of the dynamic pressure bearing are configured by the dynamic pressure action by the dynamic pressure groove such as the herringbone shape has been described. Any one or both of the thrust bearing portions T1 and T2 can be configured by other known dynamic pressure bearings such as a mold bearing.

1 流体軸受装置
2 軸部材
2a 軸部
6 モータブラケット
7 軸受部材
7a 本体部
7b シール部
9 連通孔
10 蓋部材
10b 筒部
A1、A2 ラジアル軸受面
B、C スラスト軸受面
K 係合部
S シール空間
R1、R2 ラジアル軸受部
T、T1、T2 スラスト軸受部
δ1 第1軸方向隙間
δ2 第2軸方向隙間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 2a Shaft part 6 Motor bracket 7 Bearing member 7a Main body part 7b Seal part 9 Communication hole 10 Lid member 10b Cylindrical part A1, A2 Radial bearing surface B, C Thrust bearing surface K Engagement part S Seal space R1, R2 Radial bearing portions T, T1, T2 Thrust bearing portion δ1 First axial clearance δ2 Second axial clearance

Claims (11)

両端が開口した軸受部材と、軸受部材の内周に挿入され、軸受部材と軸方向に係合する係合部を有する軸部材と、軸受部材の内周面と軸部材の外周面との間のラジアル軸受隙間に形成される油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸受部材に嵌合されて軸受部材の一端開口を閉塞し、軸部材をスラスト方向に支持するスラスト軸受部を形成する蓋部材とを備え、蓋部材が軸方向に延びる筒部を有し、この筒部の内径側に係合部を配置した流体軸受装置において、
軸受部材と蓋部材の筒部との間に軸方向隙間を介在させ、軸受部材に対する蓋部材の軸方向相対位置を一定にしたことを特徴とする流体軸受装置。
Between the bearing member having both ends opened, the shaft member having an engaging portion inserted in the inner periphery of the bearing member and engaged in the axial direction with the bearing member, and the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member A radial bearing portion that supports the shaft member in the radial direction with an oil film formed in the radial bearing gap of the shaft, and a thrust bearing portion that is fitted to the bearing member to close one end opening of the bearing member and supports the shaft member in the thrust direction In the hydrodynamic bearing device, the lid member has a cylindrical portion that extends in the axial direction, and the engaging portion is disposed on the inner diameter side of the cylindrical portion.
A hydrodynamic bearing device characterized in that an axial gap is interposed between the bearing member and the cylindrical portion of the lid member so that the axial relative position of the lid member with respect to the bearing member is constant.
前記軸方向隙間の隙間幅を、軸受部材と係合部、および軸部材の軸受閉塞側一端と蓋部材とが軸方向に相互に当接するまで軸受部材と蓋部材の軸方向の接近移動を許容する値に設定した請求項1記載の流体軸受装置。   Allow the axial clearance of the bearing member and the lid member until the gap width of the axial gap is in contact with the bearing member and the engaging portion, and one end of the shaft member on the bearing closing side and the lid member in the axial direction. The hydrodynamic bearing device according to claim 1, wherein the fluid bearing device is set to a value to be determined. 軸受部材の外周面に対する蓋部材の外底面の直角度が10μm以下である請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the perpendicularity of the outer bottom surface of the lid member with respect to the outer peripheral surface of the bearing member is 10 μm or less. 軸方向相対位置の公差が±5μm以内である請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein a tolerance of an axial relative position is within ± 5 μm. 蓋部材の筒部を、ラジアル軸受隙間の外径寸法を規定する面の面精度に影響を与えない締め代で軸受部材の外周面に嵌合し、蓋部材と軸受部材を接着固定した請求項1記載の流体軸受装置。   The cylindrical portion of the lid member is fitted to the outer peripheral surface of the bearing member with a tightening margin that does not affect the surface accuracy of the surface defining the outer diameter dimension of the radial bearing gap, and the lid member and the bearing member are bonded and fixed. The hydrodynamic bearing device according to 1. 蓋部材の筒部と、軸受部材のラジアル軸受隙間の外径寸法を規定する面の一部又は全部とが軸方向でオーバーラップした請求項5記載の流体軸受装置。   The hydrodynamic bearing device according to claim 5, wherein the cylindrical portion of the lid member and a part or all of the surface defining the outer diameter of the radial bearing gap of the bearing member overlap in the axial direction. 係合部の一端面とこれに対向する軸受部材の端面との間に第1スラスト軸受部のスラスト軸受隙間を形成すると共に、係合部の他端面とこれに対向する蓋部材の端面との間に第2スラスト軸受部のスラスト軸受隙間を形成した請求項1記載の流体軸受装置。   A thrust bearing gap of the first thrust bearing portion is formed between one end surface of the engaging portion and the end surface of the bearing member facing the engaging portion, and the other end surface of the engaging portion and the end surface of the lid member facing the first thrust bearing portion. The hydrodynamic bearing device according to claim 1, wherein a thrust bearing gap of the second thrust bearing portion is formed therebetween. 前記第1スラスト軸受部のスラスト軸受隙間の隙間幅と、前記第2スラスト軸受部のスラスト軸受隙間の隙間幅とを略均一幅に設定した請求項7記載の流体軸受装置。   The hydrodynamic bearing device according to claim 7, wherein a gap width of a thrust bearing gap of the first thrust bearing portion and a gap width of a thrust bearing gap of the second thrust bearing portion are set to be substantially uniform. 両端が開口した軸受部材と、軸受部材の内周に挿入され、軸受部材と軸方向に係合する係合部を有する軸部材と、軸受部材の内周面と軸部材の外周面との間のラジアル軸受隙間に形成される油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸受部材に嵌合されて軸受部材の一端開口を閉塞し、軸部材をスラスト方向に支持するスラスト軸受部を形成する蓋部材とを備え、蓋部材が軸方向に延びる筒部を有し、この筒部の内径側に係合部を配置した流体軸受装置の製造方法において、
蓋部材の外底面をベース上に載置した治具で支持した状態で軸受部材と係合部、および軸部材の軸受閉塞側一端と蓋部材とを軸方向に相互に当接させた後、軸受部材の軸方向移動を規制した状態で前記治具を取り外す工程を含むことを特徴とする流体軸受装置の製造方法。
Between the bearing member having both ends opened, the shaft member having an engaging portion inserted in the inner periphery of the bearing member and engaged in the axial direction with the bearing member, and the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member A radial bearing portion that supports the shaft member in the radial direction with an oil film formed in the radial bearing gap of the shaft, and a thrust bearing portion that is fitted to the bearing member to close one end opening of the bearing member and supports the shaft member in the thrust direction In the method of manufacturing a hydrodynamic bearing device, the lid member has a cylindrical portion that extends in the axial direction, and the engaging portion is disposed on the inner diameter side of the cylindrical portion.
After the outer bottom surface of the lid member is supported by a jig placed on the base, the bearing member and the engaging portion, and the bearing closing end of the shaft member and the lid member are brought into contact with each other in the axial direction. A method for manufacturing a hydrodynamic bearing device, comprising the step of removing the jig in a state where axial movement of the bearing member is restricted.
両端が開口した軸受部材と、軸受部材の内周に挿入され、軸受部材と軸方向に係合する係合部を有する軸部材と、軸受部材の内周面と軸部材の外周面との間のラジアル軸受隙間に形成される油膜で軸部材をラジアル方向に支持するラジアル軸受部と、軸受部材に嵌合されて軸受部材の一端開口を閉塞し、軸部材をスラスト方向に支持するスラスト軸受部を形成する蓋部材とを備え、蓋部材が軸方向に延びる筒部を有し、この筒部の内径側に係合部を配置した流体軸受装置の製造方法において、
蓋部材の外底面を治具で支持した状態で軸受部材と係合部、および軸部材の軸受閉塞側一端と蓋部材とを軸方向に相互に当接させた後、軸受部材の軸方向移動を規制した状態で前記治具を軸受部材から離反する方向に所定量移動させる工程を含むことを特徴とする流体軸受装置の製造方法。
Between the bearing member having both ends opened, the shaft member having an engaging portion inserted in the inner periphery of the bearing member and engaged in the axial direction with the bearing member, and the inner peripheral surface of the bearing member and the outer peripheral surface of the shaft member A radial bearing portion that supports the shaft member in the radial direction with an oil film formed in the radial bearing gap of the shaft, and a thrust bearing portion that is fitted to the bearing member to close one end opening of the bearing member and supports the shaft member in the thrust direction In the method of manufacturing a hydrodynamic bearing device, the lid member has a cylindrical portion that extends in the axial direction, and the engaging portion is disposed on the inner diameter side of the cylindrical portion.
After the outer bottom surface of the lid member is supported by a jig, the bearing member and the engaging portion, and the bearing member closing end of the shaft member and the lid member are brought into contact with each other in the axial direction, and then the axial movement of the bearing member is performed. A method of manufacturing a hydrodynamic bearing device, comprising a step of moving the jig a predetermined amount in a direction away from the bearing member in a state where the pressure is regulated.
蓋部材を前記治具に吸着させた状態で、前記治具を軸受部材から離反する方向に所定量移動させる請求項10記載の流体軸受装置の製造方法。   The method of manufacturing a hydrodynamic bearing device according to claim 10, wherein the jig is moved by a predetermined amount in a direction away from the bearing member in a state where the lid member is attracted to the jig.
JP2009098997A 2009-04-15 2009-04-15 Fluid bearing device and method of manufacturing the same Withdrawn JP2010249218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098997A JP2010249218A (en) 2009-04-15 2009-04-15 Fluid bearing device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098997A JP2010249218A (en) 2009-04-15 2009-04-15 Fluid bearing device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010249218A true JP2010249218A (en) 2010-11-04

Family

ID=43311781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098997A Withdrawn JP2010249218A (en) 2009-04-15 2009-04-15 Fluid bearing device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010249218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235367A (en) * 2013-06-04 2014-12-15 コニカミノルタ株式会社 Bearing structure and developing device using the same
EP2924298A1 (en) * 2014-03-24 2015-09-30 Tung Pei Industrial Co., Ltd. Hydrodynamic bearing structure for bearing cooling fan and method for assembling the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235367A (en) * 2013-06-04 2014-12-15 コニカミノルタ株式会社 Bearing structure and developing device using the same
EP2924298A1 (en) * 2014-03-24 2015-09-30 Tung Pei Industrial Co., Ltd. Hydrodynamic bearing structure for bearing cooling fan and method for assembling the same
US9500227B2 (en) 2014-03-24 2016-11-22 Tung Pei Industrial Co., Ltd. Hydrodynamic bearing structure for cooling fan and method for assembling the same

Similar Documents

Publication Publication Date Title
US8256962B2 (en) Fluid dynamic bearing device
US8757882B2 (en) Fluid dynamic bearing device
KR101213552B1 (en) Dynamic pressure bearing device
US7798721B2 (en) Fluid dynamic bearing device
US8356938B2 (en) Fluid dynamic bearing apparatus
US8454239B2 (en) Fluid dynamic bearing device and assembling method thereof
WO2010004828A1 (en) Fluid dynamic pressure bearing device
US8419282B2 (en) Fluid dynamic bearing device and process for manufacturing the same
US8529132B2 (en) Fluid dynamic bearing device and method of manufacturing the same
US8578610B2 (en) Method for manufacturing fluid dynamic bearing device
JP4762757B2 (en) Hydrodynamic bearing device
US8197141B2 (en) Fluid dynamic bearing device
JP2010249218A (en) Fluid bearing device and method of manufacturing the same
JP2010096200A (en) Fluid bearing device and its manufacturing method
JP2010043666A (en) Dynamic pressure bearing device
JP4828908B2 (en) Hydrodynamic bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP5335304B2 (en) Fluid dynamic bearing device
JP5335311B2 (en) Fluid dynamic bearing device
JP4949216B2 (en) Hydrodynamic bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP4522869B2 (en) Hydrodynamic bearing device
JP2007255646A (en) Fluid bearing device
JP2006017280A (en) Dynamic pressure bearing
JP2011027150A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121227