JP2010248599A - Thick steel plate with low yield ratio and high toughness - Google Patents

Thick steel plate with low yield ratio and high toughness Download PDF

Info

Publication number
JP2010248599A
JP2010248599A JP2009101994A JP2009101994A JP2010248599A JP 2010248599 A JP2010248599 A JP 2010248599A JP 2009101994 A JP2009101994 A JP 2009101994A JP 2009101994 A JP2009101994 A JP 2009101994A JP 2010248599 A JP2010248599 A JP 2010248599A
Authority
JP
Japan
Prior art keywords
less
steel plate
excluding
toughness
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009101994A
Other languages
Japanese (ja)
Other versions
JP5390922B2 (en
Inventor
Yoshiomi Okazaki
喜臣 岡崎
Hiroyuki Takaoka
宏行 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009101994A priority Critical patent/JP5390922B2/en
Publication of JP2010248599A publication Critical patent/JP2010248599A/en
Application granted granted Critical
Publication of JP5390922B2 publication Critical patent/JP5390922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick steel plate which has a low yield ratio, and besides, shows high toughness characteristics. <P>SOLUTION: The thick steel plate with a low yield ratio and high toughness contains: <0.10% C (excluding 0%), 1.0% or less Si (excluding 0%), 1.0 to 2.0% Mn, 0.015% or less P (excluding 0%), 0.010% or less S (excluding 0%), 0.05 to 0.50% Al, 0.008 to 0.030% Ti, 0.0020 to 0.010% N and 0.0035% or less Ca (excluding 0) and also contains one or more kinds selected from a group comprising 2% or less Cu (excluding 0), 2% or less Ni (excluding ) and 2% or less Cr (excluding 0). The steel plate has a microstructure in a position of t/4 (t: plate thickness) which is formed of a mixed structure of ferrite and bainite, wherein the retained austenite are dispersed in the bainite, the ferrites have an average particle size of 10 to 50 μm, and the retained austenite existing in the bainite occupies ≥2.0% by area fraction with respect to the whole area. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建築、海洋構造物、ラインパイプ、造船、土木、建設機械等の分野での使用に好適な、低降伏比高靭性厚鋼板に関するものである。   The present invention relates to a low yield ratio high toughness steel plate suitable for use in the fields of architecture, offshore structures, line pipes, shipbuilding, civil engineering, construction machinery and the like.

近年、各種溶接構造用鋼材においては、高強度、高靭性に加え、耐震性の観点から、弾塑性設計を適用する場合には、降伏応力YSと引張強さTSの比で表される降伏比YR(YR=YS/TS)を低くすることも要求されている。一般に、鋼材の金属組織を、フェライトの様な軟質相の中に、ベイナイトやマルテンサイトなどの硬質相が適度に分散した組織にすることで、鋼材の低降伏比化が可能であることが知られている。   In recent years, in various welded structural steel materials, in addition to high strength and high toughness, from the viewpoint of earthquake resistance, when applying elastoplastic design, the yield ratio represented by the ratio of yield stress YS and tensile strength TS It is also required to lower YR (YR = YS / TS). In general, it is known that the yield ratio of steel can be reduced by making the microstructure of steel a structure in which a hard phase such as bainite or martensite is appropriately dispersed in a soft phase such as ferrite. It has been.

上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、例えば、特許文献1には、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの二相域からの焼入れ(Q’)を施す熱処理方法が提案されている。   As a production method for obtaining a structure in which a hard phase is appropriately dispersed in the soft phase as described above, for example, Patent Document 1 discloses a two-phase ferrite and austenite between quenching (Q) and tempering (T). A heat treatment method for performing quenching (Q ′) from the zone has been proposed.

また特許文献2には、製造工程が増加することがない方法として、Ar3変態点温度以上で圧延を終了した後、鋼材の温度がフェライトの生成するAr3変態点温度以下になるまで加速冷却の開始を遅らせる方法が開示されている。 Patent Document 2 discloses a method never manufacturing process is increased, after completion of the rolling at Ar 3 transformation point temperature or higher, accelerated cooling to a temperature of the steel is below Ar 3 transformation point temperature to produce the ferrite A method of delaying the onset of is disclosed.

一方、特許文献3には、特許文献1、特許文献2に開示されている様な複雑な熱処理を行わずに低降伏比を達成する技術として、フェライト、ベイナイトおよび島状マルテンサイトの三相組織とする方法が提案されている。更に、特許文献4には、残留オーステナイトを含有させることによって、低降伏比と母材靭性を兼備させることに成功しているものの、そのHAZ靭性については良好なものが確保できているかは不明である。   On the other hand, Patent Literature 3 discloses a three-phase structure of ferrite, bainite, and island martensite as a technique for achieving a low yield ratio without performing a complicated heat treatment as disclosed in Patent Literature 1 and Patent Literature 2. A method has been proposed. Furthermore, Patent Document 4 has succeeded in combining the low yield ratio and the base material toughness by containing retained austenite, but it is unclear whether the HAZ toughness is satisfactory. is there.

特開昭55−97425号公報JP-A-55-97425 特開昭55−41927号公報JP 55-41927 A 特開2005−23423号公報JP 2005-23423 A 特開2000−345283号公報JP 2000-345283 A

しかしながら、これまで提案されている技術では、高加工度(D/t<10、D:鋼管直径mm、t:板厚)が要求される板厚:40mm以上の円形鋼管加工などにおいて、極低降伏比(YR<70%)と高靭性(vTrs<−20℃)を両立化することは困難であった。   However, with the technologies proposed so far, in the processing of circular steel pipes with a thickness of 40 mm or more that require a high workability (D / t <10, D: steel pipe diameter mm, t: plate thickness), etc., extremely low It has been difficult to make the yield ratio (YR <70%) and high toughness (vTrs <−20 ° C.) compatible.

本発明はこの様な事情に鑑みてなされたものであって、その目的は、低降伏比でしかも高靭性な特性を発揮する厚鋼板を提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the thick steel plate which exhibits a high toughness characteristic with a low yield ratio.

上記課題を解決することのできた本発明に係る低降伏比高靭性厚鋼板とは、C:0.10%(「質量%」の意味、化学成分については以下同じ)未満(0%を含まない)、Si:1.0%以下(0%を含まない)、Mn:1.0〜2.0%、P:0.015%以下(0%を含まない)、S:0.010%以下(0%を含まない)、Al:0.05〜0.50%、Ti:0.008〜0.030%、N:0.0020〜0.010%およびCa:0.0035%以下(0%を含まない)を夫々含有する他、Cu:2%以下(0%を含まない)、Ni:2%以下(0%を含まない)およびCr:2%以下(0%を含まない)よりなる群から選ばれる1種以上を含有し、t/4(t:板厚)位置のミクロ組織において、フェライトおよびベイナイトの混合組織からなると共に、ベイナイト中に残留オーステナイトが分散しており、且つフェライトの平均粒径が10〜50μmであると共に、ベイナイト中に存在する残留オーステナイトが面積分率で2.0%以上存在するものである点に要旨を有するものである。   The low yield ratio high toughness thick steel plate according to the present invention that has solved the above-mentioned problems is less than C: 0.10% (meaning “mass%”, the same applies to chemical components hereinafter) (not including 0%) ), Si: 1.0% or less (not including 0%), Mn: 1.0 to 2.0%, P: 0.015% or less (not including 0%), S: 0.010% or less (Excluding 0%), Al: 0.05 to 0.50%, Ti: 0.008 to 0.030%, N: 0.0020 to 0.010% and Ca: 0.0035% or less (0 In addition to Cu: 2% or less (not including 0%), Ni: 2% or less (not including 0%) and Cr: 2% or less (not including 0%) Containing one or more selected from the group consisting of ferrite and bainite in a microstructure at a position of t / 4 (t: plate thickness) Consisting of a mixed structure, residual austenite is dispersed in bainite, and the average grain size of ferrite is 10 to 50 μm, and the residual austenite present in bainite is present in an area fraction of 2.0% or more. It has a gist in that it is a thing.

本発明の厚鋼板には、必要に応じて更に他の元素として、(a)Mo:0.5%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、B:0.003%以下(0%を含まない)およびV:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、(b)Mg:0.01%以下(0%を含まない)および/または希土類元素:0.01%以下(0%を含まない)、(c)Zr:0.1%以下(0%を含まない)、等を含有させることも有用であり、含有される成分に応じて鋼板の特性が改善される。   In the thick steel plate of the present invention, (a) Mo: 0.5% or less (not including 0%), Nb: 0.05% or less (not including 0%) as other elements as necessary. , B: 0.003% or less (excluding 0%) and V: 0.1% or less (not including 0%), (b) Mg: 0.01% or less (Not including 0%) and / or rare earth elements: 0.01% or less (not including 0%), (c) Zr: 0.1% or less (not including 0%), etc. It is useful and the properties of the steel sheet are improved depending on the components contained.

本発明によれば、鋼材の化学成分組成を適切に調整すると共に、そのミクロ組織をフェライトおよびベイナイトの混合組織とし、ベイナイト中に残留オーステナイトが分散したものとし、且つフェライトの平均粒径およびベイナイト中に存在する残留オーステナイトの分率を適切な範囲に調整することによって、低降伏比でしかも高靭性な特性を発揮する厚鋼板が実現できた。こうした厚鋼板は、建築、海洋構造物、ラインパイプ、造船、土木、建設機械等の溶接構造物の素材として極めて有用である。   According to the present invention, the chemical composition of the steel material is appropriately adjusted, the microstructure is a mixed structure of ferrite and bainite, the retained austenite is dispersed in bainite, and the average particle diameter of ferrite and the bainite By adjusting the fraction of retained austenite present in the steel to an appropriate range, a thick steel plate having a low yield ratio and exhibiting high toughness characteristics could be realized. Such steel plates are extremely useful as materials for welded structures such as buildings, marine structures, line pipes, shipbuilding, civil engineering, and construction machinery.

本発明者らは、低降伏比と母材靭性の相反する特性の両立化を目指して、最適な組織形態について鋭意研究を重ねた。その結果、低降伏比には硬質相と軟質相が必要であり、母材靭性の確保には軟質相のサイズと硬質相の硬さ・サイズを適度に制御することで達成できることを知見した。   The inventors of the present invention have made extensive studies on the optimum structure for the purpose of achieving both the low yield ratio and the contradictory properties of the base material toughness. As a result, it was found that a low yield ratio requires a hard phase and a soft phase, and securing the base material toughness can be achieved by appropriately controlling the size of the soft phase and the hardness and size of the hard phase.

従来からのフェライト・マルテンサイト鋼では、硬質のマルテンサイトが、靭性を劣化させる。一方、フェライト・ベイナイト鋼では、ベイナイトの硬さが不十分で低降伏比が得られない。最適な組織形態としては、フェライト、ベイナイトおよび島状マルテンサイト(MA=マルテンサイトとオーステナイトの混合組織)の三相組織である。また、従来技術のようにMAが鋼組織中にランダムに存在するのでは良好な降伏比−靭性バランスが実現できず、ベイナイト中にMAが分散して存在する方がより降伏比−靭性バランスに優れることを知見した。また、MAとして存在する微細第二相のうち、残留オーステナイト(以下、「残留γ」と略称することがある)を一定量以上含有させることで、安定的な特性が確保できることも知見した。残留γの生成とHAZ靭性兼備の観点から、適正な成分系(Alを多量に含有させてCを最小限とし、Ti,Nを適量添加する)を見出し、本発明を完成した。   In conventional ferritic martensite steel, hard martensite deteriorates toughness. On the other hand, in ferrite bainite steel, the hardness of bainite is insufficient and a low yield ratio cannot be obtained. The optimum structure form is a three-phase structure of ferrite, bainite, and island martensite (MA = mixed structure of martensite and austenite). Also, if the MA exists randomly in the steel structure as in the prior art, a good yield ratio-toughness balance cannot be realized, and the presence of MA dispersed in the bainite provides a better yield ratio-toughness balance. I found it excellent. Further, it has also been found that stable characteristics can be ensured by containing a certain amount or more of retained austenite (hereinafter sometimes referred to as “residual γ”) in the fine second phase present as MA. From the viewpoint of the formation of residual γ and HAZ toughness, an appropriate component system (a large amount of Al was added to minimize C and Ti and N were added in an appropriate amount) was found, and the present invention was completed.

本発明の鋼板は、t/4(t:板厚)位置のミクロ組織において、フェライトおよびベイナイトの混合組織であるが、この組織のフェライト分率は10〜90面積%程度であることが好ましい。フェライト分率が10面積%未満になると、降伏応力YSが高くなりすぎて、降伏比が大きくなり、90面積%を超えると、引張強さTS:490MPa以上を確保することができなくなる。   The steel sheet of the present invention is a mixed structure of ferrite and bainite in a microstructure at a position of t / 4 (t: plate thickness), and the ferrite fraction of this structure is preferably about 10 to 90 area%. If the ferrite fraction is less than 10 area%, the yield stress YS becomes too high and the yield ratio becomes large. If it exceeds 90 area%, the tensile strength TS: 490 MPa or more cannot be secured.

本発明の鋼板では、上記フェライトの平均粒径が10〜50μmであることも必要である。このフェライトの平均粒径が10μm未満では降伏応力YSが高くなり過ぎ、50μmを超えると母材靭性が劣化する。   In the steel sheet of the present invention, it is necessary that the average particle diameter of the ferrite is 10 to 50 μm. If the average grain size of this ferrite is less than 10 μm, the yield stress YS becomes too high, and if it exceeds 50 μm, the base metal toughness deteriorates.

本発明の厚鋼板では、ミクロ組織上の特徴として、ベイナイト中に残留γが分散して存在するものであるが、ベイナイト中に存在する残留γの面積分率が全面積に対して2.0%以上であることも必要である。残留γの面積分率が2.0%未満では降伏応力YSが高くなり過ぎる。   In the thick steel sheet of the present invention, as a feature on the microstructure, residual γ is present dispersed in bainite, but the area fraction of residual γ present in bainite is 2.0% of the total area. % Or more is also necessary. If the area fraction of residual γ is less than 2.0%, the yield stress YS becomes too high.

本発明の厚鋼板では、その化学成分組成も適切に調整する必要があるが、各成分の範囲限定理由は以下の通りである。   In the thick steel plate of the present invention, the chemical component composition needs to be adjusted appropriately, but the reasons for limiting the range of each component are as follows.

[C:0.10%未満(0%を含まない)]
Cは鋼板の強度を確保するために必要な元素であり、また残留γを確保するために必要な元素である。しかしながら、Cを過剰に含有させると靭性が却って低下することになる。こうしたことから、C含有量は0.10%未満とする必要がある。尚、C含有量の好ましい下限は0.03%(より好ましくは0.04%)であり、好ましい上限は0.08%(より好ましくは0.05%)である。
[C: less than 0.10% (excluding 0%)]
C is an element necessary for securing the strength of the steel sheet, and is an element necessary for securing residual γ. However, when C is contained excessively, the toughness is reduced instead. For these reasons, the C content needs to be less than 0.10%. In addition, the preferable minimum of C content is 0.03% (more preferably 0.04%), and a preferable upper limit is 0.08% (more preferably 0.05%).

[Si:1.0%以下(0%を含まない)]
Siは鋼板の強度を確保するために有効な元素であり、また残留γ生成に必要な元素である。しかしながら、Siを過剰に含有されると靭性が却って低下することになる。こうしたことから、その上限を1.0%とした。尚、Si含有量の好ましい下限は0.1%であり、好ましい上限は0.7%(より好ましくは0.5%)である。
[Si: 1.0% or less (excluding 0%)]
Si is an effective element for securing the strength of the steel sheet and is an element necessary for generating residual γ. However, if Si is contained excessively, the toughness is reduced instead. For these reasons, the upper limit was made 1.0%. In addition, the minimum with preferable Si content is 0.1%, and a preferable upper limit is 0.7% (more preferably 0.5%).

[Mn:1.0〜2.0%]
Mnは焼入れ性を向上させて鋼板強度を確保する上で有効な元素であり、こうした効果を発揮させるためには、Mnは1.0%以上含有させる必要がある。しかしながら、Mnを過剰に含有させると、母材靭性が劣化するので上限を2.0%とする。尚、Mn含有量の好ましい下限は1.3%であり、好ましい上限は1.8%である。
[Mn: 1.0 to 2.0%]
Mn is an element effective in improving the hardenability and ensuring the strength of the steel sheet. In order to exert such effects, it is necessary to contain Mn in an amount of 1.0% or more. However, if Mn is excessively contained, the base material toughness deteriorates, so the upper limit is made 2.0%. In addition, the minimum with preferable Mn content is 1.3%, and a preferable upper limit is 1.8%.

[P:0.015%以下(0%を含まない)]
Pは不可避的に混入してくる不純物であり、母材およびHAZの靭性に悪影響を及ぼすのでできるだけ少ない方が好ましい。こうした観点から、Pは0.015%以下に抑制するのが良い。P含有量の好ましい上限は0.01%である。
[P: 0.015% or less (excluding 0%)]
P is an impurity that is inevitably mixed in, and adversely affects the toughness of the base material and the HAZ. From such a viewpoint, P is preferably suppressed to 0.015% or less. The upper limit with preferable P content is 0.01%.

[S:0.010%以下(0%を含まない)]
Sは、鋼板中の合金元素と化合して種々の介在物を形成し、鋼板の延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましい。実用鋼の清浄度の程度を考慮してその上限を0.010%に抑制するのが良い。尚、Sは鋼に不可避的に含まれる不純物であり、その量を0%とすることは工業生産上困難である。
[S: 0.010% or less (excluding 0%)]
S is an impurity that combines with alloy elements in the steel sheet to form various inclusions and adversely affects the ductility and toughness of the steel sheet, so it is preferably as small as possible. In consideration of the degree of cleanliness of practical steel, the upper limit is preferably suppressed to 0.010%. In addition, S is an impurity inevitably contained in steel, and it is difficult to make the amount 0% in industrial production.

[Al:0.05〜0.50%]
Alは脱酸剤として有効な元素であると共に、残留γの生成を促進する元素である。こうした効果を発揮させるためには、Al含有量は0.05%以上とする必要がある。しかしながら、Alが過剰に含有されると母材靭性を劣化させる。こうしたことから、その上限を0.50%とした。尚、Al含有量の好ましい下限は0.10%であり、好ましい上限は0.40%である。
[Al: 0.05 to 0.50%]
Al is an element effective as a deoxidizer and an element that promotes the formation of residual γ. In order to exert such effects, the Al content needs to be 0.05% or more. However, if Al is excessively contained, the base material toughness is deteriorated. For these reasons, the upper limit was made 0.50%. In addition, the minimum with preferable Al content is 0.10%, and a preferable upper limit is 0.40%.

[Ti:0.008〜0.030%]
Tiは、鋼中にTiNを分散させて圧延前加熱時の残留γ粒の粗大化を防止する効果がある。こうした効果を発揮させるためには、Tiを0.008%以上含有させる必要がある。しかし、Ti含有量が過剰になると、母材およびHAZの靭性が劣化するため、0.030%以下とする。
[Ti: 0.008 to 0.030%]
Ti has an effect of dispersing TiN in steel and preventing the coarsening of residual γ grains during heating before rolling. In order to exhibit such an effect, it is necessary to contain 0.008% or more of Ti. However, when the Ti content is excessive, the toughness of the base material and the HAZ deteriorates, so the content is made 0.030% or less.

[N:0.0020〜0.010%]
不純物として含有されるNは、Al,Ti,NbおよびB等と結合し、窒化物を形成して母材組織を微細化させる効果があるとともに、母材圧延前の加熱時および溶接時のγ粒の微細化等に寄与する。こうした効果を発揮させるには、Nは0.0020%以上含有させる必要がある。しかしながら、固溶Nは母材靭性を劣化させる原因となる。全窒素量の増加により、前述の窒化物は増加するが固溶Nも過剰となり、有害となるため、0.010%以下とする必要がある。
[N: 0.0020 to 0.010%]
N contained as an impurity combines with Al, Ti, Nb, B, and the like, and has the effect of forming a nitride to refine the base metal structure, and also γ during heating and welding before base metal rolling. Contributes to grain refinement. In order to exert such an effect, N needs to be contained by 0.0020% or more. However, the solute N causes the base material toughness to deteriorate. As the total nitrogen amount increases, the aforementioned nitride increases, but the solid solution N also becomes excessive and harmful, so it is necessary to make it 0.010% or less.

[Ca:0.0035%以下(0%を含まない)]
Caは硫化物の形態を制御してHAZ靭性の向上に寄与する元素である。しかし、0.0035%を超えて過剰に含有させてもHAZ靭性が却って劣化する。尚、Ca含有量の好ましい上限は0.0020%、より好ましくは0.0015%である。
[Ca: 0.0035% or less (excluding 0%)]
Ca is an element that contributes to the improvement of HAZ toughness by controlling the form of sulfide. However, even if it exceeds 0.0035% and contains excessively, HAZ toughness will deteriorate on the contrary. In addition, the upper limit with preferable Ca content is 0.0020%, More preferably, it is 0.0015%.

[Cu:2%以下(0%を含まない)、Ni:2%以下(0%を含まない)およびCr:2%以下(0%を含まない)よりなる群から選ばれる1種以上]
Cu、NiおよびCrは、いずれも焼入れ性を高めて鋼板の強度を向上させるのに有効な元素である。しかしながら、これらの元素の含有量が過剰になると、母材靭性が却って低下するので、いずれも2%以下(より好ましくは1%以下)とするのがよい。上記効果を発揮させるための好ましい下限は、いずれも0.20%(より好ましくは0.40%)である。
[One or more selected from the group consisting of Cu: 2% or less (excluding 0%), Ni: 2% or less (not including 0%), and Cr: 2% or less (not including 0%)]
Cu, Ni and Cr are all effective elements for improving the hardenability and improving the strength of the steel sheet. However, if the content of these elements is excessive, the base material toughness is lowered, so that it is preferable that both be 2% or less (more preferably 1% or less). A preferable lower limit for exhibiting the above effect is 0.20% (more preferably 0.40%).

本発明の鋼板において、上記成分の他は、鉄および不可避的不純物(例えば、Sb,Se,Te等)からなるものであるが、その特性を阻害しない程度の微量成分(許容成分)も含み得るものであり、こうした鋼板も本発明の範囲に含まれるものである。また必要によって、以下の元素を含有することも有効である。これらの成分を含有させるときの範囲限定理由は、次の通りである。   In the steel sheet of the present invention, in addition to the above components, the steel plate is composed of iron and inevitable impurities (for example, Sb, Se, Te, etc.), but may contain trace components (allowable components) to the extent that the properties are not impaired. Such a steel sheet is also included in the scope of the present invention. It is also effective to contain the following elements as necessary. The reasons for limiting the range when these components are contained are as follows.

[Mo:0.5%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、B:0.003%以下(0%を含まない)およびV:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上]
Mo、Nb、BおよびVは、焼入れ性を向上させて母材強度を向上させる効果を発揮するため必要に応じて添加される。またVは焼戻し軟化抵抗を高くする効果もある。しかしながら、Mo含有量が過剰になると母材およびHAZの靭性が劣化するので、0.5%以下(好ましくは0.30%以下)とすることが好ましい。またNbが多量に含有されると炭化物の生成が多くなり母材およびHAZの靭性が劣化するため、0.05%以下(より好ましくは0.04%以下、更に好ましくは0.03%以下)とすることが好ましい。Bが多量に含有されると母材靭性が劣化するため、0.003%以下(より好ましくは0.002%以下、0.0015%以下)とするのが良い。Vは上記効果を有効に発揮させるためには0.01%以上含有させることが好ましいが、多量に含有させると母材およびHAZの靭性が劣化するため、0.1%以下(より好ましくは0.05%以下)とするのが良い。
[Mo: 0.5% or less (not including 0%), Nb: 0.05% or less (not including 0%), B: 0.003% or less (not including 0%), and V: 0.00. 1 or more selected from the group consisting of 1% or less (excluding 0%)]
Mo, Nb, B and V are added as necessary in order to exhibit the effect of improving the hardenability and improving the strength of the base material. V also has the effect of increasing the temper softening resistance. However, if the Mo content is excessive, the toughness of the base material and the HAZ deteriorates, so it is preferable to set the content to 0.5% or less (preferably 0.30% or less). Further, when Nb is contained in a large amount, the generation of carbides increases and the toughness of the base material and HAZ deteriorates, so 0.05% or less (more preferably 0.04% or less, more preferably 0.03% or less). It is preferable that When B is contained in a large amount, the toughness of the base material deteriorates, so it is good to be 0.003% or less (more preferably 0.002% or less, 0.0015% or less). V is preferably contained in an amount of 0.01% or more in order to effectively exhibit the above effects, but if contained in a large amount, the toughness of the base material and the HAZ deteriorates, so 0.1% or less (more preferably 0). .05% or less).

[Mg:0.01%以下(0%を含まない)および/または希土類元素(REM):0.01%以下(0%を含まない)]
Mgおよび希土類元素は、鋼材中に不可避的に混入してくる介在物(酸化物や硫化物等)の形状を微細化・球状化することによって、HAZの靭性向上に寄与する元素であり、必要によって含有される。こうした効果は、その含有量が増加するにつれて増大するが、その含有量が過剰になると、介在物が粗大化してHAZ靭性が劣化するため、いずれも0.01%以下に抑えることが好ましい。尚、本発明において、REMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。
[Mg: 0.01% or less (not including 0%) and / or rare earth element (REM): 0.01% or less (not including 0%)]
Mg and rare earth elements are elements that contribute to improving the toughness of HAZ by refining and spheroidizing inclusions (oxides, sulfides, etc.) that are inevitably mixed in steel. Contained by. Such an effect increases as the content increases. However, if the content is excessive, inclusions become coarse and the HAZ toughness deteriorates. In the present invention, REM means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium).

[Zr:0.1%以下(0%を含まない)]
Zrは、Tiと同様、Nと窒化物を形成し、溶接時におけるHAZのオーステナイト粒を微細化し、HAZ靭性改善に有効な元素である。しかし、過剰に含有されるとHAZ靭性を却って低下させる。このため、Zrを含有するときには、Zrは0.1%以下とする。
[Zr: 0.1% or less (excluding 0%)]
Zr, like Ti, is an element that forms N and nitride, refines the HAZ austenite grains during welding, and is effective in improving HAZ toughness. However, if excessively contained, the HAZ toughness is reduced. For this reason, when Zr is contained, Zr is made 0.1% or less.

本発明の厚鋼板を製造するに当たっては、上記化学成分量を満たす鋼を、通常の溶製法によって溶製し、この溶鋼を冷却してスラブとした後、例えば、950〜1300℃の範囲に加熱した後熱間圧延を行い、Ar3変態点+100℃〜Ar3変態点+150℃の温度範囲での圧下率を10%以上とし、仕上げ圧延温度を800〜700℃とした後、冷却開始を仕上げ圧延温度から−50℃以内で加速冷却を開始し、5〜50℃/秒の平均冷却速度で500℃〜300℃まで水冷した後、この冷却停止温度から−100℃までの温度域に300秒以上滞留させるようにすればよい。この方法における各条件の範囲設定理由は次の通りである。 In producing the thick steel plate of the present invention, steel satisfying the above-mentioned chemical composition amount is melted by a normal melting method, and after this molten steel is cooled to form a slab, it is heated to, for example, a range of 950 to 1300 ° C. After performing hot rolling, the rolling reduction in the temperature range of Ar 3 transformation point + 100 ° C. to Ar 3 transformation point + 150 ° C. is set to 10% or more, the finish rolling temperature is set to 800 to 700 ° C., and the cooling start is finished. Accelerated cooling is started within −50 ° C. from the rolling temperature, water-cooled to 500 ° C. to 300 ° C. at an average cooling rate of 5 to 50 ° C./second, and then 300 seconds into a temperature range from this cooling stop temperature to −100 ° C. What is necessary is just to make it stay above. The reason for setting the range of each condition in this method is as follows.

[加熱温度:950〜1300℃]
鋼板の組織を一旦全てオーステナイト化するという観点から950℃以上とする必要があるが、加熱温度が1300℃を超えると、オーステナイトが粗大化して後の工程で所定の組織を得ることは難しくなる。
[Heating temperature: 950-1300 ° C]
Although it is necessary to set it as 950 degreeC or more from a viewpoint of once making the structure of a steel plate all austenite, when heating temperature exceeds 1300 degreeC, austenite will coarsen and it will become difficult to obtain a predetermined structure | tissue in a subsequent process.

[Ar3変態点+100℃〜Ar3変態点+150℃の温度範囲での圧下率:10%以上]
この温度範囲での圧下率を10%以上とすることによって、フェライトの粒径を微細化できる。この温度範囲を外れたり、圧下率が10%未満では、フェライトの粒径が粗大化するようになる。尚、本発明において「Ar3変態点」とは、下記(1)式で求められた値である。
Ar3=910−230×[C]+25×[Si]−74×[Mn]−56×[Cu]
−16×[Ni]−9×[Cr]−5×[Mo]−1620×[Nb]…(1)
但し、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo]および[Nb]は、夫々C,Si,Mn,Cu,Ni,Cr,MoおよびNbの含有量(質量%)を示す。
[Ar 3 transformation point + 100 ° C. to Ar 3 transformation point + 150 ° C. temperature reduction: 10% or more]
By setting the rolling reduction in this temperature range to 10% or more, the particle size of the ferrite can be refined. If the temperature is out of this range or the rolling reduction is less than 10%, the ferrite grain size becomes coarse. In the present invention, the “Ar 3 transformation point” is a value determined by the following equation (1).
Ar 3 = 910−230 × [C] + 25 × [Si] −74 × [Mn] −56 × [Cu]
-16x [Ni] -9x [Cr] -5x [Mo] -1620x [Nb] (1)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo] and [Nb] are respectively C, Si, Mn, Cu, Ni, Cr, Mo and The Nb content (% by mass) is shown.

[仕上げ圧延温度:800〜700℃]
仕上げ圧延温度が800℃を超えると、フェライト粒径が粗大化となり、700℃未満となると、フェライト粒径が10μm未満となって降伏応力YSが高くなりすぎる。
[Finish rolling temperature: 800-700 ° C]
When the finish rolling temperature exceeds 800 ° C., the ferrite particle size becomes coarse, and when it becomes less than 700 ° C., the ferrite particle size becomes less than 10 μm, and the yield stress YS becomes too high.

[冷却開始温度:仕上げ圧延温度から−50℃以内]
圧延後の冷却開始温度が、仕上げ圧延温度から−50℃よりも低くなると、フェライトの粗大化を招く。
[Cooling start temperature: within -50 ° C from finish rolling temperature]
When the cooling start temperature after rolling becomes lower than −50 ° C. from the finish rolling temperature, ferrite becomes coarse.

[5〜50℃/秒の平均冷却速度で500〜300℃まで加速冷却]
加速冷却時の平均冷却速度が5℃/秒未満では、フェライト粒の粗大化を招き、50℃/秒を超えるとフェライト量が不足する。また、冷却停止温度を500〜300℃とするのは、残留γを所定量生成させるためである。
[Accelerated cooling to 500 to 300 ° C. at an average cooling rate of 5 to 50 ° C./second]
If the average cooling rate during accelerated cooling is less than 5 ° C / second, ferrite grains become coarse, and if it exceeds 50 ° C / second, the amount of ferrite is insufficient. The reason why the cooling stop temperature is set to 500 to 300 ° C. is to generate a predetermined amount of residual γ.

[冷却停止温度から−100℃までの温度域に300秒以上滞留]
上記滞留時間が300秒未満では、残留γ量が不足することになる。上限を特に設けるものではないが、生産性の観点では1000秒未満であることが望ましい。また、「冷却停止温度から−100℃までの温度域」とは残留γを安定化させる温度域の意味である。
[Residence for 300 seconds or more in the temperature range from the cooling stop temperature to -100 ° C]
When the residence time is less than 300 seconds, the amount of residual γ is insufficient. Although there is no particular upper limit, it is preferably less than 1000 seconds from the viewpoint of productivity. The “temperature range from the cooling stop temperature to −100 ° C.” means a temperature range in which the residual γ is stabilized.

尚上記で示した温度は、鋼板表面の位置の温度で管理したものである。また、本発明の鋼板は、厚鋼板を想定したものであるが、このときの板厚は約40mm以上であり、上限については特に限定されないが、通常100mm以下である。   The temperature shown above is controlled by the temperature at the position of the steel sheet surface. The steel plate of the present invention is assumed to be a thick steel plate, but the plate thickness at this time is about 40 mm or more, and the upper limit is not particularly limited, but is usually 100 mm or less.

本発明では、上記のように化学成分組成および特定領域での組織を規定することによって、靭性(母材靭性)に優れた低降伏比厚鋼板が実現できるのであるが、こうした厚鋼板は、溶接熱影響部(以下、「HAZ」と示す)の靭性も基本的に良好なものである。即ち、本発明の厚鋼板は、建築、海洋構造物、ラインパイプ、造船、土木、建設機械等の分野の溶接構造物として適用されるものであり、溶接されたときのHAZの靭性が良好であることも要求されるが、こうしたHAZ靭性も良好なものとなる。   In the present invention, by specifying the chemical component composition and the structure in the specific region as described above, a low yield ratio thick steel plate excellent in toughness (base material toughness) can be realized. The toughness of the heat affected zone (hereinafter referred to as “HAZ”) is also basically good. That is, the steel plate of the present invention is applied as a welded structure in the fields of architecture, offshore structures, line pipes, shipbuilding, civil engineering, construction machinery, etc., and has good HAZ toughness when welded. Although it is required to be present, such HAZ toughness is also good.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

下記表1、2に化学成分組成を示す各種溶鋼(鋼種A〜P、A1〜N1)を、通常の溶製法によって溶製し、この溶鋼を冷却してスラブとした後、下記表3、4に示した条件で熱間圧延および冷却を行い、各種鋼板(厚み:50mm)を得た。尚、下記表1において、REMはLaを50%程度とCeを25%程度含有するミッシュメタルの形態で添加した。尚、下記表1、2中「−」は元素を添加していないことを示している。   Various molten steels (steel types A to P and A1 to N1) having chemical composition compositions shown in Tables 1 and 2 below are melted by a normal melting method, and the molten steel is cooled to form a slab. The steel sheet (thickness: 50 mm) was obtained by hot rolling and cooling under the conditions shown in. In Table 1 below, REM was added in the form of a misch metal containing about 50% La and about 25% Ce. In Tables 1 and 2 below, “-” indicates that no element was added.

Figure 2010248599
Figure 2010248599

Figure 2010248599
Figure 2010248599

Figure 2010248599
Figure 2010248599

Figure 2010248599
Figure 2010248599

得られた各鋼板について、母材組織(フェライト粒径、フェライト分率、残留γ分率)、機械的特性(母材の引張特性、母材の衝撃特性)を下記の方法によって測定すると共に、HAZ靭性についても評価した。測定結果を、下記表5、6に示す。   For each steel plate obtained, the base material structure (ferrite grain size, ferrite fraction, residual γ fraction), mechanical properties (base material tensile properties, base material impact properties) are measured by the following methods, The HAZ toughness was also evaluated. The measurement results are shown in Tables 5 and 6 below.

[フェライト分率、フェライト粒径の測定]
各鋼板のt/4部(t:板厚)の位置から採取した2cm角の試験片を鏡面研磨し、ナイタール腐食液(2%硝酸−エタノール溶液)でエッチング後、光学顕微鏡によって組織を観察し(倍率100倍:n=10)、JIS G 0552規定の比較法の手法に基づきフェライト粒径(平均値)を測定した。
[Measurement of ferrite fraction and ferrite particle size]
A 2 cm square specimen taken from the position of t / 4 part (t: thickness) of each steel plate is mirror-polished, etched with a nital etchant (2% nitric acid-ethanol solution), and the structure is observed with an optical microscope. (Magnification 100 times: n = 10), the ferrite particle size (average value) was measured based on the method of the comparative method defined in JIS G 0552.

[残留γ面積分率の測定]
各鋼板の表面から深さt/4部(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面を、Carl Zeiss社製の電解放出式走査顕微鏡「SUPRA35(商品名)」(FE−SEM)を用いて、観察倍率:600倍、観察視野:0.04mm2、観察箇所:5箇所の条件で観察し、EBSD(Electron Back Scatter Diffrraction Ratterms)法で解析することによって算出した。
[Measurement of residual γ area fraction]
A test piece is cut out from the surface of each steel plate at a depth of t / 4 part (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in the rolling direction and the thickness direction. The parallel cross-section was observed using an electrolytic emission scanning microscope “SUPRA35 (trade name)” (FE-SEM) manufactured by Carl Zeiss, observation magnification: 600 ×, observation field: 0.04 mm 2 , observation location: 5 locations It calculated by observing on the conditions of this, and analyzing by the EBSD (Electron Back Scatter Diffraction Parameters) method.

[母材の引張特性の評価]
各鋼板のt/4部(t:板厚)の位置からU14A試験片を採取し、JIS Z2241に従って引張試験を行うことによって、降伏応力YS(降伏点YP)および引張強さTSを測定し、降伏比YRを計算した。
[Evaluation of tensile properties of base metal]
A U14A test piece is taken from the position of t / 4 part (t: thickness) of each steel plate, and a tensile test is performed according to JIS Z2241, thereby measuring a yield stress YS (yield point YP) and a tensile strength TS, Yield ratio YR was calculated.

[母材の衝撃特性(靭性)の評価]
母材の衝撃特性(靭性)は、Vノッチシャルピー試験を行い、遷移曲線によりvTrs(脆性破面遷移温度)を求めた。t/4部(t:板厚)からU14A試験片を採取し、JIS Z2242に従って試験を実施した。このとき各温度(最低4温度以上)の測定につき、n=3で試験を実施し、3点中最も脆性破面率の高い点を通るように脆性破面遷移曲線を描き、脆性破面率50%の温度を脆性破面遷移温度vTrsとして算出した(vTrsが最も高温側となるように線を引く)。
[Evaluation of impact properties (toughness) of base metal]
For the impact properties (toughness) of the base material, a V-notch Charpy test was performed, and vTrs (brittle fracture surface transition temperature) was obtained from a transition curve. A U14A test piece was collected from t / 4 parts (t: plate thickness), and the test was carried out in accordance with JIS Z2242. At this time, for each temperature measurement (at least 4 temperatures), the test was conducted at n = 3, and a brittle fracture surface transition curve was drawn so as to pass through the point with the highest brittle fracture surface ratio among the three points. A temperature of 50% was calculated as the brittle fracture surface transition temperature vTrs (a line was drawn so that vTrs was on the highest temperature side).

[HAZ靭性試験]
サブマージアーク溶接(2kJ/mm)を行ったときの熱サイクルを模擬したHAZ靭性評価法として、加熱温度:1400℃で5秒保持、その後冷却が800〜500℃の冷却時間(Tc):25秒の熱サイクルで各供試鋼板を熱処理した後、温度−40℃におけるシャルピー吸収エネルギー(Vノッチ)を測定した。尚、試験片としては、板厚t/4部(t:板厚)の位置から採取したサイズ10mm×10mm×55mmの棒状で、中央部片面に深さ;2mmのVノッチを形成したものを使用した。このときVシャルピー衝撃値(vE−40)が100J以上を合格とした。
[HAZ toughness test]
As a HAZ toughness evaluation method simulating a thermal cycle when submerged arc welding (2 kJ / mm) is performed, a heating temperature is maintained at 1400 ° C. for 5 seconds, and then a cooling time is 800 to 500 ° C. (Tc): 25 seconds. After heat-treating each test steel plate in the thermal cycle, Charpy absorbed energy (V notch) at a temperature of −40 ° C. was measured. In addition, as a test piece, it is a rod shape of size 10 mm × 10 mm × 55 mm taken from the position of the plate thickness t / 4 part (t: plate thickness) and has a V notch having a depth of 2 mm on one side of the central part. used. At this time, a V Charpy impact value (vE- 40 ) of 100 J or more was regarded as acceptable.

Figure 2010248599
Figure 2010248599

Figure 2010248599
Figure 2010248599

これらの結果から明らかなように、実験No.1〜16は、本発明で規定する要件を満足する例であり、母材、HAZともに靭性が良好な低降伏比厚鋼板が得られている。これに対して、実験No.17〜35では、本発明で規定するいずれかの要件を外れる例であり(実験No.17〜30は本発明で規定する化学成分組成が外れるもの、実験No.31〜35は製造条件が外れることによって適切なミクロ組織が得られていないもの)、いずれかの特性が得られていないことが分かる。   As is clear from these results, Experiment No. Nos. 1 to 16 are examples that satisfy the requirements defined in the present invention, and a low yield specific thickness steel plate having good toughness is obtained for both the base material and HAZ. In contrast, Experiment No. Examples Nos. 17 to 35 are examples that deviate from any of the requirements defined in the present invention (Experiment Nos. 17 to 30 are those that deviate from the chemical component composition defined in the present invention, and Experiments Nos. 31 to 35 are out of manufacturing conditions. As a result, it is understood that one of the characteristics is not obtained.

Claims (4)

C:0.10%(「質量%」の意味、化学成分については以下同じ)未満(0%を含まない)、Si:1.0%以下(0%を含まない)、Mn:1.0〜2.0%、P:0.015%以下(0%を含まない)、S:0.010%以下(0%を含まない)、Al:0.05〜0.50%、Ti:0.008〜0.030%、N:0.0020〜0.010%およびCa:0.0035%以下(0%を含まない)を夫々含有する他、Cu:2%以下(0%を含まない)、Ni:2%以下(0%を含まない)およびCr:2%以下(0%を含まない)よりなる群から選ばれる1種以上を含有し、t/4(t:板厚)位置のミクロ組織において、フェライトおよびベイナイトの混合組織からなると共に、ベイナイト中に残留オーステナイトが分散しており、且つフェライトの平均粒径が10〜50μmであると共に、ベイナイト中に存在する残留オーステナイトが面積分率で2.0%以上存在するものであることを特徴とする低降伏比高靭性厚鋼板。   C: Less than 0.10% (meaning “mass%”, the same applies to chemical components) (not including 0%), Si: not more than 1.0% (not including 0%), Mn: 1.0 -2.0%, P: 0.015% or less (excluding 0%), S: 0.010% or less (not including 0%), Al: 0.05-0.50%, Ti: 0 0.008 to 0.030%, N: 0.0020 to 0.010% and Ca: 0.0035% or less (not including 0%), respectively, Cu: 2% or less (not including 0%) ), Ni: 2% or less (not including 0%) and Cr: 2% or less (not including 0%), containing at least one selected from the group consisting of t / 4 (t: thickness) In this microstructure, it consists of a mixed structure of ferrite and bainite, and residual austenite is dispersed in bainite. And a high yield toughness steel plate having a low yield ratio, characterized in that the ferrite has an average grain size of 10 to 50 μm and the retained austenite in the bainite is 2.0% or more in area fraction. . Mo:0.5%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、B:0.003%以下(0%を含まない)およびV:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1に記載の低降伏比高靭性厚鋼板。   Mo: 0.5% or less (not including 0%), Nb: 0.05% or less (not including 0%), B: 0.003% or less (not including 0%), and V: 0.1 2. The low yield ratio high toughness thick steel plate according to claim 1, comprising at least one selected from the group consisting of 1% or less (not including 0%). 更に、Mg:0.01%以下(0%を含まない)および/または希土類元素:0.01%以下(0%を含まない)を含有するものである請求項1または2に記載の低降伏比高靭性厚鋼板。   The low yield according to claim 1 or 2, further comprising Mg: 0.01% or less (not including 0%) and / or rare earth elements: 0.01% or less (not including 0%). Specific high toughness steel plate. 更に、Zr:0.1%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の低降伏比高靭性厚鋼板。   Furthermore, Zr: 0.1% or less (0% is not included) The low yield ratio high toughness thick steel plate in any one of Claims 1-3.
JP2009101994A 2009-04-20 2009-04-20 Low yield ratio high toughness steel plate Expired - Fee Related JP5390922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009101994A JP5390922B2 (en) 2009-04-20 2009-04-20 Low yield ratio high toughness steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101994A JP5390922B2 (en) 2009-04-20 2009-04-20 Low yield ratio high toughness steel plate

Publications (2)

Publication Number Publication Date
JP2010248599A true JP2010248599A (en) 2010-11-04
JP5390922B2 JP5390922B2 (en) 2014-01-15

Family

ID=43311249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101994A Expired - Fee Related JP5390922B2 (en) 2009-04-20 2009-04-20 Low yield ratio high toughness steel plate

Country Status (1)

Country Link
JP (1) JP5390922B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197497A (en) * 2011-03-22 2012-10-18 Kobe Steel Ltd Thick steel plate excellent in toughness and strain aging property
WO2014132627A1 (en) 2013-02-28 2014-09-04 Jfeスチール株式会社 Thick steel plate and production method for thick steel plate
WO2020039979A1 (en) * 2018-08-23 2020-02-27 Jfeスチール株式会社 Hot rolled steel plate and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106435360A (en) * 2016-10-25 2017-02-22 武汉科技大学 High-strength, high-toughness, corrosion-resistant and weather-resistant steel plate and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210125A (en) * 1982-06-01 1983-12-07 Sumitomo Metal Ind Ltd Production of strong and tough high tensile steel plate by direct hardening method
JP2003253388A (en) * 2002-03-01 2003-09-10 Sumitomo Metal Ind Ltd High-strength hot-rolled steel sheet and manufacturing method therefor
JP2006299413A (en) * 2005-03-24 2006-11-02 Jfe Steel Kk Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP2007056294A (en) * 2005-08-23 2007-03-08 Kobe Steel Ltd Method for manufacturing steel plate with low yield ratio, high strength and high toughness
JP2008248328A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Low yield ratio, high strength and high toughness steel sheet, and method for producing the same
JP2009299414A (en) * 2008-06-17 2009-12-24 Ihi Corp Faring type wind resistant structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210125A (en) * 1982-06-01 1983-12-07 Sumitomo Metal Ind Ltd Production of strong and tough high tensile steel plate by direct hardening method
JP2003253388A (en) * 2002-03-01 2003-09-10 Sumitomo Metal Ind Ltd High-strength hot-rolled steel sheet and manufacturing method therefor
JP2006299413A (en) * 2005-03-24 2006-11-02 Jfe Steel Kk Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP2007056294A (en) * 2005-08-23 2007-03-08 Kobe Steel Ltd Method for manufacturing steel plate with low yield ratio, high strength and high toughness
JP2008248328A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Low yield ratio, high strength and high toughness steel sheet, and method for producing the same
JP2009299414A (en) * 2008-06-17 2009-12-24 Ihi Corp Faring type wind resistant structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013029374; Keiji Ueda、他4名: 'Development of 780MPa grade Steel Plate by Microstructural Control Containing M-A through the On-Lin' 材料とプロセス Vol.21 No.1, 20080301, Page.500-503 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197497A (en) * 2011-03-22 2012-10-18 Kobe Steel Ltd Thick steel plate excellent in toughness and strain aging property
WO2014132627A1 (en) 2013-02-28 2014-09-04 Jfeスチール株式会社 Thick steel plate and production method for thick steel plate
US10041159B2 (en) 2013-02-28 2018-08-07 Jfe Steel Corporation Thick steel plate and production method for thick steel plate
WO2020039979A1 (en) * 2018-08-23 2020-02-27 Jfeスチール株式会社 Hot rolled steel plate and manufacturing method thereof
JP6693607B1 (en) * 2018-08-23 2020-05-13 Jfeスチール株式会社 Hot rolled steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JP5390922B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP6234845B2 (en) High strength galvannealed steel sheet with excellent bake hardenability and bendability
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5910792B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP2011094230A (en) Steel sheet having low yield ratio, high strength and high uniform elongation, and method for manufacturing the same
JP2011094231A (en) Steel sheet having low yield ratio, high strength and high toughness, and method for manufacturing the same
JP5729803B2 (en) High-tensile steel plate and manufacturing method thereof
JP6252291B2 (en) Steel sheet and manufacturing method thereof
JP2011179106A (en) High strength steel plate excellent in drop weight properties
JP2008308736A (en) Low-yield-ratio and high-strength thick steel plate superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor
JP2008163446A (en) Steel member for high heat input welding
JP2007177266A (en) Low-yield-ratio high-strength thick steel plate and manufacturing method
JP2008248328A (en) Low yield ratio, high strength and high toughness steel sheet, and method for producing the same
KR101608239B1 (en) Steel material for high-heat-input welding
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2010248621A (en) Method for manufacturing high-strength high-toughness steel
JP5390922B2 (en) Low yield ratio high toughness steel plate
JP2007177327A (en) Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone
JP2010202938A (en) Thick steel plate having excellent brittle crack arrest property
JP4419695B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2006274403A (en) Thick steel plate having superior fatigue-crack-propagation characteristics and toughness, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5390922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees