JP2010247987A - Driving device of rack & pinion gear applicable even to curve and method of manufacturing the same - Google Patents

Driving device of rack & pinion gear applicable even to curve and method of manufacturing the same Download PDF

Info

Publication number
JP2010247987A
JP2010247987A JP2009116998A JP2009116998A JP2010247987A JP 2010247987 A JP2010247987 A JP 2010247987A JP 2009116998 A JP2009116998 A JP 2009116998A JP 2009116998 A JP2009116998 A JP 2009116998A JP 2010247987 A JP2010247987 A JP 2010247987A
Authority
JP
Japan
Prior art keywords
gear
curved
rack gear
pinion gear
rack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116998A
Other languages
Japanese (ja)
Inventor
Koichi Sano
功一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANO GEAR KK
Original Assignee
SANO GEAR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANO GEAR KK filed Critical SANO GEAR KK
Priority to JP2009116998A priority Critical patent/JP2010247987A/en
Publication of JP2010247987A publication Critical patent/JP2010247987A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Types And Forms Of Lifts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent abrasion and an abnormal sound of a curved rack gear and a curved pinion gear caused by the occurrence of dislocation in a meshing reference with the curved rack gear by a phenomenon that a reference pitch circle of the curved pinion gear vertically causes pitching, in a driving device used for a lifting machine for curved stairs. <P>SOLUTION: The manufacturing method of this driving device manufactures the curved rack gear 1 by twisting in a curved shape after performing double helical cutting by an angle and a pitch of adding a correction corresponding to twisting in the curved shape to a straight line-shaped raw material, instead of manufacturing the curved rack gear 1 by cutting a curved-shaped raw material, and manufactures the corresponding curved pinion gear by performing helical gear cutting by an angle and a pitch of respectively doubling the angle and the pitch. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、曲線階段用昇降機等に使用する、曲線にも対応するラックギア及び、ピニオンギアの駆動装置と、その製造方法に関するものである。The present invention relates to a rack gear and a pinion gear drive device that are also used in curved stair lifts and the like, and that corresponds to a curved line, and a method of manufacturing the same.

従来、曲線用ラックに使用されているのはJIS規格に準ずる直線用の標準歯車のラックギアを使用し、その直線ラックギアとJIS規格に準ずる標準歯車の平歯車を使用されている。しかしながらそれらの構造的には直線ラックギアを左右曲線に曲げただけのものである為、曲線にしてのピッチや角度が異なる為、それらの構造には単に平歯車を駆動するだけの機能であり、平歯車を円滑に駆動する機能を有する訳ではない。Conventionally, a linear rack gear that conforms to JIS standards is used for curved racks, and a spur gear that is a standard gear conforming to JIS standards is used. However, because their structure is simply a straight rack gear bent in a left-right curve, the pitch and angle in the curve are different, so these structures are simply a function of driving a spur gear, It does not have a function of smoothly driving the spur gear.

なお、本願発明に関連する公知技術として次の特許文献1と特許文献2のふたつ挙げることができる。In addition, the following patent document 1 and the patent document 2 can be mentioned as a well-known technique relevant to this invention.

特開平6−286961JP-A-6-286961 特開平2008−127202JP 2008-127202 A

発明が解決しようとしている課題Problems to be solved by the invention

これは、次のような欠点があった。従来技術に係る曲線でのラックギア及びピニオンギアは、単に左右方向に曲げただけのラックギアを使用している為、ピニオンギアを駆動するだけの機能でありピニオンギアを円滑に駆動する機能を有するわけではない事により、曲線にしてのラックギアでは常にピニオンギアがラックギアの内側の左右の歯に無理な接触を起こしている為、振動が発生する。この時、ピニオンギアの基準ピッチ円が上下にピッチングを起こす現象によりラックギアとの噛合い基準にズレが発生する。よって平歯車との噛合いが円滑ではなくなりラックギア及びピニオンギアに磨耗や異音が発生する。その要因としては、曲線でのラックギアは直線上のラックギアのピッチとは異なるからである。その曲線の角度でのピッチをラックギア及びピニオンギアにて変更する必要がある。また曲線での角度の大きさや歯車の大きさによっても異なるので、次の製造方法を用いる事で、ラックギア及びピニオンギアに不必要な磨耗や振動を軽減する事できるよう正常な噛合いを保つようにする事である。よって本発明は上記のような欠点を解決する為に発明いたしました。This has the following drawbacks. The rack gear and pinion gear in the curve according to the prior art uses a rack gear that is simply bent in the left-right direction, and therefore has a function of driving the pinion gear and a function of smoothly driving the pinion gear. Therefore, in a rack gear with a curved shape, vibrations occur because the pinion gear always makes excessive contact with the left and right teeth inside the rack gear. At this time, the reference pitch circle of the pinion gear causes a shift in the meshing reference with the rack gear due to a phenomenon in which the reference pitch circle is pitched up and down. Therefore, the meshing with the spur gear is not smooth, and wear and noise are generated in the rack gear and the pinion gear. The reason is that the rack gear on the curve is different from the pitch of the rack gear on the straight line. It is necessary to change the pitch at the angle of the curve by the rack gear and the pinion gear. Also, since it varies depending on the angle of the curve and the size of the gear, the following manufacturing method should be used to maintain normal meshing so that unnecessary wear and vibration can be reduced in the rack gear and pinion gear. Is to do. Therefore, the present invention was invented to solve the above drawbacks.

課題を解決するための手段Means for solving the problem

前記の目的に達成する為の手段として、ダブルヘリカル切削してなるラックギア及びピニオンギアの駆動装置の製造方法を提供とする。またその製造方法で製作された相方のギアを組み合わせしなければならない。まず曲線対応のラックギアでは左右方向である曲線での品物に後からラックギア切削を行う事は事実上、不可能な事であり従来通り直線状における品物に曲線での対応ができるダブルヘリカルラックギア切削を提供する事により切削加工後にて左右方向に曲げた時、最良の曲線ラックができあがる。それに伴い曲線でのラックギアに対応する事が出来るピニオンギアも提供とする。As means for achieving the above object, there is provided a manufacturing method of a rack gear and pinion gear drive device formed by double helical cutting. In addition, it is necessary to combine the gears produced by the manufacturing method. First, with rack gears that support curves, it is virtually impossible to perform rack gear cutting on a product with a curve in the left-right direction. Double helical rack gear cutting that can handle a product with a straight line as before is practically impossible. By providing it, the best curved rack is created when it is bent left and right after cutting. Along with this, a pinion gear that can handle a rack gear on a curve will also be provided.

発明の効果The invention's effect

上記で説明したように本発明によって曲線でも対応する事が出来る曲線ラック製法で製作したラックギアと曲線ラックギアに対応する曲線ピニオンギア製法で製作したピニオンギアとの組み合わせを実施する事で従来のような噛合い基準のズレがなくなり曲線でのラックギア及びピニオンギアが直線上のラックギアに駆動するのと同様な効果を得られる為、ピニオンギアが正常に伝達する事が可能となり、その真価が発揮できる。よって、ラックギア及びピニオンギアに不必要な磨耗を軽減する事が出来るほか、異音や振動が減少した事を試作にて実証いたしました。As described above, by combining a rack gear manufactured by a curved rack manufacturing method that can be applied to a curved line according to the present invention and a pinion gear manufactured by a curved pinion gear manufacturing method corresponding to the curved rack gear, the conventional method is used. Since the deviation of the meshing reference is eliminated and the rack gear and pinion gear in the curve can obtain the same effect as driving the rack gear on a straight line, the pinion gear can transmit normally, and the true value can be exhibited. Therefore, in addition to being able to reduce unnecessary wear on the rack gear and pinion gear, it was proved by trial that noise and vibration were reduced.

本発明の第1の実態に係る曲線にしての曲線ラックギアの外観上斜視図である。It is a perspective view on the appearance of the curve rack gear made into the curve concerning the 1st actual condition of the present invention. 本発明の第1の実態に係る曲線ラックギアの外観斜視図である。It is an external appearance perspective view of the curve rack gear which concerns on the 1st actual condition of this invention. 本発明の第2の実態に係る曲線対応のピニオンギアの外観斜視図である。It is an external appearance perspective view of the pinion gear corresponding to the curve which concerns on the 2nd actual condition of this invention. 本発明の第3の実態に係る曲線でのラックギア及びピニオンギアの噛合い側面図である。It is a meshing side view of the rack gear and the pinion gear in the curve concerning the 3rd actual condition of the present invention. 図1で示す曲線ラックギアの直線での第1の切削工程の外観斜視図である。It is an external appearance perspective view of the 1st cutting process in the straight line of the curve rack gear shown in FIG. 図1で示す曲線ラックギアの直線での第2の切削工程の外観斜視図である。It is an external appearance perspective view of the 2nd cutting process in the straight line of the curved rack gear shown in FIG. 図1で示す曲線ラックギアの直線での切削工程後の外観斜視図である。It is an external appearance perspective view after the cutting process in the straight line of the curved rack gear shown in FIG. 図3で示す曲線対応のピニオンギアでの第1の切削工程の外観斜視図である。It is an external appearance perspective view of the 1st cutting process in the pinion gear corresponding to the curve shown in FIG. 図3で示す曲線対応のピニオンギアでの第2の切削工程の外観斜視図である。It is an external appearance perspective view of the 2nd cutting process in the pinion gear corresponding to the curve shown in FIG.

発明を実施する為の形態Detailed Description of the Invention

優秀な歯車を製作する時には、まず設計に当たって動力を無理なく伝達しうるように、種類の複雑な計算を正確に行って、歯車の設計図や工作図が作られます。つぎにこれに基づいて、現場の技術者が設計された歯車を間違いなく加工するために、機械のセッティングの計算を行った上で機械加工に移ります。また、現場の作業者も単に掲示された図面に従って機械的に加工するだけではなく、歯車の性格や機能の全般にわたって、よく理解した上で製作作業に従事すれば優れた歯車が出来上がる事になる。When producing excellent gears, the design drawings and work drawings of gears are created by accurately performing various kinds of complicated calculations so that power can be transmitted without difficulty in the design. Next, based on this, in order to make sure that the on-site engineer designed the gears, we calculated the machine settings and then moved on to machining. Also, on-site workers can not only machine mechanically according to the posted drawings, but if they understand the overall characteristics and functions of the gears and engage in production work, excellent gears will be produced. .

以下、本発明を実施する為の最良の形態を図面に基づき詳細に説明する。Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1〜図2は本発明の第1の実施の形態に係り、図1はその完成した外観斜視図であり図5〜図7は製作工程の外観斜視図である。1 to 2 relate to the first embodiment of the present invention, FIG. 1 is a perspective view of the completed appearance, and FIGS. 5 to 7 are perspective views of the manufacturing process.

まず第1の実施形態での曲線ラックギア製法では図1で示すように、曲線上での1歯あたりの角度を計算値にて算出したものを、その数値の分だけ角度修正1bを行わなければならない。ここでの角度修正1bとは歯をねじらす事である。この角度修正1bを行う事により基準ピッチ1dも角度修正1bにてのピッチに変更する必要がある。基準ピッチ1dとは歯車の歯の大きさの基準として、とくに選定されたピッチを基準ピッチ1dといい(m・π)表す。また歯をねじらす為のピッチは(m・π/cosβ)にする。しかも同一の曲線での角度1eでもモジュール(m)の大きさによっても計算値は異なる。
モジュールとは、基準ピッチを円周率で除した値をモジュールといい、歯の大きさを定めるものである。一般にミリメートル単位で表し、尚インチサイズではダイヤメトラルピッチ(DP25.4/モジュール)で表す。
First, in the curved rack gear manufacturing method according to the first embodiment, as shown in FIG. 1, the angle per tooth on the curve calculated with the calculated value must be corrected by the angle corresponding to the numerical value. Don't be. Here, the angle correction 1b is to twist the teeth. By performing the angle correction 1b, the reference pitch 1d needs to be changed to the pitch in the angle correction 1b. The reference pitch 1d is referred to as a reference pitch 1d (m · π) as a reference for the size of the gear teeth. The pitch for twisting the teeth is (m · π / cos β). Moreover, the calculated value differs depending on the size of the module (m) even at the angle 1e on the same curve.
A module is a value obtained by dividing the reference pitch by the circumference, which is called a module, and determines the size of the teeth. In general, it is expressed in millimeters, and in the inch size, it is expressed as a diamond pitch (DP25.4 / module).

その角度やピッチが計算値にて算出したものを、図5で示す、直線状の品物にヘリカルラック切削(左方向)にて加工を施す。その後、同一上の歯面にて図6で示す、反対のヘリカルラック切削(右方向)を的確な歯合わせを必要として加工を施す。その時、ラックギアの歯幅1c(歯の軸断面内における長さを歯幅という。)の中心での基準歯厚1aはJIS規格に準ずる直線ラックギアの基準歯厚1aと変わらない。基準歯厚1aとは、歯の厚さを歯厚といい、(m・π/2)で表す。The straight line product shown in FIG. 5 is processed by helical rack cutting (left direction) with the angle and pitch calculated by the calculated values. Thereafter, on the same tooth surface, the opposite helical rack cutting (right direction) shown in FIG. At that time, the reference tooth thickness 1a at the center of the rack gear tooth width 1c (the length in the tooth axial section is referred to as the tooth width) is not different from the reference tooth thickness 1a of the linear rack gear according to the JIS standard. With the reference tooth thickness 1a, the tooth thickness is referred to as tooth thickness and is represented by (m · π / 2).

よって図7で示す、その組み合わせ加工によるダブルヘリカルラックギア切削加工を実施する事で歯形修正(歯形がダイヤモンド形状)になる事により、図7で示す直線状でのラックギアを曲線に曲げた時、内側の左右の歯が曲線の中心に向かって平行になる事により、理想の歯型が成りたちピニオンギアの歯がラックギアの内側の左右の歯に無理な接触を軽減とする。Therefore, when the double helical rack gear cutting by the combination processing shown in FIG. 7 is performed, the tooth profile is corrected (the tooth profile is a diamond shape), so that when the rack gear in the linear shape shown in FIG. By making the left and right teeth parallel to the center of the curve, an ideal tooth shape is formed, and the teeth of the pinion gear reduce the excessive contact with the left and right teeth inside the rack gear.

図3は本発明の第2の実施の形態に係り、図3はその完成した外観斜視図であり図8〜図9は製作工程の外観斜視図である。FIG. 3 relates to the second embodiment of the present invention, FIG. 3 is a perspective view of the completed appearance, and FIGS. 8 to 9 are perspective views of the manufacturing process.

第2の実施形態での曲線用ピニオンギア製法も従来になく、曲線ラックギア製法で算出した角度1b及びピッチ1dを使用する。しかしながら使用する平歯車の歯幅2eは曲線上のラックギアを駆動することにより、曲線ラックギア1の歯幅1cに対しての対比はピニオンギア2に対してラックギアを1とする。この為、曲線ピニオンギア2のピッチ2b及び角度2dをラックギア製法で使用した数値の1/2とする。There is no conventional curve pinion gear manufacturing method in the second embodiment, and the angle 1b and pitch 1d calculated by the curve rack gear manufacturing method are used. However, the tooth width 2e of the spur gear used is driven by a rack gear on a curve, so that the rack gear 1 is compared with the tooth width 1c of the curve rack gear 1 with respect to the pinion gear 2. For this reason, the pitch 2b and the angle 2d of the curved pinion gear 2 are set to ½ of the numerical values used in the rack gear manufacturing method.

まず上記で算出したピッチ2b及び角度2dを図8で示すヘリカルギア切削(右方向)にて加工を施す。その後、曲線ラックギア製法と同様に同一上の歯面にて図9で示す反対のヘリカルラック切削(左方向)を的確な歯合わせを必要として加工を施す。その時、曲線用ピニオンギアも歯幅2eの中心での基準歯厚2cはJIS規格に準ずる平歯車の基準歯厚2cと変わらない。First, the pitch 2b and the angle 2d calculated above are processed by helical gear cutting (right direction) shown in FIG. After that, similar to the curved rack gear manufacturing method, the opposite helical rack cutting (left direction) shown in FIG. At that time, the reference tooth thickness 2c at the center of the tooth width 2e of the curved pinion gear is not different from the reference tooth thickness 2c of the spur gear according to the JIS standard.

よって図3で示す、その組み合わせ加工によるダブルヘリカルギア切削加工を実施する事で、歯型修正(歯形がダイヤモンド形状)になる事により、理想の歯型が成りたち、図1で示す曲線でのラックギアの内側の左右の歯に曲線用のピニオンギアの歯が無理な接触を軽減とする。尚、ここでのダイヤモンド形状は通常のクラウニング形状とは似てるが全く違うものである。クラウニングとは、歯スジの方向に適当なふくらみをつけることをクラウニングという。Therefore, by carrying out double helical gear cutting by the combination processing shown in FIG. 3, the tooth shape is corrected (the tooth shape is a diamond shape), so that an ideal tooth shape is realized, and the curve shown in FIG. The teeth of the curved pinion gear reduce the excessive contact with the left and right teeth inside the rack gear. The diamond shape here is similar to the normal crowning shape, but is completely different. Crowning is called crowning to provide an appropriate bulge in the direction of tooth stripes.

図4は本発明の第3の実施形態に係り、図4は図1及び図3との組み合せ側面図である。FIG. 4 relates to a third embodiment of the present invention, and FIG. 4 is a side view in combination with FIG. 1 and FIG.

歯車は単体では存在しません。どのような複数の種類の歯車であっても相手がなければその意味をもちません。この第3の実態形態ではそのお互いの歯車がどれだけ有効にスムースに伝達しうる為の技術方法である。There is no gear alone. No matter what kind of gears you have, there is no point in having them. This third actual form is a technical method for enabling the mutual gears to be transmitted effectively and smoothly.

前述で述べた曲線ラックギア製法で製作されたラックギア1と曲線用ピニオンギア製法で製作されたピニオンギア2とを組み合わせする事によりピニオンギアの基準ピッチ円2aとラックギアの基準ピッチ線1fとが中心で交わる為、図4で示す、噛合いピッチ円でのズレがなくなり、標準歯車での中心距離と同じ距離を保つ事が出来る。この事により歯車が歯車らしくなる為の最低限である噛合い基準でのズレを修正するだけで最良の噛合いになる。基準ピッチ円2aとは、基準ピッチ2bを歯数倍した長さの円周をもつ円を基準ピッチ円2aといい、基準ピッチ線1fとはラックの歯の厚さがピッチの1/2になるような特定のピッチ線をいう。尚、中心距離だけを変更するには転位歯車を用いるが、このような曲線で使用してもあまり意味をもたない。この転位歯車とは、基準ラックの基準ピッチ線1fが歯車の基準ピッチ円2aに接していないものをいう。歯車から遠ざかる方向にずれたものを十転位、近づく方向向にずれたものを一転位という。また、通常のヘリカル切削加工によれば、ピニオンギアを右方向に切削すると、ラックギアは、反対の左方向に切削しなくてはならないため、回転方向でのスラストが発生するがこの製法によるダブルヘリカル切削加工により回転方向によるスラストは均一になります。
この上記の説明によって、ピニオンギアが正常にラックギアに伝達し駆動する事が可能となる。
By combining the rack gear 1 manufactured by the curved rack gear manufacturing method described above and the pinion gear 2 manufactured by the curved pinion gear manufacturing method, the reference pitch circle 2a of the pinion gear and the reference pitch line 1f of the rack gear are centered. Since they intersect, there is no deviation in the meshing pitch circle shown in FIG. 4, and the same distance as the center distance of the standard gear can be maintained. As a result, it is possible to achieve the best engagement only by correcting the deviation based on the minimum engagement standard for making the gear look like a gear. The reference pitch circle 2a is a circle having a circumference that is a multiple of the number of teeth of the reference pitch 2b. The reference pitch circle 2a is a reference pitch line 1f. The thickness of the rack teeth is ½ the pitch. This is a specific pitch line. In order to change only the center distance, a dislocation gear is used, but even if it is used in such a curve, it does not make much sense. The shift gear is a gear in which the reference pitch line 1f of the reference rack is not in contact with the reference pitch circle 2a of the gear. Those shifted in the direction away from the gear are referred to as ten dislocations, and those shifted in the approaching direction are referred to as one dislocation. In addition, according to normal helical cutting, if the pinion gear is cut to the right, the rack gear must be cut to the opposite left, which causes thrust in the rotational direction. Thrust by rotation direction becomes uniform by cutting.
With the above description, the pinion gear can be normally transmitted to the rack gear and driven.

この製法での組み合わせによって、曲線でのラックギア1及びピニオンギア2を好適な製法として標準化する。このことにより、相方の歯車の磨耗を軽減するほか、異音や振動が抑えられる。音が小さくなるということは、より円滑に回転するということです。又ラックギア及びピニオンギアのいずれかの一方だけをこの製法で製作しても効果は得られるが、相方での組み合わせでの効果に比べると半減してしまう。又、歯車の音の原因は、歯車の精度に影響することのほかに様々の要因がありますが、噛合い率の大小も大いに関係します。また本発明の実施形態で説明したように、歯車の大きさによっても変わるので、この製法では色々な曲線の角度1eに対応できるほかS字のような両方での曲線にも対応している事により、一本での品物にてラックギア切削が可能である為、組み立て時等での作業も容易であり、効果的である。又、発明を実施する為の形態で述べたヘリカル切削方向では一例を示したものなので、どちらの方向からでも切削をしても構わない。By the combination in this manufacturing method, the rack gear 1 and the pinion gear 2 in a curve are standardized as a preferable manufacturing method. As a result, the wear of the opposite gear is reduced, and abnormal noise and vibration are suppressed. When the sound is low, it means that it rotates more smoothly. Even if only one of the rack gear and the pinion gear is manufactured by this manufacturing method, an effect can be obtained, but it is halved compared to the effect obtained by the combination of the two. In addition to the effects on gear accuracy, there are various factors that cause gear noise, but the size of the meshing ratio is also greatly related. In addition, as described in the embodiment of the present invention, since it varies depending on the size of the gear, this manufacturing method can cope with the angle 1e of various curves and also supports both curves such as S-shape. As a result, the rack gear can be cut with a single product, so that the work at the time of assembling is easy and effective. Further, since the example of the helical cutting direction described in the embodiment for carrying out the invention is shown, the cutting may be performed from either direction.

本発明は曲線ラックギアに係るものなので、曲線階段昇降機等のL字階段、U字階段、又、内回り、外回りのラックギア及びピニオンギアの製造分野で利用することができる。Since the present invention relates to a curved rack gear, it can be used in the field of manufacturing L-shaped stairs, U-shaped stairs such as curved stair lifts, and inner and outer rack gears and pinion gears.

1 曲線ラック 2 曲線ピニオンギア
1a 基準歯厚 2a 基準ピッチ円
1b 角度修正 2b 基準ピッチ
1c 歯幅 2c 基準歯厚
1d 基準ピッチ 2d 角度修正
1e 曲線の角度 2e 歯幅
1f 基準ピッチ線
1 curved rack 2 curved pinion gear 1a reference tooth thickness 2a reference pitch circle 1b angle correction 2b reference pitch 1c tooth width 2c reference tooth thickness 1d reference pitch 2d angle correction 1e curve angle 2e tooth width 1f reference pitch line

Claims (2)

曲線に対応するよう、ダブルヘリカルラック切削してなる構成を有するラックギア及び/又は、ダブルヘリカルギア切削してなる構成を有するピニオンギアを備えた事を、特徴とする駆動装置。A drive device characterized by comprising a rack gear having a structure formed by cutting a double helical rack and / or a pinion gear having a structure formed by cutting a double helical gear so as to correspond to a curved line. 曲線に対応するよう、左右方向のいずれの一方向にヘリカル切削加工を施したのち、同一歯面に左右方向の他方向にヘリカル切削加工を施した、ダブルヘリカル切削加工を特徴とするラックギア及び/又は、ピニオンギアを製造する駆動装置の製造方法。A rack gear characterized by double helical cutting, in which helical cutting is performed in one of the left and right directions so as to correspond to the curve, and then helical cutting is performed on the same tooth surface in the other direction of the left and right. Or the manufacturing method of the drive device which manufactures a pinion gear.
JP2009116998A 2009-04-17 2009-04-17 Driving device of rack & pinion gear applicable even to curve and method of manufacturing the same Pending JP2010247987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116998A JP2010247987A (en) 2009-04-17 2009-04-17 Driving device of rack & pinion gear applicable even to curve and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116998A JP2010247987A (en) 2009-04-17 2009-04-17 Driving device of rack & pinion gear applicable even to curve and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010247987A true JP2010247987A (en) 2010-11-04

Family

ID=43310820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116998A Pending JP2010247987A (en) 2009-04-17 2009-04-17 Driving device of rack & pinion gear applicable even to curve and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010247987A (en)

Similar Documents

Publication Publication Date Title
KR101916470B1 (en) Tool for cutting gear and method for cutting gear
JP5040208B2 (en) Gear pair and conical involute gear manufacturing method
US20140090503A1 (en) Gear and manufacturing method for the same
KR20130053411A (en) Load rating optimised bevel gear toothing
CN107002852A (en) Resin-made helical gear
CN105422795A (en) Conical ring surface involute gear and machining method thereof
CN109190289A (en) The linear correction method of cycloid gear flank profil and Cycloidal pin-wheel drive device
KR20130071442A (en) Optimized crowning in bevel gear wheels of a bevel gear transmission
JP2019108958A (en) Structure of spiral tooth profile gear
JP2010247987A (en) Driving device of rack &amp; pinion gear applicable even to curve and method of manufacturing the same
JP2018103285A (en) Shaving cutter, method for processing gear, and gear processing device
JP5072754B2 (en) Press machine
CN206392986U (en) A kind of cutter for being used to process ROV propeller repairing type gears
JP2007113675A (en) Worm gear
JP5544698B2 (en) Gear cutting method
JP3717052B2 (en) How to hob a curved tooth-gear gear
JP3886136B2 (en) Manufacturing method of chain sprocket
TWI659165B (en) Method for manufacturing point contact sinusoidal gear transmission mechanism with preset second-order or fourth-order transmission error
JP4835163B2 (en) Shaving cutter for internal gear finishing before quenching
CN2759664Y (en) Skewed tooth combing tool
JP2012122504A (en) Power transmission mechanism
JP2022045080A (en) Method for correcting tooth trace of gear
TW202026549A (en) Design method for point-contacting curvilinear tooth trace cosine gear transmission mechanism with preset fourth-order transmission error which is superior to the conventional second-order transmission error in noise resistance and vibration resistance capability while not weakening too much tooth root strength
JP2010209968A (en) Worm wheel and method for manufacturing the same
JP2007289999A (en) Flat die for form rolling of worm shaft