JP5544698B2 - Gear cutting method - Google Patents

Gear cutting method Download PDF

Info

Publication number
JP5544698B2
JP5544698B2 JP2008259792A JP2008259792A JP5544698B2 JP 5544698 B2 JP5544698 B2 JP 5544698B2 JP 2008259792 A JP2008259792 A JP 2008259792A JP 2008259792 A JP2008259792 A JP 2008259792A JP 5544698 B2 JP5544698 B2 JP 5544698B2
Authority
JP
Japan
Prior art keywords
tooth
gear
blade
contact
gear cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008259792A
Other languages
Japanese (ja)
Other versions
JP2010089192A (en
Inventor
博充 田中
昭宏 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008259792A priority Critical patent/JP5544698B2/en
Publication of JP2010089192A publication Critical patent/JP2010089192A/en
Application granted granted Critical
Publication of JP5544698B2 publication Critical patent/JP5544698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はホブカッタやピニオンカッタ、電着ウォーム状工具のように、被削歯車に歯切り加工を施して歯を形成する歯切り工具による歯切り加工方法に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear cutting method using a gear cutting tool such as a hob cutter, a pinion cutter, or an electrodeposition worm-shaped tool that forms a tooth by cutting gears.

このような歯切り工具としては、例えば特許文献1に記載されたホブカッタや特許文献2に記載されたピニオンカッタのように切刃を有する刃部を備えたカッタ、あるいは特許文献3に記載されているようなウォーム状の刃部にダイヤモンド砥粒等を電着した電着ウォーム状工具が知られている。これらの歯切り工具においては、ホブカッタや電着ウォーム状工具では、その工具本体の回転軸線を被削歯車の中心軸線に交差する平面上に位置させるようにして、またピニオンカッタでは、その回転軸線を被削歯車の中心軸線と平行となるようにして、いずれも被削歯車を中心軸線回りに強制的に回転駆動するとともに、この被削歯車の回転に同期するように工具本体も被削歯車とは独立して強制的に回転駆動させ、被削歯車の歯の歯面に刃部の刃面が接触するように噛み合わせることにより、この刃部によって被削歯車の歯の歯面を形成してゆく。なお以後本明細書においては被削歯車に関するものを歯(面)、工具に関するものを刃(面)とする。
特開2003−178015号公報 特開2004−160645号公報 特開2003−266241号公報
As such a gear cutting tool, for example, a cutter provided with a blade portion having a cutting edge such as a hob cutter described in Patent Document 1 and a pinion cutter described in Patent Document 2, or described in Patent Document 3. There is known an electrodeposition worm-like tool in which diamond abrasive grains or the like are electrodeposited on such a worm-like blade portion. In these gear cutting tools, in hob cutters and electrodeposition worm-like tools, the rotation axis of the tool body is positioned on a plane intersecting the central axis of the gear to be cut, and in pinion cutters, the rotation axis Are parallel to the center axis of the work gear, and the tool body is forcibly rotated around the center axis, and the tool body is also synchronized with the rotation of the work gear. The tooth surface of the tooth of the work gear is formed by this blade part by forcibly rotating it independently and engaging with the tooth face of the tooth of the work gear so that the face of the blade part comes into contact. I will do it. In the following description, the tooth (surface) is related to the work gear, and the blade (surface) is related to the tool.
JP 2003-178015 A JP 2004-160645 A JP 2003-266241 A

ところで、このようなホブカッタやピニオンカッタ、電着ウォーム状工具等による歯切り加工において歯形成形誤差が生じる場合には、カッタと被削歯車とがそれぞれ独立して互いに同期するように強制的に回転駆動されるため、少なくともいずれか一方の回転軸への取付誤差による影響が大きいと考えられていた。ところが近年では、歯切り加工への一層の高精度化の要求に伴い、このような被削歯車や工具本体の取付誤差以外にも、ホブ盤や歯切り盤等の加工装置において被削歯車が取り付けられる上記回転軸などの装置自体の機械剛性が低い場合や、あるいは被削歯車そのものの剛性が低い場合に、上記刃面と歯面との噛み合い状態が変動することによる誤差の影響が無視できなくなってきており、このような誤差が大きくなると、たとえ回転軸への取付誤差を最小限に抑えても、形成された歯形にうねりが生じるおそれがある。   By the way, when a tooth formation error occurs in gear cutting with such a hob cutter, pinion cutter, electrodeposition worm-like tool, etc., the cutter and the gear to be cut are forcibly rotated so that they are synchronized with each other independently. Since it is driven, it is considered that the influence of the mounting error on at least one of the rotating shafts is large. However, in recent years, along with the demand for higher precision in gear cutting, in addition to such mounting errors of the work gear and tool body, the work gear is used in processing devices such as hobbing machines and gear cutting machines. When the mechanical rigidity of the device itself such as the rotating shaft to be mounted is low, or when the rigidity of the work gear itself is low, the influence of the error due to fluctuation of the meshing state of the blade surface and the tooth surface can be ignored. If such an error becomes large, the formed tooth profile may swell even if the mounting error on the rotating shaft is minimized.

本発明は、このような背景の下になされたもので、上述のように加工装置の機械剛性が低い場合や被削歯車自体の剛性が低い場合でも、被削歯車の歯と工具本体の刃部との噛み合い状態を安定させて歯形にうねりが発生したりするのを防ぎ、より高精度の歯を被削歯車に形成することが可能な歯切り加工方法を提供することを目的としている。 The present invention has been made under such a background. Even when the mechanical rigidity of the machining apparatus is low or the rigidity of the work gear itself is low as described above, the tooth of the work gear and the blade of the tool body are provided. An object of the present invention is to provide a gear cutting method capable of stabilizing the meshing state with the portion and preventing the tooth profile from generating undulations and forming a highly accurate tooth on the work gear.

上記課題を解決して、このような目的を達成するために、本発明は、第1に、被削歯車の歯に歯切り工具の刃部を噛み合わせて歯切り加工を行う歯切り加工方法であって、上記歯切り工具はホブカッタまたは電着ウォーム状工具であり、回転駆動される上記被削歯車に対して上記歯切り工具を同期させて駆動することにより、上記歯切り工具の刃面と上記被削歯車の歯面とを接触させて噛み合わせ、かつ転位圧力角を調整することにより、こうして噛み合わされた状態において、上記歯切り工具の右刃面が該被削歯車と噛み合う歯面の数と、上記歯切り工具の左刃面が該被削歯車と噛み合う歯面の数が常に同数となるように接触させるとともに、1つの上記歯に対してその左右歯面が常に上記右刃面と左刃面とに接触して加工が行われることを特徴とする。また、本発明は、第2に、被削歯車の歯に歯切り工具の刃部を噛み合わせて歯切り加工を行う歯切り加工方法であって、上記歯切り工具はピニオンカッタであり、回転駆動される上記被削歯車に対して上記歯切り工具を同期させて駆動することにより、上記歯切り工具の刃面と上記被削歯車の歯面とを接触させて噛み合わせ、かつ転位係数を調整することにより、こうして噛み合わされた状態において、上記歯切り工具の右刃面が該被削歯車と噛み合う歯面の数と、上記歯切り工具の左刃面が該被削歯車と噛み合う歯面の数が常に同数となるように接触させるとともに、1つの上記歯に対してその左右歯面が常に上記右刃面と左刃面とに接触して加工が行われることを特徴とする。なお、本明細書においては、歯切り工具がホブカッタやピニオンカッタのようにすくい面を有している場合はこの工具をすくい面から山中心に見て右側を右刃面、左側を左刃面とし、歯切り工具が電着ウォーム状工具のようにすくい面を有さない場合は工具の回転方向に対向する方向から山中心に見て右側を右刃面、左側を左刃面とする To solve the above problems, in order to achieve the above object, the present invention is the first, gear cutting method for performing gear cutting by engaging the blade portion of the hob with the teeth of workpiece gear a is, the hobs is hob or electrodeposited worm-shaped tool, by driving in synchronization the hob with respect to the workpiece gear to be rotated, the blade surface of the hob And the tooth surface of the gear to be cut and brought into contact with each other, and the dislocation pressure angle is adjusted to adjust the shift pressure angle so that the right blade surface of the gear cutting tool meshes with the workpiece gear in the state of being meshed in this way. And the left blade surface of the gear cutting tool are always in contact with each other so that the number of tooth surfaces meshing with the work gear is always the same. in contact with the surface and the left edge surface that processing is performed And features. Further, the present invention is secondly a gear cutting method for performing gear cutting by meshing a tooth of a gear to be cut with a tooth of a work gear, wherein the gear cutting tool is a pinion cutter, By driving the gear cutting tool in synchronization with the driven gear to be driven, the blade surface of the gear cutting tool and the tooth surface of the gear to be cut are brought into contact with each other, and the shift coefficient is set. By adjusting, in the state of meshing in this way, the number of tooth surfaces with which the right blade surface of the gear cutting tool meshes with the work gear, and the tooth surface with which the left blade surface of the gear cutting tool meshes with the work gear. The left and right tooth surfaces of one tooth are always in contact with the right blade surface and the left blade surface, and machining is performed. In this specification, when the gear cutting tool has a rake face such as a hob cutter or a pinion cutter, the right edge face on the right side and the left edge face on the left side when the tool is viewed from the rake face to the mountain center. When the gear cutting tool does not have a rake face like an electrodeposited worm-like tool, the right side is the right blade face and the left side is the left blade face when viewed from the direction opposite to the rotation direction of the tool from the center of the mountain .

このように構成された歯切り加工方法において、被削歯車の歯は、その右歯面と左歯面とが歯切り工具の刃部の左刃面と右刃面とに常に互いに等しい数の箇所で接触させられつつ、該刃部と噛み合わされて歯切り加工されるので、この刃部の刃面との接触により被削歯車の歯に作用する応力や抵抗は、右歯面から作用するものと左歯面から作用するものとで互いに相殺されることになる。従って、たとえこの被削歯車が取り付けられる回転軸等の加工装置の剛性や、被削歯車の歯自体の剛性が低い場合であっても、該被削歯車の歯の左右両歯面に作用する圧力や抵抗の不均衡によって歯が左右いずれかの歯面側に偏って強く押し付けられたりするのを防ぐことができ、これにより歯切り工具の刃部との歯面同士の噛み合い状態が変動するのを抑えて、当該歯切り工具によって形成された被削歯車の歯形にうねり等が発生するのを防ぎ、高精度の歯切り加工を促すことが可能となる。本明細書では、工具の右刃面に接触する被削歯車歯面を左歯面、工具の左刃面に接触する被削歯車歯面を右歯面と定義する。 In the gear cutting method configured in this way, the teeth of the gear to be cut are always equal in number to the left and right blade surfaces of the right and left tooth surfaces of the tooth cutting tool. Since it is engaged with the blade portion and geared while being brought into contact with each other, the stress and resistance acting on the teeth of the work gear due to contact with the blade surface of this blade portion act from the right tooth surface. And the one acting from the left tooth surface cancel each other. Therefore, even if the rigidity of the processing device such as a rotating shaft to which the work gear is mounted and the rigidity of the teeth of the work gear are low, they act on both the left and right tooth surfaces of the work gear teeth. It is possible to prevent the teeth from being biased and biased to either the left or right tooth surface due to pressure or resistance imbalance, and this changes the meshing state of the tooth surfaces with the blade part of the gear cutting tool. Therefore, it is possible to prevent waviness and the like from occurring in the tooth profile of the work gear formed by the gear cutting tool, and to promote high-precision gear cutting. In the present specification, the tooth surface of the gear to be cut that contacts the right blade surface of the tool is defined as the left tooth surface, and the tooth surface of the gear that contacts the left blade surface of the tool is defined as the right tooth surface.

図1および図2は歯切り工具ホブカッタである場合本発明の歯切り加工方法の第1の実施形態を示すものである。本実施形態におけるホブカッタは、図1に示すように軸線O回りに回転方向Tに回転させられる工具本体1の外周に、上記軸線O回りに捩れる螺旋状のネジ状部2と、周方向に間隔をあけてそれぞれ軸線O方向に延びる複数条の溝部3とが互いに交差するように形成されており、これらの溝部3が上記ネジ状部2に交差して形成された刃部4の回転方向T側を向く面がすくい面5とされる。そして、回転方向T側からこのすくい面5に対向して見たときに該すくい面5は外周側に向けて先細りとなる概略等脚台形状とされ、その右側の辺稜部が右切刃6とされてこの右切刃6の回転方向T後方側に連なる刃部4の側面が右刃面7とされ、すくい面5の左側の辺稜部が左切刃8とされてこの左切刃8の回転方向T後方側に連なる刃部4の側面が左刃面9とされる。 Figures 1 and 2 show a first embodiment of the gear cutting method of the present invention in the case hobs are the hob. Hob in the present embodiment, the axis O around the rotational direction T tool body is rotated in the first outer circumference as shown in FIG. 1, a helical screw-like portion 2 twist to the axis O around the circumferential direction A plurality of grooves 3 extending in the direction of the axis O with a space therebetween are formed so as to intersect each other, and the rotation direction of the blade 4 formed by these grooves 3 intersecting the screw-like part 2 A surface facing the T side is a rake surface 5. When viewed from the rotational direction T facing the rake face 5, the rake face 5 has a substantially isosceles trapezoidal shape that tapers toward the outer peripheral side, and the right side edge is the right cutting edge. The side surface of the blade portion 4 that is connected to the rear side in the rotational direction T of the right cutting blade 6 is the right blade surface 7, and the left side edge of the rake surface 5 is the left cutting blade 8. The side surface of the blade portion 4 that continues to the rear side in the rotation direction T of the blade 8 is the left blade surface 9.

このようなホブカッタは、歯切り加工装置であるホブ盤の回転軸10に取り付けられて上記軸線O回りに回転方向Tに強制的に回転駆動させられるとともに、被削歯車11の歯すじ方向(被削歯車11が平歯車の場合は図1および図2において図面に直交する方向)に送られて、該被削歯車11に歯12を形成してゆく。すなわち、このホブカッタの工具本体1の回転により、上記ネジ状部2に形成された刃部4が順次歯形を創成する面に現れて、この歯形創成面上における刃部4の軌跡が、図1に符号Aに示す進行方向に直進するラックRとして投影される。一方、被削歯車11も、その中心軸Cが上記軸線Oに対して所定の取付角をなすように上記ホブ盤の他の回転軸13に取り付けられて、上記ラックRの進行方向Aに沿うように上記中心軸C回りに回転方向Bに強制的に回転駆動させられ、この被削歯車11の回転と上記ホブカッタの工具本体1の回転とが、上記ラックRに被削歯車11の歯12が噛み合うように同期させられて駆動される。   Such a hob cutter is attached to a rotating shaft 10 of a hobbing machine that is a gear cutting device, and is forcibly driven to rotate in the rotational direction T around the axis O, and the toothed direction (covered) of the gear 11 to be cut. When the cutting gear 11 is a spur gear, it is fed in a direction orthogonal to the drawings in FIGS. 1 and 2 to form teeth 12 on the workpiece gear 11. That is, by the rotation of the tool body 1 of the hob cutter, the blade portions 4 formed on the screw-like portion 2 appear on the surface that sequentially forms the tooth profile, and the locus of the blade portion 4 on the tooth profile generating surface is shown in FIG. Is projected as a rack R that travels straight in the direction of travel indicated by symbol A. On the other hand, the work gear 11 is also attached to the other rotary shaft 13 of the hobbing machine so that the center axis C forms a predetermined attachment angle with respect to the axis O, and follows the traveling direction A of the rack R. Thus, the rotation of the work gear 11 and the rotation of the tool body 1 of the hob cutter are forced to rotate around the central axis C in the rotation direction B. Are driven to be synchronized so as to mesh with each other.

従って、工具本体1の刃部4は、その右切刃6が歯12の左歯面14を切削して該刃部4の上記右刃面7がこの歯12の左歯面14と接触させられ、また左切刃8が歯12の右歯面15を切削して刃部4の左刃面9が歯12の右歯面15と接触させられることとなる。すなわち、本実施形態では、図1に示すように被削歯車11の歯12と工具本体1の刃部4とが接触する部分を上に、被削歯車11の中心軸Cを下にして、この中心軸Cに沿って工具本体1の回転方向Tに向けて見たときに、この接触部分における歯12の左側の歯面が左歯面14とされるとともに、これと接触する刃部4の右側の刃面が右刃面7とされ、逆に刃部4との接触部分で歯12の右側に位置する歯面が右歯面15とされるとともに、これと接触する刃部4の左側の刃面が左刃面9とされている。そして、こうして噛み合わされて接触させられる刃部4の左右刃面7,9と歯の左右歯面14,15とは、刃部4の右刃面7が歯12の左歯面14に接触する箇所と、刃部4の左刃面9が歯12の右歯面15に接触する箇所とが、同数とされる。   Therefore, the cutting edge 4 of the tool body 1 has its right cutting edge 6 cutting the left tooth surface 14 of the tooth 12 so that the right blade surface 7 of the blade 4 contacts the left tooth surface 14 of the tooth 12. Further, the left cutting edge 8 cuts the right tooth surface 15 of the tooth 12, and the left blade surface 9 of the blade portion 4 is brought into contact with the right tooth surface 15 of the tooth 12. That is, in this embodiment, as shown in FIG. 1, the portion where the tooth 12 of the work gear 11 and the blade portion 4 of the tool body 1 are in contact with each other, with the central axis C of the work gear 11 facing down, When viewed in the rotation direction T of the tool body 1 along the central axis C, the left tooth surface of the tooth 12 at this contact portion is the left tooth surface 14 and the blade portion 4 that contacts this tooth surface 14. The right blade surface is the right blade surface 7, and the tooth surface located on the right side of the tooth 12 at the contact portion with the blade portion 4 is the right tooth surface 15. The left blade surface is a left blade surface 9. The right and left blade surfaces 7 and 9 of the blade portion 4 and the left and right tooth surfaces 14 and 15 of the teeth 4 thus meshed and brought into contact with each other are such that the right blade surface 7 of the blade portion 4 contacts the left tooth surface 14 of the teeth 12. The number of places and the place where the left blade surface 9 of the blade part 4 contacts the right tooth surface 15 of the tooth 12 are the same.

ここで、図2(a)〜(l)は、本実施形態において上記ラックRが進行方向Aに刃部4の1ピッチ分だけ直進させられる間の刃部4の左右刃面7,9と歯12の左右歯面14,15との接触状態を順次示すものであり、この図2に示されるように工具本体1と被削歯車11とが同期して回転駆動させられて、ラックRが上記進行方向Aに沿って直線上を前進させられるとともに被削歯車11が円周上を回転方向Bに回転させられるのに伴い、刃部4の左右刃面7,9と歯12の左右歯面14,15とが接触する箇所P,Qも歯12の歯丈方向に沿って変化してゆく。なお、図中に符号Pで示す接触箇所は刃部4の右刃面7が歯12の左歯面14に接触する箇所であり、符号Qで示す接触箇所は刃部4の左刃面9が歯12の右歯面15に接触する箇所である。   Here, FIGS. 2A to 2L show the left and right blade surfaces 7 and 9 of the blade portion 4 while the rack R is linearly moved by one pitch of the blade portion 4 in the traveling direction A in the present embodiment. The contact state of the teeth 12 with the left and right tooth surfaces 14 and 15 is sequentially shown. As shown in FIG. 2, the tool body 1 and the work gear 11 are driven to rotate synchronously, and the rack R is rotated. As the work gear 11 is rotated in the rotation direction B on the circumference while being advanced in a straight line along the traveling direction A, the left and right blade surfaces 7 and 9 of the blade portion 4 and the left and right teeth of the tooth 12 The locations P and Q where the surfaces 14 and 15 come into contact also change along the tooth height direction of the teeth 12. In addition, the contact location shown with the code | symbol P in a figure is a location where the right blade surface 7 of the blade part 4 contacts the left tooth surface 14 of the tooth | gear 12, and the contact location shown with the code | symbol Q is the left blade surface 9 of the blade part 4. FIG. Is a portion that contacts the right tooth surface 15 of the tooth 12.

そして、本実施形態の歯切り加工方法では、こうして互いに接触する刃部4の右刃面7と歯12の左歯面14との接触箇所Pと、刃部4の左刃面9と歯12の右歯面15との接触箇所Qとが、上述のように歯12の歯丈方向に変化してゆくにも関わらず、同数となるようにされているのである。すなわち、上記ラックRにおける1の刃部4の軌跡が、図2(a)に示すようにこのラックRの進行方向Aに沿った直線と被削歯車11の回転方向Bに沿った円周との接点位置にある状態から、図2(b)〜(f)に示すように進行方向A側に進行するのに伴い、その接触箇所P,Qがそれぞれ歯丈方向に変化しながらも、この1の刃部4の右刃面7と該1の刃部4の1つ進行方向A後方側に軌跡が投影される次の刃部4の右刃面7とがこれらの右刃面7にそれぞれ対向する2つの歯12の左歯面14に各々1つずつの接触箇所Pで接触し、かつこの1の刃部4の左刃面9と該1の刃部4の1つ進行方向A側に軌跡が投影される前の刃部4の左刃面9とがこれらの左刃面9にそれぞれ対向する2つの歯12の右歯面15に、やはり各々1つずつの接触箇所Qで接触する。 In the gear cutting method according to the present embodiment, the contact point P between the right blade surface 7 of the blade portion 4 and the left tooth surface 14 of the tooth 12 that are in contact with each other, the left blade surface 9 and the tooth 12 of the blade portion 4. The number of the contact points Q with the right tooth surface 15 is the same as described above, although it changes in the tooth height direction of the teeth 12 as described above. That is, the trajectory of one blade portion 4 in the rack R is a straight line along the traveling direction A of the rack R and a circumference along the rotational direction B of the work gear 11 as shown in FIG. As shown in FIGS. 2 (b) to 2 (f), the contact points P and Q change in the tooth height direction from the state at the contact point position of the contact point P and Q, respectively. The right blade surface 7 of one blade portion 4 and the right blade surface 7 of the next blade portion 4 on which the locus is projected on the rear side in the traveling direction A of the one blade portion 4 are these right blade surfaces 7. The left tooth surfaces 14 of the two teeth 12 facing each other are in contact with each other at one contact point P, and the left blade surface 9 of the one blade portion 4 and one traveling direction A of the one blade portion 4 The left blade surface 9 of the blade part 4 before the locus is projected to the side and the right tooth surface 15 of the two teeth 12 respectively opposed to the left blade surface 9 are also connected one by one. In contact with the contact portion Q.

次いで、ラックRの進行および被削歯車11の回転に伴い、この被削歯車11の1の歯12が上記接点位置に位置すると、図2(g)に示すようにこの1の歯12の左歯面14には該1の歯12の進行方向A後方側に位置する上記次の刃部4の右刃面7が接触箇所Pで、またこの1の歯12の右歯面15には該1の歯12の進行方向A側に位置する上記1の刃部4の左刃面9が接触箇所Qで、それぞれ接触することになり、すなわちこの状態では刃部4の左右刃面7,9と被削歯車11の歯(1の歯)12の左右歯面14,15とが、それぞれ1箇所ずつの接触箇所P,Qで接触することになる。さらに、この状態からラックRが進行するとともに被削歯車11が回転すると、図2(h)〜(l)に示すようにやはり接触箇所P,Qが歯丈方向に変化しながらも、上記1の歯12の左右歯面14,15に上記1の刃部4の左刃面9と上記次の刃部4の右刃面7とがそれぞれ接触させられるとともに、この1の歯12の回転方向B後方側に位置する次の歯12の右歯面15には次の刃部4の左刃面9が、またこの次の歯12の左歯面14には上記次の刃部4のさらに進行方向A後方側に位置する刃部4の右刃面7が、それぞれ接触させられ、この次の刃部4が上記接点位置に達したところで図2(a)の状態に戻ることになる。   Next, when one tooth 12 of the work gear 11 is located at the contact position as the rack R advances and the work gear 11 rotates, the left side of the one tooth 12 as shown in FIG. On the tooth surface 14, the right blade surface 7 of the next blade portion 4 located on the rear side in the traveling direction A of the one tooth 12 is a contact point P, and the right tooth surface 15 of the one tooth 12 is on the right tooth surface 15. The left blade surface 9 of the first blade portion 4 located on the side of the one tooth 12 in the traveling direction A is in contact with the contact portion Q, that is, in this state, the left and right blade surfaces 7 and 9 of the blade portion 4. And the left and right tooth surfaces 14 and 15 of the tooth (1 tooth) 12 of the work gear 11 come into contact at the contact points P and Q, respectively. Further, when the rack R advances from this state and the work gear 11 rotates, the contact points P and Q are changed in the tooth height direction as shown in FIGS. The left blade surface 9 of the first blade portion 4 and the right blade surface 7 of the next blade portion 4 are brought into contact with the left and right tooth surfaces 14, 15 of the first tooth 12, respectively, and the rotation direction of the first tooth 12 is B is the left tooth surface 9 of the next blade portion 4 on the right tooth surface 15 of the next tooth 12 located on the rear side, and the left tooth surface 14 of the next tooth 12 is further provided with the next blade portion 4. The right blade surface 7 of the blade portion 4 located on the rear side in the traveling direction A is brought into contact with each other, and when the next blade portion 4 reaches the contact point position, the state returns to the state of FIG.

従って、本実施形態では、図2(g)に示したように1の歯12のみが、その右歯面15を進行方向A側の上記1の刃部4の左刃面9と接触箇所Qで、また左歯面14を進行方向A後方側の上記次の刃部4の右刃面7と接触箇所Pで接触させた状態とされている以外は、2つの歯12の左右歯面14,15が刃部4の右左刃面7,9とそれぞれ1箇所の合計2箇所ずつの接触箇所P,Qで接触した状態とされており、すなわち全ての状態において上述のように刃部4の右刃面7と歯12の左歯面14との接触箇所Pと、刃部4の左刃面9と歯12の右歯面15との接触箇所Qとが、同数となるようにされているのであり、また刃部4と接触している1つの歯12に関しては常にその左右両歯面14,15が1箇所ずつの接触箇所P,Qで隣接する2つの刃部4の右刃面7と左刃面9とに接触しているのである。ただし、本実施形態に用いられるホブカッタのような歯切り工具においては、この刃部4は上述のようにその軸線O回りの回転軌跡がなすラックRにおいて、その左右刃面7,9が歯12の左右歯面14,15と接触させられることとなる。 Therefore, in this embodiment, as shown in FIG. 2G, only one tooth 12 has its right tooth surface 15 in contact with the left blade surface 9 of the first blade portion 4 on the traveling direction A side and the contact point Q. In addition, the left and right tooth surfaces 14 of the two teeth 12 except that the left tooth surface 14 is brought into contact with the right blade surface 7 of the next blade portion 4 on the rear side in the traveling direction A at the contact point P. , 15 are in contact with the right and left blade surfaces 7 and 9 of the blade portion 4 at a total of two contact points P and Q, respectively, that is, in all states, as described above, The contact point P between the right blade surface 7 and the left tooth surface 14 of the tooth 12 is equal to the contact point Q between the left blade surface 9 of the blade part 4 and the right tooth surface 15 of the tooth 12. In addition, with respect to one tooth 12 that is in contact with the blade portion 4, the left and right tooth surfaces 14 and 15 are always adjacent to each other at the contact points P and Q. That is the two are in contact with the right edge surface 7 and Hidariha surface 9 of the blade 4. However, in a gear cutting tool such as a hob cutter used in the present embodiment, the blade portion 4 is a rack R having a rotation locus around the axis O as described above, and the left and right blade surfaces 7 and 9 are teeth 12. The left and right tooth surfaces 14 and 15 are brought into contact with each other.

このように構成された歯切り加工方法によれば、こうして被削歯車11が、その歯12の左右歯面14,15を工具本体1の刃部4の右左刃面7,9と同数の接触箇所P,Qで接触させつつ加工が行われるため、この加工時に歯12にその左右歯面14,15から作用する切削抵抗や応力が互いに相殺されて接触面圧力が略等しくなる。このため、被削歯車11が取り付けられて回転駆動させられる上記回転軸13などの装置自体の機械剛性が低い場合や、あるいは被削歯車11自体の剛性が低い場合などでも、歯12が左右いずれかの側に偏って強く押し付けられることにより刃部4との噛み合い状態に変動が生じるのを抑えて安定させることができ、加工された被削歯車11の歯面14,15にこのような噛み合い状態の変動によってうねりが生じたりするのを防いで、加工精度の向上を図ることが可能となる。 According to the gear cutting method configured as described above, the work gear 11 thus contacts the left and right tooth surfaces 14 and 15 of the teeth 12 with the same number of right and left blade surfaces 7 and 9 of the blade portion 4 of the tool body 1. Since the processing is performed while making contact at the points P and Q, the cutting resistance and stress acting on the teeth 12 from the left and right tooth surfaces 14 and 15 are canceled with each other at the time of the processing, and the contact surface pressure becomes substantially equal. For this reason, even when the mechanical rigidity of the apparatus itself such as the rotary shaft 13 to which the work gear 11 is attached and driven to rotate is low, or when the work gear 11 itself has low rigidity, the teeth 12 are left or right. By being strongly biased toward the side, fluctuations in the meshing state with the blade portion 4 can be suppressed and stabilized, and the meshed tooth surfaces 14 and 15 of the machined work gear 11 have such meshing. It is possible to prevent the occurrence of undulation due to the change of the state and to improve the processing accuracy.

しかも、本実施形態では、1つの歯12に対してその左右歯面14,15が常に一対の刃部4の右刃面7と左刃面9とに接触して加工が行われることになるため、被削歯車11のうちでも特に歯12自体の剛性が低い場合であっても、これら左右歯面14,15に作用する接触面圧力を等しくして、一層確実にうねりの発生等を防ぐことができる。なお、この第1の実施形態では上述のように本発明をホブカッタによる歯切り加工方法に適用した場合について説明したが、このようなもの以外にも、本発明は、例えば刃部の軸線回りの回転によって進行方向Aに直進するラックRが形成されることになる電着ウォーム状工具や、被削歯車11の中心軸Cと平行な軸線O回りに互いに同期して回転駆動されつつ該軸線O方向に送り出されるピニオンカッタによる歯切り加工方法に適用することも可能である。 Moreover, in this embodiment, the left and right tooth surfaces 14 and 15 of one tooth 12 are always in contact with the right blade surface 7 and the left blade surface 9 of the pair of blade portions 4 for processing. For this reason, even in the case where the tooth 12 itself has low rigidity among the work gears 11, the contact surface pressures acting on the left and right tooth surfaces 14 and 15 are made equal to prevent the occurrence of waviness more reliably. be able to. In the first embodiment, the case where the present invention is applied to the gear cutting method using a hob cutter as described above has been described. However, in addition to the above, the present invention can be applied, for example, around the axis of the blade portion. An electrodeposited worm-like tool that forms a rack R that travels straight in the traveling direction A by rotation, and the axis O while being driven to rotate around the axis O parallel to the center axis C of the work gear 11 while being driven to rotate in synchronization with each other. It is also possible to apply to a gear cutting method using a pinion cutter that is fed in the direction.

ここで、図3は、このように、歯切り工具ピニオンカッタである場合の本発明の歯切り加工方法の第2の実施形態を示すものである。このピニオンカッタは、軸線Oを中心として回転方向Tに回転される概略円盤状をなす工具本体21の外周に複数(多数)の刃部22が歯車状をなすように形成されていて、これらの刃部22の軸線O方向先端側(図3(a)、(c)において下側)を向く端面がすくい面23とされるとともに、図3(b)、(d)に示すように該軸線O方向先端側から見たときに、このすくい面23の回転方向T後方側の辺稜部が右切刃24とされてこの右切刃24の後端側に連なる刃部22の側面が右刃面25とされ、すくい面23の回転方向T側の辺稜部が左切刃26とされてこの左切刃26の後端側に連なる刃部22の側面が左刃面27とされる。 Here, FIG. 3 is thus shows a second embodiment of the gear cutting method of the present invention in the case hobs are pinion cutter. The pinion cutter is formed such that a plurality of (many) blade portions 22 form a gear shape on the outer periphery of a tool body 21 having a substantially disk shape rotated in the rotation direction T around an axis O. The end surface of the blade portion 22 facing the front end side in the direction of the axis O (the lower side in FIGS. 3A and 3C) is a rake face 23, and the axis line as shown in FIGS. 3B and 3D. When viewed from the front end side in the O direction, the side ridge portion on the rear side in the rotational direction T of the rake face 23 is a right cutting edge 24, and the side face of the cutting edge 22 connected to the rear end side of the right cutting edge 24 is the right side. The side edge of the rake face 23 on the rotation direction T side is a left cutting edge 26, and the side face of the cutting edge 22 connected to the rear end side of the left cutting edge 26 is a left cutting edge 27. .

このようなピニオンカッタによる歯切り加工方法において、工具本体21はその軸線Oが上述のように被削歯車11の中心軸Cと平行になるように配置され、該軸線O回りに回転方向Tに強制的に回転駆動されつつ軸線O方向に往復駆動されて、同じく中心軸C回りの回転方向Bに回転軸13によって強制的に回転駆動させられる被削歯車11の歯12に刃部22が噛み合わされながら、軸線Oと中心軸Cとが接近するように工具本体21と被削歯車11とが相対的に移動させられ、工具本体21が軸線O方向先端側に前進する際に刃部22の左右切刃24,26によって被削歯車11の歯12の左右歯面14,15を切削してゆく。すなわち、本実施形態では、被削歯車11の歯12と工具本体21の刃部22とが接触する部分を上に、工具本体21の軸線Oを下にして、この中心軸Cに沿ってすくい面23に対向する側から見たとき(図3(d)において被削歯車11を上に、工具本体21を下にして見たとき)に、この接触部分における刃部22の右側の刃面が右刃面25とされるとともに、これと接触する歯12の左側の歯面が左歯面14とされ、逆に刃部22の左側の刃面が左刃面27とされるとともに、これと接触する歯12の右側に位置する歯面が右歯面15とされる。   In such a gear cutting method using a pinion cutter, the tool body 21 is arranged so that its axis O is parallel to the central axis C of the workpiece gear 11 as described above, and in the rotational direction T around the axis O. The blade portion 22 meshes with the teeth 12 of the work gear 11 that is reciprocatingly driven in the direction of the axis O while being forcibly rotated, and is forcibly rotated by the rotation shaft 13 in the rotation direction B around the central axis C. However, the tool main body 21 and the work gear 11 are relatively moved so that the axis O and the central axis C approach each other, and when the tool main body 21 moves forward in the axis O direction, The left and right tooth surfaces 14 and 15 of the tooth 12 of the work gear 11 are cut by the left and right cutting edges 24 and 26. That is, in this embodiment, the portion where the tooth 12 of the work gear 11 and the blade portion 22 of the tool body 21 are in contact with each other is scooped along the central axis C with the axis O of the tool body 21 facing down. When viewed from the side facing the surface 23 (when viewed from the top of the cutting gear 11 and the tool body 21 downward in FIG. 3D), the blade surface on the right side of the blade portion 22 at this contact portion Is the right blade surface 25, the left tooth surface of the tooth 12 in contact with this is the left tooth surface 14, and conversely the left blade surface of the blade portion 22 is the left blade surface 27. The tooth surface located on the right side of the tooth 12 in contact with the right tooth surface 15 is the right tooth surface 15.

そして、このとき、本実施形態においても、刃部22の右刃面25と歯12の左歯面14とが接触する箇所と、刃部22の左刃面27と歯12の右歯面15とが接触する箇所とが、同数となるようにさせられており、従ってこの第2の実施形態でも第1の実施形態のホブカッタの場合と同様に、刃部22と歯12との噛み合い状態に変動が生じるのを抑えて被削歯車11の歯面14,15にうねりが生じるのを防ぐことができ、加工精度の向上を図ることが可能となる。   And at this time, also in this embodiment, the location where the right blade surface 25 of the blade portion 22 and the left tooth surface 14 of the tooth 12 contact, the left blade surface 27 of the blade portion 22 and the right tooth surface 15 of the tooth 12. Therefore, in the second embodiment, as in the case of the hob cutter of the first embodiment, the blade portion 22 and the teeth 12 are engaged with each other. It is possible to prevent fluctuations from occurring and prevent waviness from occurring on the tooth surfaces 14 and 15 of the work gear 11, thereby improving machining accuracy.

なお、これらの実施形態のように、歯切り工具の刃部の右刃面と被削歯車の歯の左歯面とが接触する箇所と、歯切り工具の刃部の左刃面と被削歯車の歯の右歯面とが接触する箇所とが同数となるように刃部と歯とを接触させるには、第1の実施形態のように歯切り工具がホブカッタであったり、あるいは電着ウォーム状工具であったりする場合には転位圧力角を調整する。また、第2の実施形態のように歯切り工具がピニオンカッタである場合には転位係数を調整する。 In addition, as in these embodiments, the position where the right blade surface of the blade portion of the gear cutting tool and the left tooth surface of the tooth of the gear to be cut are in contact with the left blade surface of the blade portion of the gear cutting tool and the workpiece. In order to bring the blade portion and the teeth into contact with each other so that the same number of locations of contact with the right tooth surface of the gear teeth are used, the gear cutting tool is a hob cutter or electrodeposition as in the first embodiment. If it is a worm-like tool, adjust the dislocation pressure angle . Further, when the gear cutting tool is a pinion cutter as in the second embodiment , the dislocation coefficient is adjusted .

以下、本発明の実施例を挙げて、本発明の効果について実証する。本実施例では、第2の実施形態と同様に歯切り工具がピニオンカッタである場合において、加工された被削歯車の左右歯面について、その歯形のうねりを測定した。この結果を図4に示す。また、この実施例に対する比較例として、本発明を適用しない、すなわち噛み合わされた刃部の右歯面と歯の左歯面とが接触する箇所と、刃部の左歯面と歯の右歯面とが接触する箇所とが同数とならず、互いに異なる数となる状態が存在するようにされた以外は、実施例と同様の条件において被削歯車の歯切り加工を行い、その左右歯面の歯形のうねりを測定した。この結果を図5に示す。 Examples of the present invention will be given below to demonstrate the effects of the present invention. In this embodiment, hobs as in the second embodiment when a pinion cutter, for the left and right tooth surfaces of the workpiece gear which is processed to measure the waviness of the tooth. The result is shown in FIG. In addition, as a comparative example to this embodiment, the present invention is not applied, that is, the position where the right tooth surface of the engaged blade portion and the left tooth surface of the tooth contact each other, the left tooth surface of the blade portion, and the right tooth of the tooth The gears of the work gear are cut under the same conditions as in the embodiment, except that the number of places in contact with the surface is not the same, and there are different states. The undulation of the tooth profile was measured. The result is shown in FIG.

なお、これらの実施例および比較例において、被削歯車は、モジュール2.4846mm、歯数13、圧力角19°、捩れ角0°、外径39.9mm、ピッチ円径32.2998mm、歯底径29.65mm、歯幅16.8mm、またぎ歯厚19.808mm、またぎ枚数3枚、転位係数0.599の平歯車であり、13の歯のうち4つ(任意の1歯を1番目として1、4、8、11番目の歯)について、それぞれの歯形のうねりと平均、およびそのバラツキを図4および図5に示す。なお、図4および図5のスケールは、破線の升目の横軸方向の1目盛りが0.625mm、縦軸方向の1目盛りが10μmである。また、これら実施例および比較例において用いたピニオンカッタは、歯数72枚、捩れ角0°、またぎ枚数9枚は共通で、比較例では外径186.3782mm、またぎ歯厚65.2538mmであったのに対し、実施例では外径181.311mm、またぎ歯厚63.524mmとされている。   In these examples and comparative examples, the work gear has a module of 2.4848 mm, the number of teeth of 13, a pressure angle of 19 °, a torsion angle of 0 °, an outer diameter of 39.9 mm, a pitch circle diameter of 32.2998 mm, a tooth bottom. This is a spur gear with a diameter of 29.65 mm, tooth width of 16.8 mm, straddle tooth thickness of 19.808 mm, the number of straddles of 3 and a shift coefficient of 0.599, 4 of 13 teeth (any one tooth is the first) FIG. 4 and FIG. 5 show the undulations and averages of the respective tooth profiles and the variations thereof for the first, fourth, eighth and eleventh teeth). In the scales of FIGS. 4 and 5, one scale in the horizontal axis direction of the broken mesh is 0.625 mm, and one scale in the vertical direction is 10 μm. In addition, the pinion cutter used in these examples and comparative examples has the same number of teeth, 72 torsion angles, 0 ° torsional angle, and 9 pieces, and in the comparative example, the outer diameter is 186.3782 mm and the tooth thickness is 65.2538 mm. In contrast, in the embodiment, the outer diameter is 181.311 mm and the tooth thickness is 63.524 mm.

これら、図4および図5の結果から、本発明を適用していない比較例においては、測定した全ての歯について左右両歯面ともうねりが大きく、特に左歯面でこの傾向が顕著であって、JIS B 1702に規定される等級では5〜7程度であった。これに対して、本発明を適用した実施例においては、比較例と比べて左右歯面ともに明らかにうねりが小さく抑えられており、特に左歯面では上記JIS等級が1〜2と、極めて高精度の歯切り加工が施されていることが分かる。   From these results shown in FIGS. 4 and 5, in the comparative example to which the present invention is not applied, the left and right tooth surfaces and the undulation are large for all measured teeth, and this tendency is particularly remarkable in the left tooth surface. The grade specified in JIS B 1702 was about 5-7. On the other hand, in the example to which the present invention is applied, the undulation is clearly suppressed on both the left and right tooth surfaces as compared with the comparative example, and the above JIS grade is particularly high at 1-2 on the left tooth surface. It can be seen that precision gear cutting is performed.

本発明の歯切り加工方法の第1の実施形態を示す図である。It is a figure which shows 1st Embodiment of the gear cutting method of this invention. 図1に示す実施形態において、工具本体1の刃部4の左右刃面7,9と被削歯車11の歯12の左右歯面14,15との接触状態を示す図である。In the embodiment shown in FIG. 1, it is a figure which shows the contact state of the left and right blade surfaces 7 and 9 of the blade part 4 of the tool main body 1, and the left and right tooth surfaces 14 and 15 of the tooth | gear 12 of the to-be-cut gear 11. FIG. 本発明の歯切り加工方法の第2の実施形態を示す(a)歯切り工具(ピニオンカッタ)の概略側面図、(b)図(a)に示す歯切り工具の刃部22を軸線O方向先端側(すくい面23側)からみた拡大図、(c)歯切り加工方法を説明する一部破断縦断面図、(d)図(c)を軸線O方向先端側(すくい面23側)から見た図である。(A) A schematic side view of a gear cutting tool (pinion cutter) showing a second embodiment of the gear cutting processing method of the present invention, (b) the blade portion 22 of the gear cutting tool shown in FIG. An enlarged view seen from the tip side (rake face 23 side), (c) a partially broken longitudinal sectional view for explaining the gear cutting method, and (d) FIG. (C) from the tip side (rake face 23 side) in the axis O direction. FIG. 本発明の実施例による被削歯車の歯面のうねりを示す図である。It is a figure which shows the wave | undulation of the tooth surface of the cut gear by the Example of this invention. 図4に示す実施例に対する比較例による被削歯車の歯面のうねりを示す図である。It is a figure which shows the wave | undulation of the tooth surface of the cut gear by the comparative example with respect to the Example shown in FIG.

符号の説明Explanation of symbols

1,21 工具本体
4,22 刃部
5,23 すくい面
7,25 刃部4,22の右刃面
9,27 刃部4,22の左刃面
11 被削歯車
12 歯
14 歯12の左歯面
15 歯12の右歯面
O 工具本体1,21の軸線
T 工具本体1,21の回転方向
R 刃部4が投影されて形成されるラック
A ラックRの進行方向
C 被削歯車11の中心軸
B 被削歯車11の回転方向
P 刃部4の右刃面7と歯12の左歯面14との接触箇所
Q 刃部4の左刃面9と歯12の右歯面15との接触箇所
1,21 Tool body 4,22 Blade portion 5,23 Rake surface 7,25 Right blade surface of blade portions 4,22 9,27 Left blade surface of blade portions 4,22 11 Work gear 12 Tooth 14 Left of tooth 12 Tooth surface 15 Right tooth surface of tooth 12 O Axis of tool bodies 1 and 21 T Rotation direction of tool bodies 1 and 21 R Rack formed by projecting blade 4 A Rack R traveling direction C Workpiece gear 11 Central axis B Rotation direction of work gear 11 P Contact point between right blade surface 7 of blade portion 4 and left tooth surface 14 of tooth 12 Q Left blade surface 9 of blade portion 4 and right tooth surface 15 of tooth 12 Contact point

Claims (2)

被削歯車の歯に歯切り工具の刃部を噛み合わせて歯切り加工を行う歯切り加工方法であって、上記歯切り工具はホブカッタまたは電着ウォーム状工具であり、回転駆動される上記被削歯車に対して上記歯切り工具を同期させて駆動することにより、上記歯切り工具の刃面と上記被削歯車の歯面とを接触させて噛み合わせ、かつ転位圧力角を調整することにより、こうして噛み合わされた状態において、上記歯切り工具の右刃面が該被削歯車と噛み合う歯面の数と、上記歯切り工具の左刃面が該被削歯車と噛み合う歯面の数が常に同数となるように接触させるとともに、1つの上記歯に対してその左右歯面が常に上記右刃面と左刃面とに接触して加工が行われることを特徴とする歯切り加工方法A gear cutting method for performing gear cutting by meshing a tooth of a gear to be cut with a tooth of a work gear, wherein the gear cutting tool is a hob cutter or an electrodeposition worm-like tool, and is rotated and driven. By driving the gear cutting tool synchronously with the cutting gear, the blade surface of the gear cutting tool and the tooth surface of the gear to be cut are brought into contact with each other, and the shift pressure angle is adjusted. thus the engaged condition, the number of tooth surface right edge surface of the hob is meshing with該被cutting gear, the number of tooth surfaces that left blade surface meshes with該被cut gear of the gear cutting tool always A gear cutting method characterized in that the same number of teeth are contacted and the left and right tooth surfaces of one tooth are always in contact with the right blade surface and the left blade surface . 被削歯車の歯に歯切り工具の刃部を噛み合わせて歯切り加工を行う歯切り加工方法であって、上記歯切り工具はピニオンカッタであり、回転駆動される上記被削歯車に対して上記歯切り工具を同期させて駆動することにより、上記歯切り工具の刃面と上記被削歯車の歯面とを接触させて噛み合わせ、かつ転位係数を調整することにより、こうして噛み合わされた状態において、上記歯切り工具の右刃面が該被削歯車と噛み合う歯面の数と、上記歯切り工具の左刃面が該被削歯車と噛み合う歯面の数が常に同数となるように接触させるとともに、1つの上記歯に対してその左右歯面が常に上記右刃面と左刃面とに接触して加工が行われることを特徴とする歯切り加工方法。 A gear cutting method for performing gear cutting by engaging a tooth of a gear cutting tool with a tooth of a workpiece gear, wherein the gear cutting tool is a pinion cutter, When the gear cutting tool is driven in synchronization, the blade surface of the gear cutting tool and the tooth surface of the work gear are brought into contact with each other and meshed, and the dislocation coefficient is adjusted, thereby being meshed. In this case, the number of tooth surfaces with which the right blade surface of the gear cutting tool meshes with the workpiece gear and the number of tooth surfaces with which the left blade surface of the gear cutting tool meshes with the workpiece gear are always the same. In addition , the tooth cutting method is characterized in that the processing is performed with the right and left tooth surfaces always contacting the right blade surface and the left blade surface with respect to one tooth.
JP2008259792A 2008-10-06 2008-10-06 Gear cutting method Expired - Fee Related JP5544698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259792A JP5544698B2 (en) 2008-10-06 2008-10-06 Gear cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259792A JP5544698B2 (en) 2008-10-06 2008-10-06 Gear cutting method

Publications (2)

Publication Number Publication Date
JP2010089192A JP2010089192A (en) 2010-04-22
JP5544698B2 true JP5544698B2 (en) 2014-07-09

Family

ID=42252410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259792A Expired - Fee Related JP5544698B2 (en) 2008-10-06 2008-10-06 Gear cutting method

Country Status (1)

Country Link
JP (1) JP5544698B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357967B (en) * 2012-03-27 2017-03-01 加特可株式会社 The method for designing of honing emery wheel
JP5688392B2 (en) * 2012-03-27 2015-03-25 ジヤトコ株式会社 Design method of honing wheel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184624A (en) * 1981-04-30 1982-11-13 Mitsubishi Heavy Ind Ltd Gear work method for hobbing machine
CH664716A5 (en) * 1984-02-10 1988-03-31 Reishauer Ag METHOD AND DEVICE FOR MACHINING THE TOOTHED FLANGES OF A ROTATING, TOOTHED WORKPIECE.
JP2730290B2 (en) * 1990-11-30 1998-03-25 日産自動車株式会社 Driving gear in gear root machining equipment

Also Published As

Publication number Publication date
JP2010089192A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP7057060B2 (en) Gear material debaring method and equipment
JP6721223B2 (en) Spherical involute tooth profile spiral bevel gear cutting method
EP3500383B1 (en) Power skiving pressure angle correction without tool geometry change
EP3200948B1 (en) Axial hob with multi-revolution cutting teeth and method of manufacturing a gear with an axial hob
JP5832953B2 (en) Tool for cutting gears and method for cutting gears
US9573210B2 (en) Gear cutting machine, end mill and method of form milling
US10239139B2 (en) Method for machining a set of teeth, tool arrangement, and tooth-cutting machine
KR20110104528A (en) Machine tool and method for producing gearing
JP2013000879A (en) Method for gear pre-cutting of a plurality of different bevel gears, and use of according milling tool
EP2471621A1 (en) Internal gear machining method and internal gear machining device
JP2018153916A (en) Method for processing tooth surface of bevel gear work-piece
CN102648068A (en) Method for generating bevel gears with hypocycloid toothing in a continuous moulding process using corresponding tools
US9623502B2 (en) Gear machining device and gear machining method
JP5544698B2 (en) Gear cutting method
JP2018079558A (en) Gear processing device and gear processing method
JP2015208806A (en) Gear processing method, gear, machine tool and correction hob
EP0494221B1 (en) Hob for generating face gears
JP5945952B2 (en) Shaving cutter
JP4326745B2 (en) Gear machining method
JP2023124365A (en) Gear manufacturing method and gear manufacturing apparatus
US20230302558A1 (en) Device And Method For Producing Bevels On Tooth Flanks Of Gearwheels
CN101602127A (en) The method of processing spherical worm gear on universal milling machine
CN2759664Y (en) Skewed tooth combing tool
WO2017053227A1 (en) Method and tool for manufacturing spiral tooth face couplings
JP2023178739A (en) Gear manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees