JP2010247526A - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP2010247526A
JP2010247526A JP2010033111A JP2010033111A JP2010247526A JP 2010247526 A JP2010247526 A JP 2010247526A JP 2010033111 A JP2010033111 A JP 2010033111A JP 2010033111 A JP2010033111 A JP 2010033111A JP 2010247526 A JP2010247526 A JP 2010247526A
Authority
JP
Japan
Prior art keywords
layer
ultraviolet
fluorescent
light emitting
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033111A
Other languages
Japanese (ja)
Other versions
JP5595061B2 (en
Inventor
Hisashi Chikamoto
悠 近本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beck Co Ltd
Original Assignee
Beck Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beck Co Ltd filed Critical Beck Co Ltd
Priority to JP2010033111A priority Critical patent/JP5595061B2/en
Publication of JP2010247526A publication Critical patent/JP2010247526A/en
Application granted granted Critical
Publication of JP5595061B2 publication Critical patent/JP5595061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate which displays different under the irradiation conditions of visible light and ultraviolet rays, is enhanced in the luminescence efficiency of a fluorescence emitting display part, expresses a dark luminescent color and is excellent in design properties. <P>SOLUTION: The laminate is irradiated with the ultraviolet rays from an ultraviolet source to emit light and a fluorescence emitting layer (A) showing the emission of fluorescence, an ultraviolet ray reflecting layer (B) being transparent or translucent when the ultraviolet reflectivity in the whole region of a wavelength region of 300-400 nm is 10% or above and a colored layer (C) are laminated from the side irradiated with ultraviolet rays of the laminate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、蛍光発光を示す積層体に関するものである。 The present invention relates to a laminate that exhibits fluorescence.

従来、紫外線を照射することにより発光する蛍光顔料等の蛍光体を含む成形品が知られている。このような蛍光体は、紫外線照射時と非照射時で異なる色相を示すため、様々な分野で高意匠性材料として用いられている。例えば、特許文献1には、蛍光塗料で描かれた発光部と、この発光部から走行路を挟んで設けられた発光部へ紫外線を照射する紫外線源とを有する装飾照明装置が記載されている。しかしながら、光源から照射された光は、発光部に照射されるまでに拡散したり、発光部で蛍光発光に使用されなかった紫外線は漏出されたりするおそれがあり、発光効率が低下するおそれがある。 Conventionally, a molded product containing a fluorescent material such as a fluorescent pigment that emits light when irradiated with ultraviolet rays is known. Such phosphors are used as high-design materials in various fields because they exhibit different hues when irradiated with ultraviolet rays and when not irradiated. For example, Patent Document 1 describes a decorative lighting device having a light emitting part drawn with a fluorescent paint and an ultraviolet light source that irradiates ultraviolet light from the light emitting part to a light emitting part provided across a travel path. . However, the light emitted from the light source may be diffused before being applied to the light emitting unit, or ultraviolet light that is not used for fluorescent light emission in the light emitting unit may be leaked, and the light emission efficiency may be reduced. .

これに対し、特許文献2では、蛍光発光層の視認性を向上させるために、光源の背後にミラー処理した反射層を設け、紫外線の外部漏洩を防止し輝度の高い蛍光表示とすることが行われている。しかしながら、光源の背後に反射層を設けるのみでは、表示部の蛍光層で蛍光発光に使用されなかった紫外線は漏出されるため発光効率が低下するおそれがある。
また、蛍光発光層の発光輝度を高める方法として、蛍光顔料等の蛍光体の濃度を高くすることが知られているが、この場合、淡色化しやすい傾向にある。
On the other hand, in Patent Document 2, in order to improve the visibility of the fluorescent light emitting layer, a reflective layer mirrored behind the light source is provided to prevent external leakage of ultraviolet rays and to achieve a fluorescent display with high luminance. It has been broken. However, if only a reflective layer is provided behind the light source, ultraviolet light that has not been used for fluorescent light emission in the fluorescent layer of the display unit is leaked, so that the light emission efficiency may be reduced.
Further, as a method for increasing the light emission luminance of the fluorescent light emitting layer, it is known to increase the concentration of a fluorescent material such as a fluorescent pigment. In this case, however, the color tends to be lightened.

特開平6−314505号公報JP-A-6-314505 特開2003−29676号公報JP 2003-29676 A

本発明は、上述のような問題点に鑑みなされたものであり、紫外線照射下で発光色を呈する蛍光発光積層体において、蛍光発光表示部の発光効率を向上させ、さらに、濃色の発光色を表現できる意匠性に優れた積層体を得ることを目的とするものである。   The present invention has been made in view of the above-described problems. In a fluorescent light-emitting laminate that exhibits a light emission color under ultraviolet irradiation, the light emission efficiency of the fluorescent light-emitting display portion is improved, and a deep light emission color is further provided. It aims at obtaining the laminated body excellent in the designability which can express.

本発明者は、上記目的を達成するため鋭意検討を行った結果、紫外線光源の照射により、発光する積層体であって、蛍光発光を示す蛍光発光層(A)、波長領域300nm〜400nmの全領域での紫外線反射率が10%以上で透明または半透明の紫外線反射層(B)、着色層(C)を有することを特徴とする積層体に想到し、本発明を完成させるに至った。すなわち、本発明蛍光発光積層体は、下記の特徴を有するものである。 As a result of intensive studies to achieve the above object, the present inventor is a laminate that emits light by irradiation with an ultraviolet light source, and exhibits a fluorescence emission layer (A) that exhibits fluorescence emission, and has a wavelength region of 300 nm to 400 nm. The inventors have conceived of a laminate having an ultraviolet reflectance in a region of 10% or more and having a transparent or translucent ultraviolet reflecting layer (B) and a colored layer (C), and have completed the present invention. That is, the fluorescent light-emitting laminate of the present invention has the following characteristics.

1.紫外線光源の照射により、発光する積層体であって、
紫外線が照射される側から、蛍光発光を示す蛍光発光層(A)、波長領域300nm〜400nmの全領域での紫外線反射率が10%以上で透明または半透明の紫外線反射層(B)、及び着色層(C)が積層されていることを特徴とする積層体
2.着色層(C)は蛍光発光層(A)が呈する蛍光発光色と、同系色であることを特徴とする1.に記載の積層体
3.紫外線光源の照射により、発光する積層体であって、
紫外線が照射される側から、蛍光発光を示す蛍光発光層(A)、波長領域300nm〜400nmの全領域での紫外線反射率が10%以上で透明または半透明の紫外線反射着色層(D)が積層されていることを特徴とする積層体
4.紫外線反射着色層(D)は蛍光発光層(A)が呈する蛍光発光色と、同系色であることを特徴とする3.に記載の積層体
5.1.〜4.のいずれか一項に記載の積層体と、該積層体の蛍光発光層(A)側に紫外線光源(X)を備えることを特徴とする発光構造体
1. A laminate that emits light when irradiated with an ultraviolet light source,
Fluorescent light emitting layer (A) showing fluorescence emission from the side irradiated with ultraviolet light, a transparent or translucent ultraviolet reflective layer (B) having an ultraviolet reflectance of 10% or more in the entire wavelength region of 300 nm to 400 nm, and 1. A laminate having a colored layer (C) laminated thereon. The colored layer (C) is similar in color to the fluorescent color emitted by the fluorescent layer (A). 2. Laminate described in 3. A laminate that emits light when irradiated with an ultraviolet light source,
From the side irradiated with ultraviolet rays, there is a fluorescent light emitting layer (A) that exhibits fluorescent emission, and a transparent or translucent ultraviolet reflective colored layer (D) that has an ultraviolet reflectance of 10% or more in the entire wavelength region of 300 nm to 400 nm. 3. Laminated body characterized by being laminated. 2. The ultraviolet reflective coloring layer (D) is similar in color to the fluorescence emission color exhibited by the fluorescence emission layer (A). 5. Laminate described in 5.1. ~ 4. A light emitting structure comprising the laminate according to any one of the above and an ultraviolet light source (X) on the fluorescent light emitting layer (A) side of the laminate.

本発明の積層体は、紫外線光源の照射により、発光する積層体であって、紫外線が照射される側から蛍光発光を示す蛍光発光層(A)、波長領域300nm〜400nmの全領域での紫外線反射率が10%以上で透明または半透明の紫外線反射層(B)、及び着色層(C)が積層されることにより、蛍光発光表示部の発光効率が高く、濃色の発光色を表現でき、意匠性に優れるものである。 The laminate of the present invention is a laminate that emits light when irradiated with an ultraviolet light source, and is a fluorescent light-emitting layer (A) that emits fluorescence from the side irradiated with ultraviolet light, and ultraviolet light in the entire wavelength region of 300 nm to 400 nm. By laminating a transparent or translucent ultraviolet reflective layer (B) and a colored layer (C) with a reflectance of 10% or more, the luminous efficiency of the fluorescent light emitting display portion is high, and a dark luminescent color can be expressed. It is excellent in design.

本発明積層体及び発光構造体の構造図の一例である。It is an example of the structural drawing of this invention laminated body and a light emitting structure. 本発明積層体及び発光構造体の構造図の一例である。It is an example of the structural drawing of this invention laminated body and a light emitting structure. 本発明発光構造体の構造図の一例である。It is an example of the structure figure of this invention light emission structure.

以下、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

(積層体)
本発明は、紫外線を照射することにより発光する積層体であり、紫外線光源の照射により、発光する積層体であって、紫外線が照射される側から蛍光発光を示す蛍光発光層(A)(以下、単に「(A)層」ともいう。)、波長領域300nm〜400nmの全領域での紫外線反射率が10%以上で透明または半透明の紫外線反射層(B)(以下、単に「(B)層」ともいう。)及び着色層(C)(以下、単に「(C)層」ともいう。)が積層されていることを特徴とする積層体である (図1)。
(Laminate)
The present invention is a laminate that emits light when irradiated with ultraviolet light, and is a laminate that emits light when irradiated with an ultraviolet light source. , Simply referred to as “(A) layer”), a transparent or translucent ultraviolet reflective layer (B) (hereinafter simply referred to as “(B)”) having an ultraviolet reflectance of 10% or more in the entire wavelength region of 300 nm to 400 nm. And a colored layer (C) (hereinafter also simply referred to as “(C) layer”) (FIG. 1).

本発明の蛍光発光層(A)とは、透光性を有する材料(以下、「透光性材料」という。)に蛍光発光を示す顔料、染料等(以下、「蛍光材料」という。)を含むものである。 The fluorescent light emitting layer (A) of the present invention is a pigment, dye or the like (hereinafter referred to as “fluorescent material”) that exhibits fluorescent light emission on a light transmitting material (hereinafter referred to as “translucent material”). Is included.

透光性材料としては、透光性を有するものであれば、無機質材料、有機質材料のどちらでもよい。例えば、無機質材料としては、ガラス、水ガラス、低融点ガラス、シリコン樹脂、アルコキシシラン等があげられる。また、有機質材料としては、アクリル樹脂、アクリル−スチレン樹脂、セルロールアセトブチレート樹脂、セルロースプロピオネート樹脂、ポリメチルペンテン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエステル樹脂等、または反応硬化型のエポキシ樹脂、アクリル樹脂、メタクリル樹脂、ウレタン樹脂等が挙げられる。なお、「透光性」とは、可視光透過性に優れ、透明性を有するものである。   As the translucent material, any of an inorganic material and an organic material may be used as long as it has translucency. For example, examples of the inorganic material include glass, water glass, low-melting glass, silicon resin, and alkoxysilane. Organic materials include acrylic resin, acrylic-styrene resin, cellulose acetobutyrate resin, cellulose propionate resin, polymethylpentene resin, polycarbonate resin, polystyrene resin, polyester resin, etc., or reaction-curing type epoxy resin , Acrylic resin, methacrylic resin, urethane resin and the like. In addition, “translucency” is excellent in visible light transparency and has transparency.

蛍光材料としては、紫外線照射下において蛍光発光を示すものであれば限定されず、公知の蛍光染料や蛍光顔料等を使用することができる。本発明では、可視光下において蛍光発光を示さないものが好ましく、このような蛍光体の中でも、蛍光発光持続性、耐候性にも優れる無機蛍光顔料が特に好ましい。 The fluorescent material is not limited as long as it exhibits fluorescence emission under ultraviolet irradiation, and known fluorescent dyes, fluorescent pigments, and the like can be used. In the present invention, those that do not exhibit fluorescence emission under visible light are preferred, and among these phosphors, inorganic fluorescent pigments that are excellent in fluorescence emission durability and weather resistance are particularly preferred.

(A)層は、上記透光性材料と上記蛍光材料を含む組成物(以下「蛍光発光層用組成物」という。)を、フィルム状または板状等に成形したものである。 その厚みは、通常0.01mm〜10mm、より好ましくは0.05〜5mmであり、この範囲内であれば、部分的に厚みを変化させてもよい。部分的に厚みを変化させることにより、蛍光発光の輝度を変化させることができる。蛍光発光層用組成物は、透光性材料(固形分)100重量部に対して、蛍光材料を0.5〜50重量部、さらには1〜30重量部混合することが好ましい。0.5重量部より少ない場合、蛍光発光層の輝度が低くなり視認性に劣るおそれがある。また、50重量部より多く添加しても輝度の向上が確認できないおそれがある。 The (A) layer is formed by molding a composition containing the light-transmitting material and the fluorescent material (hereinafter referred to as “fluorescent light-emitting layer composition”) into a film shape or a plate shape. The thickness is usually 0.01 mm to 10 mm, more preferably 0.05 to 5 mm, and the thickness may be partially changed within this range. By changing the thickness partially, the luminance of the fluorescence emission can be changed. In the composition for a fluorescent light emitting layer, it is preferable to mix 0.5 to 50 parts by weight, further 1 to 30 parts by weight of the fluorescent material with respect to 100 parts by weight of the translucent material (solid content). When the amount is less than 0.5 part by weight, the luminance of the fluorescent light emitting layer is lowered and the visibility may be inferior. Moreover, even if it adds more than 50 weight part, there exists a possibility that the improvement of a brightness | luminance cannot be confirmed.

波長領域300nm〜400nmの全領域において紫外線反射率が10%以上(好ましくは25%以上)である紫外線反射層(B)は、前記波長領域の全領域において、紫外線反射率が10%以上あるものである。また、本発明積層体に(A)層側から紫外線を照射した場合、(A)層とは反対側から蛍光発光層の発光が視認できる程度に、透明または半透明である層であることが好ましい。   The ultraviolet reflection layer (B) having an ultraviolet reflectance of 10% or more (preferably 25% or more) in the entire wavelength region of 300 nm to 400 nm has an ultraviolet reflectance of 10% or more in the entire wavelength region. It is. In addition, when the laminate of the present invention is irradiated with ultraviolet rays from the (A) layer side, it is a layer that is transparent or translucent to such an extent that light emission from the fluorescent light emitting layer can be visually recognized from the side opposite to the (A) layer. preferable.

具体的には、(B)層の隠蔽率が、70%以下(好ましくは15%〜60%)であることが好ましい。70%を超える場合は、蛍光発光の視認性が低下するおそれがある。また、隠蔽率を15%以上とすることによって、(A)層側の光源の形状を、(B)層を介して視認され難くすることもできる。
隠蔽率を測定する方法としては、(B)層を隠蔽率試験紙上に置き、白地上と黒地上の視感反射率から隠蔽率を算出する方法が挙げられる。
なお、視感反射率は色彩色差計(「CR−300」:ミノルタ株式会社製)を用いて測定し算出することができる。
Specifically, the concealment rate of the layer (B) is preferably 70% or less (preferably 15% to 60%). If it exceeds 70%, the visibility of fluorescent emission may be reduced. Further, by setting the concealment rate to 15% or more, the shape of the light source on the (A) layer side can be made difficult to be visually recognized through the (B) layer.
As a method for measuring the concealment rate, there is a method of placing the layer (B) on the concealment rate test paper and calculating the concealment rate from the luminous reflectance of the white ground and the black ground.
The luminous reflectance can be measured and calculated using a color difference meter (“CR-300” manufactured by Minolta Co., Ltd.).

また、(B)層は波長領域300nm〜400nmの全領域において紫外線反射率10%以上であることにより、蛍光体の励起に利用されずに放出されようとする紫外線を(B)層が反射し、(A)層に再度紫外線を照射し蛍光発光を繰り返すことにより、発光効率を向上させることができる。この場合、照射された紫外線が、(B)層を通過し放出されることはほとんどない。
紫外線反射率が10%より小さい場合は、紫外線が漏出してしまうおそれがあり、(A)層の発光効率向上効果を阻害するおそれがある。
なお、紫外線反射率は、分光光度計(株式会社島津製作所製、UV−3100)で測定した値である。
このような、(B)層としては、上記範囲を満たすものであればよく、樹脂板、樹脂フィルム、ガラス板、セラミック板、不織布、織布、紙、等が挙げられる。
In addition, since the (B) layer has an ultraviolet reflectance of 10% or more in the entire wavelength region of 300 nm to 400 nm, the (B) layer reflects ultraviolet rays that are about to be emitted without being used for excitation of the phosphor. The light emission efficiency can be improved by irradiating the layer (A) with ultraviolet rays again and repeating fluorescence. In this case, the irradiated ultraviolet rays hardly pass through the layer (B) and are released.
When the ultraviolet reflectance is less than 10%, the ultraviolet rays may leak out, and the effect of improving the luminous efficiency of the layer (A) may be hindered.
The ultraviolet reflectance is a value measured with a spectrophotometer (manufactured by Shimadzu Corporation, UV-3100).
Such a (B) layer should just satisfy | fill the said range, and a resin board, a resin film, a glass plate, a ceramic board, a nonwoven fabric, a woven fabric, paper etc. are mentioned.

特に、本発明では(B)層として、波長領域300nm〜400nmの紫外線を反射(散乱)する粉体(以下「紫外線反射性粉体」という)と、透光性材料を含む層を使用することが好ましい。 In particular, in the present invention, as the layer (B), a layer containing a powder that reflects (scatters) ultraviolet rays in the wavelength region of 300 nm to 400 nm (hereinafter referred to as “ultraviolet reflective powder”) and a translucent material is used. Is preferred.

透光性材料としては、(A)層と同様のものが使用できる。
また、紫外線反射性粉体は、波長領域300nm〜400nmの全領域において、紫外線反射率が50%以上、屈折率が1.5〜2.4(好ましくは1.5〜1.8)であることが好ましい。また、粒子径は特に限定されないが、通常0.2μm以下、または0.4μm以上10μm以下が好ましい。上記範囲とすることにより、紫外線を効率的に反射するとともに、蛍光発光(可視光)を拡散することができるため、優れた発光輝度を得ることができる。このような紫外線反射性粉体としては、例えば、アルミナ、酸化ジルコニウム、硫酸バリウム、炭酸カルシウム等を使用することができる。
As the translucent material, the same material as the layer (A) can be used.
In addition, the ultraviolet reflective powder has an ultraviolet reflectance of 50% or more and a refractive index of 1.5 to 2.4 (preferably 1.5 to 1.8) in the entire wavelength region of 300 nm to 400 nm. It is preferable. The particle size is not particularly limited, but is usually preferably 0.2 μm or less, or 0.4 μm or more and 10 μm or less. By setting it as the said range, while reflecting an ultraviolet-ray efficiently and diffusing fluorescence emission (visible light), the outstanding light-emitting luminance can be obtained. As such an ultraviolet reflective powder, for example, alumina, zirconium oxide, barium sulfate, calcium carbonate, or the like can be used.

紫外線反射層(B)は、上記透光性材料と上記紫外線反射性粉体を含む組成物(以下、「紫外線反射層用組成物」という。)を、透明または半透明で、かつ波長領域300nm〜400nmの全領域において紫外線反射率が10%以上となるように、フィルム状または板状等に成形したものが使用できる。その厚みは、透明または半透明で、上記の紫外線反射率を満たす範囲で適宜設定すればよく、通常0.01mm〜10mm、より好ましくは0.05〜5mmであり、この範囲内であれば、部分的に厚みを変化させてもよい。部分的に厚みを変化させることにより、蛍光発光の輝度を変化させることができる。
紫外線反射層用組成物は、使用する紫外線反射性粉体の種類、成形する紫外線反射層の厚みにもよるが、透光性材料(固形分)100重量部に対して、紫外線反射性粉体を10〜400重量部、さらには30〜300重量部混合することが好ましい。このような範囲であれば、本発明の効果が得られ易い。
The ultraviolet reflecting layer (B) is a transparent or semi-transparent composition containing the above translucent material and the above ultraviolet reflecting powder (hereinafter referred to as “ultraviolet reflecting layer composition”) and has a wavelength region of 300 nm. What was shape | molded in the film form or plate shape etc. so that an ultraviolet-ray reflectivity may become 10% or more in the whole area of -400 nm can be used. The thickness is transparent or translucent, and may be set as appropriate within a range that satisfies the above-described ultraviolet reflectance, and is usually 0.01 mm to 10 mm, more preferably 0.05 to 5 mm. The thickness may be partially changed. By changing the thickness partially, the luminance of the fluorescence emission can be changed.
Although the composition for ultraviolet reflective layer depends on the type of ultraviolet reflective powder used and the thickness of the ultraviolet reflective layer to be molded, the ultraviolet reflective powder with respect to 100 parts by weight of the translucent material (solid content). Is preferably 10 to 400 parts by weight, more preferably 30 to 300 parts by weight. If it is such a range, the effect of this invention will be easy to be acquired.

着色層(C)は、透光性材料と顔料及び/または染料を含む組成物(以下、「着色層用組成物」という。)をフィルム状または板状等に成形したものである。特に、着色層(C)は、蛍光発光層(A)が呈する蛍光発光色と、同系色であることが好ましい。さらに、着色層(C)は透光性を有する着色クリヤー層であることが好ましい。着色クリヤー層とすることによって、光源が照射される側からだけではなく、その反対側からも蛍光層(A)の発光を視認することができる。本発明の(C)層は、可視光領域において特定波長の光以外の余剰光をカットオフし、特定の光のみを効果的に取り出すものである。具体的には、本発明の積層体において、(A)層に光源より紫外線が照射されると、(A)層の蛍光体が励起して可視光領域の波長に変換される。本発明の積層体において、(A)層と(B)層は、透光性を有するため、変換された可視光領域の光は(C)層まで達し、(C)層では、目的とする光のみを取り出し、余剰光が吸収される。これにより、蛍光発光色を鮮やかでより濃色の発光色とすることができる。
なお、上記同系色とは、色の特性で表される3要素、すなわち色相、明度、彩度の内、色相が近いもののことを意味し、蛍光発光層(A)が呈する蛍光発光色に対して、Lh表色系における色相角度の差が△h=±45°以内(好ましくは△h=±30°以内)の範囲に入る色の内から選択される色のことをいう。ここでいうLh表色系とは、1976年に国際照明委員会で規定され、JIS
Z 8729にも採用されているL表色系を極座標表示したものであって、Lは明度を表し、Cは原点からの距離として彩度を表す、hはL表色系におけるa赤方向の軸を0°として、ここから反時計方向の色相に対して移動した色相角度を表す。
The colored layer (C) is obtained by molding a composition containing a translucent material and a pigment and / or dye (hereinafter referred to as “colored layer composition”) into a film shape or a plate shape. In particular, the colored layer (C) preferably has a similar color to the fluorescent color emitted by the fluorescent layer (A). Further, the colored layer (C) is preferably a colored clear layer having translucency. By using the colored clear layer, light emission of the fluorescent layer (A) can be visually recognized not only from the side irradiated with the light source but also from the opposite side. The (C) layer of the present invention cuts off excess light other than light having a specific wavelength in the visible light region, and effectively extracts only specific light. Specifically, in the laminate of the present invention, when the (A) layer is irradiated with ultraviolet rays from a light source, the phosphor in the (A) layer is excited and converted to a wavelength in the visible light region. In the laminate of the present invention, since the (A) layer and the (B) layer have translucency, the converted light in the visible light region reaches the (C) layer. Only the light is extracted and excess light is absorbed. Thereby, the fluorescence emission color can be changed to a brighter and darker emission color.
The above-mentioned similar color means three elements represented by color characteristics, that is, hue, brightness, and saturation, which are close in hue, and with respect to the fluorescence emission color exhibited by the fluorescence emission layer (A). That is, the color selected from the colors in which the difference in hue angle in the L * C * h color system falls within the range of Δh = ± 45 ° (preferably Δh = ± 30 °). . The L * C * h color system here is defined by the International Commission on Illumination in 1976 and is JIS.
The L * a * b * color system used in Z 8729 is displayed in polar coordinates, where L * represents lightness, C * represents saturation as a distance from the origin, and h represents L * The a * b * color system represents the hue angle shifted from the a counterclockwise hue from 0 to the a * red axis.

(C)層に使用できる透光性材料としては、蛍光発光層(A)と同様のものが使用できる。
顔料及び/または染料としては、特に限定されず、一般的なものを使用することができる。顔料としては、例えば、酸化チタン、酸化亜鉛、酸化鉄、カーボンブラック、モリブデンレッド、コバルトブルー、マンガンバイオレット、弁柄、紺青、群青等の無機質顔料;フタロシアニンブルー、フタロシアニングリーン等のフタロシアニン系顔料、モノアゾレッド、ファーストエロー、パーマネントイエロー、ジスアゾイエロー等のアゾ系顔料、ペリレンレッド等のペリレン系顔料、キナクリドンレッド等のキナクリドン系顔料、イソインドリノン系顔料、メチン・アゾメチン系顔料、ベンズイミダゾロン系顔料、ジオキサジン系顔料等の有機質顔料;アルミニウム、ニッケル、ステンレス等の金属粉顔料;パール顔料、蛍光顔料、蓄光顔料等の特殊顔料、等が挙げられる。
また、染料としては、塩基性染料、酸性染料、直接染料、建染染料、分散染料、反応染料、などの各種染料等が使用可能である。
これらは所望の色相に応じて適宜選択すればよく、1種のみで使用してもよいし、2種以上を組み合せて使用することもできる。
(C) As a translucent material which can be used for a layer, the thing similar to a fluorescence light emitting layer (A) can be used.
The pigment and / or dye is not particularly limited, and general pigments can be used. Examples of the pigment include titanium oxide, zinc oxide, iron oxide, carbon black, molybdenum red, cobalt blue, manganese violet, petal, bitumen, ultramarine blue and other inorganic pigments; phthalocyanine blue, phthalocyanine green and other phthalocyanine pigments, monoazo Azo pigments such as red, first yellow, permanent yellow and disazo yellow, perylene pigments such as perylene red, quinacridone pigments such as quinacridone red, isoindolinone pigments, methine / azomethine pigments, benzimidazolone pigments, Organic pigments such as dioxazine pigments; metal powder pigments such as aluminum, nickel, and stainless steel; special pigments such as pearl pigments, fluorescent pigments, and phosphorescent pigments.
As the dye, various dyes such as a basic dye, an acid dye, a direct dye, a vat dye, a disperse dye, and a reactive dye can be used.
These may be selected as appropriate according to the desired hue, and may be used alone or in combination of two or more.

(C)層は、上記透光性材料と上記顔料及び/または染料を含む組成物(以下「着色層用組成物」という。)を、フィルム状または板状等に成形したものである。 その厚みは、通常0.01mm〜5mm、より好ましくは0.01〜1mmであり、この範囲内であれば、部分的に厚みを変化させてもよい。部分的に厚みを変化させることにより、発光色の濃淡を変化させることができる。着色層用組成物は、透光性材料(固形分)100重量部に対して、顔料及び/または染料を0.01〜5重量部、さらには0.03〜2重量部混合することが好ましい。0.01重量部より少ない場合、発光色を濃色化できないおそれがある。また、5重量部より多く添加した場合、発光色が確認しにくくなるおそれがある。 The (C) layer is formed by molding a composition containing the above translucent material and the above pigment and / or dye (hereinafter referred to as “colored layer composition”) into a film shape or a plate shape. The thickness is usually 0.01 mm to 5 mm, more preferably 0.01 to 1 mm, and the thickness may be partially changed within this range. By changing the thickness partially, the shade of the emission color can be changed. In the colored layer composition, it is preferable to mix 0.01 to 5 parts by weight, and further 0.03 to 2 parts by weight of pigment and / or dye with respect to 100 parts by weight of the translucent material (solid content). . If the amount is less than 0.01 parts by weight, the emission color may not be darkened. Moreover, when adding more than 5 weight part, there exists a possibility that a luminescent color may become difficult to confirm.

本発明では、紫外線が照射される側から、蛍光発光を示す蛍光発光層(A)に、紫外線反射層(B)、及び着色層(C)が積層されることにより、(B)層と(C)層の相乗効果により、蛍光発光色を鮮やかでより濃色の発光色とすることができる。
(B)層と(C)層は、上記のように別々の層として積層してもよいが、(B)層と(C)層の効果を併せ持つ、波長領域300nm〜400nmの全領域において紫外線反射率が10%以上で透明または半透明の紫外線反射着色層(D)(以下、単に「(D)層」ともいう。)として積層することもできる。(D)層としては、例えば、透光性材料と紫外線反射性粉体、並びに顔料及び/または染料を含む組成物(紫外線反射着色層用組成物)をフィルム状または板状等に成形したものを使用することができる。(図2)
In the present invention, the ultraviolet light reflecting layer (B) and the colored layer (C) are laminated on the fluorescent light emitting layer (A) exhibiting fluorescent light emission from the side irradiated with the ultraviolet light, whereby the layer (B) and ( C) Due to the synergistic effect of the layers, the fluorescent emission color can be made brighter and darker.
Although the (B) layer and the (C) layer may be laminated as separate layers as described above, the ultraviolet ray is irradiated in the entire wavelength region of 300 nm to 400 nm, which has both the effects of the (B) layer and the (C) layer. It can also be laminated as a transparent or translucent ultraviolet reflective colored layer (D) (hereinafter also simply referred to as “(D) layer”) having a reflectance of 10% or more. As the layer (D), for example, a composition containing a translucent material, an ultraviolet reflective powder, and a pigment and / or dye (a composition for an ultraviolet reflective colored layer) is formed into a film shape or a plate shape. Can be used. (Figure 2)

(D)層は、上記透光性材料、上記紫外線反射性粉体、上記顔料及び/または染料を含む組成物(以下「紫外線反射着色層用組成物」という。)を、フィルム状または板状等に成形したものである。その厚みは、通常0.01mm〜10mm、より好ましくは0.01〜5mmであり、この範囲内であれば、部分的に厚みを変化させてもよい。部分的に厚みを変化させることにより、発光色の濃淡を変化させることができる。紫外線反射着色層用組成物は、透光性材料(固形分)100重量部に対して、紫外線反射性粉体を10〜400重量部(好ましくは30〜300重量)、顔料及び/または染料を0.01〜5重量部(好ましくは0.03〜2重量部)混合することが好ましい。 The layer (D) is a film-like or plate-like composition containing the light-transmitting material, the ultraviolet-reflecting powder, the pigment and / or the dye (hereinafter referred to as “ultraviolet-reflective colored layer composition”). Etc. are formed. The thickness is usually 0.01 mm to 10 mm, more preferably 0.01 to 5 mm, and the thickness may be partially changed within this range. By changing the thickness partially, the shade of the emission color can be changed. The composition for ultraviolet reflective coloring layer is composed of 10 to 400 parts by weight (preferably 30 to 300 parts by weight) of ultraviolet reflective powder, pigment and / or dye with respect to 100 parts by weight of the translucent material (solid content). It is preferable to mix 0.01 to 5 parts by weight (preferably 0.03 to 2 parts by weight).

また、本発明の(D)層は、本発明積層体に(A)層側から紫外線を照射した場合、(A)層とは反対側から蛍光発光層の発光が視認できる程度に、透明または半透明であればよく、(D)層の隠蔽率が、70%以下(好ましくは15%〜60%)であることが好ましい。70%を超える場合は、蛍光発光の視認性が低下するおそれがある。また、隠蔽率を15%以上とすることによって、(A)層側の光源の形状を、(D)層を介して視認され難くすることもできる。 In addition, the layer (D) of the present invention is transparent to the extent that the emission of the fluorescent light emitting layer can be visually recognized from the side opposite to the layer (A) when the laminate of the present invention is irradiated with ultraviolet rays from the (A) layer side. What is necessary is just to be translucent, and it is preferable that the concealment rate of the (D) layer is 70% or less (preferably 15% to 60%). If it exceeds 70%, the visibility of fluorescent emission may be reduced. Further, by setting the concealment rate to 15% or more, the shape of the light source on the (A) layer side can be made difficult to be visually recognized through the (D) layer.

本発明の積層体としては、紫外線が照射される側から順に、蛍光発光層(A)、紫外線反射層(B)、着色層(C)が積層された積層体P、または蛍光発光層(A)、紫外線反射着色層(D)が積層された積層体Qが挙げられるが、その他にも、紫外線が照射される側から順に、蛍光発光層(A)、紫外線反射層(B)、紫外線反射着色層(D)が積層された積層体、または蛍光発光層(A)、紫外線反射着色層(D)、着色層(C)を積層させた積層体であってもよい。さらに、本発明の効果を阻害しない限りであれば、基材((E)層)等を積層することもできる。 As the laminate of the present invention, the fluorescent light emitting layer (A), the ultraviolet light reflecting layer (B), and the colored layer (C) are laminated in order from the side irradiated with the ultraviolet light, or the fluorescent light emitting layer (A). ), And a laminate Q in which an ultraviolet reflective coloring layer (D) is laminated. In addition, the fluorescent light emitting layer (A), the ultraviolet reflective layer (B), and the ultraviolet reflective are sequentially arranged from the side irradiated with ultraviolet rays. It may be a laminate in which the colored layer (D) is laminated, or a laminate in which the fluorescent light emitting layer (A), the ultraviolet reflective colored layer (D), and the colored layer (C) are laminated. Furthermore, a substrate ((E) layer) or the like can be laminated as long as the effects of the present invention are not impaired.

基材(E)は、特に限定されず、石膏ボード、合板、コンクリート、モルタル、磁器タイル、繊維混入セメント板、セメント珪酸カルシウム板、スラグセメントパーライト板、ALC板、サイディング板、押出成形板、鋼板、アルミニウム板、プラスチック板、ガラス板等が挙げられる。中でも、本発明では、透光性基材(E´)であることが好ましく、透光性基材(E´)の場合、光源が照射される側からだけではなく、その反対側からも視認することができるため、意匠性にも優れるものとなる。このような透光性基材(E´)としては、蛍光発光層(A)と同様の透光性材料をフィルム状または板状等に成形したもの、市販されているガラス板、樹脂板、樹脂フィルム等を使用できる。その厚みは、使用する基材の種類によって適宜設定すればよいが、通常、0.05mm〜10mmであることが好ましい。厚すぎる場合は、発光が視認しにくくなるおそれがある。透光性基材(E´)は、積層体Pの場合、(E´)が(A)層、(B)層、(C)層の少なくとも一層に接するように積層させればよい。また、積層体Qの場合、(E´)が(A)層、(D)層の少なくとも一層に接するように積層させればよい。 A base material (E) is not specifically limited, Gypsum board, plywood, concrete, mortar, porcelain tile, fiber mixed cement board, cement calcium silicate board, slag cement pearlite board, ALC board, siding board, extrusion board, steel sheet , Aluminum plate, plastic plate, glass plate and the like. Especially, in this invention, it is preferable that it is a translucent base material (E '), and in the case of a translucent base material (E'), it is visible not only from the side irradiated with a light source but from the opposite side. Therefore, the design is excellent. As such a translucent base material (E ′), the same translucent material as that of the fluorescent light emitting layer (A) is formed into a film or plate, a commercially available glass plate, resin plate, A resin film or the like can be used. The thickness may be appropriately set depending on the type of base material to be used, but is usually preferably 0.05 mm to 10 mm. When it is too thick, there is a possibility that light emission is difficult to visually recognize. In the case of the laminate P, the translucent substrate (E ′) may be laminated so that (E ′) is in contact with at least one of the (A) layer, the (B) layer, and the (C) layer. In the case of the stacked body Q, the stacked body Q may be stacked so that (E ′) is in contact with at least one of the (A) layer and the (D) layer.

これら基材(E)の形状としては、特に限定されないが、凹凸基材であれば蛍光発光の多様性が高まる。凹凸形状は、凹部と凸部の差が0.01mm〜10mm、さらには0.05mm〜5mm程度であることが好ましい。この範囲であることにより、幻想的な発光を表現することができ、意匠性、美観性に優れる。 The shape of these base materials (E) is not particularly limited, but if the base material is an uneven base material, the diversity of fluorescence emission increases. The uneven shape preferably has a difference between the concave and convex portions of about 0.01 mm to 10 mm, and more preferably about 0.05 mm to 5 mm. By being in this range, it is possible to express fantastic light emission, and it is excellent in design and aesthetics.

本発明積層体は、紫外線が照射される側から順に、蛍光発光層(A)、紫外線反射層(B)、着色層(C)が積層(積層体P)または、蛍光発光層(A)、紫外線反射着色層(D)が積層(積層体Q)されているものであれば、その形状は板状、角柱形状、円柱形状等、特に限定されない。また、本発明積層体の製造方法は、特に限定されないが、例えば、
(I)板状に成形した蛍光発光層(A)、紫外線反射層(B)、着色層(C)、または、紫外線反射着色層(D)を、図1または図2に示すように接着剤等を介して積層する方法、
(II) 板状に成形した蛍光発光層(A)に紫外線反射層用組成物、着色層用組成物、または紫外線反射着色層用組成物を図1または図2に示すように、塗付し、硬化させる方法、
等が挙げられる。
また、上記(I)と上記(II)を組み合わせて製造することもできる。
In the laminate of the present invention, the fluorescent light emitting layer (A), the ultraviolet reflective layer (B), and the colored layer (C) are laminated (laminate P) or the fluorescent light emitting layer (A) in order from the side irradiated with the ultraviolet rays. As long as the ultraviolet reflective coloring layer (D) is laminated (laminated body Q), the shape is not particularly limited, such as a plate shape, a prismatic shape, or a cylindrical shape. Moreover, although the manufacturing method of this invention laminated body is not specifically limited, For example,
(I) A fluorescent light emitting layer (A), an ultraviolet reflective layer (B), a colored layer (C), or an ultraviolet reflective colored layer (D) formed into a plate shape is adhesive as shown in FIG. 1 or FIG. A method of laminating via, etc.
(II) An ultraviolet reflective layer composition, a colored layer composition, or an ultraviolet reflective colored layer composition is applied to the fluorescent light emitting layer (A) formed into a plate shape as shown in FIG. 1 or FIG. The curing method,
Etc.
Moreover, it can also manufacture combining said (I) and said (II).

上記(I)〜(II)において、蛍光発光層用組成物、紫外線反射層用組成物、着色層組成物、及び紫外線反射着色層組成物をフィルム状、板状等に成形する際には、公知の成形方法で行えばよく、例えば、型枠成形、射出成形、注型成形等が挙げられる。
上記(II)において、蛍光発光層用組成物、紫外線反射層用組成物、着色層用組成物、及び紫外線反射着色層組成物を塗付する際には、スプレー、ローラー、こて、レシプロ、コーター、流し込み等の手段を用いることができる。
In the above (I) to (II), when the fluorescent light emitting layer composition, the ultraviolet reflective layer composition, the colored layer composition, and the ultraviolet reflective colored layer composition are formed into a film shape, a plate shape or the like, What is necessary is just to perform by a well-known shaping | molding method, for example, mold forming, injection molding, cast molding, etc. are mentioned.
In the above (II), when applying the fluorescent light emitting layer composition, the ultraviolet reflective layer composition, the colored layer composition, and the ultraviolet reflective colored layer composition, spray, roller, trowel, reciprocating, Means such as a coater and pouring can be used.

また、成形時に、各組成物に、例えば、着色材、可塑剤、難燃剤、滑剤、防腐剤、防黴剤、防藻剤、抗菌剤、分散剤、消泡剤、造膜助剤、吸着剤、架橋剤、酸化防止剤、触媒、ブロッキング防止剤等が含まれていてもよく、このような成分を常法で均一に混合して成形体を作製することができる。 Moreover, at the time of molding, for example, coloring materials, plasticizers, flame retardants, lubricants, preservatives, antifungal agents, antialgae agents, antibacterial agents, dispersants, antifoaming agents, film-forming aids, adsorption agents An agent, a crosslinking agent, an antioxidant, a catalyst, an antiblocking agent and the like may be contained, and such a component can be uniformly mixed by a conventional method to produce a molded product.

蛍光発光層(A)と紫外線反射層(B)、着色層(C)、または紫外線反射着色層(D)を、接着剤等を介して積層する場合、本発明の効果を阻害しないような透光性の接着剤、粘着剤、粘着テープ等を使用することができる。また、上記蛍光発光層用組成物、または紫外線反射層用組成物の乾燥は通常、常温で行えばよいが加熱することも可能である。   When the fluorescent light emitting layer (A) and the ultraviolet reflective layer (B), the colored layer (C), or the ultraviolet reflective colored layer (D) are laminated via an adhesive or the like, the transparent layer does not impair the effects of the present invention. A light adhesive, pressure-sensitive adhesive, pressure-sensitive adhesive tape, or the like can be used. Moreover, although the said fluorescent light emitting layer composition or the composition for ultraviolet reflection layers may be normally dried at normal temperature, it can also be heated.

(発光構造体)
本発明の発光構造体(R)は、紫外線光源(X)(光源(X))及び、上記蛍光発光層(A)、と上記紫外線反射層(B)と上記着色層(C)が積層されている積層体を備えるものである。紫外線光源(X)は、積層体の蛍光発光層(A)側に配置される。
(Light emitting structure)
In the light emitting structure (R) of the present invention, the ultraviolet light source (X) (light source (X)), the fluorescent light emitting layer (A), the ultraviolet reflective layer (B), and the colored layer (C) are laminated. The laminated body is provided. The ultraviolet light source (X) is disposed on the fluorescent light emitting layer (A) side of the laminate.

上記光源(X)は(A)層全面を照射するものであっても、局部的に照射しパターン(模様)を形成するものであってもよい。また、光源のON/OFFを切り替えることによって、表示内容を容易に変更することができる。
本発明に使用する光源は、紫外光を発するものであればよいが、波長300nm〜400nmの範囲に輝線を有するものが好ましい。
上記発光構造体の発光を見る方向は、特に限定されないが、上記(B)層、(C)層、(基材(E))が半透明の場合、照射する光源(X)と反対側とすることもできる。この場合、(B)層を介して、(A)層の背後に設置された光源の形状が視認され難くなる。
The light source (X) may irradiate the entire surface of the layer (A) or may irradiate locally to form a pattern. Further, the display content can be easily changed by switching the light source ON / OFF.
Although the light source used for this invention should just emit an ultraviolet light, what has an emission line in the wavelength range of 300 nm-400 nm is preferable.
The direction of viewing the light emission of the light emitting structure is not particularly limited, but when the (B) layer, (C) layer, and (base material (E)) are translucent, You can also In this case, the shape of the light source installed behind the (A) layer becomes difficult to be visually recognized through the (B) layer.

上記のように、発光を見る方向を光源(X)とは反対側にするものとして、内照式の発光構造体が挙げられる(図3)。内照式の構造体とする場合、光源(X)から照射された光の外部漏洩を防止できる。この場合、光源の背後や側面に反射板(Y)を設けることができる。このような反射層としては、紫外線反射効率の高いAg、Al、Au、Cr、Cu、Ni、Ti、Pt等の金属材料によるコーティング層、或いは、本発明の紫外線反射層(B)、または、カオリン、タルク、シリカ等を含む白色塗料を塗布したもの、多孔質板、多孔質シート等が挙げられる。反射板(Y)の形状としては、平面状(図3−1)のもの、あるいは波状(図3−2、図3−3)のものどちらであってもよい。特に、本発明では波状のものが好ましく、この場合、反射板凹部に光源が配置されることが好ましい。このような形状の反射板を設けることにより、光源から照射される光が乱反射することにより、蛍光発光層(A)に均一な光を照射することができる。さらに、反射板の表面が微細な凹凸を有することにより光の乱反射効果をさらに高めることができるため好ましい。凹凸の高さは、1〜1000μm(好ましくは5〜500μm)であることが好ましい。
一方、光源付近の照射強度を調整するために、光源(X)と蛍光発光層(A)の間に遮蔽板(Z)を設けることもできる。該遮蔽板(Z)は、光源(X)の一部の光を遮蔽するものである。これにより、蛍光発光層(A)により均一な光を照射することができる。
As described above, an internally illuminating light emitting structure is exemplified as a light emission viewing direction opposite to the light source (X) (FIG. 3). In the case of an internally illuminated structure, external leakage of light emitted from the light source (X) can be prevented. In this case, a reflector (Y) can be provided behind and on the side of the light source. As such a reflective layer, a coating layer made of a metal material such as Ag, Al, Au, Cr, Cu, Ni, Ti, Pt having a high ultraviolet reflective efficiency, or the ultraviolet reflective layer (B) of the present invention, or Examples include those coated with a white paint containing kaolin, talc, silica, etc., porous plates, porous sheets and the like. The shape of the reflecting plate (Y) may be either a flat shape (FIG. 3-1) or a wavy shape (FIGS. 3-2 and 3-3). Particularly, in the present invention, a wave shape is preferable, and in this case, it is preferable that the light source is disposed in the concave portion of the reflection plate. By providing the reflecting plate having such a shape, the light emitted from the light source is irregularly reflected, so that the fluorescent light emitting layer (A) can be irradiated with uniform light. Further, it is preferable that the surface of the reflecting plate has fine irregularities so that the light irregular reflection effect can be further enhanced. The height of the unevenness is preferably 1 to 1000 μm (preferably 5 to 500 μm).
On the other hand, in order to adjust the irradiation intensity near the light source, a shielding plate (Z) can be provided between the light source (X) and the fluorescent light emitting layer (A). The shielding plate (Z) shields part of the light from the light source (X). Thereby, uniform light can be irradiated by the fluorescent light emitting layer (A).

本発明の発光構造体では、上述のように(B)層を介して、(A)層の背後に設置された光源の形状が視認され難くなるものであるが、さらに積層体と空気層を介して透光性凹凸板(F)を配置することができる。このような凹凸板(F)を設けることにより、背後に設置された光源の形状が視認され難くなる。さらに、積層体の幻想的な発光を表現することができ、意匠性、美観性に優れる。凹凸板(F)としては、上述の基材(E)の中の透光性基材と同様のものが使用できる。
In the light emitting structure of the present invention, the shape of the light source installed behind the (A) layer is difficult to be visually recognized through the (B) layer as described above. A translucent uneven plate (F) can be disposed therethrough. By providing such a concavo-convex plate (F), it becomes difficult to visually recognize the shape of the light source installed behind. Furthermore, it can express fantastic light emission of the laminate, and is excellent in design and aesthetics. As an uneven | corrugated board (F), the thing similar to the translucent base material in the above-mentioned base material (E) can be used.

以下に実施例を示し、本発明の特徴をより明確にする。   Examples are given below to clarify the features of the present invention.

・蛍光発光層用組成物1
アクリル樹脂エマルション100重量部(固形分)、緑色無機蛍光顔料10重量部、添加剤(分散剤、消泡剤等)4重量部を常法にて混合し、蛍光発光層用組成物1を作製した。
上記蛍光発光層用組成物1をアクリル板(300mm×200mm×3mm)に、塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、乾燥させた。蛍光発光層から3cmの距離に紫外線光源(6W紫外線ランプ:365nm)を設置し、暗室中で紫外線を照射し、発光色を、色彩輝度計「BM−5A」(株式会社トプコン製)を用いて測定した。この結果よりLh表色系における色相角度を算出したところ、h=159.0°であった。
-Composition 1 for fluorescent light emitting layer
100 parts by weight (solid content) of an acrylic resin emulsion, 10 parts by weight of a green inorganic fluorescent pigment, and 4 parts by weight of additives (dispersing agent, antifoaming agent, etc.) are mixed by a conventional method to prepare a composition 1 for a fluorescent light emitting layer. did.
The composition for fluorescent light emitting layer 1 was applied to an acrylic plate (300 mm × 200 mm × 3 mm) so as to have a coating thickness of 150 μm (dry film thickness was about 80 μm) and dried. An ultraviolet light source (6 W ultraviolet lamp: 365 nm) was installed at a distance of 3 cm from the fluorescent light emitting layer, irradiated with ultraviolet rays in a dark room, and the emitted color was measured using a color luminance meter “BM-5A” (manufactured by Topcon Corporation). It was measured. From this result, the hue angle in the L * C * h color system was calculated to be h = 159.0 °.

・着色層用組成物1
アクリル樹脂エマルション100重量部(固形分)、フタロシアニングリーン顔料0.2重量部を常法にて混合し、着色層用組成物1を作製した。
上記着色層用組成物1を標準白紙に、塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、乾燥させた。着色層の色相を色彩色差計(「CR−300」:ミノルタ株式会社製)を用いて測定し、Lh表色系における色相角度を算出したところ、h=182.1°であった。
・紫外線反射着色層用組成物1
アクリル樹脂エマルション100重量部(固形分)、アルミナ30重量部、添加剤(分散剤、消泡剤等)5重量部、フタロシアニングリーン顔料0.2重量部を常法にて混合し、紫外線反射着色層用組成物1を作製した。
着色層用組成物1と同様に、色相角度を算出したところ、h=182.1°であった。
-Composition 1 for colored layer
A colored layer composition 1 was prepared by mixing 100 parts by weight (solid content) of an acrylic resin emulsion and 0.2 parts by weight of a phthalocyanine green pigment by a conventional method.
The colored layer composition 1 was applied to standard white paper so that the coating thickness was 150 μm (the dry film thickness was about 80 μm) and dried. The hue of the colored layer was measured using a color difference meter (“CR-300” manufactured by Minolta Co., Ltd.), and the hue angle in the L * C * h color system was calculated, and h = 182.1 °. It was.
Composition 1 for UV reflective colored layer
100 parts by weight of acrylic resin emulsion (solid content), 30 parts by weight of alumina, 5 parts by weight of additives (dispersing agent, antifoaming agent, etc.) and 0.2 parts by weight of phthalocyanine green pigment are mixed in a conventional manner, and ultraviolet reflection coloring Layer composition 1 was prepared.
As with the colored layer composition 1, the hue angle was calculated to be h = 182.1 °.

・紫外線反射層用組成物1
アクリル樹脂エマルション100重量部(固形分)、アルミナ30重量部、添加剤(分散剤、消泡剤等)5重量部を常法にて混合し、紫外線反射層用組成物1を作製した。
・紫外線反射層用組成物2〜6
表1の配合に基づき、紫外線反射層用組成物1と同様に紫外線反射層用組成物2〜6を作製した。
なお、使用した原料を以下に示す。
・アルミナ:粒子径1μm、屈折率1.76
・硫酸バリウム:粒子径2μm、屈折率1.64
・重質炭酸カルシウム:粒子径1.5μm、屈折率1.56
・酸化チタン:粒子径0.25μm、屈折率2.71
・酸化亜鉛:粒子径1μm、屈折率1.95
-Composition 1 for UV reflective layer
100 parts by weight (solid content) of an acrylic resin emulsion, 30 parts by weight of alumina, and 5 parts by weight of additives (dispersant, antifoaming agent, etc.) were mixed by a conventional method to prepare a composition 1 for an ultraviolet reflective layer.
-Compositions for UV reflective layer 2-6
Based on the composition of Table 1, Compositions 2 to 6 for ultraviolet reflection layer were prepared in the same manner as Composition 1 for ultraviolet reflection layer.
In addition, the raw material used is shown below.
Alumina: particle diameter 1 μm, refractive index 1.76
Barium sulfate: particle size 2 μm, refractive index 1.64
-Heavy calcium carbonate: particle size 1.5 μm, refractive index 1.56
Titanium oxide: particle size 0.25 μm, refractive index 2.71
Zinc oxide: particle diameter 1 μm, refractive index 1.95

紫外線反射層用組成物1〜6に関して、以下の評価を実施した。また、紫外線反射着色層用組成物1も同様の評価を実施した。結果を表1に示した。
・評価1
隠蔽率試験紙の上に、作製した紫外線反射層用組成物1〜6、紫外線反射着色層組成物1を塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、硬化させた試験体を用い、試験体における黒地上塗膜と白地上塗膜の視感反射率を色彩色差計(「CR−300」:ミノルタ株式会社製)を用いて測定し隠蔽率(%)を算出した。
The following evaluation was implemented regarding the compositions 1-6 for ultraviolet reflective layers. Moreover, the same evaluation was implemented also about the composition 1 for ultraviolet reflective coloring layers. The results are shown in Table 1.
Evaluation 1
On the concealment rate test paper, the prepared compositions 1 to 6 for ultraviolet reflection layer and the composition 1 for ultraviolet reflection coloring layer are applied and cured to a coating thickness of 150 μm (dry film thickness is about 80 μm). Using the test specimen, the luminous reflectance of the black ground paint film and the white ground paint film in the test specimen was measured using a color difference meter ("CR-300" manufactured by Minolta Co., Ltd.), and the concealment rate (%) was calculated. Calculated.

・評価2
アルミニウム板(40mm×40mm×0.6mm)上にウレタン樹脂100重量部(固形分)に対してカーボンブラック20重量部混合した塗料組成物を塗付厚が150μmとなるように塗付、硬化させたものを基材とした。基材に、作製した紫外線反射組成物1〜6、紫外線反射着色層組成物1を塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、乾燥させた試験体を用い、波長領域300nm〜400nmの全領域おいて反射率(%)を分光光度計(「UV−3100」:株式会社島津製作所製)で測定した。
その結果、紫外線反射層用組成物1〜4、紫外線反射着色層用組成物1では、波長領域300nm〜400nmの全領域おいて紫外線反射率は、10%以上であった。その代表値として、波長365nmでの紫外線反射率を表1に示す。(なお、基材の波長365nmでの反射率は1.5%であった。)
・ Evaluation 2
A coating composition in which 20 parts by weight of carbon black is mixed with 100 parts by weight (solid content) of urethane resin on an aluminum plate (40 mm × 40 mm × 0.6 mm) is applied and cured to a coating thickness of 150 μm. Was used as a base material. Using the test specimens that were applied to the substrate with the prepared UV reflecting compositions 1 to 6 and UV reflecting colored layer composition 1 so that the coating thickness was 150 μm (dry film thickness was about 80 μm) and dried, The reflectance (%) was measured with a spectrophotometer (“UV-3100” manufactured by Shimadzu Corporation) in the entire wavelength region of 300 nm to 400 nm.
As a result, in the compositions 1 to 4 for the ultraviolet reflective layer and the composition 1 for the ultraviolet reflective colored layer, the ultraviolet reflectance was 10% or more in the entire wavelength region of 300 nm to 400 nm. Table 1 shows the ultraviolet reflectance at a wavelength of 365 nm as a representative value. (The reflectance of the substrate at a wavelength of 365 nm was 1.5%.)

(積層体の製造)
(実施例1)
離型紙上に蛍光発光層用組成物1を塗付厚が150μm(乾燥膜厚が約80μm)で塗付し、乾燥させ蛍光発光層(A−1)を成形した。次いで、蛍光発光層(A−1)上に紫外線反射層用組成物1を塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、乾燥し紫外線反射層(B−1)を積層した。さらに、着色層用組成物1を塗付厚が150μm(乾燥膜厚が約70μm)で塗付、乾燥させ、着色層(C−1)を積層し、積層体1を得た。
(Manufacture of laminates)
Example 1
The fluorescent light emitting layer composition 1 was applied on a release paper at a coating thickness of 150 μm (dry film thickness was about 80 μm) and dried to form a fluorescent light emitting layer (A-1). Next, the composition 1 for ultraviolet reflecting layer 1 is applied onto the fluorescent light emitting layer (A-1) so that the coating thickness is 150 μm (dry film thickness is about 80 μm), and dried to form the ultraviolet reflecting layer (B-1). Were laminated. Furthermore, the colored layer composition 1 was applied at a coating thickness of 150 μm (dry film thickness was about 70 μm) and dried, and the colored layer (C-1) was laminated to obtain a laminate 1.

得られた積層体1に関して、以下の評価を実施した。結果を表2に示した。   The following evaluation was performed on the obtained laminate 1. The results are shown in Table 2.

・評価3
積層体1において、蛍光発光層(A−1)から3cmの距離に紫外線光源(6W紫外線ランプ:365nm)を設置し、暗室中で紫外線を照射し、積層体1の発光輝度(cd/m)を、色彩輝度計「BM−5A」(株式会社トプコン製)を用いて測定した。結果を表2に示した。
・ Evaluation 3
In the laminate 1, an ultraviolet light source (6 W ultraviolet lamp: 365 nm) is installed at a distance of 3 cm from the fluorescent light emitting layer (A-1), irradiated with ultraviolet rays in a dark room, and the emission luminance (cd / m 2 ) of the laminate 1. ) Was measured using a color luminance meter “BM-5A” (manufactured by Topcon Corporation). The results are shown in Table 2.

(実施例2)
アクリル板(300mm×200mm×3mm)の一方の面に、着色層用組成物1を塗付厚が150μm(乾燥膜厚が約70μm)で塗付、乾燥させ、着色層(C−1)を積層した。次いで、紫外線反射層用組成物1を塗付厚が150μm(乾燥膜厚が約80μm)で塗付、乾燥させ、紫外線反射層(B−1)を積層した。さらに、紫外線反射層(B−1)の上に蛍光発光層用組成物1を塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、乾燥し蛍光発光層(A−1)を積層し、積層体2を得た。得られた積層体2に関して、実施例1と同様の評価を実施した。結果を表2に示した。
(Example 2)
The colored layer composition 1 is applied to one surface of an acrylic plate (300 mm × 200 mm × 3 mm) with a coating thickness of 150 μm (dry film thickness is about 70 μm) and dried to form a colored layer (C-1). Laminated. Subsequently, the composition 1 for ultraviolet reflective layers was applied with a coating thickness of 150 μm (dry film thickness was about 80 μm) and dried, and an ultraviolet reflective layer (B-1) was laminated. Further, the fluorescent light emitting layer composition 1 is applied onto the ultraviolet reflective layer (B-1) so that the coating thickness is 150 μm (the dry film thickness is about 80 μm), and dried to obtain the fluorescent light emitting layer (A-1). ) To obtain a laminate 2. Evaluation similar to Example 1 was implemented regarding the obtained laminated body 2. FIG. The results are shown in Table 2.

(実施例3)
実施例2の紫外線反射層用組成物1に代えて紫外線反射層用組成物2を使用し、紫外線反射層(B−2)を積層した以外は、実施例2と同様に積層体3を作製し、同様の評価を実施した。結果を表2に示した。
(Example 3)
A laminated body 3 is produced in the same manner as in Example 2, except that the composition 2 for ultraviolet reflection layer is used instead of the composition 1 for ultraviolet reflection layer of Example 2 and the ultraviolet reflection layer (B-2) is laminated. The same evaluation was conducted. The results are shown in Table 2.

(実施例4)
実施例2の紫外線反射層用組成物1に代えて紫外線反射層用組成物3を使用し、紫外線反射層(B−3)を積層した以外は、実施例2と同様に積層体4を作製し、同様の評価を実施した。結果を表2に示した。
Example 4
A laminated body 4 is produced in the same manner as in Example 2 except that the composition 3 for ultraviolet reflection layer is used in place of the composition 1 for ultraviolet reflection layer of Example 2 and the ultraviolet reflection layer (B-3) is laminated. The same evaluation was conducted. The results are shown in Table 2.

(実施例5)
実施例2の紫外線反射層用組成物1に代えて紫外線反射層用組成物4を使用し、紫外線反射層(B−4)を積層した以外は、実施例2と同様に積層体5を作製し、同様の評価を実施した。結果を表2に示した。
(Example 5)
A laminated body 5 is produced in the same manner as in Example 2 except that the ultraviolet reflective layer composition 4 is used in place of the ultraviolet reflective layer composition 1 of Example 2 and the ultraviolet reflective layer (B-4) is laminated. The same evaluation was conducted. The results are shown in Table 2.

(実施例6)
実施例2の紫外線反射層用組成物1の塗付厚を250μmに代えて紫外線反射層(B−5)を積層した以外は、実施例2と同様に積層体6を作製し、同様の評価を実施した。結果を表2に示した。
(Example 6)
A laminate 6 was prepared in the same manner as in Example 2 except that the ultraviolet reflective layer (B-5) was laminated in place of the application thickness of the composition 1 for ultraviolet reflective layer of Example 2 at 250 μm, and the same evaluation was made. Carried out. The results are shown in Table 2.

(実施例7)
アクリル板(300mm×200mm×3mm)の一方の面に、紫外線反射着色層用組成物1を塗付厚が150μm(乾燥膜厚が約70μm)で塗付、乾燥させ、紫外線反射着色層(D−1)を積層した。さらに、紫外線反射着色層(D−1)の上に蛍光発光層用組成物1を塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、乾燥し蛍光発光層(A−1)を積層し、積層体7を得た。積層体7に関して、実施例1と同様の評価を実施し、結果を表2に示した。
(Example 7)
On one surface of an acrylic plate (300 mm × 200 mm × 3 mm), the composition 1 for ultraviolet reflective colored layer is applied with a coating thickness of 150 μm (dry film thickness is about 70 μm) and dried to form an ultraviolet reflective colored layer (D -1) was laminated. Further, the fluorescent light emitting layer composition 1 is applied on the ultraviolet reflective colored layer (D-1) so that the coating thickness is 150 μm (the dry film thickness is about 80 μm), dried, and then the fluorescent light emitting layer (A- 1) was laminated to obtain a laminate 7. Evaluation similar to Example 1 was implemented regarding the laminated body 7, and the result was shown in Table 2.

(比較例1)
実施例2の紫外線反射層用組成物1に代えて紫外線反射層用組成物5を使用し、紫外線反射層(B−6)を積層した以外は、実施例2と同様に積層体8を作製し、同様の評価を実施した。結果を表2に示した。
(Comparative Example 1)
A laminated body 8 is produced in the same manner as in Example 2 except that the composition 5 for ultraviolet reflecting layer is used in place of the composition 1 for ultraviolet reflecting layer of Example 2 and an ultraviolet reflecting layer (B-6) is laminated. The same evaluation was conducted. The results are shown in Table 2.

(比較例2)
実施例2の紫外線反射層用組成物1に代えて紫外線反射層用組成物6を使用し、紫外線反射層(B−7)を積層した以外は、実施例2と同様に積層体9を作製し、同様の評価を実施した。結果を表2に示した。
(Comparative Example 2)
A laminated body 9 is produced in the same manner as in Example 2, except that the composition 6 for ultraviolet reflecting layer 6 is used instead of the composition 1 for ultraviolet reflecting layer of Example 2 and the ultraviolet reflecting layer (B-7) is laminated. The same evaluation was conducted. The results are shown in Table 2.

(比較例3)
アクリル板(300mm×200mm×3mm)の一方の面に、紫外線反射層用組成物1を塗付厚が150μm(乾燥膜厚が約80μm)で塗付、乾燥させ、紫外線反射層(B−1)を積層した。さらに、紫外線反射層(B−1)の上に蛍光発光層用組成物1を塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、乾燥し蛍光発光層(A−1)を積層し、積層体10を得た。積層体10に関して、実施例1と同様の評価を実施し、結果を表2に示した。
(Comparative Example 3)
The ultraviolet reflective layer composition 1 is applied to one surface of an acrylic plate (300 mm × 200 mm × 3 mm) with a coating thickness of 150 μm (dry film thickness is about 80 μm), dried, and the ultraviolet reflective layer (B-1 ) Was laminated. Further, the fluorescent light emitting layer composition 1 is applied onto the ultraviolet reflective layer (B-1) so that the coating thickness is 150 μm (the dry film thickness is about 80 μm), and dried to obtain the fluorescent light emitting layer (A-1). ) To obtain a laminate 10. Evaluation similar to Example 1 was implemented regarding the laminated body 10, and the result was shown in Table 2.

(比較例4)
アクリル板(300mm×200mm×3mm)の一方の面に、蛍光発光層用組成物1を塗付厚が150μm(乾燥膜厚が約80μm)となるように塗付、乾燥し蛍光発光層(A−1)を積層し、積層体11を得た。積層体11に関して、実施例1と同様の評価を実施し、結果を表2に示した。
(Comparative Example 4)
On one surface of an acrylic plate (300 mm × 200 mm × 3 mm), the fluorescent light emitting layer composition 1 is applied to a thickness of 150 μm (dry film thickness is about 80 μm) and dried to obtain a fluorescent light emitting layer (A -1) was laminated and the laminated body 11 was obtained. Evaluation similar to Example 1 was implemented regarding the laminated body 11, and the result was shown in Table 2.

(発光色相の評価)
積層体1〜12に関して、蛍光発光層から30cmの距離に紫外線光源(20Wブラックライト蛍光灯)を設置し、紫外線を照射して発光色を評価した。その結果、積層体1〜7は発光輝度が高く、深みのある緑色の発光色であった。一方、積層体8〜9は、深みのある緑色の発光色ではあったが、発光性に劣るものであった。また、積層体10、11は、発光色が淡色化したものであった。
(Evaluation of luminous hue)
Regarding the laminates 1 to 12, an ultraviolet light source (20 W black light fluorescent lamp) was installed at a distance of 30 cm from the fluorescent light emitting layer, and the emitted color was evaluated by irradiating the ultraviolet light. As a result, the laminates 1 to 7 had high emission luminance and a deep green emission color. On the other hand, although the laminated bodies 8-9 were the deep green luminescent color, they were inferior to luminescent property. Moreover, the laminated bodies 10 and 11 were light emission color lightened.

Figure 2010247526
Figure 2010247526

Figure 2010247526
Figure 2010247526

(実施例8)
実施例2の積層体2を用い、図3−2に示す内照式の発光構造体を作製した。蛍光発光層(A−1)から3cmの距離に紫外線光源(6W紫外線ランプ:365nm)を設置し、紫外線を照射したところ、蛍光発光層(A−1)で均一な発光を示し、深みのある緑色の発光色であった。
(Example 8)
Using the laminate 2 of Example 2, an internally-illuminated light emitting structure shown in FIG. 3-2 was produced. When an ultraviolet light source (6W ultraviolet lamp: 365 nm) was installed at a distance of 3 cm from the fluorescent light emitting layer (A-1) and irradiated with ultraviolet light, the fluorescent light emitting layer (A-1) showed uniform light emission and was deep. It was a green emission color.

(ア)視認方向(発光を見る方向)
(P)、(Q)積層体
(R)発光構造体
(A)蛍光発光層
(B)紫外線反射層
(C)着色層
(D)紫外線反射着色層
(X)光源
(Y)反射板
(Z)遮蔽板

(A) Viewing direction (direction of light emission)
(P), (Q) Laminate (R) Light emitting structure (A) Fluorescent light emitting layer (B) Ultraviolet reflective layer (C) Colored layer (D) Ultraviolet reflective colored layer (X) Light source (Y) Reflector (Z )Shield

Claims (5)

紫外線光源の照射により、発光する積層体であって、
紫外線が照射される側から、蛍光発光を示す蛍光発光層(A)、波長領域300nm〜400nmの全領域での紫外線反射率が10%以上で透明または半透明の紫外線反射層(B)、及び着色層(C)が積層されていることを特徴とする積層体
A laminate that emits light when irradiated with an ultraviolet light source,
Fluorescent light emitting layer (A) showing fluorescence emission from the side irradiated with ultraviolet light, a transparent or translucent ultraviolet reflective layer (B) having an ultraviolet reflectance of 10% or more in the entire wavelength region of 300 nm to 400 nm, and Laminated body in which colored layer (C) is laminated
着色層(C)は蛍光発光層(A)が呈する蛍光発光色と、同系色であることを特徴とする請求項1に記載の積層体   The layered product according to claim 1, wherein the colored layer (C) has a color similar to the fluorescent color emitted by the fluorescent layer (A). 紫外線光源の照射により、発光する積層体であって、
紫外線が照射される側から、蛍光発光を示す蛍光発光層(A)、波長領域300nm〜400nmの全領域での紫外線反射率が10%以上で透明または半透明の紫外線反射着色層(D)が積層されていることを特徴とする積層体
A laminate that emits light when irradiated with an ultraviolet light source,
From the side irradiated with ultraviolet rays, there is a fluorescent light emitting layer (A) that exhibits fluorescent emission, and a transparent or translucent ultraviolet reflective colored layer (D) that has an ultraviolet reflectance of 10% or more in the entire wavelength region of 300 nm to 400 nm. Laminated body characterized by being laminated
紫外線反射着色層(D)は蛍光発光層(A)が呈する蛍光発光色と、同系色であることを特徴とする請求項3に記載の積層体   4. The laminate according to claim 3, wherein the ultraviolet reflective coloring layer (D) has a color similar to the fluorescent color emitted by the fluorescent light emitting layer (A). 請求項1〜請求項4のいずれか一項に記載の積層体と、該積層体の蛍光発光層(A)側に紫外線光源(X)を備えることを特徴とする発光構造体



A light emitting structure comprising the laminate according to any one of claims 1 to 4 and an ultraviolet light source (X) on the fluorescent light emitting layer (A) side of the laminate.



JP2010033111A 2009-03-24 2010-02-18 Laminated body Expired - Fee Related JP5595061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033111A JP5595061B2 (en) 2009-03-24 2010-02-18 Laminated body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009072676 2009-03-24
JP2009072676 2009-03-24
JP2010033111A JP5595061B2 (en) 2009-03-24 2010-02-18 Laminated body

Publications (2)

Publication Number Publication Date
JP2010247526A true JP2010247526A (en) 2010-11-04
JP5595061B2 JP5595061B2 (en) 2014-09-24

Family

ID=43310426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033111A Expired - Fee Related JP5595061B2 (en) 2009-03-24 2010-02-18 Laminated body

Country Status (1)

Country Link
JP (1) JP5595061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038283A (en) * 2012-08-20 2014-02-27 Fuji Seal International Inc Plastic label

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205501A (en) * 1984-03-30 1985-10-17 Soko Seiren Kk Retroreflective sheet-like material having bright color and light accumulating property
JPS62103089U (en) * 1985-12-13 1987-07-01
JPH07191154A (en) * 1993-12-24 1995-07-28 Seiko Epson Corp Luminous structure of timepiece
JPH11109864A (en) * 1997-09-30 1999-04-23 Kawaguchiko Seimitsu Kk Light emitting sheet
JP2001166716A (en) * 1999-12-06 2001-06-22 Asahi Techno Plus Kk Light-accumulating display board
JP2005202282A (en) * 2004-01-19 2005-07-28 Lintec Corp Signage device
JP2008277150A (en) * 2007-04-27 2008-11-13 Toshiba Lighting & Technology Corp Electrode structure, cold-cathode discharge lamp, and lighting system
JP2009016168A (en) * 2007-07-04 2009-01-22 Hitachi Displays Ltd Liquid crystal display device
JP2009098620A (en) * 2007-09-28 2009-05-07 Bekku Kk Layered product and luminous structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205501A (en) * 1984-03-30 1985-10-17 Soko Seiren Kk Retroreflective sheet-like material having bright color and light accumulating property
JPS62103089U (en) * 1985-12-13 1987-07-01
JPH07191154A (en) * 1993-12-24 1995-07-28 Seiko Epson Corp Luminous structure of timepiece
JPH11109864A (en) * 1997-09-30 1999-04-23 Kawaguchiko Seimitsu Kk Light emitting sheet
JP2001166716A (en) * 1999-12-06 2001-06-22 Asahi Techno Plus Kk Light-accumulating display board
JP2005202282A (en) * 2004-01-19 2005-07-28 Lintec Corp Signage device
JP2008277150A (en) * 2007-04-27 2008-11-13 Toshiba Lighting & Technology Corp Electrode structure, cold-cathode discharge lamp, and lighting system
JP2009016168A (en) * 2007-07-04 2009-01-22 Hitachi Displays Ltd Liquid crystal display device
JP2009098620A (en) * 2007-09-28 2009-05-07 Bekku Kk Layered product and luminous structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038283A (en) * 2012-08-20 2014-02-27 Fuji Seal International Inc Plastic label

Also Published As

Publication number Publication date
JP5595061B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
CN105074320B (en) Light-emitting diode (LED) module with improved light characteristic
JP4579065B2 (en) Illumination device and display device including the same
TW201413348A (en) Direct-type backlight module and diffuser structure
CN102112806A (en) Light emitting panel
KR20130139938A (en) Solid-state light emitting devices and signage with photoluminescence wavelength conversion
JP6012323B2 (en) Decorative material
JP2013139106A (en) White light storage luminescence film material
CN107849439A (en) The composite of embedded photoluminescent material with embedded transparent base
CN103597269A (en) A phosphor enhanced light source for presenting a visible pattern and a luminaire
JP6862814B2 (en) A backlight having a quantum dot sheet and a liquid crystal display device equipped with the backlight.
JP5459989B2 (en) Laminated body and light emitting structure
JP2009208367A (en) Laminate
CN105522958A (en) Fluid level indicator using photoluminescent illumination
JP5595061B2 (en) Laminated body
ES2932023T3 (en) Colored asbestos-cement products and methods for their production
JP5595058B2 (en) Laminated body
ES2843473T3 (en) Lightly colored fiber cement products and procedures for their production
JP5420460B2 (en) Light emitting structure
JP6483979B2 (en) Design materials and structures
KR20030064425A (en) A phosphor panel and a method of its preparation
CN113683440A (en) Ceramic tile capable of emitting light and presenting starry sky effect
CN209042236U (en) Lamps and lanterns
CN209146979U (en) Lamps and lanterns
JP5460844B2 (en) Laminated body
JP2017128087A (en) Design material and structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140805

R150 Certificate of patent or registration of utility model

Ref document number: 5595061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees