JP2009208367A - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
JP2009208367A
JP2009208367A JP2008054154A JP2008054154A JP2009208367A JP 2009208367 A JP2009208367 A JP 2009208367A JP 2008054154 A JP2008054154 A JP 2008054154A JP 2008054154 A JP2008054154 A JP 2008054154A JP 2009208367 A JP2009208367 A JP 2009208367A
Authority
JP
Japan
Prior art keywords
ultraviolet
resin
film
coating
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008054154A
Other languages
Japanese (ja)
Other versions
JP2009208367A5 (en
JP5459968B2 (en
Inventor
Hisashi Chikamoto
悠 近本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beck Co Ltd
Original Assignee
Beck Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beck Co Ltd filed Critical Beck Co Ltd
Priority to JP2008054154A priority Critical patent/JP5459968B2/en
Publication of JP2009208367A publication Critical patent/JP2009208367A/en
Publication of JP2009208367A5 publication Critical patent/JP2009208367A5/ja
Application granted granted Critical
Publication of JP5459968B2 publication Critical patent/JP5459968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate excellent in design properties showing various fluorescent emissions by the irradiation with ultraviolet rays. <P>SOLUTION: The laminate showing various fluorescent emissions by the irradiation with ultraviolet rays is constituted by providing a phosphor layer (A) containing a fluorescent material on a base material and forming a coating film (B), which reflects and/or absorbs a part of irradiated ultraviolet rays and permits the remainder of ultraviolet rays to transmit, on the phosphor layer (A) and characterized in that the coating film (B) covers at least a part of the phosphor layer (A) and permits the emission from the phosphor layer (A) to transmit. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蛍光発光を示す積層体に関するものである。   The present invention relates to a laminate that exhibits fluorescence.

従来、紫外線を照射することにより発光する蛍光顔料等の蛍光体等を含む成形品が知られている。このような蛍光体は、紫外線照射時と非照射時で異なる色相を示すため、様々な分野で高意匠性材料として用いられている。例えば、陶磁器タイル上に、蛍光顔料を含む着色層(蛍光発光層)を積層した蛍光発光タイル(例えば、特許文献1)等が知られている。しかしながら、上記のように基材上に蛍光体を積層するのみでは、紫外線照射した場合、均一な輝度での蛍光発光しか有することができず、単調な意匠となるおそれがある。このような積層体において、蛍光発光層の輝度を変化させるには、蛍光発光層の蛍光顔料濃度や、蛍光発光層の厚さを設定したり、紫外線を部分的に照射したり、様々な工夫が必要であった。 Conventionally, a molded article containing a phosphor such as a fluorescent pigment that emits light when irradiated with ultraviolet rays is known. Such phosphors are used as high-design materials in various fields because they exhibit different hues when irradiated with ultraviolet rays and when not irradiated. For example, a fluorescent light emitting tile (for example, Patent Document 1) in which a colored layer (fluorescent light emitting layer) containing a fluorescent pigment is laminated on a ceramic tile is known. However, only by laminating the phosphor on the substrate as described above, when irradiated with ultraviolet rays, it can only have fluorescence emission with uniform luminance, which may result in a monotonous design. In such a laminate, the brightness of the fluorescent light emitting layer can be changed by setting the fluorescent pigment concentration of the fluorescent light emitting layer, the thickness of the fluorescent light emitting layer, partially irradiating ultraviolet rays, and various other devices. Was necessary.

これに対して、基材表面に異なる色相の蛍光顔料を複数使用し、種々の形態、模様で蛍光発光層を施した積層体(例えば、特許文献2、特許文献3)等が知られている。しかしながら、このような積層体の場合、複数の蛍光発光層を種々の形態、模様で積層する必要があり、工程が煩雑となるおそれがある。 On the other hand, laminates (for example, Patent Document 2 and Patent Document 3) in which a plurality of fluorescent pigments having different hues are used on the substrate surface and fluorescent light-emitting layers are applied in various forms and patterns are known. . However, in the case of such a laminated body, it is necessary to laminate a plurality of fluorescent light emitting layers in various forms and patterns, and the process may be complicated.

特開平4−160082号公報JP-A-4-160082 特開平3−122363号公報Japanese Patent Laid-Open No. 3-122363 特開平3−290380号公報JP-A-3-290380

本発明は、上述のような問題点に鑑みなされたものであり、紫外線照射によって多様な蛍光発光を呈する意匠性に優れた積層体を得ることを目的とするものである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to obtain a laminate having excellent design properties that exhibits various fluorescent emissions by ultraviolet irradiation.

本発明者は、上記目的を達成するため鋭意検討を行った結果、基材上に、蛍光体層を設け、該蛍光体層の上に特定の光特性を有する被膜が形成されたことを特徴とする積層体に想到し、本発明を完成させるに至った。
すなわち、本発明積層体は、下記の特徴を有するものである。
As a result of intensive studies to achieve the above object, the present inventor has provided a phosphor layer on a substrate, and a film having specific light characteristics is formed on the phosphor layer. As a result, the present invention has been completed.
That is, this invention laminated body has the following characteristics.

1.紫外線照射によって多様な蛍光発光を呈する積層体であって、
基材上に、蛍光材料を含む蛍光体層(A)を設け、
該蛍光体層(A)の上に、照射された紫外線の一部を反射及び/または吸収し、残余の紫外線を透過する被膜(B)を形成し、
該被膜(B)が該蛍光体層(A)の少なくとも一部を覆い、該蛍光体層(A)からの発光を透過することを特徴とする積層体。
2.上記被膜(B)が紫外線反射性及び/または紫外線吸収性の異なる被膜を、少なくとも2つ以上有することを特徴とする、1.記載の積層体。
1. A laminate that exhibits various fluorescence emission by ultraviolet irradiation,
On the base material, a phosphor layer (A) containing a fluorescent material is provided,
On the phosphor layer (A), a film (B) that reflects and / or absorbs part of the irradiated ultraviolet rays and transmits the remaining ultraviolet rays is formed,
The laminated body characterized in that the coating (B) covers at least a part of the phosphor layer (A) and transmits light emitted from the phosphor layer (A).
2. The coating (B) has at least two coatings having different ultraviolet reflectivity and / or ultraviolet absorption properties. The laminated body of description.

本発明の積層体は、基材上に、蛍光材料を含む蛍光体層(A)を設け、該蛍光体層(A)の上に、特定の光特性を有する被膜(B)を形成することにより、紫外線照射によって多様な蛍光発光を呈することができるものである。本発明の積層体は、通常(可視光照射時)は単色であっても、紫外線照射時には多様な蛍光発光を呈することができるものである。   In the laminate of the present invention, a phosphor layer (A) containing a phosphor material is provided on a base material, and a coating (B) having specific light characteristics is formed on the phosphor layer (A). Thus, various fluorescent emissions can be exhibited by ultraviolet irradiation. The laminate of the present invention is usually monochromatic (when irradiated with visible light), but can exhibit various fluorescent emissions when irradiated with ultraviolet light.

以下、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

本発明は、紫外線照射によって多様な蛍光発光を呈する積層体であり、基材上に、蛍光体層(A)が設けられ、該蛍光体層の上に特定の光特性を有する被膜(B)を形成することを特徴とする積層体である。本発明における多様な蛍光発光とは、1種類の蛍光発光層を均一に積層した場合であっても、少なくとも2つ以上の発光輝度の異なる蛍光発光を有することをいう。 The present invention is a laminate that exhibits various fluorescence emission upon irradiation with ultraviolet rays, and a phosphor layer (A) is provided on a substrate, and a coating (B) having specific light characteristics on the phosphor layer. It is the laminated body characterized by forming. The various fluorescent emission in the present invention means having at least two fluorescent emission having different emission luminances even when one kind of fluorescent emission layer is uniformly laminated.

本発明の蛍光材料を含む蛍光体層(A)(以下、単に「蛍光体層(A)」ともいう。)について説明する。蛍光体層(A)とは透光性を有する材料(以下、「透光性材料」という。)に蛍光発光を示す顔料、染料等(以下、「蛍光材料」という。)を含むものである。
透光性材料としては、透光性を有するものであれば、無機質材料、有機質材料のどちらでもよい。例えば、無機質材料としては、ガラス、水ガラス、低融点ガラス、シリコン樹脂、アルコキシシラン、シランカップリング剤等があげられる。また、有機質材料としては、アクリル樹脂、アクリル−スチレン樹脂、セルロールアセトブチレート樹脂、セルロースプロピオネート樹脂、ポリメチルペンテン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエステル樹脂、エポキシ樹脂、メタクリル樹脂、ウレタン樹脂等が挙げられる。なお、「透光性」とは、可視光透過性に優れ、透明性を有することである。
The phosphor layer (A) containing the phosphor material of the present invention (hereinafter also simply referred to as “phosphor layer (A)”) will be described. The phosphor layer (A) includes a light-transmitting material (hereinafter referred to as “translucent material”) including a pigment, a dye or the like (hereinafter referred to as “fluorescent material”) that exhibits fluorescence.
As the translucent material, any of an inorganic material and an organic material may be used as long as it has translucency. For example, examples of the inorganic material include glass, water glass, low-melting glass, silicon resin, alkoxysilane, and silane coupling agent. Organic materials include acrylic resin, acrylic-styrene resin, cellulose acetobutyrate resin, cellulose propionate resin, polymethylpentene resin, polycarbonate resin, polystyrene resin, polyester resin, epoxy resin, methacrylic resin, urethane resin. Etc. Note that “translucency” means excellent transparency to visible light and transparency.

蛍光材料としては、紫外線照射下において蛍光発光を示すものであれば限定されず、公知の蛍光染料や蛍光顔料等を使用することができる。本発明では、可視光下において蛍光発光を示さないものが好ましく、このような蛍光体の中でも、蛍光発光持続性、耐候性にも優れる無機蛍光顔料が特に好ましい。 The fluorescent material is not limited as long as it exhibits fluorescence emission under ultraviolet irradiation, and known fluorescent dyes, fluorescent pigments, and the like can be used. In the present invention, those that do not exhibit fluorescence emission under visible light are preferred, and among these phosphors, inorganic fluorescent pigments that are excellent in fluorescence emission durability and weather resistance are particularly preferred.

蛍光体層(A)は、上記透光性材料と上記蛍光材料を含む材料(以下「蛍光体層材料」という。)を、フィルム状または板状等に成形したものである。 その厚みは、通常0.01mm〜10mm、より好ましくは0.05mm〜5mmであり、その隠蔽率(%)は、特に限定されないが、通常70%以下、好ましくは50%以下である。70%以下の場合、基材を視認できるため、基材の意匠を生かすこともできる。なお、蛍光体層の隠蔽率は、色彩色差計を用いて測定し、算出した値である。このような、蛍光体層材料は、透光性材料(固形分)100重量部に対して、蛍光材料を0.5〜50重量部、さらには1〜30重量部添加することが好ましい。0.5重量部より少ない場合、蛍光発光層の輝度が低くなり視認性に劣るおそれがある。また、50重量部より多く添加しても輝度の向上が確認できず、多様な蛍光発光が得られにくくなるおそれがある。 The phosphor layer (A) is obtained by molding the light-transmitting material and a material containing the phosphor material (hereinafter referred to as “phosphor layer material”) into a film shape or a plate shape. The thickness is usually 0.01 mm to 10 mm, more preferably 0.05 mm to 5 mm, and the concealment rate (%) is not particularly limited, but is usually 70% or less, preferably 50% or less. In the case of 70% or less, since the substrate can be visually recognized, the design of the substrate can be utilized. The concealment rate of the phosphor layer is a value calculated by measuring with a color difference meter. Such a phosphor layer material is preferably added in an amount of 0.5 to 50 parts by weight, and more preferably 1 to 30 parts by weight with respect to 100 parts by weight of the light-transmitting material (solid content). When the amount is less than 0.5 part by weight, the luminance of the fluorescent light emitting layer is lowered and the visibility may be inferior. Moreover, even if it adds more than 50 weight part, a brightness | luminance improvement cannot be confirmed but there exists a possibility that it may become difficult to obtain various fluorescence emission.

次に、照射された紫外線の一部を反射及び/または吸収し、残余の紫外線を透過する被膜(B)(以下、単に「被膜(B)」ともいう。)について説明する。
本発明被膜(B)は、光源から照射された紫外線の一部を反射及び/または吸収する「紫外線反射性及び/紫外線吸収性」を有し、残余の紫外線を透過する「紫外線透過性」を有するものであり、蛍光体層(A)の少なくとも一部を覆うように積層したものであればよい。
Next, the coating film (B) that reflects and / or absorbs part of the irradiated ultraviolet rays and transmits the remaining ultraviolet rays (hereinafter also simply referred to as “coating layer (B)”) will be described.
The coating (B) of the present invention has “ultraviolet ray reflectivity and / or ultraviolet ray absorbability” that reflects and / or absorbs part of the ultraviolet ray irradiated from the light source, and has “ultraviolet ray permeability” that transmits the remaining ultraviolet ray. What is necessary is just to have laminated | stacked so that at least one part of a fluorescent substance layer (A) may be covered.

上記「紫外線反射性及び/または紫外線吸収性」とは、蛍光体層(A)の少なくとも一部を覆うように被膜(B)を形成した積層体において、被膜(B)方向から紫外線を照射した場合、被膜(B)が紫外線の一部を反射(拡散反射)、または吸収する特性を有することをいう。
例えば、紫外線反射性が低い部分(p)と、当該(p)よりも紫外線反射性が高い部分(q)のどちらか一方が蛍光体層(A)の少なくとも一部を覆うものであればよく、不連続に点在するものや、凹凸を有するものであってもよい。ただし、本発明では、発光体層(A)上全体を(p)と(q)のうちどちらか一方の均一な被膜(B)で覆うことは望ましくない。本発明では特に、(p)と(q)が混在することが好ましく、この場合(q)は、少なくとも1種必要であるが、2種以上設けてもよい。
The above “ultraviolet reflectiveness and / or ultraviolet absorptive” means that the laminated body in which the film (B) is formed so as to cover at least a part of the phosphor layer (A) is irradiated with ultraviolet rays from the direction of the film (B). In the case, it means that the coating (B) has a characteristic of reflecting (diffuse reflection) or absorbing a part of ultraviolet rays.
For example, any one of the portion (p) having a low ultraviolet reflectivity and the portion (q) having a higher UV reflectivity than the (p) may cover at least a part of the phosphor layer (A). Alternatively, it may be discontinuously scattered or have irregularities. However, in the present invention, it is not desirable to cover the entire phosphor layer (A) with either one of the uniform coating (B) of (p) and (q). In the present invention, it is particularly preferable to mix (p) and (q). In this case, at least one (q) is necessary, but two or more may be provided.

(p)と(q)との紫外線反射率の差は、少なくとも1%以上(好ましくは5%以上)とすることが望ましい。なお、本発明の紫外線反射率は、波長領域365nmでの反射率(%)を分光光度計によって測定した値である。 The difference in ultraviolet reflectance between (p) and (q) is desirably at least 1% or more (preferably 5% or more). In addition, the ultraviolet reflectance of this invention is the value which measured the reflectance (%) in wavelength range 365nm with the spectrophotometer.

(p)と(q)の紫外線反射率が異なるように設定する方法としては、例えば、
(1)紫外線反射率の異なる粉粒体を用いる方法
(2)紫外線反射率の異なる樹脂を用いる方法
(3)紫外線吸収剤を用いる方法
(4)被膜(B)の厚みを変える方法
等が挙げられる。本発明では、(1)〜(4)の方法を組み合わせることも可能である。
As a method for setting the ultraviolet reflectances of (p) and (q) to be different, for example,
(1) Method of using particles having different ultraviolet reflectances (2) Method of using resins having different ultraviolet reflectances (3) Method of using ultraviolet absorbers (4) Method of changing the thickness of the coating (B) It is done. In the present invention, the methods (1) to (4) can be combined.

上記(1)において使用可能な粉粒体としては、例えば、アルミナ、酸化ジルコニウム、硫酸バリウム、沈降性硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、酸化マグネシウム、酸化亜鉛、窒化ホウ素、オキシ塩化ビスマス、リン酸亜鉛、雲母、寒水石、タルク、珪藻土、白土、カオリン、クレー、陶土、バライト粉、珪砂、珪石粉、ホワイトカーボン、金属粉、有機樹脂粉体等が挙げられる。具体的には、(p)において紫外線反射率が低い粉粒体を用いればよい。紫外線反射率が低い粉粒体としては、例えば、酸化チタン、酸化亜鉛、タルク、炭酸カルシウム、珪藻土等が挙げられ、特に酸化チタン、酸化亜鉛等が好適である。また、(q)において紫外線反射率の高い粉体を用いればよい。紫外線反射率が高い粉体としては、例えばアルミナ、酸化ジルコニウム、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム等が挙げられ、この中でもアルミナ、硫酸バリウム、等が好ましく、とりわけアルミナが好適である。本発明では、複数の粉粒体を組み合わせて、(p)、(q)を形成しても良い。 Examples of the powder that can be used in (1) above include alumina, zirconium oxide, barium sulfate, precipitated barium sulfate, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, titanium oxide, magnesium oxide, and oxidation. Zinc, boron nitride, bismuth oxychloride, zinc phosphate, mica, cryolite, talc, diatomaceous earth, white clay, kaolin, clay, porcelain clay, barite powder, quartz sand, quartzite powder, white carbon, metal powder, organic resin powder, etc. Can be mentioned. Specifically, a granular material having a low ultraviolet reflectance in (p) may be used. Examples of the granular material having a low ultraviolet reflectance include titanium oxide, zinc oxide, talc, calcium carbonate, diatomaceous earth and the like, and titanium oxide, zinc oxide and the like are particularly preferable. In (q), a powder having a high ultraviolet reflectance may be used. Examples of the powder having a high ultraviolet reflectance include alumina, zirconium oxide, barium sulfate, calcium carbonate, magnesium carbonate and the like. Among these, alumina, barium sulfate and the like are preferable, and alumina is particularly preferable. In the present invention, (p) and (q) may be formed by combining a plurality of powder particles.

なお、上記(1)における粉粒体の紫外線反射率は、予め紫外線を反射しないように黒色に塗装されたアルミ板上に、アクリル樹脂に各粉粒体を混合した組成物(隠蔽率95%)を、塗付(乾燥膜厚:100μm)、乾燥させたものを試料とし、波長領域365nmでの反射率(%)を分光光度計によって測定した値である。また、隠蔽率は、JIS K 5600−4−1:1999の方法B(隠蔽率試験紙)に従い、Y/Yを百分率で算出した値である。 In addition, the ultraviolet reflectance of the granular material in the above (1) is a composition in which each granular material is mixed with acrylic resin on an aluminum plate painted in advance so as not to reflect ultraviolet rays (hiding ratio 95%). ) Is a value obtained by measuring the reflectance (%) in a wavelength region of 365 nm with a spectrophotometer using a coated (dry film thickness: 100 μm) and dried sample. The concealment rate is a value obtained by calculating Y B / Y W as a percentage in accordance with JIS K 5600-4-1: 1999 method B (concealment rate test paper).

上記(2)において使用可能な樹脂としては、無機質材料、有機質材料のどちらでもよく、例えば、無機質材料としては、ガラス、水ガラス、低融点ガラス、シリコン樹脂、アルコキシシラン、シランカップリング剤、等が挙げられる。また、有機材料としては、アクリル樹脂、ポリエステル樹脂、ポリエーテル樹脂、ビニル樹脂、ポリアミド樹脂、フェノール樹脂、ウレタン樹脂、エポキシ樹脂、フッ素樹脂、酢酸ビニル樹脂、アクリル−スチレン樹脂、酢酸ビニル−バーサチック酸ビニルエステル樹脂、ポリビニルピロリドン樹脂、ポリビニルカプロラクタム樹脂、ポリビニルアルコール樹脂、ポリカーボネート樹脂、ABS樹脂、AS樹脂、セルロース樹脂、アクリル−シリコン樹脂、シリコン樹脂、アルキッド樹脂、メラミン樹脂、アミノ樹脂等の水分散型、水可溶型、NAD型、溶剤可溶型、無溶剤型、等の樹脂が挙げられる。 The resin that can be used in the above (2) may be either an inorganic material or an organic material. Examples of the inorganic material include glass, water glass, low-melting glass, silicon resin, alkoxysilane, silane coupling agent, and the like. Is mentioned. Organic materials include acrylic resin, polyester resin, polyether resin, vinyl resin, polyamide resin, phenol resin, urethane resin, epoxy resin, fluororesin, vinyl acetate resin, acrylic-styrene resin, vinyl acetate-vinyl versatate Ester resin, polyvinyl pyrrolidone resin, polyvinyl caprolactam resin, polyvinyl alcohol resin, polycarbonate resin, ABS resin, AS resin, cellulose resin, acrylic-silicon resin, silicon resin, alkyd resin, melamine resin, amino resin, water dispersion type, water Examples of the resin include soluble type, NAD type, solvent soluble type, and solventless type.

具体的には、(p)において紫外線反射率が低い樹脂を用いればよい。上記(2)では、紫外線反射率が最も低い樹脂と最も高い樹脂との紫外線反射率の差が1%以上(好ましくは2%以上、より好ましくは3%以上、さらに好ましくは5%以上)とすることが望ましい。このような紫外線反射率の差は、例えば、樹脂中の紫外線吸収基の比率を変えること等により、設けることができる。紫外線吸収基としては、例えば、フェニル基、ベンゾフェノン基、ベンゾトリアゾール基、トリアジン基等が挙げられる。 Specifically, a resin having a low ultraviolet reflectance in (p) may be used. In the above (2), the difference in ultraviolet reflectance between the resin having the lowest ultraviolet reflectance and the resin having the highest ultraviolet reflectance is 1% or more (preferably 2% or more, more preferably 3% or more, more preferably 5% or more). It is desirable to do. Such a difference in ultraviolet reflectance can be provided, for example, by changing the ratio of ultraviolet absorbing groups in the resin. Examples of the ultraviolet absorbing group include a phenyl group, a benzophenone group, a benzotriazole group, and a triazine group.

上記(2)の具体例としては、(p)において、樹脂中のスチレン比率が大きな樹脂を使用し、(q)において、樹脂中のスチレン比率が小さな樹脂を使用する組み合わせを挙げることができる。この場合、樹脂中のスチレン比率は10重量%以上(好ましくは35重量%以上)異なることが望ましい。
なお、(2)における紫外線反射率は、予め紫外線を反射しないように黒色に塗装されたアルミ板上に、各樹脂にアルミナを混合した組成物(隠蔽率95%)を、塗付(乾燥膜厚:100μm)、乾燥させたものを試料とし、波長領域365nmでの反射率(%)を分光光度計によって測定した値である。
Specific examples of the above (2) include a combination in which a resin having a large styrene ratio in the resin is used in (p) and a resin having a small styrene ratio in the resin is used in (q). In this case, the styrene ratio in the resin is desirably different by 10% by weight or more (preferably 35% by weight or more).
In addition, the ultraviolet reflectance in (2) is obtained by applying a composition (a concealment ratio of 95%) in which alumina is mixed with each resin on an aluminum plate painted in black so as not to reflect ultraviolet rays (dry film). (Thickness: 100 μm) The value obtained by measuring the reflectance (%) in a wavelength region of 365 nm with a spectrophotometer using a dried sample as a sample.

上記(3)は、紫外線吸収剤の存否、あるいは濃度の差異により、紫外線反射率を変えるものである。上記(3)で使用可能な紫外線吸収剤としては、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤等が挙げられる。このうち、ベンゾフェノン系紫外線吸収剤としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン−5−スルホン酸、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジルオキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、4−ドデシルオキシ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−ステアリルオキシベンゾフェノンなどが挙げられる。ラジカル重合性ベンゾフェノン系の紫外線吸収剤として、2−ヒドロキシ−4−アクリロキシベンゾフェノン、2−ヒドロキシ−4−メタクリロキシベンゾフェノン、2−ヒドロキシ−5−アクリロキシベンゾフェノン、2−ヒドロキシ−5−メタクリロキシベンゾフェノン、2−ヒドロキシ−4−(アクリロキシ−エトキシ)ベンゾフェノン、2−ヒドロキシ−4−(メタクリロキシ−エトキシ)ベンゾフェノン、2−ヒドロキシ−4−(メタクリロキシ−ジエトキシ)ベンゾフェノン、2−ヒドロキシ−4−(アクリロキシ−トリエトキシ)ベンゾフェノンなどが挙げられる。 In (3) above, the ultraviolet reflectance is changed depending on the presence or absence of the ultraviolet absorber or the difference in concentration. Examples of the ultraviolet absorber usable in the above (3) include benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, and triazine-based ultraviolet absorbers. Among these, as the benzophenone-based ultraviolet absorber, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid, 2-hydroxy-4-n -Octoxybenzophenone, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, bis (5-benzoyl-4-hydroxy-2-methoxyphenyl) methane, 2,2'-dihydroxy -4-methoxybenzophenone, 2,2'-dihydroxy-4,4'dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 2-hydroxy-4- Methoxy-2'- Carboxymethyl benzophenone, 2-hydroxy-4-stearyloxy benzophenone. As radically polymerizable benzophenone UV absorbers, 2-hydroxy-4-acryloxybenzophenone, 2-hydroxy-4-methacryloxybenzophenone, 2-hydroxy-5-acryloxybenzophenone, 2-hydroxy-5-methacryloxybenzophenone 2-hydroxy-4- (acryloxy-ethoxy) benzophenone, 2-hydroxy-4- (methacryloxy-ethoxy) benzophenone, 2-hydroxy-4- (methacryloxy-diethoxy) benzophenone, 2-hydroxy-4- (acryloxy-triethoxy) ) Benzophenone.

具体的には、(p)において紫外線吸収剤を配合し、(q)において紫外線吸収剤を配合しなければよい。また、(p)における紫外線吸収剤の濃度を高くし、(q)における紫外線吸収剤の濃度を低く設定してもよい。上記(3)では、紫外線吸収剤の濃度が高い部分と低い部分との紫外線反射率の差が2%以上(好ましくは5%以上、より好ましくは10%以上)とすることが望ましい。また、(3)では、紫外線吸収剤の濃度が0.01重量%以上(好ましくは0.05重量%以上)異なるように設定することが望ましい。なお、(3)での紫外線反射率は、予め紫外線を反射しないように黒色に塗装されたアルミ板上に、各樹脂にアルミナ、紫外線吸収剤を混合した組成物(隠蔽率95%)を、塗付(乾燥膜厚:100μm)し、乾燥させたものを試料とし、波長領域365nmでの反射率(%)を分光光度計によって測定した値である。 Specifically, an ultraviolet absorber may be blended in (p), and an ultraviolet absorber may not be blended in (q). Alternatively, the concentration of the ultraviolet absorber in (p) may be increased and the concentration of the ultraviolet absorber in (q) may be set low. In the above (3), it is desirable that the difference in ultraviolet reflectance between the portion where the concentration of the ultraviolet absorber is high and the portion where the concentration is low is 2% or more (preferably 5% or more, more preferably 10% or more). In (3), it is desirable that the concentration of the ultraviolet absorber is set to be different by 0.01% by weight or more (preferably 0.05% by weight or more). In addition, the ultraviolet reflectance in (3) is a composition in which alumina and an ultraviolet absorber are mixed in each resin on an aluminum plate painted in black so as not to reflect ultraviolet rays (hiding ratio 95%), This is a value obtained by measuring the reflectance (%) in a wavelength region of 365 nm with a spectrophotometer using a sample that has been applied (dry film thickness: 100 μm) and dried.

上記(4)は、紫外線反射率が低い材料では、厚みが大きいほど紫外線反射率も低くなる傾向があることや、紫外線反射率が高い材料では、厚みが大きいほど紫外線反射率も高くなる傾向があることを利用するものである。紫外線反射率が高い材料としては、例えば上記(1)〜(3)において(q)を形成する材料が使用できる。被膜(B)の厚みは、通常5μm〜500μm(好ましくは、10μm〜250μm)の範囲内で設定すればよい。 The above (4) is that a material having a low ultraviolet reflectance tends to have a lower ultraviolet reflectance as the thickness is larger, and a material having a higher ultraviolet reflectance tends to have a higher ultraviolet reflectance as the thickness is larger. It is something that takes advantage of something. As the material having a high ultraviolet reflectance, for example, the material forming (q) in the above (1) to (3) can be used. What is necessary is just to set the thickness of a film (B) within the range of 5 micrometers-500 micrometers normally (preferably 10 micrometers-250 micrometers).

本発明では、上記(1)〜(4)の他に、紫外線反射率が高い粉粒体、紫外線反射率が高い樹脂等の濃度を変える方法等によって、(p)、(q)を設けることもできる。 In the present invention, in addition to the above (1) to (4), (p) and (q) are provided by a method of changing the concentration of a granular material having a high ultraviolet reflectance, a resin having a high ultraviolet reflectance, or the like. You can also.

また本発明被膜(B)は、上記(p)、(q)に代えて、例えば、紫外線吸収性が高い部分(p′)と、あるいは当該(p′)よりも紫外線吸収性が低い部分(q′)を設けることもできる。
具体的に、紫外線吸収性が高い部分(p′)は前記紫外線反射率の低い部分(p)、紫外線吸収性が低い部分(q′)は前記紫外線反射率の高い部分(q)に相当し、これらと同様のものを使用することができる。この場合も、(p′)と(q′)が混在することが好ましい。
In addition, the coating (B) of the present invention can be replaced with, for example, a part (p ′) having a high UV-absorbing property, or a part having a lower UV-absorbing property (p ′) (instead of the above (p) and (q)). q ′) can also be provided.
Specifically, the portion (p ′) having high UV absorption corresponds to the portion (p) having low UV reflectance, and the portion (q ′) having low UV absorption corresponds to the portion (q) having high UV reflectance. These can be used as well. Also in this case, it is preferable that (p ′) and (q ′) are mixed.

また、被膜(B)は、残余の紫外線を透過する紫外線透過性(以下、「紫外線透過性」ともいう。)と、蛍光体層からの発光を透過する性質(以下、「発光透過性」ともいう。)を有するものである。上記「紫外線透過性」とは、本発明の積層体に対して、被膜(B)方向から紫外線を照射した場合、被膜(B)層を介して、蛍光体層(A)を発光させることができる程度の紫外線が透過することである。また、「発光透過性」とは、蛍光体層(A)の発光を、被膜(B)層を介して視認できる性能のことである。このような被膜(B)は、透明または半透明であることが好ましい。 Further, the coating (B) has an ultraviolet transparency that transmits the remaining ultraviolet rays (hereinafter also referred to as “ultraviolet transmission”) and a property that transmits light emitted from the phosphor layer (hereinafter referred to as “emission transparency”). Say). The above “ultraviolet ray transmissive” means that when the laminate of the present invention is irradiated with ultraviolet rays from the direction of the coating (B), the phosphor layer (A) emits light through the coating (B) layer. It is to transmit as much ultraviolet rays as possible. “Luminescence transparency” refers to the ability to visually recognize the luminescence of the phosphor layer (A) through the coating (B) layer. Such a coating (B) is preferably transparent or translucent.

なお、透明または半透明を測定する方法としては、被膜(B)を隠蔽率試験紙上に置き、白地上と黒地上の視感反射率から隠蔽率を算出する方法が挙げられる。
被膜(B)の隠蔽率は通常70%以下、好ましくは60%以下である。隠蔽率が70%を超える場合は、蛍光発光の視認性が低下するおそれがある。
なお、視感反射率は色彩色差計(「CR−300」:ミノルタ株式会社製)を用いて測定し算出することができる。
In addition, as a method for measuring transparency or translucency, there is a method in which the coating (B) is placed on a concealment rate test paper and the concealment rate is calculated from the luminous reflectance of the white ground and the black ground.
The concealment rate of the coating (B) is usually 70% or less, preferably 60% or less. If the concealment rate exceeds 70%, the visibility of fluorescent emission may be reduced.
The luminous reflectance can be measured and calculated using a color difference meter (“CR-300” manufactured by Minolta Co., Ltd.).

上記の蛍光体層(A)または被膜(B)には、本発明の効果を阻害しない程度であれば、例えば、顔料、骨材、可塑剤、難燃剤、滑剤、防腐剤、防黴剤、防藻剤、抗菌剤、分散剤、消泡剤、造膜助剤、吸着剤、架橋剤、酸化防止剤、紫外線吸収剤、触媒、ブロッキング防止剤等が含まれていてもよく、このような成分を常法で均一に混合することができる。 In the phosphor layer (A) or coating (B), for example, a pigment, an aggregate, a plasticizer, a flame retardant, a lubricant, an antiseptic, an antifungal agent, as long as the effect of the present invention is not impaired. It may contain anti-algae agent, antibacterial agent, dispersant, defoaming agent, film-forming aid, adsorbent, crosslinking agent, antioxidant, ultraviolet absorber, catalyst, anti-blocking agent, etc. The components can be uniformly mixed by a conventional method.

本発明において、適用可能な基材としては、例えば、石膏ボード、合板、コンクリート、モルタル、磁器タイル、繊維混入セメント板、セメント珪酸カルシウム板、スラグセメントパーライト板、ALC板、サイディング板、押出成形板、鋼板、アルミニウム板、プラスチック板、ガラス板等が挙げられる。これら基材の形状としては、特に限定されないが、凹凸基材であれば蛍光発光の多様性が高まる。また、これら基材の表面は、何らかの表面処理(例えば、パテ、フィラー等)が施されたものでもよく、既に塗膜が形成され着色されたものや、既に壁紙が貼り付けられたもの等であってもよい。   In the present invention, applicable substrates include, for example, gypsum board, plywood, concrete, mortar, porcelain tile, fiber-mixed cement board, cement calcium silicate board, slag cement pearlite board, ALC board, siding board, extrusion board Steel plate, aluminum plate, plastic plate, glass plate and the like. The shape of these base materials is not particularly limited, but if the substrate is an uneven substrate, the diversity of fluorescence emission is increased. In addition, the surface of these base materials may have been subjected to some surface treatment (for example, putty, filler, etc.), and has already been coated and colored, or has already been applied with wallpaper. There may be.

本発明では、基材上に予め紫外線反射率の高い層(C)が形成されていることが好ましい。具体的に、紫外線反射率の高い塗膜とは、前記紫外線反射率の高い粉粒体を含む層(C)を積層したものである。   In this invention, it is preferable that the layer (C) with a high ultraviolet reflectance is previously formed on the base material. Specifically, the coating film having a high ultraviolet reflectance is obtained by laminating the layer (C) containing the powder having a high ultraviolet reflectance.

本発明の積層体構造は、基材上に、蛍光材料を含む蛍光体層(A)、及び照射された紫外線の一部を反射及び/または吸収し、残余の紫外線を透過する被膜(B)が積層されていれば、その製造方法については特に限定されるものではない。例えば、被膜(B)は、被膜(B)形成材料、具体的に、紫外線反射率の低い部分(p)を形成する材料「低反射材料」と紫外線反射率の高い部分(q)を形成する材料「高反射材料」を使用し、以下の方法で作製することができる。 The laminate structure of the present invention comprises a phosphor layer (A) containing a fluorescent material on a substrate, and a coating (B) that reflects and / or absorbs part of the irradiated ultraviolet rays and transmits the remaining ultraviolet rays. If is laminated | stacked, it will not specifically limit about the manufacturing method. For example, the coating (B) forms a coating (B) forming material, specifically, a material “low reflection material” for forming a portion (p) having a low ultraviolet reflectance and a portion (q) having a high ultraviolet reflectance. Using the material “highly reflective material”, it can be produced by the following method.

(I)基材全面に、蛍光発光層(A)を形成後、さらに蛍光発光層(A)の上に、低反射材料及び/または高反射材料を部分的に積層し被膜(B)を積層する方法、
(II)基材全面に、蛍光発光層(A)を形成後、さらに蛍光発光層(A)の上に、低反射材料を積層し、次いで、高反射材料を部分的に積層し被膜(B)を積層する方法、
(III)基材全面に、蛍光発光層(A)を形成後、さらに蛍光発光層(A)の上に、高反射材料を積層し、次いで、低反射材料を部分的に積層し被膜(B)を積層する方法、
(IV)基材全面に、蛍光発光層(A)を形成後、高反射材料と低反射材料を同時に積層し被膜(B)を積層する方法、
等により製造できる。
(I) After forming the fluorescent light emitting layer (A) on the entire surface of the base material, a low reflective material and / or a high reflective material is partially laminated on the fluorescent light emitting layer (A) to form a coating (B). how to,
(II) After forming the fluorescent light emitting layer (A) on the entire surface of the substrate, a low reflective material is further laminated on the fluorescent light emitting layer (A), and then a high reflective material is partially laminated to form a coating (B )
(III) After forming the fluorescent light emitting layer (A) on the entire surface of the base material, a high reflective material is further laminated on the fluorescent light emitting layer (A), and then a low reflective material is partially laminated to form a coating (B )
(IV) A method of laminating a high reflection material and a low reflection material at the same time and laminating a film (B) after forming the fluorescent light emitting layer (A) on the entire surface of the substrate,
Etc. can be manufactured.

上記(I)では、低反射材料及び/または高反射材料を部分的に積層することよってまた、上記(II)(III)では、低反射材料と高反射材料を段階的に積層することよって任意にパターンを形成することが可能となる。また、(IV)では、例えば、低反射材料と高反射材料を同時に吹付する方法、低反射材料と高反射材料をそれぞれカプセル化またはゲル化させたものを複数分散させた組成物を積層する方法により形成することができる。
さらに、基材が凹凸を有する場合、(I)〜(IV)の方法を用いて、基材の凹部、凸部を塗り分けることもできる。
In the above (I), the low reflection material and / or the high reflection material are partially laminated, and in the above (II) and (III), the low reflection material and the high reflection material are laminated in stages. It becomes possible to form a pattern. In (IV), for example, a method of spraying a low reflection material and a high reflection material at the same time, a method of laminating a composition in which a plurality of low reflection materials and high reflection materials encapsulated or gelled are dispersed Can be formed.
Furthermore, when a base material has an unevenness | corrugation, the recessed part and convex part of a base material can also be painted separately using the method of (I)-(IV).

上記(I)〜(IV)において、蛍光体層材料、被膜(B)形成材料を積層する際には、予め成形した各層を接着剤で張り合わせたり、成形前の材料をスプレー、ローラー、こて、レシプロ、コーター、流し込み、スクリーン印刷等の手段を用いて積層することができる。また(A)層、または被膜(B)形成材料を乾燥させる際には、通常、常温で行えばよいが加熱することも可能である。   In the above (I) to (IV), when laminating the phosphor layer material and the coating (B) forming material, the layers formed in advance are bonded together with an adhesive, or the material before molding is sprayed, roller, trowel , Reciprocation, coater, pouring, screen printing and the like. Further, when the (A) layer or the film (B) forming material is dried, it is usually performed at room temperature, but can be heated.

また、上記(I)〜(IV)において、紫外線反射率の低い部分(p)を形成する材料「低反射材料」と紫外線反射率の高い部分(q)を形成する材料「高反射材料」に代えて、紫外線吸収率の高い部分(p′)を形成する材料「高吸収材料」と紫外線吸収率の低い部分(q′)を形成する材料「低吸収材料」を使用し、同様の方法で被膜(B)を形成することができる。   In the above (I) to (IV), the material “low reflection material” for forming the portion (p) having a low ultraviolet reflectance and the material “high reflection material” for forming the portion (q) having a high ultraviolet reflectance. Instead, the material “high absorption material” that forms the part (p ′) having a high ultraviolet absorption rate and the material “low absorption material” that forms the part (q ′) that has a low ultraviolet absorption rate are used. A film (B) can be formed.

以下に実施例を示し、本発明の特徴をより明確にする。   Examples are given below to clarify the features of the present invention.

<蛍光体層材料>
・蛍光体層材料1
アクリル樹脂エマルション100重量部(固形分)、緑色無機蛍光顔料10重量部、添加剤(分散剤、消泡剤等)4重量部を常法にて混合し、蛍光体層材料1を作製した。
蛍光体層材料1に関して、隠蔽率試験紙の上に塗付厚が150μm(乾燥膜厚が80μm)となるように塗付、乾燥させた試験体を用い、試験体における黒地上塗膜と白地上塗膜の視感反射率を色彩色差計(「CR−300」:ミノルタ株式会社製)を用いて測定し隠蔽率(%)を算出したところ、蛍光体層材料1の隠蔽率は6.1%であった。
<Phosphor layer material>
・ Phosphor layer material 1
Phosphor layer material 1 was prepared by mixing 100 parts by weight (solid content) of an acrylic resin emulsion, 10 parts by weight of a green inorganic fluorescent pigment, and 4 parts by weight of additives (dispersant, antifoaming agent, etc.).
Regarding the phosphor layer material 1, a black ground coating film and a white coating on the test body were used by using a test body that was coated on a concealment rate test paper so that the coating thickness was 150 μm (dry film thickness was 80 μm). When the visual reflectance of the ground coating film was measured using a color difference meter (“CR-300”: manufactured by Minolta Co., Ltd.) and the concealment rate (%) was calculated, the concealment rate of the phosphor layer material 1 was 6. 1%.

<被膜形成材料の製造>
・被膜形成材料1
樹脂エマルション1を100重量部(固形分)、アルミナ40重量部、添加剤(分散剤、消泡剤等)4重量部を常法にて混合し、被膜形成材料1を作製した。
・被膜形成材料2〜7
表1に示す配合に基づき、被膜形成材料1と同様の方法で、被膜形成材料2〜7を作製した。
<Manufacture of film forming material>
・ Film forming material 1
100 parts by weight (solid content) of resin emulsion 1, 40 parts by weight of alumina, and 4 parts by weight of additives (dispersant, antifoaming agent, etc.) were mixed by a conventional method to prepare film forming material 1.
・ Film forming materials 2-7
Based on the formulation shown in Table 1, film-forming materials 2 to 7 were produced in the same manner as film-forming material 1.

なお、被膜形成材料の原料としては以下のものを使用した。
・樹脂エマルション1:アクリル/スチレン=100/0、紫外線反射率83.6%
・樹脂エマルション2:アクリル/スチレン=70/30、紫外線反射率81.5%
・アルミナ:平均粒子径1.0μm、紫外線反射率83.6%
・酸化チタン:平均粒子径0.2μm、紫外線反射率6.5%
・重質炭酸カルシウム:平均粒子径2.0μm、紫外線反射率45.1%
・紫外線吸収剤:ベンゾトリアゾール系紫外線吸収剤
なお、樹脂エマルション1〜2の紫外線反射率は、各エマルションにアルミナを混合した組成物(隠蔽率95%)を、また、アルミナ、酸化チタン、重質炭酸カルシウムの紫外線反射率は、樹脂エマルション1に各粉粒体を混合した組成物(隠蔽率95%)を、予め紫外線を反射しないように黒色に塗装されたアルミ板上に塗付(乾燥膜厚:100μm)、乾燥させたものを試料とし、波長領域365nmでの反射率(%)を分光光度計によって測定した値である。
The following materials were used as raw materials for the film forming material.
Resin emulsion 1: Acrylic / styrene = 100/0, UV reflectance 83.6%
Resin emulsion 2: Acrylic / styrene = 70/30, UV reflectance 81.5%
Alumina: average particle diameter 1.0 μm, ultraviolet reflectance 83.6%
-Titanium oxide: average particle size 0.2 μm, ultraviolet reflectance 6.5%
-Heavy calcium carbonate: average particle size 2.0 μm, ultraviolet reflectance 45.1%
-UV absorber: benzotriazole UV absorber The UV reflectance of resin emulsions 1 and 2 is a composition in which alumina is mixed with each emulsion (hiding ratio 95%), and also alumina, titanium oxide, heavy The ultraviolet reflectance of calcium carbonate is determined by applying a composition (concealment rate 95%) obtained by mixing each granular material to the resin emulsion 1 onto an aluminum plate painted in black so as not to reflect ultraviolet rays (dry film). (Thickness: 100 μm) The value obtained by measuring the reflectance (%) in a wavelength region of 365 nm with a spectrophotometer using a dried sample as a sample.

・被膜形成材料8
溶剤可溶形アクリル樹脂11重量部(固形分)、酸化チタン1重量部、粘性調整剤1重量部、及びミネラルスピリット10重量部を常法により均一に混合して被膜形成材料8aを製造した。
次いで、ポリビニルアルコール4重量部、アクリル樹脂エマルション3重量部、及び水50重量部を均一に混合して得た水系分散媒に、上記被膜形成材料8aを徐々に滴下しながら混合し、さらに架橋剤1重量部を混合した。
以上の方法により、酸化チタンを含む粒子径3〜5mmの白色粒子が、水系分散媒に分散した状態の塗料組成物1を得た。
酸化チタンに替えてアルミナを17重量部使用した以外は、上記方法に従い、被膜形成材料8bを製造し、ついでアルミナを含む粒子径3〜5mmの白色粒子が、水系分散媒に分散した状態の塗料組成物2を得た。
以上の方法で得られた塗料組成物1と塗料組成物2を1:1の重量比率で混合することにより、酸化チタンを含む白色粒子と、アルミナを含む白色粒子が混在した被膜形成材料8を得た。
・ Film forming material 8
A film-forming material 8a was produced by uniformly mixing 11 parts by weight (solid content) of a solvent-soluble acrylic resin, 1 part by weight of titanium oxide, 1 part by weight of a viscosity modifier, and 10 parts by weight of mineral spirit by a conventional method.
Subsequently, 4 parts by weight of polyvinyl alcohol, 3 parts by weight of an acrylic resin emulsion, and 50 parts by weight of water are mixed with an aqueous dispersion medium obtained by uniformly dropping the film-forming material 8a, and then a crosslinking agent. 1 part by weight was mixed.
By the above method, the coating composition 1 in a state in which white particles having a particle diameter of 3 to 5 mm containing titanium oxide were dispersed in an aqueous dispersion medium was obtained.
The coating material 8b was produced according to the above method except that 17 parts by weight of alumina was used instead of titanium oxide, and then the white paint particles having a particle diameter of 3 to 5 mm containing alumina were dispersed in an aqueous dispersion medium. Composition 2 was obtained.
By mixing the coating composition 1 and the coating composition 2 obtained by the above method at a weight ratio of 1: 1, a film forming material 8 in which white particles containing titanium oxide and white particles containing alumina are mixed is obtained. Obtained.

・被膜形成材料9
溶剤可溶形アクリル樹脂11重量部(固形分)、粘性調整剤1重量部、及びミネラルスピリット10重量部を常法により均一に混合して被膜形成材料9aを製造した。
次いで、ポリビニルアルコール4重量部、アクリル樹脂エマルション3重量部、及び水50重量部を均一に混合して得た水系分散媒に、上記被膜形成材料9aを徐々に滴下しながら混合し、さらに架橋剤1重量部を混合した。
以上の方法により、粒子径3〜5mmのクリヤー粒子が、水系分散媒に分散した状態の塗料組成物3を得た。
紫外線吸収剤0.1重量部添加した以外は、上記方法に従い、被膜形成材料9bを製造し、紫外線吸収剤を含む粒子径3〜5mmのクリヤー粒子が、水系分散媒に分散した状態の塗料組成物4を得た。
以上の方法で得られた塗料組成物3と塗料組成物4を1:1の重量比率で混合することにより、2種のクリヤー粒子が混在した被膜形成材料9を得た。
-Film forming material 9
A film-forming material 9a was produced by uniformly mixing 11 parts by weight (solid content) of a solvent-soluble acrylic resin, 1 part by weight of a viscosity modifier, and 10 parts by weight of mineral spirit by a conventional method.
Subsequently, 4 parts by weight of polyvinyl alcohol, 3 parts by weight of an acrylic resin emulsion, and 50 parts by weight of water are mixed with an aqueous dispersion medium obtained by uniformly dropping the film forming material 9a, and then a crosslinking agent. 1 part by weight was mixed.
By the above method, a coating composition 3 was obtained in which clear particles having a particle diameter of 3 to 5 mm were dispersed in an aqueous dispersion medium.
A coating composition in which the film-forming material 9b is produced according to the above method except that 0.1 part by weight of the ultraviolet absorber is added, and the clear particles having a particle diameter of 3 to 5 mm containing the ultraviolet absorber are dispersed in the aqueous dispersion medium. Product 4 was obtained.
The coating composition 3 and the coating composition 4 obtained by the above method were mixed at a weight ratio of 1: 1 to obtain a film forming material 9 in which two kinds of clear particles were mixed.

<被膜形成材料の評価>
・評価1
隠蔽率試験紙の上に、作製した被膜形成材料1〜7、8a、8b、9a、9bを塗付厚が150μmとなるように塗付、硬化させた試験体を用い、試験体における黒地上塗膜と白地上塗膜の視感反射率を色彩色差計(「CR−300」:ミノルタ株式会社製)を用いて測定し隠蔽率(%)を算出した。結果を表2、表3に示した。
・評価2
アルミニウム板(40mm×40mm×0.6mm)上にウレタン樹脂100重量部(固形分)に対してカーボンブラック(平均粒子径0.02μm)20重量部混合した組成物を乾燥膜厚が80μmとなるように塗付、硬化させたものを基材とした。基材上に、被膜形成材料1〜4、被膜形成材料8〜9の塗料組成物1〜4を乾燥膜厚が100μmとなるように塗付、乾燥させた試験体を用い、波長領域365nmでの反射率(%)を分光光度計(「UV−3100」:株式会社島津製作所製)で測定した。結果を表2に示した。なお、組成物1を塗付する前の基材の反射率は、1.5%であった。
・ 評価3
被膜形成材料5〜7に関しては、透明のため、評価2の紫外線反射率の代わりに以下の評価を行った。離型紙上に被膜形成材料5〜7を塗付厚が150μmとなるように塗付、乾燥させた後、形成された塗膜を離型紙から剥がし、フィルム状の試験体を作製した。得られたフィルム状試験体の、波長領域365nmでの透過率(%)を分光光度計(「UV−2200」:株式会社島津製作所製)で測定した。
<Evaluation of film forming material>
・ Evaluation 1
Using the test specimen obtained by coating and curing the prepared film-forming materials 1 to 7, 8a, 8b, 9a, and 9b on the concealment rate test paper to a coating thickness of 150 μm, The visual reflectance of the coating film and the white ground coating film was measured using a color difference meter (“CR-300” manufactured by Minolta Co., Ltd.), and the concealment rate (%) was calculated. The results are shown in Tables 2 and 3.
・ Evaluation 2
A dry film thickness of 80 μm is obtained by mixing 20 parts by weight of carbon black (average particle diameter: 0.02 μm) with 100 parts by weight (solid content) of urethane resin on an aluminum plate (40 mm × 40 mm × 0.6 mm). The substrate was coated and cured as described above. On a base material, using a test body in which the coating compositions 1 to 4 of the film forming materials 1 to 4 and the film forming materials 8 to 9 are applied so as to have a dry film thickness of 100 μm and dried, in a wavelength region of 365 nm. Was measured with a spectrophotometer ("UV-3100": manufactured by Shimadzu Corporation). The results are shown in Table 2. In addition, the reflectance of the base material before apply | coating the composition 1 was 1.5%.
・ Evaluation 3
Since the film forming materials 5 to 7 were transparent, the following evaluation was performed instead of the ultraviolet reflectance in the evaluation 2. The film forming materials 5 to 7 were applied onto the release paper so that the coating thickness was 150 μm and dried, and then the formed coating film was peeled off from the release paper to prepare a film-like test body. The transmittance (%) in the wavelength region 365 nm of the obtained film-like test body was measured with a spectrophotometer (“UV-2200”: manufactured by Shimadzu Corporation).

<積層体>
・基材
アルミニウム板(40mm×40mm×0.6mm)に、アクリルエマルション樹脂100重量部(固形分)、アルミナ500重量部、添加剤5重量部を
常法により混合した組成物を、乾燥膜厚が100μmとなるように塗付、乾燥させたものを基材として用いた。
<Laminated body>
-Base material An aluminum plate (40 mm x 40 mm x 0.6 mm) mixed with 100 parts by weight of acrylic emulsion resin (solid content), 500 parts by weight of alumina, and 5 parts by weight of additives by a conventional method is used as a dry film thickness. Was coated and dried so as to be 100 μm as a substrate.

(実施例1)
上記基材上に、蛍光発光層材料1を乾燥膜厚が80μmとなるように塗付、乾燥させて、蛍光発光基材を得た。次いで、この蛍光発光基材上に、被膜形成材料1を乾燥膜厚が100μmとなるように塗付、乾燥させ、次いで、被膜形成材料2を、刷毛を用いて斑点状(乾燥膜厚:平均80μm)に塗付、乾燥させ、積層体1を得た。
得られた積層体1に関して、40W室内蛍光灯照明下において目視評価したところ、積層体1はほぼ均一な白色に視認された。また、積層体1と3cmの距離に6W紫外線ランプを設置し、紫外線を照射したところ、被膜形成材料1上と被膜形成材料2上で輝度の強弱が生じ、多彩的な発光模様が認められ、被膜形成材料2の塗装部分で周囲より輝度が低く、部分的に輝度の異なる発光模様が認められた。
Example 1
On the said base material, the fluorescent light emitting layer material 1 was apply | coated and dried so that the dry film thickness might be set to 80 micrometers, and the fluorescent light emitting base material was obtained. Next, the film-forming material 1 is applied and dried on the fluorescent light-emitting substrate so that the dry film thickness is 100 μm, and then the film-forming material 2 is spotted using a brush (dry film thickness: average). 80 μm) and dried to obtain a laminate 1.
When the obtained laminated body 1 was visually evaluated under 40 W indoor fluorescent lamp illumination, the laminated body 1 was visually recognized as a substantially uniform white color. In addition, when a 6 W ultraviolet lamp was installed at a distance of 3 cm from the laminate 1 and irradiated with ultraviolet rays, the intensity of brightness was generated on the film forming material 1 and the film forming material 2, and various light emission patterns were recognized. Luminous patterns having lower luminance than the surroundings and partially different luminance were recognized in the coated portion of the film forming material 2.

(実施例2)
実施例1の被膜形成材料2の代わりに、被膜形成材料3を使用した以外は、試験例1と同様の方法で、積層体2を得た。
得られた積層体2について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体2はほぼ均一な白色に視認された。また、紫外線ランプ照明下では、被膜形成材料1上と被膜形成材料3上で輝度の強弱が生じ、多彩的な発光模様が認められ、被膜形成材料3の塗装部分で周囲より発光輝度が高くなり、部分的に輝度の異なる発光模様が認められた。
(Example 2)
A laminate 2 was obtained in the same manner as in Test Example 1 except that the film-forming material 3 was used instead of the film-forming material 2 of Example 1.
When the obtained laminated body 2 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1, the laminated body 2 was visually recognized as a substantially uniform white color. In addition, under the ultraviolet lamp illumination, brightness intensities are generated on the film forming material 1 and the film forming material 3, and various light emission patterns are recognized. A light emission pattern with partially different brightness was observed.

(実施例3)
実施例1の被膜形成材料2の代わりに、被膜形成材料4を使用した以外は、試験例1と同様の方法で、積層体3を得た。
得られた積層体2について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体3はほぼ均一な白色に視認された。また、紫外線ランプ照明下では、被膜形成材料1上と被膜形成材料4上で輝度の強弱が生じ、多彩的な発光模様が認められ、被膜形成材料1の塗装部分で周囲より発光輝度が高くなり、部分的に輝度の異なる発光模様が認められた。
(Example 3)
A laminate 3 was obtained in the same manner as in Test Example 1 except that the film-forming material 4 was used instead of the film-forming material 2 in Example 1.
When the obtained laminated body 2 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1, the laminated body 3 was visually recognized as a substantially uniform white color. In addition, under the ultraviolet lamp illumination, brightness intensities occur on the film forming material 1 and the film forming material 4, and various light emission patterns are recognized, and the light emission luminance is higher than the surroundings in the coated portion of the film forming material 1. A light emission pattern with partially different brightness was observed.

(実施例4)
実施例1の被膜形成材料1の代わりに、被膜形成材料5、被膜形成材料2の代わりに、被膜形成材料6を使用した以外は、試験例1と同様の方法で、積層体4を得た。
得られた積層体4について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体4はほぼ均一な白色に視認された。また、紫外線ランプ照明下では、被膜形成材料5上と被膜形成材料6上で輝度の強弱が生じ、多彩的な発光模様が認められ、被膜形成材料6の塗装部分で周囲より発光輝度が低くなり、部分的に輝度の異なる発光模様が認められた。
Example 4
A laminate 4 was obtained in the same manner as in Test Example 1 except that the film forming material 6 was used in place of the film forming material 5 and the film forming material 2 instead of the film forming material 1 of Example 1. .
When the obtained laminated body 4 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1, the laminated body 4 was visually recognized as a substantially uniform white color. In addition, under the ultraviolet lamp illumination, brightness intensities occur on the film forming material 5 and on the film forming material 6, and various light emission patterns are recognized, and the light emission brightness is lower than the surroundings at the coated portion of the film forming material 6. A light emission pattern with partially different brightness was observed.

(実施例5)
実施例4の被膜形成材料6の代わりに被膜形成材料7を用いた以外は、実施例4と同様の方法で、積層体5を得た。
得られた積層体5について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体5はほぼ均一な白色に視認された。また、紫外線ランプ照明下では、被膜形成材料5上と被膜形成材料7上で輝度の強弱が生じ、多彩的な発光模様が認められたが、被膜形成材料5と被膜形成材料7の輝度の差が小さく、やや模様を識別しにくかった。
(Example 5)
A laminate 5 was obtained in the same manner as in Example 4 except that the film forming material 7 was used instead of the film forming material 6 in Example 4.
When the obtained laminate 5 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1, the laminate 5 was visually recognized as a substantially uniform white color. Further, under the ultraviolet lamp illumination, the intensity of brightness was generated on the film forming material 5 and the film forming material 7, and various light emission patterns were observed. However, the difference in luminance between the film forming material 5 and the film forming material 7 was observed. Was small, and it was difficult to identify the pattern.

(実施例6)
実施例1と同様の蛍光発光基材上に対し、被膜形成材料8を塗付け量200g/mでスプレー塗装し乾燥させ、上塗り層を積層し、積層体6を得た。
得られた積層体6について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体6はほぼ均一な白色に視認され、紫外線ランプ照明下では、ランダムに塗装された被膜形成材料(8a)と被膜形成材料(8b)の塗装部分間で輝度が異なり、複雑な発光模様が認められた。
(Example 6)
On the same fluorescent light-emitting substrate as in Example 1, the film-forming material 8 was spray-coated at a coating amount of 200 g / m 3 and dried, and an overcoat layer was laminated to obtain a laminate 6.
The obtained laminate 6 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1. As a result, the laminate 6 was visually recognized as a substantially uniform white color, and was randomly painted under ultraviolet lamp illumination. The luminance was different between the coating portions of the film forming material (8a) and the film forming material (8b), and a complicated light emission pattern was recognized.

(実施例7)
実施例6の被膜形成材料8に代えて、被膜形成材料9を塗付け量200g/mでスプレー塗装し乾燥させ、被膜を積層し、積層体7を得た。
得られた積層体7について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体7はほぼ均一な白色に視認され、紫外線ランプ照明下では、ランダムに塗装された被膜形成材料(9a)と被膜形成材料(9b)の塗装部分間で輝度が異なり、複雑な発光模様が認められた。
(Example 7)
Instead of the film-forming material 8 of Example 6, the film-forming material 9 was spray-coated at a coating amount of 200 g / m 3 and dried, and the film was laminated to obtain a laminate 7.
The obtained laminate 7 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1. As a result, the laminate 7 was visually recognized as a substantially uniform white color, and was randomly painted under ultraviolet lamp illumination. The brightness was different between the coating portions of the film forming material (9a) and the film forming material (9b), and a complicated light emission pattern was observed.

(実施例8)
実施例1と同様の蛍光発光基材上に対し、被膜形成材料2を塗付け量100g/mでデザインローラーを使用し塗装、乾燥させ、不連続被膜を積層し、積層体8を得た。
得られた積層体8について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体8はほぼ均一な白色に視認され、紫外線ランプ照明下では、デザインローラーで塗付された意匠部分で周囲より発光輝度が低くなり、部分的に輝度の異なる発光模様が認められた。
(Example 8)
On the same fluorescent light-emitting substrate as in Example 1, the film forming material 2 was applied at a coating amount of 100 g / m 3 using a design roller and dried, and a discontinuous film was laminated to obtain a laminate 8. .
The obtained laminate 8 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1. As a result, the laminate 8 was visually recognized as a substantially uniform white color, and was applied with a design roller under ultraviolet lamp illumination. In the designed part, the emission luminance was lower than the surroundings, and a light emission pattern with partially different luminance was recognized.

(実施例9)
実施例8の被膜形成材料2に代えて、被膜形成材料7を用いた以外は、実施例8と同様の方法で、積層体9を得た。
得られた積層体9について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体9はほぼ均一な白色に視認され、紫外線ランプ照明下では、デザインローラーで塗付された意匠部分で周囲より発光輝度が低くなり、部分的に輝度の異なる発光模様が認められた。
Example 9
A laminated body 9 was obtained in the same manner as in Example 8, except that the film forming material 7 was used instead of the film forming material 2 in Example 8.
The obtained laminate 9 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1. As a result, the laminate 9 was visually recognized as a substantially uniform white color, and was applied with a design roller under ultraviolet lamp illumination. In the designed part, the emission luminance was lower than the surroundings, and a light emission pattern with partially different luminance was recognized.

(実施例10)
実施例8の被膜形成材料2に代えて、被膜形成材料8を用いた以外は、実施例8と同様の方法で、積層体10を得た。
得られた積層体10について、実施例1と同様に室内蛍光灯照明下で目視評価を行ったところ、積層体10はほぼ均一な白色に視認され、紫外線ランプ照明下では、デザインローラーで塗付された意匠部分において被膜形成材料(9a)と被膜形成材料(9b)の塗装部分間、およびさらに意匠部分の周囲で輝度が異なり、部分的に輝度の異なる発光模様が認められた。
(Example 10)
A laminate 10 was obtained in the same manner as in Example 8, except that the film forming material 8 was used instead of the film forming material 2 in Example 8.
The obtained laminate 10 was visually evaluated under indoor fluorescent lamp illumination in the same manner as in Example 1. As a result, the laminate 10 was visually recognized as a substantially uniform white color, and was applied with a design roller under ultraviolet lamp illumination. In the designed part, the luminance was different between the coating part of the film forming material (9a) and the film forming material (9b), and further around the design part, and light emission patterns with partially different luminance were recognized.

(参考例)
白色塗膜が形成された基材(アルミニウム板(40mm×40mm×0.6mm))上に、蛍光発光層材料1を乾燥膜厚が80μmとなるように塗付、乾燥させて蛍光発光層を塗付し、乾燥させ蛍光発光基材を得た。次いで、この蛍光発光基材上に、被膜形成材料1を乾燥膜厚が100μmとなるように全体に均一に塗付、乾燥させ、被膜層を積層し、積層体11を得た。
得られた積層体11に関して、40W室内蛍光灯照明下において目視評価したところ、積層体11はほぼ均一な白色に視認された。また、積層体1と3cmの距離に6W紫外線ランプを設置し、紫外線を照射したところ、均一な発光であった。
(Reference example)
On the base material (aluminum plate (40 mm × 40 mm × 0.6 mm)) on which the white coating film is formed, the fluorescent light emitting layer material 1 is applied so as to have a dry film thickness of 80 μm and dried to form the fluorescent light emitting layer. It was applied and dried to obtain a fluorescent light-emitting substrate. Next, on this fluorescent light-emitting substrate, the film-forming material 1 was uniformly applied to the whole so as to have a dry film thickness of 100 μm and dried, and a film layer was laminated to obtain a laminate 11.
When the obtained laminate 11 was visually evaluated under illumination of a 40 W indoor fluorescent lamp, the laminate 11 was visually recognized as a substantially uniform white color. Further, when a 6 W ultraviolet lamp was installed at a distance of 3 cm from the laminate 1 and irradiated with ultraviolet rays, uniform light emission was obtained.

Figure 2009208367
Figure 2009208367

Figure 2009208367
Figure 2009208367

Figure 2009208367
Figure 2009208367

Claims (2)

紫外線照射によって多様な蛍光発光を呈する積層体であって、
基材上に、蛍光材料を含む蛍光体層(A)を設け、
該蛍光体層(A)の上に、照射された紫外線の一部を反射及び/または吸収し、残余の紫外線を透過する被膜(B)を形成し、
該被膜(B)が該蛍光体層(A)の少なくとも一部を覆い、該蛍光体層(A)からの発光を透過することを特徴とする積層体。
A laminate that exhibits various fluorescence emission by ultraviolet irradiation,
On the base material, a phosphor layer (A) containing a fluorescent material is provided,
On the phosphor layer (A), a film (B) that reflects and / or absorbs part of the irradiated ultraviolet rays and transmits the remaining ultraviolet rays is formed,
The laminated body characterized in that the coating (B) covers at least a part of the phosphor layer (A) and transmits light emitted from the phosphor layer (A).
上記被膜(B)が紫外線反射性及び/または紫外線吸収性の異なる被膜を、少なくとも2つ以上有することを特徴とする、請求項1記載の積層体。

The laminate according to claim 1, wherein the coating (B) has at least two coatings having different ultraviolet reflectivity and / or ultraviolet absorbability.

JP2008054154A 2008-03-04 2008-03-04 Laminated body Expired - Fee Related JP5459968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054154A JP5459968B2 (en) 2008-03-04 2008-03-04 Laminated body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054154A JP5459968B2 (en) 2008-03-04 2008-03-04 Laminated body

Publications (3)

Publication Number Publication Date
JP2009208367A true JP2009208367A (en) 2009-09-17
JP2009208367A5 JP2009208367A5 (en) 2011-04-14
JP5459968B2 JP5459968B2 (en) 2014-04-02

Family

ID=41181982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054154A Expired - Fee Related JP5459968B2 (en) 2008-03-04 2008-03-04 Laminated body

Country Status (1)

Country Link
JP (1) JP5459968B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019067A1 (en) 2009-08-13 2011-02-17 富士フイルム株式会社 Wafer-level lens, wafer-level lens production method, and imaging unit
JP2013505853A (en) * 2009-09-25 2013-02-21 海洋王照明科技股▲ふん▼有限公司 Luminescent glass, method for producing the same, and light emitting device
JP2016179646A (en) * 2015-03-25 2016-10-13 株式会社エフコンサルタント Laminate
JP2016179645A (en) * 2015-03-25 2016-10-13 株式会社エフコンサルタント Laminate
CN111870225A (en) * 2020-08-04 2020-11-03 中国科学技术大学 Method for manufacturing standard template for fluorescence calibration
JP6980313B1 (en) * 2020-10-16 2021-12-15 エコ・リバイバル株式会社 UV reflector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160082A (en) * 1990-10-25 1992-06-03 Shinroihi Kk Inorganic luminous tile and its production
JPH1159285A (en) * 1997-08-28 1999-03-02 Trinity Ind Corp Trimming parts for automobile
JP2002059502A (en) * 2000-08-23 2002-02-26 Nissha Printing Co Ltd Partially luminescent molded product and method for manufacturing the same
JP2005219413A (en) * 2004-02-06 2005-08-18 Endo Muneyoshi Phosphorescent metal plate and manufacturing process of phosphorescent metal plate
JP2006326898A (en) * 2005-05-24 2006-12-07 Toppan Printing Co Ltd Image forming material having latent image
JP2009142998A (en) * 2007-12-11 2009-07-02 Dic Corp Luminous decorative material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160082A (en) * 1990-10-25 1992-06-03 Shinroihi Kk Inorganic luminous tile and its production
JPH1159285A (en) * 1997-08-28 1999-03-02 Trinity Ind Corp Trimming parts for automobile
JP2002059502A (en) * 2000-08-23 2002-02-26 Nissha Printing Co Ltd Partially luminescent molded product and method for manufacturing the same
JP2005219413A (en) * 2004-02-06 2005-08-18 Endo Muneyoshi Phosphorescent metal plate and manufacturing process of phosphorescent metal plate
JP2006326898A (en) * 2005-05-24 2006-12-07 Toppan Printing Co Ltd Image forming material having latent image
JP2009142998A (en) * 2007-12-11 2009-07-02 Dic Corp Luminous decorative material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011019067A1 (en) 2009-08-13 2011-02-17 富士フイルム株式会社 Wafer-level lens, wafer-level lens production method, and imaging unit
JP2013505853A (en) * 2009-09-25 2013-02-21 海洋王照明科技股▲ふん▼有限公司 Luminescent glass, method for producing the same, and light emitting device
JP2016179646A (en) * 2015-03-25 2016-10-13 株式会社エフコンサルタント Laminate
JP2016179645A (en) * 2015-03-25 2016-10-13 株式会社エフコンサルタント Laminate
CN111870225A (en) * 2020-08-04 2020-11-03 中国科学技术大学 Method for manufacturing standard template for fluorescence calibration
JP6980313B1 (en) * 2020-10-16 2021-12-15 エコ・リバイバル株式会社 UV reflector
WO2022079948A1 (en) * 2020-10-16 2022-04-21 エコ・リバイバル株式会社 Ultraviolet ray reflecting material
JP2022065888A (en) * 2020-10-16 2022-04-28 エコ・リバイバル株式会社 Ultraviolet ray reflecting material

Also Published As

Publication number Publication date
JP5459968B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5459968B2 (en) Laminated body
JP5470314B2 (en) Water-based paint composition
CN100429352C (en) Light-light reflecting road traffic marker band
JP2016102218A (en) Coating material
JP6012323B2 (en) Decorative material
JP5634760B2 (en) Makeup structure
JP2010008624A (en) Visual guide sheet having phosphorescent property and anti-slip property
JP4675262B2 (en) Laminated body
JP5460844B2 (en) Laminated body
JP5781672B2 (en) Design materials and compositions
JP5459989B2 (en) Laminated body and light emitting structure
JP5634668B2 (en) Design materials and compositions
JP4751215B2 (en) Laminated body
JP5382933B2 (en) Laminated body
JP2009209294A (en) Luminous bead having luminous function and retroreflective function
JP6483979B2 (en) Design materials and structures
JP5382934B2 (en) Decorative material
JP2007270094A (en) Aqueous coating composition and laminated coating film using the same
JP5595058B2 (en) Laminated body
JP5595061B2 (en) Laminated body
CN112639031B (en) Display device and its manufacture and use
JP5086573B2 (en) Laminated body
JP2017128087A (en) Design material and structure
JP2015134912A (en) Coating material and coating film formation method
JP3201687U (en) Laminated body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5459968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees