JP2010247475A - Compound fiber-reinforced plastic and reinforced panel - Google Patents
Compound fiber-reinforced plastic and reinforced panel Download PDFInfo
- Publication number
- JP2010247475A JP2010247475A JP2009101259A JP2009101259A JP2010247475A JP 2010247475 A JP2010247475 A JP 2010247475A JP 2009101259 A JP2009101259 A JP 2009101259A JP 2009101259 A JP2009101259 A JP 2009101259A JP 2010247475 A JP2010247475 A JP 2010247475A
- Authority
- JP
- Japan
- Prior art keywords
- linear expansion
- fiber
- expansion coefficient
- reinforcing panel
- inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Conversion Of X-Rays Into Visible Images (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、無機繊維プリプレグを積層して成る複合繊維強化プラスチック(複合FRP)に関する。詳しくは、X線やγ線、β線等の放射線検出器に用いられるシンチレータ用無機結晶成形体を保護する補強パネルに関する。 The present invention relates to a composite fiber reinforced plastic (composite FRP) formed by laminating inorganic fiber prepregs. Specifically, the present invention relates to a reinforcing panel that protects an inorganic crystal formed body for scintillators used in radiation detectors such as X-rays, γ-rays, and β-rays.
シンチレータは、医療、工業用のX線撮影や、X線、γ線、α線やβ線などの放射線を検出する放射線検出装置に幅広く使用されている。シンチレータには、BGO結晶(Bi4Ge3O12)やLSO結晶(Lu2SiO5)、GSO結晶(Gd2SiO5)、PWO結晶(PbWO4)、NaI結晶、CsI結晶等の無機結晶成形体が使用されており、この無機結晶成形体は特定の波長領域の放射線のエネルギーを吸収することで、可視光又はそれに近い光信号を生み出し、その光信号から対象となる放射線の持つエネルギー量を検知することができる。 Scintillators are widely used in medical and industrial X-ray imaging and radiation detection apparatuses that detect radiation such as X-rays, γ-rays, α-rays, and β-rays. In the scintillator, inorganic crystal forming such as BGO crystal (Bi 4 Ge 3 O 12 ), LSO crystal (Lu 2 SiO 5 ), GSO crystal (Gd 2 SiO 5 ), PWO crystal (PbWO 4 ), NaI crystal, CsI crystal, etc. This inorganic crystal shaped body absorbs the energy of radiation in a specific wavelength region, generates visible light or an optical signal close to it, and determines the amount of energy of the target radiation from the optical signal. Can be detected.
上記した無機結晶成形体は、機械的に脆弱であり特に宇宙分野で使用する場合には、衛星の打ち上げの際に加わる重力などの負荷や衝撃により無機結晶体が破損しやすいため、前記無機結晶成形体の外面を高強度な材料で補強して使用されてきた。そしてこれらの補強材料として機械的特性、化学特性、耐衝撃性等にも優れ、さらに比較的比重が小さく軽量で剛性の高い繊維強化プラスチックが使用されている。(非特許文献) The inorganic crystal molded body described above is mechanically fragile, and particularly when used in the space field, the inorganic crystal body is easily damaged by a load or impact such as gravity applied when launching a satellite. It has been used by reinforcing the outer surface of the molded body with a high-strength material. As these reinforcing materials, fiber reinforced plastics which are excellent in mechanical properties, chemical properties, impact resistance and the like, have a relatively small specific gravity, are light and have high rigidity are used. (Non-patent literature)
しかしながら、従来の繊維強化プラスチック補強材料では、無機結晶成形体の線膨張係数と前記繊維強化プラスチック補強材料の線膨張係数が異なることによる大きな問題が生じている。 However, the conventional fiber reinforced plastic reinforcing material has a big problem due to the difference between the linear expansion coefficient of the inorganic crystal formed body and the linear expansion coefficient of the fiber reinforced plastic reinforcing material.
すなわち、上記したように衛星の打ち上げの際に加わる重力等の負荷や衝撃による熱エネルギーの発生、あるいは宇宙空間を飛行中の温度変化等によって無機結晶成形体内に発生する熱膨張・収縮による形状の変化と、補強材料の線膨張特性が追従できないことに起因して、無機結晶成形体から補強材料の離脱、検知精度の低下、あるいは破壊等が発生する致命的な問題である。 That is, as described above, the shape due to thermal expansion / contraction generated in the inorganic crystal molded body due to the generation of thermal energy due to the load or impact such as gravity applied at the time of launch of the satellite, or the temperature change during the flight in space. This is a fatal problem in that the change and the linear expansion characteristic of the reinforcing material cannot follow the separation of the reinforcing material from the inorganic crystal molded body, the detection accuracy is reduced, or the destruction occurs.
繊維強化プラスチック材料の線膨張係数を制御する方法として、特許文献1に繊維強化プラスチックからなるグリッド構造において、繊維強化プラスチックを構成する強化繊維と樹脂母材との間の熱歪みが釣り合っていることにより、全体における熱膨張係数が0±1×10−7/Kの範囲内であることを特徴とするグリッド構造が提案されている。しかしながら、線膨張係数を小さくすることで膨張を抑制することは可能であるが、シンチレータ用無機結晶成形体の補強材として用いる場合には、使用環境の温度変化による無機結晶成形体の熱歪あるいは形状の変化量を吸収することはできない。 As a method for controlling the linear expansion coefficient of a fiber reinforced plastic material, in Patent Document 1, in a grid structure made of fiber reinforced plastic, thermal strain between the reinforced fiber constituting the fiber reinforced plastic and the resin base material is balanced. Has proposed a grid structure characterized in that the overall thermal expansion coefficient is in the range of 0 ± 1 × 10 −7 / K. However, although it is possible to suppress expansion by reducing the linear expansion coefficient, when used as a reinforcing material for an inorganic crystal molded body for scintillators, thermal strain of the inorganic crystal molded body due to temperature changes in the use environment or The amount of change in shape cannot be absorbed.
また、特許文献2では、少なくとも一つは負の線膨張係数を有する強化繊維を含む二種以上の強化繊維を組み合せることにより、各々の線膨張係数を調整した一又は二以上の強化繊維からなるシートを組み合せて、線膨張係数を抑制した面内疑似等方性繊維強化樹脂複合材料が提案されている。上記方法では負の線膨張係数を有する強化繊維を用いるため、線膨張係数を大きい方向に制御することが困難である。同時に、面内擬似等方性の繊維強化プラスチックは、材料のいずれの方向においても所定の機械的特性が得られ、同時に線膨張係数も等方性を有するため、補強材として一方向のみの熱歪に追従することが困難である。 Further, in Patent Document 2, at least one of two or more kinds of reinforcing fibers including a reinforcing fiber having a negative linear expansion coefficient is combined to thereby adjust one or two or more reinforcing fibers whose respective linear expansion coefficients are adjusted. An in-plane quasi-isotropic fiber reinforced resin composite material in which the sheet is combined to suppress the linear expansion coefficient has been proposed. In the above method, since the reinforcing fiber having a negative linear expansion coefficient is used, it is difficult to control the linear expansion coefficient in a large direction. At the same time, the in-plane quasi-isotropic fiber reinforced plastic has a predetermined mechanical property in any direction of the material, and at the same time has an isotropic linear expansion coefficient. It is difficult to follow the distortion.
本発明は上記の背景に鑑みてなされたものであり、その目的はシンチレータ用無機結晶成形体の線膨張係数と同等の線膨張係数を有し、且つ、軽量で優れた機械的特性を備える複合繊維強化プラスチックを提供することを課題とする。 The present invention has been made in view of the above-mentioned background, and the object thereof is a composite having a linear expansion coefficient equivalent to that of an inorganic crystal molded body for scintillators and having light weight and excellent mechanical properties. It is an object to provide a fiber reinforced plastic.
上記目的を達成するために請求項1の発明は、線膨張係数の異なる少なくとも二種類の無機繊維プリプレグを積層して成る複合繊維強化プラスチック(複合FRP)であって、前記複合FRPは線膨張係数が異方性を有し、特定方向の線膨張係数が3ppm/K以上40ppm/K以下であり、前記特定方向と直交する方向の線膨張係数よりも大きく、前記複合FRPの引張強度が70MPa以上であることを特徴とする。 In order to achieve the above object, the invention of claim 1 is a composite fiber reinforced plastic (composite FRP) formed by laminating at least two kinds of inorganic fiber prepregs having different linear expansion coefficients, and the composite FRP has a linear expansion coefficient. Has an anisotropy, the linear expansion coefficient in a specific direction is 3 ppm / K or more and 40 ppm / K or less, is larger than the linear expansion coefficient in a direction orthogonal to the specific direction, and the tensile strength of the composite FRP is 70 MPa or more. It is characterized by being.
本発明の複合FRPは、特定方向の線膨張係数において異方性を有する。特定方向とは、例えばX方向、Y方向あるいはZ方向のいずれの方向であってもよく、使用状況において熱的影響(熱膨張、熱歪)を受けやすい方向をいう。 The composite FRP of the present invention has anisotropy in the linear expansion coefficient in a specific direction. The specific direction may be, for example, any of the X direction, the Y direction, and the Z direction, and refers to a direction that is susceptible to thermal influence (thermal expansion, thermal strain) in use conditions.
本発明において特定方向の線膨張係数は、3ppm/K以上40ppm/K以下であり、前記特定方向と直交する方向の線膨張係数よりも大きい方が好ましい。線膨張係数が上記範囲であると線膨張係数の異なる構造体の補強材料として用いた場合に幅広い多くの構造体や材料に対応できる。また、例えばシンチレータに用いられる無機結晶成形体の形状的アスペクト比又は線膨張係数の異方性等によって発生する熱歪や熱応力を緩和させることができるからである。 In the present invention, the linear expansion coefficient in the specific direction is 3 ppm / K or more and 40 ppm / K or less, and is preferably larger than the linear expansion coefficient in the direction orthogonal to the specific direction. When the linear expansion coefficient is in the above range, a wide variety of structures and materials can be used when used as a reinforcing material for structures having different linear expansion coefficients. Moreover, it is because the thermal strain and thermal stress which generate | occur | produce by the anisotropy etc. of the shape aspect ratio or the linear expansion coefficient of the inorganic crystal molded object used for a scintillator can be relieved, for example.
また、本発明において複合FRPの引張強度は70MPa以上であることが好ましい。複合FRPの引張強度はプリプレグの積層方向や無機繊維の種類を変えることによって所望の強度を設計することができる。 In the present invention, the composite FRP preferably has a tensile strength of 70 MPa or more. The tensile strength of the composite FRP can be designed to a desired value by changing the prepreg laminating direction and the type of inorganic fiber.
以下に線膨張係数と機械的特性の設計について説明する。例えば、代表的な繊維強化プラスチックである、カーボン繊維強化プラスチック(CFRP)の一般的な線膨張係数は繊維方向において約−2.0〜2.0ppm/Kで引張強度は800〜4300MPaであり、比重は1.5〜1.85である。また、ガラス繊維強化プラスチック(GFRP)の線膨張係数は繊維方向において約7〜12ppm/Kで引張強度は約2000MPa以下であり、比重は1.6〜2.1である。 The design of linear expansion coefficient and mechanical characteristics will be described below. For example, the typical linear expansion coefficient of carbon fiber reinforced plastic (CFRP), which is a typical fiber reinforced plastic, is about −2.0 to 2.0 ppm / K in the fiber direction, and the tensile strength is 800 to 4300 MPa. The specific gravity is 1.5 to 1.85. Further, the glass fiber reinforced plastic (GFRP) has a linear expansion coefficient of about 7 to 12 ppm / K in the fiber direction, a tensile strength of about 2000 MPa or less, and a specific gravity of 1.6 to 2.1.
本発明の複合FRPの製造に際しては、上記特性を持つCFRPとGFRPの複合化した特性を得るために、各繊維から成るプリプレグの積層角度(繊維織物や繊維束の角度)や、積層枚数、あるいは各繊維のプリプレグの積層割合、さらには各繊維の繊維径や材質などのファクターから緻密な設計のもとに製造することができる。 In producing the composite FRP of the present invention, in order to obtain the composite characteristics of CFRP and GFRP having the above characteristics, the lamination angle of the prepreg composed of each fiber (angle of fiber fabric or fiber bundle), the number of laminations, or It can be manufactured based on a precise design based on factors such as the lamination ratio of the prepreg of each fiber and the fiber diameter and material of each fiber.
上記した設計に基づくと、本発明の複合FRPにおいて、機械的特性を向上させるためには、カーボン繊維の割合を多くすることになる。また、特定方向の機械的特性を向上させるためには、0度(繊維束の方向に対して)の角度で積層していくことになる。 Based on the above design, in the composite FRP of the present invention, the proportion of carbon fiber is increased in order to improve the mechanical properties. Further, in order to improve the mechanical characteristics in a specific direction, the layers are laminated at an angle of 0 degree (relative to the direction of the fiber bundle).
また、線膨張係数を上げていくためには、ガラス繊維の割合を多くする必要がある。さらに特定方向の線膨張係数のみを向上させるためにはガラス繊維束の方向が0度になるように設計することが必要である。 Moreover, in order to raise a linear expansion coefficient, it is necessary to increase the ratio of glass fiber. Furthermore, in order to improve only the linear expansion coefficient in a specific direction, it is necessary to design so that the direction of the glass fiber bundle is 0 degree.
また、本発明の複合FRPの一用途であるシンチレータ用無機結晶成形体の補強パネルにおいては、衛星に搭載されて宇宙に打ち上げられるため、軽量化が必須条件になる。このような条件において軽量化のためには、ガラス繊維の割合を少なくしなければならなくなる。上述のような要素を勘案するなかで、所望の複合FRPを設計することができる。 Moreover, in the reinforcement panel of the inorganic crystal molded body for scintillators which is one application of the composite FRP of the present invention, it is necessary to reduce the weight because it is mounted on a satellite and launched into space. In order to reduce the weight under such conditions, the ratio of glass fibers must be reduced. A desired composite FRP can be designed in consideration of the above factors.
本発明の複合FRPは、線膨張係数は異方性を有し、引張強度などの機械的特性は面内擬似等方性であって、その特性はより高い方が好ましい。すなわち、線膨張係数に対しては、シンチレータ用無機結晶成形体の線膨張係数に追従でき熱歪や熱変形量を吸収し、且つ、補強体としての機械的特性は等方性の特性を有し前記成形体の全体を保護できることが好ましい。 The composite FRP of the present invention has anisotropy in linear expansion coefficient, mechanical properties such as tensile strength are in-plane pseudo-isotropic, and higher properties are preferable. In other words, the linear expansion coefficient can follow the linear expansion coefficient of the inorganic crystal compact for scintillator, absorbs thermal strain and thermal deformation, and the mechanical characteristics as a reinforcing body have isotropic characteristics. It is preferable that the entire molded body can be protected.
次に、請求項2の発明は、請求項1に記載された複合FRPにおいて、前記無機繊維は炭素繊維、ガラス繊維、クオーツ繊維、玄武岩繊維から選ばれる少なくとも一つの無機繊維であることを特徴とする。宇宙衛星のシンチレータ用無機結晶成形体の補強パネルとして使用する場合には、軽量、且つ高強度であることが望まれるため、炭素繊維とガラス繊維を用いることが好ましい。これらの各繊維はマトリックス樹脂が含浸されたプリプレグの形体で市販されているものを使用できる。 Next, the invention of claim 2 is the composite FRP according to claim 1, wherein the inorganic fiber is at least one inorganic fiber selected from carbon fiber, glass fiber, quartz fiber, and basalt fiber. To do. When used as a reinforcing panel for an inorganic crystal shaped body for a space satellite scintillator, it is desired to be lightweight and high in strength, so it is preferable to use carbon fibers and glass fibers. Each of these fibers may be a commercially available prepreg impregnated with a matrix resin.
前記プリプレグに含まれる無機繊維は、フィラメント、ブレイド、ヤーン、ストランド、フィラメント束、紡績糸などの形状で使用できる。また、織物、編物、不織布などに加工してから使用しても良い。 The inorganic fibers contained in the prepreg can be used in the form of filaments, blades, yarns, strands, filament bundles, spun yarns and the like. Moreover, you may use it, after processing into a woven fabric, a knitted fabric, a nonwoven fabric, etc.
また、前記プリプレグに含まれる無機繊維とマトリックス樹脂の割合は、成形性、機械的特性、線膨張係数等の観点から無機繊維の割合が45〜75体積%であることが好ましく、更に、50〜65体積%がより好ましい。無機繊維の割合が75体積%以上であると、プリプレグの積層時にボイドが発生しやすく、機械強度の低下の原因になる。 In addition, the ratio of the inorganic fiber and the matrix resin contained in the prepreg is preferably 45 to 75% by volume from the viewpoint of moldability, mechanical properties, linear expansion coefficient, and the like, and more preferably 50 to 65 volume% is more preferable. When the proportion of the inorganic fiber is 75% by volume or more, voids are likely to occur when the prepregs are laminated, causing a decrease in mechanical strength.
本発明で用いられるプリプレグのマトリックス樹脂は、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール、ユリア・メラミン、ポリイミドや、これらの共重合体、変性体、或いはブレンドした熱硬化性樹脂を用いることができる。中でも、宇宙衛星に搭載するシンチレータ用無機結晶成形体の補強パネルに用いる場合は、衛星内の基材や測定器に影響を与えるアウトガスの問題からエポキシ樹脂がより好ましい。 As the matrix resin of the prepreg used in the present invention, unsaturated polyester, vinyl ester, epoxy, phenol, urea melamine, polyimide, copolymers thereof, modified products, or blended thermosetting resins can be used. . Among them, when used for a reinforcing panel of an inorganic crystal molded body for a scintillator mounted on a space satellite, an epoxy resin is more preferable because of an outgas problem affecting a base material and a measuring instrument in the satellite.
次に、請求項3の発明は、請求項1〜2のいずれかに記載の複合FRPより成るシンチレータ用無機結晶成形体の補強パネルである。本発明の複合FRPは、宇宙衛星に搭載するシンチレータ用無機結晶成形体を保護するための補強パネルとして使用した場合、線膨張係数が異方性を有するため、前記無機結晶成形体そのものの線膨張係数の異方性や、前記無機結晶成形体及び衛星構造体の幾度学的形状の異方性によって生じる形状変化や熱歪を吸収し、且つ高強度で軽量であるため好適に使用できる。 Next, the invention of claim 3 is a reinforcing panel for an inorganic crystal formed body for scintillators, comprising the composite FRP according to any one of claims 1 to 2. When the composite FRP of the present invention is used as a reinforcing panel for protecting an inorganic crystal molded body for a scintillator mounted on a space satellite, the linear expansion coefficient has anisotropy. It can be suitably used because it absorbs the shape change and thermal strain caused by the anisotropy of the coefficient and the geometric shape anisotropy of the inorganic crystal compact and the satellite structure, and is high in strength and lightweight.
また、シンチレータ用無機結晶成形体としてはBGO、LSO等の結晶体が使用され、これらの結晶体の機械的、あるいは熱的特性に合わせて補強パネルを設計できる。 Moreover, as an inorganic crystal molded body for scintillators, a crystal body such as BGO or LSO is used, and a reinforcing panel can be designed according to the mechanical or thermal characteristics of these crystal bodies.
次に、請求項4の発明は、請求項3に記載の補強パネルにおいて、前記補強パネルがシンチレータ用無機結晶成形体に接着剤によって固着されていることを特徴とする。従来技術では、シンチレータ用無機結晶成形体と補強パネルの線膨張係数を合わせることが難しかったことから、無機結晶成形体と補強パネルの間隙にシリコーンゴムなどを封入し、耐震性と熱膨張係数差による熱歪を吸収していた。 Next, the invention according to claim 4 is the reinforcing panel according to claim 3, wherein the reinforcing panel is fixed to the inorganic crystal formed body for scintillator with an adhesive. In the prior art, it was difficult to match the linear expansion coefficient between the inorganic crystal molded body for the scintillator and the reinforcing panel. The thermal strain due to was absorbed.
しかしながら本発明により、シンチレータ用無機結晶成形体の熱歪と補強パネルの線膨張係数を近づけることが可能になったため、シンチレータ用無機結晶成形体と補強パネルを直接接着材によって固着でき、より強固に補強できる。 However, according to the present invention, the thermal strain of the inorganic crystal molded body for scintillator and the linear expansion coefficient of the reinforcing panel can be brought close to each other. Can be reinforced.
シンチレータ用無機結晶とFRP補強材の間で生じる線膨張係数による熱応力は下記の式から求めることが出来る。
σ=EΔαΔT
なお、式中
σ:補強材とシンチレータ用無機結晶成形体間で発生する熱応力(MPa)
E:シンチレータ用無機結晶成形体のヤング率(GPa)
Δα:補強材とシンチレータ用無機結晶成形体の線膨張係数差(/K)
ΔT:温度変化(K)
である。また、シンチレータ用無機結晶成形体の表面に反射層を設ける場合は、反射層の引張強度や線膨張係数についても考慮する必要がある。実際には、無機結晶成形体や周辺構造体の幾度学的形状により、この値は更に大きくなったり小さくなったりする。
The thermal stress due to the linear expansion coefficient generated between the scintillator inorganic crystal and the FRP reinforcing material can be obtained from the following equation.
σ = EΔαΔT
In the formula, σ: thermal stress (MPa) generated between the reinforcing material and the inorganic crystal compact for scintillator
E: Young's modulus (GPa) of inorganic crystal compact for scintillator
Δα: Difference in linear expansion coefficient between reinforcing material and inorganic crystal compact for scintillator (/ K)
ΔT: Temperature change (K)
It is. Moreover, when providing a reflective layer on the surface of the inorganic crystal molded body for scintillators, it is necessary to consider the tensile strength and linear expansion coefficient of the reflective layer. Actually, this value is further increased or decreased depending on the geometric shape of the inorganic crystal molded body and the surrounding structure.
宇宙観測衛星に搭載したシンチレータ用無機結晶成形体温度変化は一般に−40℃〜60℃であることから、本特許の複合FRPを補強パネルとして使用する場合には最大の温度変化が60度Cにおいて発生する熱応力の値がシンチレータ用無機結晶成形体の引張強度以下になるように補強パネルの線膨張係数を制御する必要がある。 Since the temperature change of the inorganic crystal compact for a scintillator mounted on a space observation satellite is generally −40 ° C. to 60 ° C., the maximum temperature change is 60 ° C. when the composite FRP of this patent is used as a reinforcing panel. It is necessary to control the linear expansion coefficient of the reinforcing panel so that the value of the generated thermal stress is equal to or less than the tensile strength of the inorganic crystal molded body for scintillator.
次に、請求項5の発明は、請求項3に記載の補強パネルにおいて、前記シンチレータ用無機結晶成形体の表面に反射層が設けられ、該反射層表面と前記補強パネルが接着剤によって固着されていることを特徴とする。宇宙空間における放射線をより効率よく検出するためには前記反射層を設けることが好ましい。また、反射層を備えるシンチレータ用無機結晶成形体においても、より強固に補強するためには、該反射層表面と前記補強パネル面を直接接着剤によって固着することが好ましい。 Next, the invention of claim 5 is the reinforcing panel according to claim 3, wherein a reflection layer is provided on the surface of the inorganic crystal molded body for scintillator, and the surface of the reflection layer and the reinforcement panel are fixed by an adhesive. It is characterized by. In order to more efficiently detect radiation in outer space, it is preferable to provide the reflective layer. Also, in the inorganic crystal formed body for scintillator provided with a reflective layer, in order to reinforce more strongly, it is preferable to directly adhere the reflective layer surface and the reinforcing panel surface with an adhesive.
次に、請求項6の発明は、請求項5に記載の補強パネルにおいて、前記反射層は、硫酸バリウム、酸化チタン、ESR素材、フッ素樹脂素材から選ばれる少なくとも1つの反射層であることを特徴とする。 Next, the invention of claim 6 is the reinforcing panel according to claim 5, wherein the reflective layer is at least one reflective layer selected from barium sulfate, titanium oxide, an ESR material, and a fluororesin material. And
次に、請求項7の発明は請求項4又は5に記載の補強パネルにおいて、前記接着剤は、エポキシ、シリコン、ウレタン、アクリレート系接着剤から選ばれる少なくとも一つの接着材であることを特徴とする。前記接着剤は、使用する環境によって選ばれ、航空・宇宙用途で使用する場合には、アウトガス問題の観点から、エポキシ系接着剤が好適に使用される。また、接着強度を高め安定させるためには、無機結晶成形体および補強パネルの表面をエッチングなどで表面処理やプライマー処理(接着助剤)などを用いても良い。 Next, the invention according to claim 7 is the reinforcing panel according to claim 4 or 5, wherein the adhesive is at least one adhesive selected from epoxy, silicon, urethane, and acrylate adhesives. To do. The adhesive is selected depending on the environment to be used, and when used in aerospace applications, an epoxy adhesive is preferably used from the viewpoint of outgassing problems. In order to increase and stabilize the adhesive strength, the surface of the inorganic crystal formed body and the reinforcing panel may be subjected to surface treatment or primer treatment (adhesion aid) by etching or the like.
次に、請求項8の発明は請求項3〜7のいずれかに記載の複合パネルにおいて 前記補強パネルの厚みが0.6mm以上4.0mm以下であることを特徴とする。宇宙衛星に搭載するシンチレータ用無機結晶成形体の補強パネルとしては線膨張係数、機械的特性、軽量化に加えて、コンパクトな外形であることが要求され、このような特性を満たすためには補強パネルの厚みは、0.6mm以上4.0mm以下に成形できることが好ましい。異方性の線膨張係数を有しながら、必要とする機械的特性を満たし、且つ軽量化が図れるからである。 Next, the invention of claim 8 is characterized in that in the composite panel according to any of claims 3 to 7, the thickness of the reinforcing panel is 0.6 mm or more and 4.0 mm or less. In addition to linear expansion coefficient, mechanical properties, and weight reduction, the reinforcing panel for inorganic crystal compacts for scintillators mounted on space satellites is required to have a compact outer shape. It is preferable that the thickness of the panel can be formed to 0.6 mm or more and 4.0 mm or less. This is because, while having an anisotropic linear expansion coefficient, the required mechanical properties can be satisfied and the weight can be reduced.
本発明の複合FRPは、線膨張係数が異方性を有し、且つ、軽量で高強度、高剛性などの優れた特性を備えているため、シンチレータ用無機結晶成形体の補強パネルとして好適に用いることができる。 The composite FRP of the present invention has an anisotropy in linear expansion coefficient, and has excellent characteristics such as light weight, high strength, and high rigidity. Therefore, the composite FRP is suitable as a reinforcing panel for inorganic crystal molded bodies for scintillators. Can be used.
以下に実施例により、本発明をさらに具体的に説明する。なお、本発明はこの実施例に限定されるものではない。本発明の諸特性は下記に記載の測定器と測定条件で行った。 The present invention will be described more specifically with reference to the following examples. In addition, this invention is not limited to this Example. Various characteristics of the present invention were performed using the measuring instruments and measurement conditions described below.
(1)線膨張係数の評価
複合FRPの線膨張係数は熱分析装置(Thermo puls TMA8310リガク社製)を用いJIS K7197に基づき測定した。
(測定条件)
荷重:0.049N、昇温速度:5℃/min
冷却速度:3℃/min
測定温度:−50〜100℃
雰囲気:窒素雰囲気(100mL/min)
(2)引張強度の評価
引張材料試験機インストロン4505(インストロン・リミテッド社製)を用いJIS K7164(6号形)基づき測定した。
(測定条件)
試験数 :n=5
引張速度 :1mm
/min
試験片サイズ:厚み1.2mm、幅45±0.5mm、長さ215+3−0mm
(1) Evaluation of linear expansion coefficient The linear expansion coefficient of the composite FRP was measured based on JIS K7197 using a thermal analyzer (Thermo puls TMA8310, manufactured by Rigaku Corporation).
(Measurement condition)
Load: 0.049N, temperature increase rate: 5 ° C / min
Cooling rate: 3 ° C / min
Measurement temperature: -50 to 100 ° C
Atmosphere: Nitrogen atmosphere (100 mL / min)
(2) Evaluation of tensile strength Using a tensile material tester Instron 4505 (manufactured by Instron Limited), the tensile strength was measured based on JIS K7164 (No. 6).
(Measurement condition)
Number of tests: n = 5
Tensile speed: 1mm
/ Min
Test piece size: thickness 1.2 mm, width 45 ± 0.5 mm, length 2 15 + 3-0 mm
シンチレータ用無機結晶成形体として、BGO結晶成形体の諸特性からこの結晶体の補強パネルとして最適な複合FRPを作製した。前記BGO結晶成形体の諸特性を表1に示す。また、BGO結晶成形体は44mm×66mm×66mmの形状から熱歪等を算出した。
(複合FRPの作製)
原材料プリプレグ(A)としてトレカプリプレグP3252S−15(東レ(株)製)及び原料プリプレグ(B)としてS−2ガラスUDプリプレグMTM28−1/S2−GLASS UD(Advanced Composites Group社製)を用意した。プリプレグ(A)は、無機繊維がPAN系炭素繊維T700Sであり、マトリックス樹脂にエポキシ樹脂を使用した一方向プリプレグである。また、プリプレグ(B)は、無機繊維がS−2ガラス繊維であり、マトリックス樹脂はエポキシ樹脂に使用した一方向プリプレグである。
(Production of composite FRP)
Toray prepreg P3252S-15 (manufactured by Toray Industries, Inc.) was prepared as the raw material prepreg (A), and S-2 glass UD prepreg MTM28-1 / S2-GLASS UD (manufactured by Advanced Composites Group) was prepared as the raw material prepreg (B). The prepreg (A) is a unidirectional prepreg in which inorganic fibers are PAN-based carbon fibers T700S and an epoxy resin is used as a matrix resin. The prepreg (B) is a unidirectional prepreg in which the inorganic fibers are S-2 glass fibers and the matrix resin is used for the epoxy resin.
なお、プリプレグ(A)の繊維質量含有率(Wf)は、66.5%である。また、プリプレグ(B)樹脂含有量(Rc)は、30%である。 In addition, the fiber mass content rate (Wf) of a prepreg (A) is 66.5%. The prepreg (B) resin content (Rc) is 30%.
上記2種類の原材料プリプレグを用い、それぞれ□200mmに切断し離型処理した成形型に投入しプリプレグ(A),(B)を積層した。積層方法は繊維の配向方向に対する角度を0/+45/−45/90/0/90/−45/+45/0度で、合計9枚のプリプレグを積層した。前記の積層状態において、プリプレグ(B)は0度方向に積層し、プリプレグ(A)はその他の角度に合致する部分に積層し、プリプレグ(A),(B)の積層体を作製した。 Using the above-mentioned two kinds of raw material prepregs, the prepregs (A) and (B) were laminated by putting them into molds that were each cut to □ 200 mm and subjected to release treatment. The lamination method was a total of nine prepregs, with the angle relative to the fiber orientation direction being 0 / + 45 / −45 / 90/0/90 / −45 / + 45/0 degrees. In the above-mentioned laminated state, the prepreg (B) was laminated in the 0 degree direction, and the prepreg (A) was laminated at a portion matching other angles to produce a laminated body of prepregs (A) and (B).
その後、前記積層体を真空バックした後、真空を保持したまま、588kPaの圧力で加圧及び、130度Cの温度で2.5時間加熱し、硬化させて厚み1.2mmの複合FRP(a)を作製した。 Then, after the laminated body was vacuum-backed, the composite FRP (a) having a thickness of 1.2 mm was cured by being pressurized at a pressure of 588 kPa and heated at a temperature of 130 ° C. for 2.5 hours while being kept in a vacuum. ) Was produced.
前記複合FRP(a)の線膨張係数を測定した結果、繊維の配向方向0度の方向の線膨張係数は5.4ppm/Kであり、繊維の配向方向90度方向の線膨張係数は4.1ppm/Kであった。 As a result of measuring the linear expansion coefficient of the composite FRP (a), the linear expansion coefficient in the direction of 0 degree of the fiber was 5.4 ppm / K, and the linear expansion coefficient in the 90 degree direction of the fiber was 4. It was 1 ppm / K.
また、引張強度は繊維の配向方向0度方向の引張強度は597MPaであり、繊維の配向方向90度方向の引張強度は553MPaであった。 Moreover, the tensile strength of the fiber orientation direction 0 degree direction was 597 MPa, and the fiber tensile direction 90 degree direction tensile strength was 553 MPa.
本実施例で作製した複合FRP(a)の線膨張係数は表1のBGO結晶成形体の線膨張係数と差がもっとも大きい場合でも、3.46ppm/K以下であることから、宇宙観測用衛星に用いた場合に発生する温度変化が最大の60度Cであっても、熱応力が23.2MPa以下になるため、BGO結晶成形体が破壊されないことが確認できた。 Since the linear expansion coefficient of the composite FRP (a) produced in this example is 3.46 ppm / K or less even when the difference from the linear expansion coefficient of the BGO crystal compact in Table 1 is the largest, it is a space observation satellite. Even when the temperature change occurring when used in the case of 60 ° C. was the maximum, the thermal stress was 23.2 MPa or less, so it was confirmed that the BGO crystal compact was not destroyed.
(比較例1)
プリプレグ(A)のみを用い繊維の配向方向に対する角度を0/+45/−45/90/90/−45/+45/0で積層し、以後の作製条件は実施例1と同様の条件で複合FRP(b)を作製した。
(Comparative Example 1)
Using only the prepreg (A), the angle with respect to the orientation direction of the fiber was laminated at 0 / + 45 / −45 / 90/90 / −45 / + 45/0, and the subsequent production conditions were the same as in Example 1 and the composite FRP (B) was produced.
前記複合FRP(b)の厚みは1.1mmであり、線膨張係数は繊維の配向方向の0度および90度方向ともに2.3ppm/Kであった。また、引張強度は繊維の配向方向の0度方向および90度方向ともに829MPaであった。 The thickness of the composite FRP (b) was 1.1 mm, and the linear expansion coefficient was 2.3 ppm / K in both the 0 degree and 90 degree directions of the fiber. The tensile strength was 829 MPa in both the 0 degree direction and the 90 degree direction of the fiber orientation direction.
この複合FRP(b)を表1に示すBGO結晶成形体の補強パネルとして使用する場合には、BGO結晶成形体の線膨張係数と複合FRP(b)の線膨張係数の差がもっとも大きい場合でも、3.46ppm/K以上であることから、宇宙観測用衛星に用いた場合に発生する温度変化が最大の60度Cであると、熱応力が23.2MPa以上になるため、BGO結晶成形体の構造破壊が予測される。 When this composite FRP (b) is used as a reinforcing panel for the BGO crystal compact shown in Table 1, even when the difference between the linear expansion coefficient of the BGO crystal compact and the composite FRP (b) is the largest. Since it is 3.46 ppm / K or more, the thermal stress becomes 23.2 MPa or more when the maximum temperature change generated when used in a space observation satellite is 60 degrees C. Therefore, the BGO crystal compact The structural destruction of is expected.
本発明の複合FRPは、レントゲンやCT等のX線を用いた検出器等の補強パネルに用いることができ、またその他の利用分野としては、宇宙観測に用いるシンチレータの無機結晶成形体等の補強パネルなどに好適に用いることができる。 The composite FRP of the present invention can be used for reinforcing panels such as detectors using X-rays such as X-rays and CT, and as other fields of application, reinforcement of inorganic crystal compacts of scintillators used for space observation, etc. It can use suitably for a panel etc.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009101259A JP2010247475A (en) | 2009-04-17 | 2009-04-17 | Compound fiber-reinforced plastic and reinforced panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009101259A JP2010247475A (en) | 2009-04-17 | 2009-04-17 | Compound fiber-reinforced plastic and reinforced panel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010247475A true JP2010247475A (en) | 2010-11-04 |
Family
ID=43310384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009101259A Pending JP2010247475A (en) | 2009-04-17 | 2009-04-17 | Compound fiber-reinforced plastic and reinforced panel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010247475A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101204368B1 (en) * | 2012-03-22 | 2012-11-26 | 매일종합건설(주) | Panel for reinforced concrete structure repair and reinforcement which used basalt fiber and this production technique |
KR20160074296A (en) * | 2014-12-18 | 2016-06-28 | 한국세라믹기술원 | Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby |
-
2009
- 2009-04-17 JP JP2009101259A patent/JP2010247475A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101204368B1 (en) * | 2012-03-22 | 2012-11-26 | 매일종합건설(주) | Panel for reinforced concrete structure repair and reinforcement which used basalt fiber and this production technique |
KR20160074296A (en) * | 2014-12-18 | 2016-06-28 | 한국세라믹기술원 | Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby |
KR101659591B1 (en) * | 2014-12-18 | 2016-09-23 | 한국세라믹기술원 | Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yi et al. | Composite materials engineering, volume 1: fundamentals of composite materials | |
Khan et al. | Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes | |
EP2922685B1 (en) | Bonding of composite materials | |
JP4571714B2 (en) | Epoxy resin composition for FRP, prepreg and tubular molded body using the same | |
KR20140058516A (en) | Carbon-fiber-reinforced carbon composite and method of manufacturing same | |
JP2005313613A (en) | Fiber reinforced resin-made sandwich panel | |
JP5126405B2 (en) | Manufacturing method of sandwich panel made of fiber reinforced resin | |
KR20180097523A (en) | Prepreg and its manufacturing method | |
JP2000343476A (en) | Carrying member | |
KR102189113B1 (en) | A fiber reinforced composite structure comprising stitch-member and the method for producing the same | |
KR20160079326A (en) | Method for manufacturing hybrid composite material comprising glass fiber reinforced plastic and aluminum and hybrid composite material | |
Hou et al. | Evaluation of sandwich structure bonding in out-of-autoclave processing | |
JP2009235182A (en) | Base material for preform and method for manufacturing the same | |
JP2010247475A (en) | Compound fiber-reinforced plastic and reinforced panel | |
Khan et al. | Synthesis and Characterization of Composite Materials with Enhanced Thermo-Mechanical Properties for Unmanned Aerial Vehicles (Uavs) and Aerospace Technologies. | |
JP2008088277A (en) | Resin composition for heat or radiation curing and prepreg | |
US20160265157A1 (en) | Structured flock fiber reinforced layer | |
JP2010195844A (en) | Partially impregnated prepreg, manufacturing method therefor, and manufacturing method for fiber-reinforced composite material using the same | |
JP4506189B2 (en) | Epoxy resin composition, prepreg and fiber reinforced composite material | |
JP2592932B2 (en) | Thermosetting epoxy resin adhesive | |
Aygün | Epoxy Composites for radiation shielding | |
US20190047248A1 (en) | Zero-CTE Quasi-Isotropic Composite Laminates With Increased Fiber Volume Percentage | |
TWI779294B (en) | Carbon fiber reinforced plastic sheet and method for producing carbon fiber reinforced plastic sheet | |
Meftah et al. | Carbon/Carbon for satellite applications | |
EP0487868A2 (en) | Composite tooling |