JP2010247114A - Separation plate type centrifuge, separation plate of the same and solid-liquid separation method - Google Patents

Separation plate type centrifuge, separation plate of the same and solid-liquid separation method Download PDF

Info

Publication number
JP2010247114A
JP2010247114A JP2009101262A JP2009101262A JP2010247114A JP 2010247114 A JP2010247114 A JP 2010247114A JP 2009101262 A JP2009101262 A JP 2009101262A JP 2009101262 A JP2009101262 A JP 2009101262A JP 2010247114 A JP2010247114 A JP 2010247114A
Authority
JP
Japan
Prior art keywords
separation
separation plate
front edge
plate type
conical surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009101262A
Other languages
Japanese (ja)
Other versions
JP4794647B2 (en
Inventor
Sadao Shinohara
定男 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009101262A priority Critical patent/JP4794647B2/en
Priority to KR1020090097992A priority patent/KR101252336B1/en
Priority to TW099111392A priority patent/TW201102169A/en
Priority to CN201010148626.9A priority patent/CN101862706B/en
Publication of JP2010247114A publication Critical patent/JP2010247114A/en
Application granted granted Critical
Publication of JP4794647B2 publication Critical patent/JP4794647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/12Inserts, e.g. armouring plates
    • B04B7/14Inserts, e.g. armouring plates for separating walls of conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/18Rotary bowls formed or coated with sieving or filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/10Other accessories for centrifuges for forming a filtering layer in the rotary bowl

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separation plate type centrifuge which has high solid-liquid separability, to provide a separation plate thereof and to provide a solid-liquid separation method. <P>SOLUTION: The separation plate type centrifuge is comprised of contents that the rotation frontal edge of the separation space partition projection part of the separation plate of the separation plate type centrifuge is formed so that the mass of the unit particle is increased by the contact and collision of individually miscellaneous solid impurity particles which have a difference in the gravity due to the difference of each moving speed and the complication of the passage in the rotation frontal edge, and the centrifugal force is more effectively imparted by the increase of the mass to enhance the separation performance between the liquid and the solid when the solid impurity particles floating in the liquid to be treated sediment with the centrifugal force and are moved for release from the separation space while being guided by the rotation frontal edge. The separation plate of the same and the solid-liquid separation method are also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高回転・高遠心力によって被処理液(原液)を比重差に応じて液・液、及び/或いは固・液に分離する分離板型遠心分離機とその分離板とこれらを用いた固液分離方法とに関する。   The present invention uses a separation plate type centrifugal separator that separates a liquid to be treated (raw solution) into a liquid / liquid and / or a solid / liquid according to a difference in specific gravity by high rotation and high centrifugal force, and a separation plate thereof. The present invention relates to a solid-liquid separation method.

本発明に係る分離板型遠心分離機(以下、単に「分離機」ともいう)は、産業の多くの分野に用いられており、例えば、船舶用ディーゼルエンジンの燃料油や潤滑油の浄化や、被処理液としてのこれらの油中(被処理液中)に混入した固形不純物を除去する清浄機として用いられている(特許文献1)。   Separation plate type centrifuge according to the present invention (hereinafter, also simply referred to as “separator”) is used in many fields of industry, for example, purification of fuel oil and lubricating oil of marine diesel engines, It is used as a cleaner for removing solid impurities mixed in these oils (in the liquid to be treated) as the liquid to be treated (Patent Document 1).

特開2002−336734号公報JP 2002-336734 A

従来のこの種の分離板型遠心分離機の構造は、回転体内の回転軸方向に截頭円錐形状の分離板が多数積層された分離板群を備え、分離板群の各層において上下に位置する各分離板相互の上下間隙、即ち、各層において上の分離板の円錐面の内面(下面)と下の分離板の円錐面外面(上面)との間として形成された円錐面間隙を、下の分離板の円錐面の外面(上面)の円錐母線方向に複数配設された分離空間仕切突条部で、回転体の回転方向に間隔を置いて、例えば、8分轄して8室の分離空間が形成されている。   The structure of a conventional separator plate type centrifugal separator of this type includes a separator plate group in which a large number of truncated conical separator plates are stacked in the direction of the rotation axis in the rotating body, and is positioned above and below each layer of the separator plate group. The upper and lower gaps between the separator plates, that is, the conical surface gap formed between the inner surface (lower surface) of the upper conical surface of the upper separator plate and the outer conical surface (upper surface) of the lower separator plate in each layer, A plurality of separation space partitioning ridges arranged in the direction of the conical generatrix on the outer surface (upper surface) of the conical surface of the separation plate. For example, eight separation spaces are divided into eight spaces at intervals in the rotation direction of the rotating body. Is formed.

このような構造の分離機による分離処理は次のようにして行われる。
例えば、使用済みの燃料油や潤滑油等である被処理液(以下、原液ともいう)が、回転体の回転軸方向から回転体内に導入されると、遠心力により、前記分離板群の下方側から分離板群を上下方向に貫通した流通孔を経て、各分離空間に流入し拡散して行く。
Separation processing by the separator having such a structure is performed as follows.
For example, when a liquid to be treated (hereinafter also referred to as a stock solution) such as used fuel oil or lubricating oil is introduced into the rotating body from the rotating shaft direction of the rotating body, centrifugal force causes the lower part of the separation plate group below. It flows into each separation space and diffuses through a through hole penetrating the separation plate group in the vertical direction from the side.

遠心力が与えられた被処理液は、流入した分離空間に拡散しつつ、液体は上下の分離板の円錐面の間を、分離板の中心即ち回転軸方向に向かって円錐面の傾斜を登るように流れて行く。   The liquid to be treated to which the centrifugal force is applied diffuses into the separation space into which the liquid has flowed, and the liquid rises between the conical surfaces of the upper and lower separation plates toward the center of the separation plate, that is, toward the rotation axis. It flows like so.

他方、被処理液中に混入している雑多な固形不純物粒子は、遠心沈降によって、当該分離空間を形成する上の分離板の円錐面の内面(下面)側に沈降し、沈降した円錐面に沿って分離空間の外周縁側即ち円錐面の底辺側へと流動(分離空間からの排出流動)して行く。   On the other hand, the miscellaneous solid impurity particles mixed in the liquid to be treated settle by centrifugal sedimentation to the inner surface (lower surface) side of the conical surface of the upper separation plate that forms the separation space, and on the settled conical surface. Along the outer circumferential side of the separation space, that is, the bottom side of the conical surface, the fluid flows (discharged from the separation space).

沈降した固形不純物粒子が、このように分離空間の外周縁へ向かって排出流動させられる際には、当該分離空間を形成するよう(仕切るよう)に回転方向の前後に配置されている2つの分離空間仕切突条部のうち、後方に位置する分離空間仕切突条部によって、詳しくは当該分離空間仕切突条部の回転方向側の縁である回転正面縁によって、固形不純物粒子が案内されながら、恰も、分離空間仕切突条部で分離空間から掃き出されるように、分離空間の外周縁側の、上の分離板の内面側の底辺(当該分離板の外周端)へと送られる。   When the settled solid impurity particles are discharged and flowed toward the outer periphery of the separation space in this way, two separations arranged in front and rear in the rotational direction so as to form (separate) the separation space. While the solid impurity particles are guided by the separation space partition ridge located at the rear of the space partition ridge, more specifically, by the rotation front edge that is the edge on the rotation direction side of the separation space partition ridge, The soot is also sent to the bottom side (outer peripheral end of the separation plate) on the inner surface side of the upper separation plate on the outer peripheral edge side of the separation space so as to be swept out of the separation space by the separation space partition ridge.

こうして、各分離空間からその外周縁に送り出される固形不純物は、その外周縁に集められて、堆積し、分離群の周囲の回転体内の空間に至り、終には当該回転体内の最外周空部の所謂固形不純物集塵場所である回転体内の最大径部に一時的に貯蔵され、適宜手段により適宜に回転体外へと排出される。   Thus, the solid impurities sent from each separation space to the outer peripheral edge are collected and accumulated at the outer peripheral edge, reach the space in the rotating body around the separation group, and finally, the outermost peripheral empty space in the rotating body. The so-called solid impurity collecting place is temporarily stored in the maximum diameter portion in the rotating body, and is appropriately discharged out of the rotating body by appropriate means.

しかしながら、問題は、固形不純物粒子が分離空間仕切り分離空間仕切突条部に案内されながら流動している間に在る。
従来の分離空間仕切突条部は、その回転正面縁が直線的(実際は円錐面上に一体的に装着されるため立体形状となるが、円錐母線と一致させた方向に細く装着する場合には直線となる)に成形されているため、分離空間仕切突条部(の直線的な回転正面縁)に接触してから当該分離空間仕切突条部(の直線的な回転正面縁)に沿って案内されている間における雑多な固形不純物粒子は、互いの粒子の流れが錯綜して乱れたり、粒子が接触したり衝突したりすることが少なく、或る意味では整然と秩序よく比較的順に流れるように案内されていた。
However, the problem exists while the solid impurity particles are flowing while being guided by the separation space partitioning separation partitioning ribs.
The conventional separation space partitioning ridge has a straight front edge (actually a three-dimensional shape because it is integrally mounted on the conical surface, but if it is mounted thinly in a direction that coincides with the conical generatrix, Since it is formed into a straight line), it comes into contact with the separation space partition ridge (the linear rotation front edge thereof) and then along the separation space partition ridge (the linear rotation front edge thereof). The miscellaneous solid impurity particles while being guided are less likely to be disturbed by the flow of each other's particles, and the particles are less likely to come into contact with or collide with each other. It was guided to.

このために、比較的粒子が小さくて微細な微細微粒子の固形不純物の場合には、与えられる遠心力が小さくて流動力も弱いために、沈降速度や流動速度が遅く、分離空間からの排出流動に時間を要し、微細微粒子の固液分離に長時間を要する上に微細微粒子の除去能力についても更なる向上が課題、とされていた。   For this reason, in the case of solid impurities of relatively small particles and fine fine particles, the applied centrifugal force is small and the flow force is weak, so the sedimentation speed and flow rate are slow, and the discharge flow from the separation space is reduced. Time is required, and solid-liquid separation of fine particles takes a long time, and further improvement in the ability to remove fine particles has been a problem.

本発明は、上記課題を解決し、被処理液中に混入した固形不純物、特に微細微粒子の分離性能や分離速度等の分離能力を従来に比べて一段と高めた分離板型遠心分離機とその分離板と分離方法の提供を目的とする。   The present invention solves the above-mentioned problems, and a separation plate type centrifugal separator which has further improved the separation performance such as separation performance and separation speed of solid impurities, especially fine particles mixed in the liquid to be treated, and its separation. The purpose is to provide plates and separation methods.

請求項1の分離板型遠心分離機の分離板の発明は、分離板型遠心分離機の回転体内に当該回転体の回転軸方向に積層される截頭円錐形状の分離板において、積層された上下の各前記分離板相互間の円錐面間隙を前記回転体の回転方向に間隔を置いて分離空間が形成されるよう、下方に位置する分離板の円錐面の円錐母線方向に配設される分離空間仕切突条部は、当該分離空間仕切突条部の回転体の回転方向側の回転正面縁が、前記回転体の回転方向とは反対方向に膨出する曲線を描くよう湾曲形成された湾曲部を有することを特徴とする。   The invention of the separator plate of the separator type centrifuge according to claim 1 is laminated in a truncated conical separator plate laminated in the direction of the axis of rotation of the rotary member in the rotary member of the separator plate type centrifugal separator. The conical surface gap between the upper and lower separation plates is arranged in the direction of the cone bus of the conical surface of the lower separation plate so that a separation space is formed with a gap in the rotation direction of the rotating body. The separation space partition ridge is curved so as to draw a curve in which the rotation front edge of the separation space partition ridge on the rotation direction side of the rotator bulges in a direction opposite to the rotation direction of the rotator. It has a curved part.

請求項2の発明は、請求項1に記載の分離板型遠心分離機の分離板において、湾曲部は、分離空間仕切突条部の回転正面縁の全長にわたって形成されたことを特徴とする。   According to a second aspect of the present invention, in the separation plate of the separation plate type centrifugal separator according to the first aspect, the curved portion is formed over the entire length of the rotating front edge of the separation space partition projection.

請求項3の発明は、請求項1に記載の分離板型遠心分離機の分離板において、湾曲部は、分離空間仕切突条部の回転正面縁において円錐面の底辺側寄りに形成されたことを特徴とする。   According to a third aspect of the present invention, in the separation plate of the separation plate type centrifugal separator according to the first aspect, the curved portion is formed closer to the bottom side of the conical surface at the rotation front edge of the separation space partition ridge. It is characterized by.

請求項4の発明は、請求項1に記載の分離板型遠心分離機の分離板において、
湾曲部は、全体が帯状に形成された分離空間仕切突条部の全長を曲げて形成されたことを特徴とする。
The invention of claim 4 is the separation plate of the separation plate type centrifuge according to claim 1,
The curved portion is characterized in that it is formed by bending the entire length of the separation space partitioning ridge portion formed in a band shape as a whole.

請求項5の発明は、請求項1に記載の分離板型遠心分離機の分離板において、湾曲部は、全体が帯状に形成された分離空間仕切突条部の全長のうち円錐面の底辺側寄り部分を曲げて形成されたことを特徴とする。   According to a fifth aspect of the present invention, in the separation plate of the separation plate type centrifugal separator according to the first aspect, the curved portion is the bottom side of the conical surface of the total length of the separation space partitioning ridge portion formed in a band shape as a whole. It is formed by bending the side portion.

請求項6の発明は、請求項1乃至請求項5の何れかに記載の分離板型遠心分離機の分離板において、湾曲部はへの字状であることを特徴とする。   The invention according to claim 6 is the separation plate of the separation plate type centrifugal separator according to any one of claims 1 to 5, wherein the curved portion has a U-shape.

請求項7の発明は、請求項1乃至請求項6の何れかに記載の分離板型遠心分離機の分離板において、湾曲部の曲線は、分離空間仕切突条部の回転正面縁に案内されながら遠心力により円錐面の底辺方向に放出移動する固形不純物が、当該回転正面縁が直線の場合に比べて、軽重に差のある個々雑多の固形不純物粒子が互いの移動速度の違いや流路の錯綜による接触や衝突により単位粒子の質量が増大するよう形成されたことを特徴とする。   A seventh aspect of the present invention is the separation plate of the separation plate type centrifugal separator according to any one of the first to sixth aspects, wherein the curve of the curved portion is guided to the rotation front edge of the separation space partitioning ridge portion. However, solid impurities released and moved in the direction of the bottom of the conical surface by centrifugal force are different from each other in the movement speed and flow path of individual impurities, which are lightly different from each other, compared to the case where the rotating front edge is straight. It is characterized in that it is formed so that the mass of the unit particle is increased by contact and collision due to the complexities of the above.

請求項8の発明は、請求項1乃至請求項7の何れかに記載の分離板型遠心分離機の分離板において、分離空間仕切突条部は、分離板の円錐面とは別体に形成された板状部材を当該円錐面上に一体的に装着させたことを特徴とする。   The invention according to claim 8 is the separation plate of the separation plate type centrifugal separator according to any one of claims 1 to 7, wherein the separation space partition ridge is formed separately from the conical surface of the separation plate. The formed plate-like member is integrally mounted on the conical surface.

請求項9の発明は、請求項8に記載の分離板型遠心分離機の分離板において、分離空間仕切突条部は、分離板の円錐面とは別体に形成された板状部材を当該円錐面状にスポット溶接にて一体的に装着したことを特徴とする。   A ninth aspect of the present invention is the separation plate of the separation plate type centrifugal separator according to the eighth aspect, wherein the separation space partition ridge is a plate-like member formed separately from the conical surface of the separation plate. A conical surface is integrally mounted by spot welding.

請求項10の発明は、請求項1乃至請求項9の何れかに記載の分離板型遠心分離機の分離板において、分離空間仕切突条部は、当該分離空間仕切突条部の円錐頂点側の端を通る円錐母線に較べて、当該分離空間仕切突条部の円錐面の底辺側の端を通る円錐母線の方が回転体の回転方向とは反対方向にずれて位置するよう円錐母線に対して斜めに配設されたことを特徴とする。   A tenth aspect of the present invention is the separation plate of the separation plate type centrifugal separator according to any one of the first to ninth aspects, wherein the separation space partition ridge is a conical apex side of the separation space partition ridge. Compared to the cone bus passing through the end of the conical bus, the cone bus passing through the end on the bottom side of the conical surface of the separation space partitioning ridge is positioned so as to be shifted in the direction opposite to the rotation direction of the rotating body. It is characterized in that it is arranged obliquely with respect to it.

請求項11の発明は、請求項1乃至請求項9の何れかに記載の分離板型遠心分離機の分離板において、分離空間仕切突条部は、円錐母線に平行して配設されたことを特徴とする。   An eleventh aspect of the invention is the separation plate of the separation plate type centrifugal separator according to any one of the first to ninth aspects, wherein the separation space partitioning ridge portion is disposed in parallel to the conical bus bar. It is characterized by.

請求項12の分離板型遠心分離機の発明は、請求項1乃至請求項11の何れかの分離板を備えたことを特徴とする。   The invention of the separator plate type centrifugal separator according to claim 12 is characterized by including the separator plate according to any one of claims 1 to 11.

請求項13の分離板型遠心分離機の発明は、分離板型遠心分離機の回転体内の回転軸方向に積層される截頭円錐形状の分離板を備えた分離板型遠心分離機おいて、積層されて上下に位置する前記分離板相互間の円錐面間隙を前記回転体の回転方向に間隔を置いて分離空間が形成されるよう、下方に位置する分離板の円錐面の円錐母線方向に配設された分離空間仕切突条部の回転体の回転方向側の回転正面縁の形を、前記分離空間を満たす被処理液中に浮遊する固形不純物粒子を遠心力により前記回転正面縁に案内させながら前記分離空間から放出移動させる際、軽重に差のある個々雑多の固形不純物粒子が互いの移動速度の違いや流路の錯綜による接触や衝突により単位粒子の質量が増大するよう形成したことを特徴とする。   The invention of the separation plate type centrifuge of claim 13 is a separation plate type centrifuge provided with a frustoconical separation plate laminated in the direction of the rotation axis in the rotating body of the separation plate type centrifuge. The conical surface gap between the separation plates that are stacked and positioned above and below is spaced apart in the rotational direction of the rotating body to form a separation space in the direction of the cone generatrix of the conical surface of the separation plate located below. The shape of the rotating front edge on the rotational direction side of the rotating body of the separation space partitioning ridge portion arranged is guided to the rotating front edge by centrifugal force for solid impurity particles floating in the liquid to be treated filling the separation space. When releasing and moving from the separation space, the solid impurity particles of various miscellaneous weights are formed so that the mass of the unit particles increases due to contact and collision due to differences in the movement speed of each other and the complication of the flow path It is characterized by.

請求項14の発明は、請求項13に記載の分離板型遠心分離機において、回転正面縁の形は、当該回転正面縁の全長にわたって回転体の回転方向とは反対方向に膨出する曲線を描くよう湾曲形成されたことを特徴とする。   According to a fourteenth aspect of the present invention, in the separation plate centrifuge according to the thirteenth aspect, the shape of the rotating front edge is a curve that bulges in the direction opposite to the rotating direction of the rotating body over the entire length of the rotating front edge. It is characterized by being curved to draw.

請求項15の発明は、請求項13に記載の分離板型遠心分離機において、湾曲は、回転正面縁の全長にわたって一つの湾が形成されるように回転体の回転方向とは反対方向に膨出する曲線で形成されたことを特徴とする。   According to a fifteenth aspect of the present invention, in the separation plate type centrifugal separator according to the thirteenth aspect, the curve swells in a direction opposite to the rotational direction of the rotating body so that one bay is formed over the entire length of the rotating front edge. It is formed by a curved line.

請求項16の発明は、請求項13に記載の分離板型遠心分離機において、湾曲形成は、回転正面縁の全長のうち円錐面の底辺側寄りの部分に一つの湾が形成されるように回転体の回転方向とは反対方向に膨出する曲線で形成されたことを特徴とする。   According to a sixteenth aspect of the present invention, in the separation plate type centrifugal separator according to the thirteenth aspect, the curve is formed so that one bay is formed in a portion closer to the bottom side of the conical surface in the entire length of the rotating front edge. It is characterized by being formed by a curve that bulges in a direction opposite to the rotating direction of the rotating body.

請求項17の発明は、請求項13乃至請求項16の何れかに記載の分離板型遠心分離機において、湾曲はへの字状であることを特徴とする。   A seventeenth aspect of the invention is characterized in that, in the separation plate centrifuge according to any one of the thirteenth to sixteenth aspects, the curve is a square shape.

請求項18の分離板型遠心分離機における固液分離方法の発明は、分離板型遠心分離機の回転体内に当該回転体の回転軸方向に積層される截頭円錐形状の分離板において、積層された上下の各前記分離板相互間の円錐面間隙を前記回転体の回転方向に間隔を置いて分離空間が形成されるよう、下に位置する分離板の円錐面の円錐母線方向に配設された分離空間仕切突条部の回転体の回転方向側の回転正面縁を、前記分離空間を満たす被処理液中に浮遊する固形不純物粒子が遠心力により当該回転正面縁に案内されながら当該分離空間から放出移動される際、当該回転正面縁において、当該回転正面縁において、軽重に差のある個々雑多の固形不純物粒子が互いの移動速度の違いや流路の錯綜による接触や衝突により単位粒子の質量が増大するよう形成し、質量増大により遠心力がより効果的に単位粒子に与えられて、液と固体との分離性能を高めること、を内容とする。   The invention of the solid-liquid separation method in the separation plate type centrifuge according to claim 18 is a method in which a separation plate having a frustoconical shape is laminated in a rotating body direction of the rotating body in the rotating body of the separating plate type centrifugal separator. The conical surface gap between the upper and lower separating plates is arranged in the direction of the conical generatrix of the conical surface of the lower separating plate so that a separation space is formed with an interval in the rotational direction of the rotating body. The separation front surface of the separation space partitioning ridge portion on the rotation direction side of the rotating body is separated while the solid impurity particles floating in the liquid to be treated filling the separation space are guided to the rotation front edge by centrifugal force. When released and moved from space, at the rotating front edge, at the rotating front edge, individual solid particles of various miscellaneous weights that are lightly different from each other are brought into contact by or colliding with each other due to the difference in the moving speed of each other or the complication of the flow path. The mass of increases Bovine form, given the centrifugal force more effectively unit particles by mass increases, to increase the separation performance of liquid and solid, and the contents.

請求項19の発明は、請求項17に記載の分離板型遠心分離機における固液分離方法において、回転正面縁の形を、当該回転正面縁の全長にわたって回転体の回転方向とは反対方向に膨出する曲線を描くよう湾曲形成することを特徴とする。   According to a nineteenth aspect of the present invention, in the solid-liquid separation method in the separation plate centrifuge according to the seventeenth aspect, the shape of the rotating front edge is opposite to the rotating direction of the rotating body over the entire length of the rotating front edge. A curve is formed so as to draw a bulging curve.

請求項20の発明は、請求項17に記載の分離板型遠心分離機における固液分離方法において、湾曲は、回転正面縁の全長にわたって一つの湾を形成するように回転体の回転方向とは反対方向に膨出する曲線で形成することを特徴とする。   According to a twentieth aspect of the present invention, in the solid-liquid separation method in the separation plate type centrifugal separator according to the seventeenth aspect, the curvature is the rotation direction of the rotating body so as to form one bay over the entire length of the rotating front edge. It is formed by a curve that bulges in the opposite direction.

請求項21の発明は、請求項16に記載の分離板型遠心分離機における固液分離方法において、湾曲は、回転正面縁の全長のうち円錐面の底辺側寄りの部分に一つの湾を形成するように回転体の回転方向とは反対方向に膨出する曲線で形成することを特徴とする。   The invention according to claim 21 is the solid-liquid separation method in the separation plate centrifuge according to claim 16, wherein the curve forms one bay in the portion of the total length of the rotating front edge closer to the bottom side of the conical surface. Thus, it is formed by a curve that bulges in a direction opposite to the rotation direction of the rotating body.

請求項22の発明は、請求項19乃至請求項21の何れかに記載の分離板型遠心分離機の分離板において、曲線はへの字状であることを特徴とする。   According to a twenty-second aspect of the present invention, in the separator plate of the separator-type centrifuge according to any one of the nineteenth to twenty-first aspects, the curve is a square shape.

請求項1乃至請求項17の各発明によれば、何れも、各分離空間仕切突条部の回転正面縁が湾曲部を備えた構成としてあるので、分離空間の被処理液中の固形不純物粒子が遠心力によって回転正面縁に案内されて流動する際、前記湾曲部及びその近傍において、軽重に差のある個々雑多の固形不純物粒子が互いの移動速度の違いや流路の錯綜による接触や衝突或いはこれら接触や衝突の繰り返しにより、単位粒子の質量が増大するので、遠心力がより効果的に固形不純物粒子に作用して、分離所要時間が短縮されたり、従来では分離が困難であった、より微細な固形不純物粒子の分離が比較的容易になる等、従来に比べて固液分離性能を一段と高めることができる。   According to each of the inventions of claims 1 to 17, since the rotation front edge of each separation space partitioning ridge is provided with a curved portion, the solid impurity particles in the liquid to be treated in the separation space When the fluid flows while being guided by the rotating front edge by centrifugal force, the solid impurity particles of various miscellaneous weights that are lightly different from each other in the curved portion and the vicinity thereof contact or collide due to the difference in the moving speed of each other or the complication of the flow path. Or, by repeating these contacts and collisions, the mass of the unit particles increases, so that the centrifugal force acts on the solid impurity particles more effectively, shortening the time required for separation, and conventionally, separation has been difficult. The solid-liquid separation performance can be further enhanced as compared with the prior art, for example, separation of finer solid impurity particles becomes relatively easy.

又、請求項18乃至請求項22の各発明によれば、何れも、各分離空間仕切突条部の回転正面縁において、軽重に差のある個々雑多の固形不純物粒子が遠心力によって当該回転正面縁に案内されて流動する際、互いに接触したり、衝突したりして、単位粒子の質量が増大されるので、増大した固形不純物粒子に遠心力がより効果的に作用して、分離所要時間が短縮されたり、従来では分離が困難であった、より微細な固形不純物粒子の分離が比較的容易になる等、従来に比べて固液分離性能を一段と高めることができる。   Further, according to the inventions of claims 18 to 22, in any case, at the rotation front edge of each separation space partitioning ridge, individual miscellaneous solid impurity particles having a light weight difference are caused by centrifugal force. When flowing while being guided by the edge, the mass of the unit particles increases due to contact with each other and collides with each other, so that the centrifugal force acts on the increased solid impurity particles more effectively, and the time required for separation The solid-liquid separation performance can be further enhanced as compared with the prior art, for example, by shortening or by separating the finer solid impurity particles, which has been difficult to separate by the prior art.

又、請求項2や請求項4の各発明によれば、何れも、分離空間仕切突条部の前縁の全長に渡る比較的広い領域で固形不純物粒子の接触や衝突による質量増大化を図ることができる分離板を提供できる。   According to each of the inventions of claim 2 and claim 4, the mass is increased by contact and collision of solid impurity particles in a relatively wide region over the entire length of the front edge of the separation space partitioning ridge. A separation plate that can be provided can be provided.

又、請求項3や請求項5の各発明によれば、何れも、固形不純物粒子が比較的集積する円錐面の底辺寄りに湾曲部が設けられているので、接触や衝突の頻度を高めることができ、質量増大化をより効率化させる分離板を提供できる。   Further, according to the inventions of claims 3 and 5, since the curved portion is provided near the bottom of the conical surface where solid impurity particles are relatively accumulated, the frequency of contact and collision is increased. Therefore, it is possible to provide a separation plate that makes the increase in mass more efficient.

又、請求項8や請求項9の各発明によれば、何れも、本発明に係る分離板を堅牢にして容易且つ迅速に製造することができる。   Further, according to the inventions of claims 8 and 9, both of them can make the separation plate according to the present invention robust and easily and quickly manufactured.

又、請求項10や請求項11の各発明によれば、何れも、円錐面の円錐母線に対する分離空間仕切突条部の配置如何、例えば、円錐母線と交差するように斜めに傾けた配置としたり、円錐母線と平行するように配置することにより、被処理液に応じた分離性能を備えた分離板を提供できる。   Further, according to each of the inventions of claim 10 and claim 11, in any case, the arrangement of the separation space partitioning ridge portion with respect to the conical bus bar of the conical surface, for example, an inclination inclined so as to intersect the conical bus bar. Or a separation plate having a separation performance corresponding to the liquid to be treated can be provided by arranging it parallel to the conical bus.

又、請求項12の発明によれば、請求項1乃至請求項11の分離板による分離性能を備えた分離板型遠心分離機を提供できる。   According to the twelfth aspect of the present invention, it is possible to provide a separation plate type centrifugal separator having a separation performance by the separation plate of the first to eleventh aspects.

又、請求項13の発明によれば、従来に較べて、分離所要時間が短く、より微細な固形不純物粒子の分離が可能な固液分離性能が高い分離板型遠心分離機を提供できる。   According to the thirteenth aspect of the present invention, it is possible to provide a separation plate type centrifugal separator having a high solid-liquid separation performance capable of separating finer solid impurity particles with a shorter separation time as compared with the prior art.

又、請求項14や請求項15の各発明によれば、何れも、分離空間仕切突条部の前縁の全長に渡る比較的広い領域で固形不純物粒子の接触や衝突による質量増大化を図ることができる分離板を備えた分離板型遠心分離機を提供できる。   According to each of the inventions of claims 14 and 15, the mass is increased by contact or collision of the solid impurity particles in a relatively wide region over the entire length of the front edge of the separation space partitioning ridge. It is possible to provide a separation plate type centrifuge provided with a separation plate.

又、請求項16の発明によれば、固形不純物粒子が比較的集積する円錐面の底辺寄りに湾曲部が設けられた分離板を備えているので、固形不純物粒子の接触や衝突の頻度を高めることができ、質量増大化をよって、より分離効率の高い分離板型遠心分離機を提供できる。   According to the sixteenth aspect of the present invention, since the separation plate is provided near the bottom of the conical surface where solid impurity particles are relatively accumulated, the frequency of contact and collision of the solid impurity particles is increased. In addition, the separation plate type centrifuge with higher separation efficiency can be provided by increasing the mass.

又、請求項18の発明によれば、被処理液中の固形不純物粒子をそのまま液と分離するだけでなく、固形不純物粒子同士を接触させたり衝突させたりすることよって、単位粒子の質量を増大させることで、増大させた固形不純物粒子に対して遠心力をより効果的に作用させることができ、これにより、従来に較べて、分離所要時間が短縮され、従来では分離が困難であった、より微細な固形不純物粒子の分離をも可能とする分離性能の高い分離板型遠心分離機における固液分離方法を提供できる。   Further, according to the invention of claim 18, not only the solid impurity particles in the liquid to be treated are separated from the liquid as it is, but also the mass of the unit particles is increased by bringing the solid impurity particles into contact with each other or colliding with each other. By making it possible, centrifugal force can be made to act more effectively on the increased solid impurity particles, thereby shortening the time required for separation compared to the prior art, and conventionally difficult to separate, It is possible to provide a solid-liquid separation method in a separation plate type centrifugal separator with high separation performance that enables separation of finer solid impurity particles.

又、請求項19や請求項20の各発明によれば、何れも、分離空間仕切突条部の前縁の全長に渡る比較的広い領域で固形不純物粒子の接触や衝突による固形不純物粒子の質量増大化を図ることができる分離板型遠心分離機における固液分離方法を提供できる。   Further, according to each of the inventions of claims 19 and 20, the mass of the solid impurity particles due to contact or collision of the solid impurity particles in a relatively wide area over the entire length of the front edge of the separation space partitioning ridge. It is possible to provide a solid-liquid separation method in a separation plate centrifuge that can be increased.

又、請求項16の発明によれば、固形不純物粒子が比較的集積する円錐面の底辺寄りに設けられた湾曲部及びその付近で、固形不純物粒子の接触や衝突の頻度を高めることができ、質量増大化をよって、より分離効率の高い分離板型遠心分離機における固液分離方法を提供できる。   According to the invention of claim 16, the frequency of contact and collision of the solid impurity particles can be increased at and near the curved portion provided near the bottom of the conical surface where the solid impurity particles are relatively accumulated. By increasing the mass, it is possible to provide a solid-liquid separation method in a separation plate centrifuge with higher separation efficiency.

以下、本発明を、船舶用ディーゼルエンジンの燃料油や潤滑油等を被処理液とする分離板型遠心分離機(以下、単に分離機ともいう)を例にして説明する。   Hereinafter, the present invention will be described by taking as an example a separation plate type centrifugal separator (hereinafter also simply referred to as a separator) that uses a fuel oil or lubricating oil of a marine diesel engine as a liquid to be treated.

実施例の分離板型遠心分離機の構造を図1乃至図6において説明する。
図1は分離板型遠心分離機の回転体の断面図、図2は分離板群を構成する分離板の平面図、図3は分離板の底面図、図4は分離板の側面図、図5は分離板の斜視図、図6は分離板の縦断面図である。
The structure of the separation plate type centrifuge of the embodiment will be described with reference to FIGS.
1 is a sectional view of a rotating body of a separation plate type centrifuge, FIG. 2 is a plan view of a separation plate constituting a separation plate group, FIG. 3 is a bottom view of the separation plate, FIG. 4 is a side view of the separation plate, FIG. 5 is a perspective view of the separation plate, and FIG. 6 is a longitudinal sectional view of the separation plate.

図1において、回転体1の内部には、回転体1の回転軸方向に笠状の分離板2が多数積層された分離板群20が設けられている。この分離板群20を構成する分離板2は、図2乃至図6に示すとおり、平板を絞り加工によって截頭円錐形状に加工されたものである。   In FIG. 1, a separating plate group 20 in which a large number of shade-like separating plates 2 are stacked in the rotation axis direction of the rotating body 1 is provided inside the rotating body 1. As shown in FIGS. 2 to 6, the separation plate 2 constituting the separation plate group 20 is obtained by processing a flat plate into a frustoconical shape by drawing.

分離板群20の各層において、積層方向の上下に相対的に位置する上の各分離板2と下の分離板2との相互の上下間隙、即ち、図2乃至図6に示す分離板2おいて、各層における上の分離板2の円錐面21の内面(下面)212と下の分離板2の円錐面21の外面(上面)211との間には、被処理液が導入(図1の分離板群20中に図示の斜め上方に向けた多数の矢印は被処理液の導入方向を示す)される間隙として円錐面間隙(図示せず)が形成されている。   In each layer of the separation plate group 20, the upper and lower separation plates 2 and the lower separation plate 2 that are relatively positioned in the upper and lower directions in the stacking direction, that is, the separation plate 2 shown in FIGS. The liquid to be treated is introduced between the inner surface (lower surface) 212 of the conical surface 21 of the upper separation plate 2 and the outer surface (upper surface) 211 of the conical surface 21 of the lower separation plate 2 (see FIG. 1). A conical surface gap (not shown) is formed in the separation plate group 20 as a gap formed by a number of arrows directed obliquely upward in the drawing to indicate the introduction direction of the liquid to be processed.

相対的に下に位置する分離板2の円錐面21の外面(上面)211上には、当該円錐面21の略円錐母線方向に分離空間仕切突条部3が回転体1の回転方向(この実施例では図において右方向=反時計回り)に間隔を置いて、例えば8分轄して8室の分離空間4が形成されるように複数、平面図においては回転中心側から放射状に配設されている。   On the outer surface (upper surface) 211 of the conical surface 21 of the separation plate 2 positioned relatively below, the separation space partitioning ridge portion 3 extends in the rotation direction of the rotating body 1 (this direction) In the embodiment, a plurality of, for example, eight space-separated spaces 4 are formed at intervals in the figure (right direction = counterclockwise), for example, in a plan view. ing.

この分離機による被処理液(スラッジや水分を含んだ燃料油や潤滑油等)の分離処理は大別して一次分離と二次分離によって次のように遠心分離処理される。
先ず、図1において、被処理液は、回転体1の回転軸に回転方向に設けられた導入口11から回転体1の内に導入され、回転体1の高速回転による遠心力で比重の軽い軽液、比重の重い重液、固形物等に分離され(以下、これを一次分離処理という)る。
Separation processing of liquids to be processed (sludge, water-containing fuel oil, lubricating oil, etc.) by this separator is roughly divided into primary separation and secondary separation as follows.
First, in FIG. 1, the liquid to be treated is introduced into the rotating body 1 from the introduction port 11 provided in the rotation direction on the rotating shaft of the rotating body 1, and has a low specific gravity due to centrifugal force due to the high-speed rotation of the rotating body 1. It is separated into light liquid, heavy liquid with heavy specific gravity, solid matter, etc. (hereinafter referred to as primary separation treatment).

この一次分離処理により分離された比重の軽い軽液は、分離板群20の下方側から上方側に向けて当該分離板群20を上下方向に貫通し、少なくとも、各分離空間4毎に当該分離空間4を貫通するように設けられた各々の流通孔22を上向き方向に流れて、順次下から上の各層の各分離空間4へと流入して、各分離空間4内に拡散して行く。   The light liquid having a low specific gravity separated by the primary separation process penetrates the separation plate group 20 in the vertical direction from the lower side to the upper side of the separation plate group 20, and at least for each separation space 4. Each flow hole 22 provided so as to penetrate the space 4 flows in the upward direction, sequentially flows from the bottom to each separation space 4 of each upper layer, and diffuses into each separation space 4.

次に二次処理を説明する。
各分離空間4内に拡散して行く被処理液は、遠心力が与えられているため、各分離空間4に当該流通孔22から拡散しつつ、被処理液の液体は、上下の分離板2,2の円錐面21の間、即ち、上の分離板2の円錐面21の内面(下面)212と下の分離板2の円錐面21の外面(上面)211との間隙である分離空間4内を、分離板2の中心即ち回転軸方向に向かって下の円錐面21の傾斜面211を登るよう上方へ向けて流れて行く。この流れすなわち上向流通は、図1の分離板群20中において、斜め上方に向け回転軸方向に向かうように示した多数の矢印の通りである。
Next, the secondary process will be described.
Since the liquid to be processed that diffuses into each separation space 4 is given a centrifugal force, the liquid of the liquid to be processed diffuses from the flow hole 22 into each separation space 4 while the upper and lower separation plates 2 , 2, that is, a separation space 4 that is a gap between the inner surface (lower surface) 212 of the conical surface 21 of the upper separation plate 2 and the outer surface (upper surface) 211 of the conical surface 21 of the lower separation plate 2. It flows upward in the interior so as to climb up the inclined surface 211 of the lower conical surface 21 toward the center of the separation plate 2, that is, the rotation axis direction. This flow, that is, upward flow, is as indicated by a number of arrows shown in the separation plate group 20 of FIG.

こうして、分離板群20の各層の分離板2の分離空間3の間隙を経て、分離板群20の上層側即ち上向へと流通した比較的軽い被処理液は、最終的には、図1に示す回転体1の回転軸近傍に設けられた回収口15から浄化液として回収される。   In this way, the relatively light liquid to be treated that has flowed through the gaps of the separation space 3 of the separation plate 2 of each layer of the separation plate group 20 to the upper layer side of the separation plate group 20, that is, upward, finally becomes FIG. It collect | recovers as a purification | cleaning liquid from the collection port 15 provided in the rotating shaft vicinity of the rotary body 1 shown in FIG.

他方、被処理液中に混入している処理対象の個々雑多な固形不純物粒子のうち比較的比重の大きな粒子は、回転体1の高速回転による遠心沈降によって、速やかに回転体1内の空間12の最大径部13に至って集積され、回転体1の胴回りにおける最大径部13に設けられた排出口14から、適宜のタイミングと適宜手段により回転体4外へと排出される。この最大径部13は、回転体4の内部側から観ると、内部における最外周空部であって固形不純物を一時的に貯蔵する集塵・集積場所である。   On the other hand, particles having a relatively large specific gravity among the various kinds of solid impurity particles to be treated mixed in the liquid to be treated are quickly separated into the space 12 in the rotator 1 by centrifugal sedimentation due to the high-speed rotation of the rotator 1. And is discharged out of the rotating body 4 from the discharge port 14 provided in the maximum diameter section 13 around the trunk of the rotating body 1 with appropriate timing and appropriate means. When viewed from the inside of the rotator 4, the maximum diameter portion 13 is an outermost peripheral space inside and is a dust collection / accumulation place for temporarily storing solid impurities.

又、比重の軽い被処理液や被処理液中に含まれる固形不純物粒子等は、分離板群20によって形成される広大な沈降面(分離板2の円錐面積×分離板3の数)を構成する各分離空間3において、当該分離空間3の沈降面の分離空間4を形成する相対的に上(天井側)に位置する上の分離板2の円錐面21の内面(下面)212側(当該分離空間4の天井側に遠心力によって沈降)に沈降し、沈降した円錐面21に沿って当該分離空間4の外周縁41側即ち当該円錐面21の底辺41側へと流動して行く。以下、この流動を分離空間4からの排出流動と言う。   Further, the liquid to be processed having a low specific gravity and solid impurity particles contained in the liquid to be processed constitute a large sedimentation surface (conical area of the separation plate 2 × the number of separation plates 3) formed by the separation plate group 20. In each separation space 3, the inner surface (lower surface) 212 side (the lower surface) of the conical surface 21 of the upper separation plate 2 positioned relatively above (ceiling side) forming the separation space 4 of the settling surface of the separation space 3. It settles on the ceiling side of the separation space 4 due to centrifugal force) and flows along the settled conical surface 21 toward the outer peripheral edge 41 side of the separation space 4, that is, toward the bottom 41 side of the conical surface 21. Hereinafter, this flow is referred to as discharge flow from the separation space 4.

こうして各分離空間4内において沈降した個々雑多な質量の固形不純物粒子が、各分離空間4の外周縁41へ向かって排出流動させられる際には、当該分離空間4が回転方向に複数形成されるように(仕切るように)、回転方向の前後方向に間隔をおいて配置されている相対的に一対をなす2つの分離空間仕切突条部3,3のうちの、回転方向の後方に位置する分離空間仕切突条部3(例えば、図4における符号3Fで示す分離空間仕切突条部に対する分離空間仕切突条部3R)によって、正確には、当該分離空間仕切突条部3Rの回転方向側の縁(前縁)である回転正面縁31によって、固形不純物粒子が例えば図5の破線矢印の流動軌跡で示すように、案内されながら、恰も、分離空間仕切突条部3Rによって当該分離空間4から掃き出されるようにして、当該分離空間4の外周縁41側の、上の分離板2の内面212側の底辺41(当該分離板2の外周縁41)へと送られる。   When the various impurity solid impurities particles settled in each separation space 4 are discharged and flowed toward the outer peripheral edge 41 of each separation space 4, a plurality of the separation spaces 4 are formed in the rotation direction. (Separately), it is located behind the rotational direction of the two separation space partitioning ridges 3 and 3 that are relatively paired and spaced apart in the front-rear direction of the rotational direction. By the separation space partition ridge 3 (for example, the separation space partition ridge 3R with respect to the separation space partition ridge indicated by reference numeral 3F in FIG. 4), more precisely, the rotation direction side of the separation space partition ridge 3R. While the solid impurity particles are being guided by the rotating front edge 31 that is the edge (front edge) of the substrate as indicated by the flow trajectory of the broken arrow in FIG. 5, the separation space 4 is also separated by the separation space partition projection 3R. Swept from So as to be, of the outer peripheral edge 41 side of the separation space 4, sent to the bottom 41 of the inner surface 212 side of the separation plate 2 of the upper (outer peripheral edge 41 of the separating plate 2).

そして、図1において、上記のように各分離空間4からその外周縁41側に送られて、分離板群20の外へと放出された固形不純物(図示せず)は、分離板群20の周囲の回転体1内の空間12に至り、終には、上記と同様に、当該回転体4内の最外周空部の所謂固形不純物集塵場所である回転体4内の最大径部13に一時的に貯蔵され、適宜手段により排出口14から回転体4外へと排出される。   In FIG. 1, as described above, the solid impurities (not shown) that are sent from each separation space 4 to the outer peripheral edge 41 side and discharged to the outside of the separation plate group 20 are separated from the separation plate group 20. The space 12 in the surrounding rotating body 1 is reached, and finally, in the same manner as described above, the maximum diameter portion 13 in the rotating body 4 which is a so-called solid impurity dust collection place in the outermost peripheral space in the rotating body 4 is reached. It is temporarily stored and discharged from the outlet 14 to the outside of the rotating body 4 by appropriate means.

上記のように、分離空間4を満たす被処理液中に浮遊する固形不純物粒子を遠心力により分離空間仕切突条部3の回転正面縁31に案内させながら、当該分離空間4から外、即ち分離板群20の外周囲へと、当該分離空間4内を放出移動させる際、当該回転正面縁31において、軽重に差のある個々雑多の固形不純物粒子が互いの移動速度の違いや流路の錯綜による接触や衝突(図5の破線矢印)により単位粒子の質量が増大するように分離空間仕切突条部3を、より正確には、分離空間仕切突条部3の回転正面縁31を形成する。   As described above, the solid impurity particles floating in the liquid to be processed that fills the separation space 4 are guided outside the separation space 4 while being guided to the rotating front edge 31 of the separation space partition projection 3 by centrifugal force. When the inside of the separation space 4 is released and moved to the outer periphery of the group of plates 20, the individual solid impurity particles having a light weight difference at the rotating front edge 31 are different in the moving speed of each other and the complication of the flow path. The separation space partition ridge 3 is formed so as to increase the mass of the unit particles by contact or collision (broken arrow in FIG. 5), more precisely, the rotation front edge 31 of the separation space partition ridge 3 is formed. .

分離板2の円錐面21の円錐母線に対する分離空間仕切突条部3の配置は、例えば、円錐母線と交差するように斜めに傾けた配置とするが、図示されてないが円錐母線と略平行に配設(配置)してもよい。
何れの場合も、この分離空間仕切突条部3は、当該分離空間4中の固形不純物粒子を遠心力に応じて当該分離空間4の下方の底辺41側に、相対的に掃き出すように作用させる装置であるから、当該分離空間仕切突条部3を通る円錐母船に対して、分離空間仕切突条部3上端部側が回転方向側に位置し、離空間仕切突条部3の下端部側が回転後方側に位置する傾き(以下、単に傾斜ともいう)となるように配設する。
この傾き即ち傾斜は、被処理液の成分や被処理液に混入する固形不純物の物性に応じて分離に最適な角度となるように分離空間仕切突条部3を配設する。
The arrangement of the separation space partitioning ridges 3 with respect to the conical bus of the conical surface 21 of the separating plate 2 is, for example, an inclination inclined so as to intersect with the conical bus, but is not substantially shown but substantially parallel to the conical bus. It may be arranged (arranged).
In any case, the separation space partition ridge 3 acts so as to relatively sweep out the solid impurity particles in the separation space 4 to the bottom 41 side below the separation space 4 according to the centrifugal force. Since it is an apparatus, the upper end side of the separation space partition ridge 3 is positioned on the rotational direction side and the lower end side of the separation space partition ridge 3 is rotated with respect to the conical mother ship passing through the separation space partition ridge 3. It arrange | positions so that it may become the inclination (henceforth only inclination) located in the back side.
The separation space partitioning ridge portion 3 is disposed so that this inclination, that is, the inclination becomes an optimum angle for separation according to the components of the liquid to be treated and the physical properties of the solid impurities mixed in the liquid to be treated.

このように分離空間仕切突条部3を設けると、固形不純物粒子相互の接触や衝突により不純物粒子の質量を増大させることができ、粒子質量の増大によって遠心力がより効果的に増大した固形不純物粒子(単位粒子)に与えられて作用するので、固液の分離、即ち液体と固体との分離性能を従来の分離板に較べて一段と高めることができる。   When the separation space partitioning ridge portion 3 is provided in this way, the mass of the impurity particles can be increased by contact and collision between the solid impurity particles, and the solid impurity whose centrifugal force is more effectively increased by increasing the particle mass. Since they are applied to the particles (unit particles) and act on them, the solid-liquid separation, that is, the separation performance between the liquid and the solid can be further enhanced as compared with the conventional separator.

尚、実施例では截頭円錐形状に形成した円錐面21に、「へ」の字状に成形した分離空間仕切突条部3をスポット溶接にて一体的に装着して分離板3を設けて、分離板3の本体である円錐面板(21)と容易には分離しがたい堅牢な構成としている。   In the embodiment, the separation plate 3 is provided by integrally attaching the separation space partitioning ridge portion 3 formed in the shape of a “he” to the conical surface 21 formed in a truncated cone shape by spot welding. The robust structure is difficult to separate easily from the conical surface plate (21) which is the main body of the separation plate 3.

この実施例の分離空間仕切突条部3の回転正面縁31の形は、当該回転正面縁31の全長にわたって回転体4の回転方向(図において右回転)とは反対方向(図において左方向)に膨出する曲線を描くよう湾曲形成してある。
このように分離空間仕切突条部3の前縁即ち回転正面縁31の全長に渡る曲線とすることで、比較的広い領域で固形不純物粒子の接触や衝突による質量増大化を図ることができる。
The shape of the rotation front edge 31 of the separation space partitioning ridge 3 of this embodiment is the direction opposite to the rotation direction (right rotation in the figure) of the rotating body 4 over the entire length of the rotation front edge 31 (left direction in the figure). A curve is formed so as to draw a curve that bulges.
Thus, by making it the curve over the full length of the front edge, ie, the rotation front edge 31, of the separation space partitioning ridge part 3, the mass increase by contact and collision of solid impurity particles can be achieved in a relatively wide region.

又、その湾曲は回転正面縁31の全長のうち円錐面21の底辺41側寄りの部分が最も深く形成している。
このように、固形不純物粒子が比較的集積する円錐面21の底辺41寄りに湾曲部を設けると、粒子相互の接触や衝突の頻度を高めることができ、それだけ粒子の質量増大化をより効率化させることができる。
In addition, the curved portion is formed deepest in the entire length of the rotating front edge 31 at a portion closer to the bottom 41 side of the conical surface 21.
As described above, when the curved portion is provided near the bottom 41 of the conical surface 21 where the solid impurity particles are relatively accumulated, the frequency of contact and collision between the particles can be increased, and the mass increase of the particles can be made more efficient. Can be made.

実施例に示す「へ」の字状の分離空間仕切突条部3の形状は、船舶用ディーゼルエンジンの燃料油や潤滑油等を被処理液とする固液分離性能実験において、実施実験を重ねての実験上見出された最良の形状である。
従って、分離機の性能や用途、例えば、被処理液の成分の如何や被処理液中に混入する固形不純物(粒子)の物性の如何によっては、分離空間仕切突条部3の形状は異なる場合もある。
しかし、何れにしても、その分離空間仕切突条部3の形状、正確にはその回転正面縁31の形状は、従来のような直線形状ではなく、当該回転正面縁31に案内されながら流動する個々雑多の固形不純物粒子が相互に接触や衝突がより効率的に発生する曲線的形状とするとよい。
The shape of the separation space partitioning ridge 3 in the shape of “He” shown in the embodiment is the same as the solid-liquid separation performance experiment using the fuel oil or lubricating oil of the marine diesel engine as the liquid to be treated. It is the best shape found in all experiments.
Therefore, the shape of the separation space partition projection 3 differs depending on the performance and application of the separator, for example, the components of the liquid to be processed and the physical properties of solid impurities (particles) mixed in the liquid to be processed. There is also.
However, in any case, the shape of the separation space partition projection 3, more precisely the shape of the rotating front edge 31 is not a linear shape as in the prior art, but flows while being guided by the rotating front edge 31. It is preferable that the individual solid impurity particles have a curvilinear shape in which contact and collision with each other occur more efficiently.

尚、従来の分離空間仕切突条部は、例えば、特許文献1では、分離空間仕切突条部に相当する短冊状間隙片(同文献の図中の符号2)の回転正面縁が直線的(実際は円錐面上に一体的に装着されるため立体形状となるが、円錐母線と一致させた方向に細く装着する場合には直線となる)に成形されているため、短冊状間隙片即ち分離空間仕切突条部(の直線的な回転正面縁)に接触してから当該分離空間仕切突条部(の直線的な回転正面縁)に沿って案内されている間における雑多な固形不純物粒子は、互いの粒子の流れが錯綜して乱れたり、粒子が接触したり衝突したりすることが少なく、或る意味では整然と秩序よく比較的順に流れるように案内されていた。   In addition, for example, in Patent Document 1, the conventional separation space partition ridge is linear in the rotation front edge of a strip-shaped gap piece (reference numeral 2 in the drawing of the same document) corresponding to the separation space partition ridge ( Actually, it is solidly mounted on the conical surface, so that it has a three-dimensional shape, but when it is mounted thinly in the direction that coincides with the conical generatrix, it is formed into a strip-like gap piece or separation space. The miscellaneous solid impurity particles in contact with the partitioning ridge (the linear rotating front edge) and being guided along the separation space partitioning ridge (the linear rotating front edge) The flow of each other's particles was confused and turbulent, and the particles were less likely to come into contact with or collide with each other. In a sense, they were guided to flow in an orderly and orderly manner.

このため、被処理液中に混入した固形不純物粒子は、混入時のままの粒子の大きさのままで浮遊し、案内されていたため、殊に比較的粒子が小さくて微細な微細微粒子の固形不純物の場合には、与えられる遠心力が小さくて流動力が弱く、沈降速度や流動速度が遅くなり、分離空間4からの排出流動に長時間を要し、微細微粒子の固液分離にも長時間を要するにも拘らず、微細微粒子の除去能力については不十分であったのである。   For this reason, since the solid impurity particles mixed in the liquid to be treated floated and guided in the size of the particles as they were mixed, the solid impurities of relatively fine particles and particularly fine particles are relatively small. In this case, the applied centrifugal force is small and the flow force is weak, the sedimentation speed and the flow rate are slow, the discharge flow from the separation space 4 takes a long time, and the solid-liquid separation of fine particles is also long. However, the ability to remove fine particles was insufficient.

本発明は、上記実施例において船舶用ディーゼルエンジンの燃料油や潤滑油等を被処理液とする分離板型遠心分離機について説明したが、これに限らず、産業上利用する固液分離機において広く利用できる。   Although the present invention has been described with respect to the separation plate type centrifugal separator using the fuel oil or lubricating oil of the marine diesel engine as the liquid to be processed in the above embodiment, the present invention is not limited to this, and in a solid-liquid separator used industrially. Widely available.

分離板型遠心分離機の回転体の断面図である。It is sectional drawing of the rotary body of a separation plate type centrifuge. 分離板群を構成する分離板の平面図である。It is a top view of the separating plate which comprises a separating plate group. 分離板の底面図である。It is a bottom view of a separation plate. 分離板の側面図である。It is a side view of a separation plate. 分離板の斜視図である。It is a perspective view of a separation plate. 分離板の縦断面図である。It is a longitudinal cross-sectional view of a separating plate.

1 回転体
11 導入口(被処理液)
12 空間(回転体)
13 最大径部(回転体)
14 排出口(固形不純物)
15 回収口(浄化液)
2 分離板
20 分離板群
21 円錐面
211 円錐面の外面(上面)
212 円錐面の内面(下面)
22 流通孔
3 分離空間仕切突条部
3R 分離空間仕切突条部(図5)
3F 分離空間仕切突条部(図5)
31 回転正面縁(分離空間仕切突条部の前縁)
4 分離空間
41 円錐面の底辺(分離板の外周縁)
1 Rotating body 11 Inlet (liquid to be treated)
12 Space (Rotating body)
13 Maximum diameter part (rotating body)
14 Discharge port (solid impurities)
15 Collection port (Purified liquid)
2 Separating plate 20 Separating plate group 21 Conical surface 211 External surface (upper surface) of conical surface
212 Conical inner surface (lower surface)
22 distribution hole
3 Separation space partition ridge 3R Separation space partition ridge (Fig. 5)
3F Separation space partition ridge (Figure 5)
31 Rotating front edge (front edge of separation space partition ridge)
4 Separation space 41 Bottom of conical surface (outer edge of separation plate)

Claims (22)

分離板型遠心分離機の回転体内に当該回転体の回転軸方向に積層される截頭円錐形状の分離板において、積層された上下の各前記分離板相互間の円錐面間隙を前記回転体の回転方向に間隔を置いて分離空間が形成されるよう、下方に位置する分離板の円錐面の円錐母線方向に配設される分離空間仕切突条部は、
当該分離空間仕切突条部の回転体の回転方向側の回転正面縁が、
前記回転体の回転方向とは反対方向に膨出する曲線を描くよう湾曲形成された湾曲部を有することを特徴とする分離板型遠心分離機の分離板。
In a truncated cone-shaped separation plate stacked in the direction of the rotation axis of the rotary plate in the rotary plate of the separation plate type centrifuge, a conical surface gap between the stacked upper and lower separation plates is defined by the rotary body. Separation space partition ridges arranged in the direction of the cone bus of the conical surface of the separation plate located below so that the separation space is formed at intervals in the rotation direction,
The rotating front edge on the rotating direction side of the rotating body of the separation space partition ridge is
A separation plate of a separation plate type centrifugal separator, comprising a curved portion that is curved so as to draw a curve that swells in a direction opposite to the rotation direction of the rotating body.
湾曲部は、分離空間仕切突条部の回転正面縁の全長にわたって形成されたこと
を特徴とする請求項1に記載の分離板型遠心分離機の分離板。
The separation plate of the separation plate type centrifugal separator according to claim 1, wherein the curved portion is formed over the entire length of the rotation front edge of the separation space partitioning ridge portion.
湾曲部は、分離空間仕切突条部の回転正面縁において円錐面の底辺側寄りに形成されたことを特徴とする請求項1に記載の分離板型遠心分離機の分離板。 The separation plate of the separation plate type centrifugal separator according to claim 1, wherein the bending portion is formed closer to the bottom side of the conical surface at the rotation front edge of the separation space partitioning ridge portion. 湾曲部は、全体が帯状に形成された分離空間仕切突条部の全長を曲げて形成されたことを特徴とする請求項1に記載の分離板型遠心分離機の分離板。   The separation plate of the separation plate type centrifugal separator according to claim 1, wherein the bending portion is formed by bending the entire length of the separation space partitioning ridge portion formed in a band shape as a whole. 湾曲部は、全体が帯状に形成された分離空間仕切突条部の全長のうち円錐面の底辺側寄り部分を曲げて形成されたことを特徴とする請求項1に記載の分離板型遠心分離機の分離板。   2. The separation plate type centrifugal separator according to claim 1, wherein the curved portion is formed by bending a portion closer to the bottom side of the conical surface of the entire length of the separation space partitioning ridge portion formed in a band shape as a whole. Machine separation plate. 湾曲部はへの字状であることを特徴とする請求項1乃至請求項5の何れかに記載の分離板型遠心分離機の分離板。   The separation plate of the separation plate type centrifuge according to any one of claims 1 to 5, wherein the curved portion has a U-shape. 湾曲部の曲線は、分離空間仕切突条部の回転正面縁に案内されながら遠心力により円錐面の底辺方向に放出移動する固形不純物が、当該回転正面縁が直線の場合に比べて、軽重に差のある個々雑多の固形不純物粒子が互いの移動速度の違いや流路の錯綜による接触や衝突により単位粒子の質量が増大するよう形成されたこと
を特徴とする請求項1乃至請求項6の何れかに記載の分離板型遠心分離機の分離板。
The curve of the curved portion is lighter in weight than the solid impurity that is released and moved in the bottom direction of the conical surface by centrifugal force while being guided by the rotating front edge of the separation space partition ridge. 7. The solid impurities particles of different miscellaneous differences are formed so that the mass of the unit particles is increased by contact or collision due to differences in moving speeds or complications of the flow paths. A separation plate of the separation plate type centrifuge according to any one of the above.
分離空間仕切突条部は、分離板の円錐面とは別体に形成された板状部材を当該円錐面上に一体的に装着させたこと
を特徴とする請求項1乃至請求項7の何れかに記載の分離板型遠心分離機の分離板。
The separation space partitioning ridge is formed by integrally mounting a plate-like member formed separately from the conical surface of the separation plate on the conical surface. A separator plate of the separator plate type centrifugal separator according to claim 1.
分離空間仕切突条部は、分離板の円錐面とは別体に形成された板状部材を当該円錐面状にスポット溶接にて一体的に装着したこと
を特徴とする請求項8に記載の分離板型遠心分離機の分離板。
9. The separation space partitioning ridge is formed by integrally mounting a plate-like member formed separately from the conical surface of the separation plate on the conical surface by spot welding. Separation plate of separation plate type centrifuge.
分離空間仕切突条部は、当該分離空間仕切突条部の円錐頂点側の端を通る円錐母線に較べて、当該分離空間仕切突条部の円錐面の底辺側の端を通る円錐母線の方が回転体の回転方向とは反対方向にずれて位置するよう円錐母線に対して斜めに配設されたこと
を特徴とする請求項1乃至請求項9の何れかに記載の分離板型遠心分離機の分離板。
The separation space partition ridge is more conical on the cone bus that passes through the bottom edge of the conical surface of the separation space partition ridge than the cone bus that passes through the end of the separation space partition ridge. The separation plate type centrifugal separator according to any one of claims 1 to 9, wherein the separator is disposed obliquely with respect to the conical bus bar so as to be shifted in a direction opposite to a rotation direction of the rotating body. Machine separation plate.
分離空間仕切突条部は、円錐母線に平行して配設されたこと
を特徴とする請求項1乃至請求項9の何れかに記載の分離板型遠心分離機の分離板。
The separation plate of the separation plate type centrifugal separator according to any one of claims 1 to 9, wherein the separation space partitioning ridge portion is disposed in parallel with the conical bus.
請求項1乃至請求項11の何れかの分離板を備えたことを特徴とする分離板型遠心分離機。   A separation plate type centrifugal separator comprising the separation plate according to claim 1. 分離板型遠心分離機の回転体内の回転軸方向に積層される截頭円錐形状の分離板を備えた分離板型遠心分離機おいて、
積層されて上下に位置する前記分離板相互間の円錐面間隙を前記回転体の回転方向に間隔を置いて分離空間が形成されるよう、下方に位置する分離板の円錐面の円錐母線方向に配設された分離空間仕切突条部の回転体の回転方向側の回転正面縁の形を、
前記分離空間を満たす被処理液中に浮遊する固形不純物粒子を遠心力により前記回転正面縁に案内させながら前記分離空間から放出移動させる際、当該回転正面縁において、
軽重に差のある個々雑多の固形不純物粒子が互いの移動速度の違いや流路の錯綜による接触や衝突により単位粒子の質量が増大するよう形成したこと
を特徴とする分離板型遠心分離機。
In the separation plate type centrifuge having a frustoconical separation plate stacked in the direction of the rotation axis in the rotating body of the separation plate type centrifuge,
In order to form a separation space with a gap between the conical surfaces between the separation plates positioned above and below in the rotation direction of the rotating body, the conical surface of the conical surface of the conical surface of the separation plate located below is formed. The shape of the rotating front edge on the rotating direction side of the rotating body of the separation space partitioning ridge portion disposed,
When the solid impurity particles floating in the liquid to be treated that fills the separation space are released from the separation space while being guided to the rotation front edge by centrifugal force, in the rotation front edge,
A separation plate type centrifuge characterized in that individual miscellaneous solid impurity particles having light weight differences are formed so that the mass of unit particles increases due to contact and collision due to differences in moving speeds and complications of flow paths.
回転正面縁の形は、当該回転正面縁の全長にわたって回転体の回転方向とは反対方向に膨出する曲線を描くよう湾曲形成されたことを特徴とする請求項13に記載の分離板型遠心分離機。   14. The separation plate type centrifuge according to claim 13, wherein the shape of the rotating front edge is curved so as to draw a curve that bulges in the direction opposite to the rotating direction of the rotating body over the entire length of the rotating front edge. Separator. 湾曲は、回転正面縁の全長にわたって一つの湾が形成されるように回転体の回転方向とは反対方向に膨出する曲線で形成されたことを特徴とする請求項13に記載の分離板型遠心分離機。   14. The separator plate according to claim 13, wherein the curve is formed by a curve that bulges in a direction opposite to the rotation direction of the rotating body so that a single bay is formed over the entire length of the rotating front edge. centrifuge. 湾曲形成は、回転正面縁の全長のうち円錐面の底辺側寄りの部分に一つの湾が形成されるように回転体の回転方向とは反対方向に膨出する曲線で形成されたことを特徴とする請求項13に記載の分離板型遠心分離機。   The curve formation is formed by a curve that bulges in the direction opposite to the rotation direction of the rotating body so that one bay is formed in the portion of the total length of the rotating front edge closer to the bottom side of the conical surface. The separation plate type centrifuge according to claim 13. 湾曲はへの字状であることを特徴とする請求項13乃至請求項16の何れかに記載の分離板型遠心分離機。   The separator-type centrifuge according to any one of claims 13 to 16, wherein the curve is a U-shape. 分離板型遠心分離機の回転体内に当該回転体の回転軸方向に積層される截頭円錐形状の分離板において、積層された上下の各前記分離板相互間の円錐面間隙を前記回転体の回転方向に間隔を置いて分離空間が形成されるよう、下に位置する分離板の円錐面の円錐母線方向に配設された分離空間仕切突条部の回転体の回転方向側の回転正面縁を、
前記分離空間を満たす被処理液中に浮遊する固形不純物粒子が遠心力により当該回転正面縁に案内されながら当該分離空間から放出移動される際、当該回転正面縁において、軽重に差のある個々雑多の固形不純物粒子が互いの移動速度の違いや流路の錯綜による接触や衝突により単位粒子の質量が増大するよう形成して、
質量増大により遠心力がより効果的に単位粒子に与えられて、液と固体との分離性能を高めること、を内容とする分離板型遠心分離機における固液分離方法。
In a truncated cone-shaped separation plate stacked in the direction of the rotation axis of the rotary plate in the rotary plate of the separation plate type centrifuge, a conical surface gap between the stacked upper and lower separation plates is defined by the rotary body. Rotating front edge on the rotating direction side of the rotating body of the separating space partitioning ridge disposed in the direction of the conical generatrix of the conical surface of the lower separating plate so that the separating space is formed at intervals in the rotating direction The
When solid impurity particles floating in the liquid to be treated that fills the separation space are released and moved from the separation space while being guided to the rotation front edge by a centrifugal force, individual miscellaneous miscellaneous differences at the rotation front edge are slightly different. The solid impurity particles are formed so that the mass of the unit particles increases due to contact and collision due to the difference in the moving speed of each other and the complication of the flow path,
A solid-liquid separation method in a separation plate type centrifugal separator, which is characterized in that centrifugal force is more effectively applied to unit particles due to an increase in mass and the separation performance of liquid and solid is enhanced.
回転正面縁の形を、当該回転正面縁の全長にわたって回転体の回転方向とは反対方向に膨出する曲線を描くよう湾曲形成することを特徴とする請求項17に記載の分離板型遠心分離機における固液分離方法。   18. The separation plate type centrifugal separator according to claim 17, wherein the shape of the rotating front edge is curved so as to draw a curve that bulges in the direction opposite to the rotating direction of the rotating body over the entire length of the rotating front edge. Solid-liquid separation method in the machine. 湾曲は、回転正面縁の全長にわたって一つの湾を形成するように回転体の回転方向とは反対方向に膨出する曲線で形成することを特徴とする請求項17に記載の分離板型遠心分離機における固液分離方法。   18. The separation plate type centrifugal separator according to claim 17, wherein the curve is formed by a curve that bulges in a direction opposite to the rotation direction of the rotating body so as to form one bay over the entire length of the rotating front edge. Solid-liquid separation method in the machine. 湾曲は、回転正面縁の全長のうち円錐面の底辺側寄りの部分に一つの湾を形成するように回転体の回転方向とは反対方向に膨出する曲線で形成することを特徴とする請求項16に記載の分離板型遠心分離機における固液分離方法。   The curve is formed by a curve that bulges in a direction opposite to the rotation direction of the rotating body so as to form one bay in a portion of the total length of the rotating front edge closer to the bottom side of the conical surface. Item 18. A solid-liquid separation method in the separation plate centrifuge according to item 16. 曲線はへの字状であることを特徴とする請求項19乃至請求項21の何れかに記載の分離板型遠心分離機の分離板。

The separation plate of the separation plate type centrifuge according to any one of claims 19 to 21, wherein the curve has a U-shape.

JP2009101262A 2009-04-17 2009-04-17 Separator plate centrifuge, its separator plate and solid-liquid separation method Active JP4794647B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009101262A JP4794647B2 (en) 2009-04-17 2009-04-17 Separator plate centrifuge, its separator plate and solid-liquid separation method
KR1020090097992A KR101252336B1 (en) 2009-04-17 2009-10-15 A seperating disc type centrifugal seperator, and seperating disc for the centrifugal seperator, and a seperating method of the solid and liquid
TW099111392A TW201102169A (en) 2009-04-17 2010-04-13 Separation disc type centrifugal separator, separation disc thereof and solid and liquid separation method
CN201010148626.9A CN101862706B (en) 2009-04-17 2010-04-16 Separating disc type centrifugal separator, and separating disc for the centrifugal separator, and a separating method of the solid and liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009101262A JP4794647B2 (en) 2009-04-17 2009-04-17 Separator plate centrifuge, its separator plate and solid-liquid separation method

Publications (2)

Publication Number Publication Date
JP2010247114A true JP2010247114A (en) 2010-11-04
JP4794647B2 JP4794647B2 (en) 2011-10-19

Family

ID=42954743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009101262A Active JP4794647B2 (en) 2009-04-17 2009-04-17 Separator plate centrifuge, its separator plate and solid-liquid separation method

Country Status (4)

Country Link
JP (1) JP4794647B2 (en)
KR (1) KR101252336B1 (en)
CN (1) CN101862706B (en)
TW (1) TW201102169A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260024A (en) * 2009-05-11 2010-11-18 Sadao Shinohara Separation plate type centrifuge and separation plate for the same
JP2013205488A (en) * 2012-03-27 2013-10-07 Mitsubishi Chemicals Corp Method and device for manufacturing toner

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242662B2 (en) * 2010-11-02 2013-07-24 定男 篠原 Separation plate manufacturing method for separation plate type centrifuge
JP2012129317A (en) * 2010-12-14 2012-07-05 Panasonic Corp Component mounting device
TWI414362B (en) * 2011-05-18 2013-11-11 Ind Tech Res Inst Extraction apparatus
EP2556895B1 (en) 2011-08-10 2018-06-27 Alfa Laval Corporate AB A separation disc for a centrifugal separator and a method for manufacturing the separation disc
CN103447168B (en) * 2012-05-31 2015-09-09 沧州市华油飞达固控设备有限公司 The auger stripper of screw unloading filter centrifugal machine
CN103111376A (en) * 2013-02-06 2013-05-22 江苏南铸科技股份有限公司 Centrifuge cylinder body used for ship
KR102057912B1 (en) * 2013-09-04 2019-12-20 삼성전기주식회사 Centrifugal classifier
EP3315205A1 (en) 2016-10-31 2018-05-02 Alfa Laval Corporate AB A centrifugal separator
EP3315204B1 (en) 2016-10-31 2019-05-08 Alfa Laval Corporate AB A stack of separation discs
ES2744716T3 (en) 2016-10-31 2020-02-26 Alfa Laval Corp Ab A separation disc for a centrifugal separator
CN106853416B (en) * 2017-02-13 2023-03-24 谢照才 Spiral centrifugal separator
KR102204812B1 (en) * 2018-06-12 2021-01-19 (주)더존코리아 Solid-liquid separator using centrifugal force
CN110548606A (en) * 2019-09-12 2019-12-10 中国船舶重工集团公司第七0四研究所 Separator disc with bent ribs
CN113413731B (en) * 2021-06-28 2022-11-01 天津大学 Gas-liquid contact device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501678A (en) * 1988-11-08 1992-03-26 アルファーラヴァル セパラション アーベ Method and apparatus for liberating a liquid from substances dispersed in it that have a greater density than the liquid
JP2001505476A (en) * 1995-01-25 2001-04-24 フリートガード・インコーポレーテッド Self-driven cone-stack centrifuge
JP2002511019A (en) * 1997-04-04 2002-04-09 アルファ ラヴァル アクチボラゲット Centrifuge with liquid-filled transfer chamber
JP2002336734A (en) * 2001-05-11 2002-11-26 Mitsubishi Kakoki Kaisha Ltd Separation plate type centrifugal separator and separation plate used therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU797778A1 (en) * 1977-10-26 1981-01-23 Предприятие П/Я А-7555 Conical tray to separator
US5735789A (en) * 1992-06-16 1998-04-07 Alfa Laval Separation Ab Centrifugal separator
JPH07246349A (en) * 1994-03-10 1995-09-26 Mitsubishi Kakoki Kaisha Ltd Separation plate type centrifuge
JP2727411B2 (en) * 1994-04-15 1998-03-11 三菱化工機株式会社 Separator centrifuge
ES2111441B1 (en) * 1994-06-21 1998-11-01 Idm Construcciones Vascas S L DISC FOR LIQUID SEPARATORS.
SE504953C2 (en) * 1995-09-08 1997-06-02 Alfa Laval Ab Way by means of resistance welding, attach a thin plate to a conical separating disc for centrifuge
JP4592934B2 (en) 2000-12-01 2010-12-08 三菱化工機株式会社 Separator plate centrifuge and method for operating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04501678A (en) * 1988-11-08 1992-03-26 アルファーラヴァル セパラション アーベ Method and apparatus for liberating a liquid from substances dispersed in it that have a greater density than the liquid
JP2001505476A (en) * 1995-01-25 2001-04-24 フリートガード・インコーポレーテッド Self-driven cone-stack centrifuge
JP2002511019A (en) * 1997-04-04 2002-04-09 アルファ ラヴァル アクチボラゲット Centrifuge with liquid-filled transfer chamber
JP2002336734A (en) * 2001-05-11 2002-11-26 Mitsubishi Kakoki Kaisha Ltd Separation plate type centrifugal separator and separation plate used therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260024A (en) * 2009-05-11 2010-11-18 Sadao Shinohara Separation plate type centrifuge and separation plate for the same
JP2013205488A (en) * 2012-03-27 2013-10-07 Mitsubishi Chemicals Corp Method and device for manufacturing toner

Also Published As

Publication number Publication date
TW201102169A (en) 2011-01-16
JP4794647B2 (en) 2011-10-19
CN101862706A (en) 2010-10-20
CN101862706B (en) 2014-09-17
KR101252336B1 (en) 2013-04-08
KR20100115291A (en) 2010-10-27
TWI503176B (en) 2015-10-11

Similar Documents

Publication Publication Date Title
JP4794647B2 (en) Separator plate centrifuge, its separator plate and solid-liquid separation method
JP4794652B2 (en) Separator plate centrifuge and its separator plate
JP4921521B2 (en) Separation plate manufacturing method for separation plate type centrifuge
US9782698B2 (en) Liquid refinement
JP5387692B2 (en) Oil / water separation device and purification device
US20100011961A1 (en) Fluid separating vessel
CN203922875U (en) A kind of efficient coalescent oil-water separator
US8349059B2 (en) Pocketed cyclonic separator
US6755969B2 (en) Centrifuge
JP2002336734A (en) Separation plate type centrifugal separator and separation plate used therefor
JP5942629B2 (en) Solid-liquid separator
RU90701U1 (en) GAS VORTEX VALVE SEPARATOR (OPTIONS)
CN102220184B (en) Hydraulic oil on-line purifying device based on supergravity technology
CN112638498B (en) Staggered array arrangement for air/liquid separation
RU220171U1 (en) Device for purifying gases from dust
RU68916U1 (en) SEPARATOR
JP2011078965A (en) Solid-liquid separator using liquid cyclone

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100819

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4794647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250