JP2010247072A - Wastewater treatment method, wastewater treatment apparatus, and method and system of purifying energy gas - Google Patents

Wastewater treatment method, wastewater treatment apparatus, and method and system of purifying energy gas Download PDF

Info

Publication number
JP2010247072A
JP2010247072A JP2009099589A JP2009099589A JP2010247072A JP 2010247072 A JP2010247072 A JP 2010247072A JP 2009099589 A JP2009099589 A JP 2009099589A JP 2009099589 A JP2009099589 A JP 2009099589A JP 2010247072 A JP2010247072 A JP 2010247072A
Authority
JP
Japan
Prior art keywords
wastewater
energy gas
activated sludge
treatment
aromatic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009099589A
Other languages
Japanese (ja)
Other versions
JP5326766B2 (en
Inventor
Kenji Sato
健治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009099589A priority Critical patent/JP5326766B2/en
Publication of JP2010247072A publication Critical patent/JP2010247072A/en
Application granted granted Critical
Publication of JP5326766B2 publication Critical patent/JP5326766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Gas Separation By Absorption (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Industrial Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide treatment technology of wastewater in energy gas purification by which ammonia and organic substances incorporated in the wastewater in energy gas purification can be treated stably and efficiently by using activated sludge without using materials from the outside of a system. <P>SOLUTION: An easily decomposable aromatic compound BTX separated by energy gas purification is supplied to an activated sludge treatment apparatus AC for treating the energy gas purification water to improve the function of activated sludge bacteria, the removal of a persistent compound is accelerated, and influence of an inhibitor is suppressed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、石炭、低品位炭等の化石燃料をガス化したガス化燃料や合成ガスなどのエネルギーガスを精製する際に生じる精製廃水を処理するための廃水処理方法及び廃水処理装置並びにこれらを用いるエネルギーガスの精製方法及び精製システムに関し、特に、エネルギーガスの精製において生じるアンモニアや難分解性有機物などを含んだ廃水の効率的な処理を可能とする廃水処理方法及び廃水処理装置並びにこれらを用いるエネルギーガスの精製方法及び精製システムに関する。   The present invention relates to a wastewater treatment method and a wastewater treatment apparatus for treating refined wastewater generated when refining energy gas such as gasification fuel or synthesis gas obtained by gasifying fossil fuel such as coal, low-grade coal, and the like. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy gas purification method and purification system to be used. The present invention relates to a method and a purification system for energy gas.

近年、石油資源の大量消費による地球温暖化や資源枯渇が問題となり、従来使用されなかった資源の有効利用が注目されている。このような資源として、従来は使用しなかった褐炭等の低品位の石炭からガス化され、水素や一酸化炭素等を含んだガス化燃料や、家畜糞尿等を発酵して得られるメタンガスを主成分とするバイオガスなどのエネルギーガスがある。これらのエネルギーガスは、その種類によって、触媒被毒や装置の腐食原因となる硫化水素やアンモニア、シアンガス等の有害物質を含むため、実用に際しては、エネルギーガスの精製が行われ、精製プロセスからアンモニアやシアン等を含んだ廃水が排出される。従って、精製廃水に含まれるこれらの有害物質を無害化して放出するために、各々に処理を施す必要がある。このような有害物質の処理には、化学薬剤や電気化学的エネルギーを利用する方法、物理化学的除去操作による方法、燃焼などの様々な方法があり、エネルギーガスの精製廃水の処理においては、含まれる物質及び濃度を考慮して選択し、組み合わせて実施される。   In recent years, global warming and resource depletion due to mass consumption of petroleum resources have become problems, and attention has been paid to effective use of resources that have not been used in the past. As such resources, methane gas that is gasified from low-grade coal such as lignite that has not been used before and that is obtained by fermenting livestock manure, etc. There is energy gas such as biogas as a component. These energy gases contain harmful substances such as hydrogen sulfide, ammonia, and cyan gas, which cause catalyst poisoning and equipment corrosion, depending on the type of the energy gas. Waste water containing water and cyanide is discharged. Therefore, in order to detoxify and release these harmful substances contained in the purified wastewater, it is necessary to treat each of them. There are various methods for the treatment of such harmful substances, such as methods using chemical agents and electrochemical energy, methods using physicochemical removal operations, combustion, etc., which are included in the treatment of energy gas purification wastewater. Selection is made in consideration of the substance and concentration to be used, and is performed in combination.

廃水の処理方法の1つとして知られている活性汚泥処理法は、高価な薬剤等を使用せずに微生物の作用を利用して処理する優れた方法であり、様々な分野において利用されている。アンモニアを含んだ廃水に対しては、硝化及び脱窒を組み合わせた活性汚泥法(循環変法)による窒素除去処理が試みられている。例えば、下記特許文献1、2では、コークスの製造において排出される安水の処理に活性汚泥処理法を利用することを記載している。また、下記特許文献3では、廃プラスチック等の可燃性廃棄物の熱分解に伴って発生するガスを洗浄した排水の処理に活性汚泥を用いることを提案し、排水から油分及び重金属を除去した後に活性汚泥処理を行うことを開示する。   The activated sludge treatment method known as one of the wastewater treatment methods is an excellent method of treating using the action of microorganisms without using expensive chemicals and the like, and is used in various fields. . For wastewater containing ammonia, nitrogen removal treatment by an activated sludge method (circulation modification) combining nitrification and denitrification has been attempted. For example, Patent Documents 1 and 2 below describe that an activated sludge treatment method is used for the treatment of safe water discharged in the production of coke. Moreover, in the following patent document 3, it is proposed to use activated sludge for the treatment of waste water that has been washed with gas generated in connection with thermal decomposition of combustible waste such as waste plastic, and after removing oil and heavy metals from the waste water. Disclosed is an activated sludge treatment.

一方、下記特許文献4では、コークス炉から排出される安水や石油精製工場の廃水の活性汚泥処理において、シアン化合物、硫化物などの有害成分によって活性汚泥の機能が阻害されることが記載され、これに対処する方法として、ビール搾り粕又は豆腐搾り粕を廃水に添加することを提案している。   On the other hand, in the following Patent Document 4, it is described that the function of activated sludge is hindered by harmful components such as cyanide and sulfide in the treatment of activated sludge discharged from coke ovens and wastewater from petroleum refineries. As a method for coping with this, it has been proposed to add beer-squeezed rice cake or tofu-squeezed rice cake to waste water.

特開平05−192679号公報Japanese Patent Laid-Open No. 05-192679 特開平07−204681号公報Japanese Patent Laid-Open No. 07-204681 特開2007−098353号公報JP 2007-098353 A 特開平07−112194号公報Japanese Patent Laid-Open No. 07-112194

上記特許文献4から解るように、シアン等は活性汚泥処理の障害となるため、シアンを含むエネルギーガス精製廃水を活性汚泥で処理すると、同様に活性汚泥の機能が阻害される。このため、活性汚泥の機能を維持するための対処が必要となるが、前述のビール搾り粕等のような食品廃棄物をエネルギーガス精製プロセスに適用するには、入手先の確保や搬送の手間及び費用が問題となる。従って、実用的に採用し易い対処方法の開発が望まれる。   As can be seen from Patent Document 4, cyan and the like are obstacles to activated sludge treatment. Therefore, when energy gas refined wastewater containing cyanide is treated with activated sludge, the function of activated sludge is similarly inhibited. For this reason, it is necessary to take measures to maintain the function of activated sludge. However, in order to apply food waste such as the above-mentioned beer squeezed lees to the energy gas purification process, it is time and labor required to secure the source and transport it. And cost becomes a problem. Therefore, it is desired to develop a coping method that is practically easy to adopt.

本発明は、上記問題を鑑み、エネルギーガスの精製で生じる精製廃水に含まれるアンモニアや有機物の処理を活性汚泥を用いて安定的に効率よく処理可能な廃水処理方法及びエネルギーガスの精製方法を提供することを課題とする。   In view of the above problems, the present invention provides a wastewater treatment method and an energy gas purification method capable of stably and efficiently treating ammonia and organic matter contained in refined wastewater generated by energy gas purification using activated sludge. The task is to do.

又、本発明は、搬送の手間や煩雑な管理を必要とせず、活性汚泥の機能を維持するための対処を施すことができ、精製廃水に含まれる難分解性有機物質を効率よく処理可能な廃水処理装置及びエネルギーガスの精製システムを提供することを課題とする。   In addition, the present invention does not require the labor and complicated management of transportation, can take measures to maintain the function of activated sludge, and can efficiently process the hardly decomposable organic substances contained in the purified wastewater. It is an object of the present invention to provide a wastewater treatment apparatus and an energy gas purification system.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、エネルギーガスの精製プロセスにおいて回収される芳香族化合物を利用することによって、活性汚泥の機能阻害を抑制可能であり、エネルギーガス精製系外部からの資材導入を必要とせず、系内の資材を有効利用して廃水中のアンモニア及び有機物質を処理できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problem, the present inventors have been able to suppress the functional inhibition of activated sludge by using an aromatic compound recovered in the energy gas purification process as a result of intensive studies. The present inventors have found that it is possible to treat ammonia and organic substances in waste water by effectively using the materials in the system without requiring the introduction of materials from the outside of the energy gas purification system, and the present invention has been completed.

本発明の一態様によれば、廃水処理装置は、エネルギーガス精製で排出される精製廃水を処理するための活性汚泥処理装置と、エネルギーガス精製で排出される生分解性の芳香族化合物を前記活性汚泥処理装置に供給する有機物供給手段とを有することを要旨とする。   According to one aspect of the present invention, a wastewater treatment apparatus comprises an activated sludge treatment apparatus for treating purified wastewater discharged by energy gas purification, and a biodegradable aromatic compound discharged by energy gas purification. It has a gist of having an organic substance supply means for supplying to an activated sludge treatment apparatus.

又、本発明の一態様によれば、エネルギーガスの精製システムは、エネルギーガスを精製し、精製廃水及び生分解性の芳香族化合物を排出するエネルギーガス精製装置と、前記芳香族化合物を用いて、前記精製廃水を活性汚泥処理する上記の廃水処理装置とを有することを要旨とする。   Moreover, according to one aspect of the present invention, an energy gas purification system uses an energy gas purification apparatus that purifies energy gas and discharges purified wastewater and biodegradable aromatic compounds, and the aromatic compound. The above-mentioned wastewater treatment apparatus is provided for treating the purified wastewater with activated sludge.

更に、本発明の一態様によれば、廃水処理方法は、エネルギーガス精製で排出される精製廃水を処理する活性汚泥処理を有し、前記活性汚泥処理に、エネルギーガス精製で排出される生分解性の芳香族化合物を供給することを要旨とする。   Furthermore, according to one aspect of the present invention, the wastewater treatment method has an activated sludge treatment for treating purified wastewater discharged by energy gas refining, and biodegradation discharged by energy gas refining in the activated sludge treatment. The main point is to supply a functional aromatic compound.

又、本発明の一態様によれば、エネルギーガスの精製方法は、エネルギーガスを精製する精製工程と、上記の廃水処理方法に従って、前記精製工程で排出される生分解性の芳香族化合物を活性汚泥処理に供給して、前記精製工程で排出される精製廃水を活性汚泥処理によって処理する廃水処理工程とを有することを要旨とする。   Further, according to one aspect of the present invention, a method for purifying an energy gas includes a purification step for purifying an energy gas and a biodegradable aromatic compound discharged in the purification step according to the above-described wastewater treatment method. The gist of the present invention is to have a wastewater treatment step of supplying the sludge treatment and treating the purified wastewater discharged in the purification step by the activated sludge treatment.

本発明によれば、エネルギーガスの精製プロセスにおいて回収される芳香族化合物を利用して活性汚泥の機能阻害を抑制できるので、エネルギーガス精製系外部からの資材導入を必要とせず、系内の資材を有効利用してエネルギーガス精製廃水中のアンモニアを処理できるので、エネルギーガス精製システムを効率的に構成することができ、設備の保守点検費用や運転コストの削減が可能である。又、エネルギーガス精製廃水に混入する微生物難分解性の有機物質についても活性汚泥処理での分解率の向上が可能である。   According to the present invention, since the function inhibition of activated sludge can be suppressed using the aromatic compound recovered in the energy gas purification process, the introduction of materials from outside the energy gas purification system is not required, and the materials in the system Since the ammonia in the energy gas refining wastewater can be treated effectively, the energy gas refining system can be efficiently configured, and the maintenance and inspection costs of the facilities and the operation cost can be reduced. In addition, it is possible to improve the decomposition rate in the activated sludge treatment for organic substances that are hardly decomposed by microorganisms mixed in energy gas purification wastewater.

本発明に係るエネルギーガス精製システムの一実施形態の構成を示す概略図である。It is the schematic which shows the structure of one Embodiment of the energy gas purification system which concerns on this invention. 本発明に係る廃水処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the waste water treatment apparatus which concerns on this invention.

エネルギーガスには、低品位石炭等の化石燃料のガス化プロセスによって得られるガス化燃料、プラスチック等の有機材の熱分解や化学合成による合成ガスなどがある。このようなエネルギーガスには、種類によって異なるが、タール類(芳香族化合物)、硫化水素、アンモニア、シアンガス、塩化水素、硫化カルボニル等が含まれており、使用に供するためにはこれらの副生成物(有害成分)を除去するための精製処理を施す必要があり、これに伴って生じる精製廃水の処理も行われる。上記の成分の処理については、各々、化学的、物理化学的又は電気化学的な処理方法が確立されており、許容濃度等を考慮して状況に応じて選択して使用することができる。   Examples of the energy gas include gasified fuel obtained by a gasification process of fossil fuel such as low-grade coal, and synthetic gas obtained by pyrolysis or chemical synthesis of organic materials such as plastic. Such energy gases include tars (aromatic compounds), hydrogen sulfide, ammonia, cyanide gas, hydrogen chloride, carbonyl sulfide, etc., depending on the type, but these by-products are used for use. It is necessary to carry out a purification treatment for removing substances (hazardous components), and the treatment of the refined wastewater accompanying this is also carried out. Regarding the treatment of the above components, chemical, physicochemical or electrochemical treatment methods have been established, respectively, and can be selected and used according to the situation in consideration of the allowable concentration and the like.

一般的に、エネルギーガスの精製プロセスにおいては、スクラバ水洗、相分離又は凝集分離、吸収又は吸着などの物理化学的操作を適宜組み合わせて、粉塵、水溶性成分及び油性有機物などを除去することができ、硫化カルボニルは硫化水素に化学変換されて化学脱硫又は生物脱硫等によって除去される。精製廃水として、タール類やアンモニア、シアン等を含有する廃水が生じ、このような廃水の処理が必要となる。水中の塩基性ガス及び酸性ガスは、pH調整によって水から放出可能であり、廃水を塩基性に調整して酸性ガス成分を中和すると共にアンモニアを放出し、塩素やオゾンによる酸化等によってシアンを分解することによりガス性有害成分を除去できる。これらの方法によって、効率的にアンモニア及びシアンを処理できるが、環境中へ放水するには更に低濃度に減少させる必要がある。これには活性汚泥処理を利用することが適切であると考えられる。しかし、エネルギーガスの精製廃水は、生分解性(微生物が分解し易い)有機物と窒素(アンモニア態窒素)とのバランスが悪い上に、シアンなどの活性汚泥の機能を阻害する成分や、クロロ基、スルホ基、ニトロ基、アミノ基等で置換された化合物、エーテル化合物などの微生物にとって難分解性の有機物質も含み得るため、十分に窒素濃度を低減できず、結果として多量の水による希釈が必要となる。   In general, in the energy gas purification process, dust, water-soluble components and oily organic substances can be removed by appropriately combining physicochemical operations such as scrubber water washing, phase separation or coagulation separation, absorption or adsorption. Carbonyl sulfide is chemically converted to hydrogen sulfide and removed by chemical desulfurization or biological desulfurization. As purified wastewater, wastewater containing tars, ammonia, cyanide and the like is generated, and it is necessary to treat such wastewater. Basic gas and acid gas in water can be released from water by adjusting the pH, neutralize the acid gas component by adjusting the wastewater to basic, release ammonia, and release cyanide by oxidation with chlorine or ozone. By decomposing, gaseous harmful components can be removed. Although these methods can efficiently treat ammonia and cyanide, it is necessary to reduce the concentration to a lower level in order to discharge water into the environment. For this, it is considered appropriate to use activated sludge treatment. However, refined wastewater of energy gas has a poor balance between biodegradable (microorganisms are easily decomposed) organic matter and nitrogen (ammonia nitrogen), components that inhibit the function of activated sludge such as cyanide, and chloro groups. In addition, organic compounds that are difficult to decompose for microorganisms such as compounds substituted with sulfo groups, nitro groups, amino groups, etc., and ether compounds can also be contained, so the nitrogen concentration cannot be reduced sufficiently, resulting in dilution with a large amount of water. Necessary.

そこで、本発明の廃水処理においては、エネルギーガス精製プロセスにおいて軽質タール分として分離される芳香族化合物(主にベンゼン)を利用して活性汚泥の機能阻害を抑制する。エネルギーガスから分離されるベンゼン等の芳香族化合物は、細菌にとって易分解性の化合物であり、これを活性汚泥処理に供給することによって、脱窒細菌の脱窒反応を活性化することができ、更に、難分解性有機物質の分解も促進される。この方法は、エネルギーガス精製プロセスで分離される物質を有効利用するので、エネルギーガス精製系内で賄うことができ、外部からの資材投入を必要としない。   Therefore, in the wastewater treatment of the present invention, the function inhibition of activated sludge is suppressed using an aromatic compound (mainly benzene) separated as a light tar component in the energy gas purification process. Aromatic compounds such as benzene separated from energy gas are easily degradable compounds for bacteria, and by supplying this to activated sludge treatment, denitrification reaction of denitrifying bacteria can be activated, Furthermore, the decomposition of the hardly decomposable organic substance is promoted. Since this method makes effective use of substances separated in the energy gas purification process, it can be covered in the energy gas purification system and does not require input of materials from the outside.

本発明において活性汚泥に供給される芳香族化合物は、ベンゼン、キシレン及びトルエンを含む、官能基のない単環の芳香族化合物であり、ベンゼンを主体とする軽質油分としてエネルギーガス精製プロセスから得ることができる。これらの芳香族化合物、特にベンゼンは、活性汚泥細菌にとって生分解性の有機物であり、生物学的に難分解性の有機物質を分解するエネルギーを供給する。従って、上述の生分解性芳香族化合物の添加によって、阻害物質や難分解性有機物質に対する馴化が促進され、難分解性有機物質の分解率も向上する。生分解性芳香族化合物は、廃水に含まれるアンモニア態窒素に対するCOD換算質量比で、1.5〜15g-COD/g-N、好ましくは3〜10g-COD/g-N程度となるように廃水に添加すると活性汚泥の機能が好適に発揮され、通常の活性汚泥処理による除去率が50%程度以下の難分解性有機物質についても80%程度以上の除去率(COD換算)で処理することが可能であり、汚泥細菌が対応可能なシアン濃度も向上する。尚、生分解性芳香族化合物の添加による難分解性有機物質の除去率の向上は、難分解性有機物質の代謝に十分な時間が与えられることで馴養が進むことによるので、長い馴化時間がとれると分解性が安定化する。従って、実際に廃水処理を行う上では、予め、難分解性有機物質を含む廃水に易分解性芳香族化合物を混合して活性汚泥に繰り返し作用させて馴化を行うことが望ましい。   The aromatic compound supplied to the activated sludge in the present invention is a monocyclic aromatic compound having no functional group, including benzene, xylene and toluene, and obtained from an energy gas refining process as a light oil component mainly composed of benzene. Can do. These aromatic compounds, especially benzene, are biodegradable organic substances for activated sludge bacteria and supply energy for degrading biologically indegradable organic substances. Therefore, by adding the above-described biodegradable aromatic compound, acclimation to the inhibitor and the hardly decomposable organic substance is promoted, and the decomposition rate of the hardly decomposable organic substance is improved. The biodegradable aromatic compound is about 1.5 to 15 g-COD / g-N, preferably about 3 to 10 g-COD / g-N, in terms of the mass ratio of COD to ammonia nitrogen contained in the wastewater. When added to wastewater, the function of activated sludge is suitably exerted, and the removal rate by ordinary activated sludge treatment is also treated with a removal rate (COD conversion) of about 80% or more even for a hardly decomposable organic substance having a removal rate of about 50% or less. This improves the cyan density that sludge bacteria can handle. In addition, the improvement of the removal rate of the hardly decomposable organic substance by the addition of the biodegradable aromatic compound is because the acclimatization progresses because sufficient time is given for the metabolism of the hardly decomposable organic substance, so that the long acclimatization time is Degradability stabilizes when removed. Therefore, in actual wastewater treatment, it is desirable to acclimate by mixing an easily decomposable aromatic compound with wastewater containing a hardly decomposable organic substance and repeatedly acting on the activated sludge in advance.

以下に、本発明に係るエネルギーガス精製廃水の処理を実施する廃水処理装置及びエネルギーガス精製システムについて詳細に説明する。   Hereinafter, a wastewater treatment apparatus and an energy gas purification system that perform treatment of energy gas purification wastewater according to the present invention will be described in detail.

図1は、本発明に係るエネルギーガス精製システムの一実施形態を示す。エネルギーガス精製システムは、エネルギーガス精製装置GPと、廃水処理装置WTとで構成され、エネルギーガス精製装置GPにおいてエネルギーガスを精製する際に排出される精製廃水を、廃水処理装置WTにおいて処理し清浄化した後に放出する。   FIG. 1 shows an embodiment of an energy gas purification system according to the present invention. The energy gas purification system is composed of an energy gas purification device GP and a wastewater treatment device WT, and the purified wastewater discharged when the energy gas is purified in the energy gas purification device GP is treated and cleaned in the wastewater treatment device WT. It releases after becoming.

エネルギーガス精製装置GPは、スクラバWS、電気集塵器DC、脱アンモニア装置AR、加圧凝縮器PC、洗浄部CU、硫化カルボニル変換器CT、及び、脱硫装置DSを備えている。この実施形態では、ガス化炉Gをエネルギーガス供給源とし、高温の石炭ガス化燃料がエネルギーガスとしてエネルギーガス精製装置GPに供給される。エネルギーガスは、先ず、スクラバWSにおいて、噴霧水によって洗浄されて固形粒子等が除去されると共に、500℃程度のガス温度が100℃以下に低下してエネルギーガスに含まれるタール分(分子量90〜280程度の芳香族化合物を含む)が凝縮してガスから分離し、洗浄水と共に排出される。又、フェノール等の水溶性有機物も水に移行し、エネルギーガスに含まれるアンモニアも一部が洗浄水に吸収される。この実施形態では、電気集塵器DC、脱アンモニア装置AR、加圧凝縮器PC及び洗浄部CUを用いて高度に精製可能なように構成しており、スクラバWSを通過したエネルギーガスは、利用目的に応じて極微細な固形粒子やアンモニア、芳香族化合物を除去して必要なレベルに精製した後に、ガス中の硫化カルボニルを処理してガスタービンT等のエネルギー源として供給される。   The energy gas purification device GP includes a scrubber WS, an electrostatic precipitator DC, a deammonia device AR, a pressurized condenser PC, a cleaning unit CU, a carbonyl sulfide converter CT, and a desulfurization device DS. In this embodiment, the gasification furnace G is used as an energy gas supply source, and high-temperature coal gasification fuel is supplied as energy gas to the energy gas purification device GP. In the scrubber WS, the energy gas is first washed with spray water to remove solid particles and the like, and the gas content at about 500 ° C. is lowered to 100 ° C. or less, so that the tar content (molecular weight 90 to 90%) is contained in the energy gas. (Contains about 280 aromatic compounds) is condensed and separated from the gas and discharged together with the washing water. In addition, water-soluble organic substances such as phenol are also transferred to water, and part of the ammonia contained in the energy gas is absorbed by the washing water. In this embodiment, it is configured so that it can be highly purified using the electrostatic precipitator DC, the deammonia device AR, the pressurized condenser PC, and the cleaning unit CU, and the energy gas that has passed through the scrubber WS is used. Depending on the purpose, after removing ultrafine solid particles, ammonia and aromatic compounds and refining to the required level, the carbonyl sulfide in the gas is treated and supplied as an energy source for the gas turbine T and the like.

具体的には、先ず、電気集塵器DCを経ることによって、スクラバWSでは除去されない微細な固形粒子が帯電・吸着によって収集除去される。この際、電気集塵器DCを通過するエネルギーガスの温度を40〜70℃程度に調整するために、必要に応じてガス冷却器(図示略)を使用することができる。微細粒子を除去したエネルギーガスは、脱アンモニア装置ARに供給され、噴霧水で充分に洗浄することによって、エネルギーガス中の残留アンモニアは洗浄水に移行する。アンモニアを吸収した洗浄水は、再生塔に供給してストリッピング等を利用してアンモニアを放散させた後に脱アンモニア装置ARに還流させることによって再使用できる。脱アンモニア装置ARを経たエネルギーガスは、加圧凝縮器PCにおいて圧縮され、沸点80〜140℃程度の成分が凝縮液化する。これによってガスから分離する液体には、ベンゼン、トルエン、キシレン等の芳香族化合物及び水が含まれ、この芳香族化合物の主体はベンゼンである。エネルギーガスに含まれるベンゼン、トルエン及びキシレン(これらをBTXと総称する)は、その殆どがスクラバWSを通過し、加圧凝縮器において収集される。加圧凝縮器PCを経たエネルギーガスは、洗浄部CUに供給され、エネルギーガスに有機溶剤を噴霧して洗浄し、有機化合物を溶剤に吸収させる。これにより、残留BTX等の有機化合物が除去されて濃度が低下する。有機溶剤として、例えばメチルナフタレン等の揮発性の低い芳香族系溶剤が使用できる。更に、必要に応じて、アンモニアや有機化合物を吸収又は吸着可能な活性炭等の吸収/吸着剤を用いた充填層を通過させることによって、残留濃度を更に低下させることができる。有機溶剤や吸収/吸着剤は、常法により再生して再使用することができる。電気集塵器DCから洗浄部CUまでの精製度は、利用目的に応じて必要な精製レベルに適宜設定すればよい。   Specifically, first, through the electrostatic precipitator DC, fine solid particles that are not removed by the scrubber WS are collected and removed by charging and adsorption. At this time, a gas cooler (not shown) can be used as necessary in order to adjust the temperature of the energy gas passing through the electrostatic precipitator DC to about 40 to 70 ° C. The energy gas from which the fine particles have been removed is supplied to the deammonia device AR, and the remaining ammonia in the energy gas is transferred to the washing water by being sufficiently washed with the spray water. The wash water that has absorbed the ammonia can be reused by supplying it to the regeneration tower and releasing it using stripping or the like and then refluxing it to the deammonia unit AR. The energy gas that has passed through the deammonia device AR is compressed in the pressure condenser PC, and a component having a boiling point of about 80 to 140 ° C. is condensed and liquefied. The liquid separated from the gas thereby contains an aromatic compound such as benzene, toluene, xylene and water, and the main component of this aromatic compound is benzene. Most of the benzene, toluene and xylene (collectively referred to as BTX) contained in the energy gas passes through the scrubber WS and is collected in the pressure condenser. The energy gas that has passed through the pressure condenser PC is supplied to the cleaning unit CU, sprayed with an organic solvent on the energy gas, and cleaned to absorb the organic compound. Thereby, organic compounds such as residual BTX are removed, and the concentration is lowered. As the organic solvent, for example, an aromatic solvent having low volatility such as methylnaphthalene can be used. Furthermore, if necessary, the residual concentration can be further reduced by passing through a packed bed using an absorbent / adsorbent such as activated carbon capable of absorbing or adsorbing ammonia and organic compounds. Organic solvents and absorbent / adsorbents can be regenerated and reused by conventional methods. The degree of purification from the electrostatic precipitator DC to the cleaning unit CU may be appropriately set to a necessary purification level according to the purpose of use.

この後、エネルギーガスは、硫化カルボニル変換器CTに供給され、硫化カルボニルから硫化水素へ変換する化学反応が進行する。更に、脱硫装置DSにおいて硫化水素が除去される。脱硫装置DSとして生物脱硫装置を用いた場合には、硫黄酸化細菌の作用によって硫化カルボニルを硫酸まで酸化分解することが可能であり、硫化カルボニル変換器CTの省略が可能となる。このようにして精製されるエネルギーガスの用途としては、ガスタービンTのエネルギー源以外に、燃料電池による発電システム等に燃料源、各種化学製品の製造や化学合成の原料などが挙げられる。   Thereafter, the energy gas is supplied to the carbonyl sulfide converter CT, and a chemical reaction for converting carbonyl sulfide to hydrogen sulfide proceeds. Further, hydrogen sulfide is removed in the desulfurization apparatus DS. When a biological desulfurization apparatus is used as the desulfurization apparatus DS, carbonyl sulfide can be oxidatively decomposed to sulfuric acid by the action of sulfur-oxidizing bacteria, and the carbonyl sulfide converter CT can be omitted. In addition to the energy source of the gas turbine T, the use of the energy gas thus purified includes a fuel source for a power generation system using a fuel cell, a raw material for production of various chemical products, and chemical synthesis.

一方、廃水処理装置WTは、分液装置LS1,LS2、加圧分離器PS、アンモニアストリッパAM、シアン分解装置OX及び活性汚泥処理装置ACを有する。スクラバWSから精製廃水として排出される洗浄水は、凝縮有機物質からなる油相を伴うので、分液装置LS1において水相から油相(水に不溶で沈降性を示すタール、固体粒子を含む)を分離除去する。又、加圧凝縮器PCから凝縮液化物として排出される芳香族化合物も水分を伴い、分液装置LS2において水相と油相(BTX等)とに分離される。水相は、分液装置LS1から排出される廃水と共に、加圧分離器PSに供給される。分液装置LS2に供給される凝縮液化物の水相には飽和濃度のBTXが含まれるので、分液装置LS2として分離効率を高めた油水分離機を使用すると好ましい。油水分離機には、フィルターや親油性部材によって油性分の粗粒化・浮上を促進したり、電気分解を利用して油性分の浮上を促進するものなどがあり、適宜選択して使用すればよい。   On the other hand, the wastewater treatment apparatus WT includes liquid separators LS1 and LS2, a pressure separator PS, an ammonia stripper AM, a cyan decomposition apparatus OX, and an activated sludge treatment apparatus AC. Since the wash water discharged from the scrubber WS as purified wastewater is accompanied by an oil phase composed of condensed organic substances, the water phase is changed to the oil phase (including tar and solid particles that are insoluble in water and exhibit precipitation) in the liquid separator LS1. Is removed. In addition, the aromatic compound discharged as a condensed liquefied product from the pressure condenser PC is also accompanied by moisture, and is separated into a water phase and an oil phase (such as BTX) in the liquid separator LS2. The aqueous phase is supplied to the pressure separator PS together with the waste water discharged from the liquid separator LS1. Since the water phase of the condensed liquefied product supplied to the liquid separator LS2 contains a saturated concentration of BTX, it is preferable to use an oil-water separator with improved separation efficiency as the liquid separator LS2. Oil-water separators include those that promote the coarsening and floating of oily components using filters and lipophilic members, and those that promote the floating of oily components using electrolysis. Good.

分液装置LS1,LS2から排出される廃水は、アンモニア、水溶性有機化合物(フェノール等のモノ又はポリフェノール類、アミン類など)、分液装置で分離されずに懸濁する微細固形粒子や乳化有機化合物などを含有し、極微量のBTXも含まれる。エネルギーガスにシアン等の酸性ガス成分や塩基性化合物が含まれる場合、これらも廃水に含まれ得る。このような廃水を、加圧分離器PSに供給して加圧することによって、エマルジョン状に分散するタール等が凝集浮上して水相から分離する。この際、微小固形物も水相から分離する。これらを除去し、加圧分離器PSから排出される廃水は、アンモニアストリッパAMにおいて大部分のアンモニアが放散・除去される。この後、廃水は、シアン分解装置OXに供給され、有機化合物やシアン等は酸化分解によって除去されるが、これらの処理を経ても残留するアンモニアや有機物を放水可能なレベルにまで低下させるために、廃水は活性汚泥処理装置ACに供給される。   Waste water discharged from the liquid separators LS1 and LS2 is ammonia, water-soluble organic compounds (mono or polyphenols such as phenol, amines, etc.), fine solid particles suspended in the liquid separator, and emulsified organics. Contains compounds, etc., and includes trace amounts of BTX. When the energy gas contains an acidic gas component such as cyan or a basic compound, these can also be contained in the waste water. By supplying such a wastewater to the pressure separator PS and pressurizing it, tar and the like dispersed in an emulsion form agglomerate and float and separate from the aqueous phase. At this time, fine solids are also separated from the aqueous phase. Most of the ammonia is removed and removed from the wastewater discharged from the pressure separator PS after being removed by the ammonia stripper AM. After this, waste water is supplied to the cyanide decomposition apparatus OX, and organic compounds and cyanide are removed by oxidative decomposition. However, in order to reduce the ammonia and organic matter remaining even after these treatments to a level at which water can be discharged. The waste water is supplied to the activated sludge treatment apparatus AC.

アンモニアストリッパAMは、塔内に充填・保持された状態で液体や気体が中を通過可能な充填物と、充填物上に廃液を撒水する撒水ノズルとを有し、廃水が充填物を通って流下する間に、廃水と雰囲気との気液接触によって廃水からアンモニアが盛んに放出される。充填物は、粒状、網状又は多孔性の素材で構成した部材や、ラシヒリング、レッシングリング等のような気液接触面積を増加させるために充填材として一般的に用いられる形態の部材を利用して構成することができる。また、加圧分離器PSから排出される廃水をアンモニアストリッパAMに供給する前に、水酸化ナトリウム水溶液等のアルカリ剤によって塩基性に調整すると、アンモニアの溶解度が低下して廃水から放出し易い。この場合、廃水のpHは11以上であると好ましい。更に、アンモニアの放出を促進するためには、廃水の温度を高くすることが有効であり、例えば、充填物を加熱するヒーターを備えて、充填物に接する廃水を好ましくは60℃以上、より好ましくは60〜100℃程度の範囲に加熱すると好適である。   The ammonia stripper AM has a packing that allows liquid or gas to pass through while being packed and held in the tower, and a flood nozzle that submerses the waste liquid on the packing, and the waste water passes through the packing. While flowing down, ammonia is actively released from the wastewater by gas-liquid contact between the wastewater and the atmosphere. The filling is made of a member made of a granular, net-like or porous material, or a member generally used as a filler to increase the gas-liquid contact area such as Raschig ring or Lessing ring. Can be configured. Further, when the waste water discharged from the pressure separator PS is adjusted to basic with an alkaline agent such as an aqueous sodium hydroxide solution before being supplied to the ammonia stripper AM, the solubility of ammonia is lowered and the waste water is easily discharged from the waste water. In this case, the wastewater preferably has a pH of 11 or more. Further, in order to promote the release of ammonia, it is effective to raise the temperature of the waste water. For example, a heater for heating the packing is provided, and the waste water in contact with the packing is preferably 60 ° C. or more, more preferably. Is preferably heated in the range of about 60 to 100 ° C.

シアン分解装置OXに廃水が送水されると、廃水に含まれるシアンは、オゾンによって酸化分解される。オゾン酸化装置OXの構造としては、例えば、貯留される廃水にオゾンを吹き込むもの、或いは、通液性の充填材中を廃水が通過する際にオゾンと流下する廃水とを気液接触させ、吸収されるオゾンにより分解するように構成したものなどが挙げられるが、これらに限定されるものではなく、必要に応じて適宜変形することができる。充填物を冷却する冷却装置を付設して、充填物を介して廃水を冷却すると、流下する廃水へのオゾンの溶解性が向上し、滞留時間を短縮できる。廃水に含まれるシアン濃度に応じて、廃水温度を低下させてオゾンの廃水への吸収速度を上げることができる。気液接触によるガスの水への吸収は温度が10℃以下であると特に効率が良い。   When waste water is sent to the cyanide decomposition apparatus OX, cyan contained in the wastewater is oxidized and decomposed by ozone. As the structure of the ozone oxidizer OX, for example, ozone is blown into stored wastewater, or ozone is brought into gas-liquid contact with wastewater when the wastewater passes through a liquid-permeable filler, and absorbed. Although what was comprised so that it may decompose | disassemble with ozone etc. is mentioned, it is not limited to these, It can deform | transform suitably as needed. When a cooling device for cooling the packing is attached and the waste water is cooled via the packing, the solubility of ozone in the flowing down waste water is improved, and the residence time can be shortened. Depending on the cyan concentration contained in the wastewater, the wastewater temperature can be lowered to increase the absorption rate of ozone into the wastewater. The absorption of gas into water by gas-liquid contact is particularly efficient when the temperature is 10 ° C. or lower.

アンモニアの放出及びオゾン酸化によって、廃水のアンモニア濃度及びシアン濃度は、各々、100mg-N/L程度以下及び数十mg-CN/L程度以下に減少し、分解し易い有機物も酸化分解する。この廃水は、上述の廃水処理を経ても残留するアンモニアやフェノール、シアン等を放水可能なレベルにまで低下させるために活性汚泥処理装置ACに供給される。   By ammonia release and ozone oxidation, the ammonia concentration and cyanide concentration of the wastewater are reduced to about 100 mg-N / L or less and tens of mg-CN / L or less, respectively, and organic substances that are easily decomposed are also oxidized and decomposed. This waste water is supplied to the activated sludge treatment apparatus AC in order to reduce ammonia, phenol, cyan and the like remaining even after the above-described waste water treatment to a level at which water can be discharged.

シアン分解装置OXにおいて、廃水中の易分解性有機化合物は分解される。エネルギーガスの精製廃水に含まれるフェノール類も、シアン分解装置OXを経ると多くが分解されるが、無機化されるわけではなく有機物として残留する。また、エネルギーガス精製廃水は、微生物にとって難分解性の有機化合物も含む。つまり、活性汚泥処理装置ACに供給される廃水に含まれる有機物は、難分解性化合物の割合が高いので、従来の方式では、活性汚泥による有機物の除去効率は低く、このままでは放流に適さない。しかも、易分解性有機物が不足するため、活性汚泥細菌は満足に活動できず、アンモニアの除去も困難である。従って、活性汚泥処理装置ACの細菌を活動させるために、易分解性の有機化合物を廃水に添加することが必要となる。本発明では、エネルギーガスの精製において液化物として排出されるベンゼン、トルエン、キシレン等の芳香族化合物を活性汚泥処理装置ACに供給し、活性汚泥細菌用の有機質源として利用する。通常、微生物が利用する有機物は、糖類や低級アルコール等の生分解性化合物であり、クロロ基、スルホ基、ニトロ基、アミノ基等の官能基で置換された化合物やエーテル化合物、多環芳香族化合物などは微生物にとって難分解性の有機物質であるが、ベンゼン、トルエン及びキシレン(BTX)のような官能基がない単環の芳香族化合物は比較的生分解性が高く、特にベンゼンは細菌によって容易に分解される。従って、分液装置LS2において軽質タール分として分離される油相(BTX)を生分解性芳香族化合物として活性汚泥処理装置ACに供給することによって、活性汚泥細菌が硝酸態窒素を脱窒する際にこれを利用し、廃水中のアンモニアの硝化・脱窒が好適に進行する。この際、供給される廃水は、芳香族系の難分解性有機物を含んでいるが、BTX、特にベンゼンの供給は、難分解性有機物質に対する活性汚泥細菌の馴養を促進する効果や、細菌が廃水の有機物を分解する処理速度を昂進する効果、シアンに対する耐性を向上させる効果を奏する。   In the cyan decomposition apparatus OX, the readily decomposable organic compound in the wastewater is decomposed. Phenols contained in the energy gas refining wastewater are also mostly decomposed through the cyan decomposition apparatus OX, but are not mineralized and remain as organic substances. The energy gas purification wastewater also contains organic compounds that are hardly decomposable for microorganisms. That is, since the organic matter contained in the wastewater supplied to the activated sludge treatment apparatus AC has a high ratio of hardly decomposable compounds, the removal efficiency of the organic matter by the activated sludge is low in the conventional method and is not suitable for discharge as it is. Moreover, since there is a shortage of readily degradable organic matter, activated sludge bacteria cannot act satisfactorily and it is difficult to remove ammonia. Therefore, in order to activate the bacteria of the activated sludge treatment apparatus AC, it is necessary to add an easily decomposable organic compound to the waste water. In the present invention, aromatic compounds such as benzene, toluene, and xylene discharged as a liquefied product in the purification of energy gas are supplied to the activated sludge treatment apparatus AC and used as an organic source for activated sludge bacteria. Usually, organic substances used by microorganisms are biodegradable compounds such as saccharides and lower alcohols, compounds substituted with functional groups such as chloro group, sulfo group, nitro group and amino group, ether compounds, polycyclic aromatics Compounds are organic substances that are difficult to decompose for microorganisms, but monocyclic aromatic compounds without functional groups such as benzene, toluene and xylene (BTX) are relatively biodegradable. It is easily disassembled. Therefore, when activated sludge bacteria denitrify nitrate nitrogen by supplying the oil phase (BTX) separated as a light tar component in the separator LS2 to the activated sludge treatment apparatus AC as a biodegradable aromatic compound. In this way, nitrification and denitrification of ammonia in wastewater proceeds suitably. At this time, the supplied wastewater contains aromatic persistent organic substances, but the supply of BTX, particularly benzene, promotes the acclimation of activated sludge bacteria to the persistent organic substances, It has the effect of increasing the processing speed for decomposing wastewater organic matter and the effect of improving resistance to cyanide.

活性汚泥処理装置ACで実施する最適の処理形態としては、アンモニア態窒素の硝化・脱窒を行う循環変法による活性汚泥処理が挙げられる。標準活性汚泥法による曝気処理の後に嫌気処理を追加することによってもアンモニア態窒素及び有機物の処理は可能であるが、添加有機物の必要量が増大して負荷が過大になり易く、余剰汚泥の発生量が多大になる。このため、効率よく簡便に廃水処理を行うためには、循環変法による活性汚泥処理が好ましく、嫌気性工程を施す廃水に前述の生分解性芳香族化合物を供給して脱窒反応を進行させる。これにより、廃水の硝酸態窒素が還元ガス化されると共に有機物濃度が減少し、後続の好気性工程において残留有機物が消費され、アンモニア態窒素が硝化される。   As an optimal treatment form to be carried out in the activated sludge treatment apparatus AC, there is an activated sludge treatment by a circulation modification method in which nitrification and denitrification of ammonia nitrogen is performed. Ammonia nitrogen and organic matter can also be treated by adding anaerobic treatment after aeration treatment by the standard activated sludge method, but the required amount of added organic matter increases and the load tends to be excessive, generating excess sludge. The amount becomes enormous. For this reason, in order to perform wastewater treatment efficiently and simply, activated sludge treatment by a circulation modification method is preferable, and the above-mentioned biodegradable aromatic compound is supplied to wastewater subjected to an anaerobic process to advance the denitrification reaction. . As a result, the nitrate nitrogen of the wastewater is reduced to gas and the organic substance concentration is reduced. Residual organic substances are consumed in the subsequent aerobic process, and ammonia nitrogen is nitrified.

活性汚泥処理装置ACに供給する生分解性芳香族化合物(BTX)の添加量は、汚泥細菌に過剰な有機物負荷がかからない範囲で、廃水のアンモニア濃度に応じて適宜設定することができる。廃水のアンモニア態窒素に対してBTXは3〜10g-COD/g-N程度の割合で添加するのが好ましい。又、難分解性有機物の分解効率を高める点で、廃水の有機物に対してある程度以上の割合で生分解性芳香族化合物を添加することが好ましく、廃水中の有機物の5%程度以上、好ましくは10〜30%程度(COD換算)が生分解性芳香族化合物となるように添加すると好適である。BTXの水溶性は低いが、エネルギーガス精製廃水の処理に要する量は飽和濃度以内において充分に溶解可能である。   The addition amount of the biodegradable aromatic compound (BTX) supplied to the activated sludge treatment apparatus AC can be appropriately set according to the ammonia concentration of the wastewater as long as the sludge bacteria are not subjected to an excessive organic load. BTX is preferably added at a ratio of about 3 to 10 g-COD / g-N with respect to the ammonia nitrogen of the wastewater. In addition, it is preferable to add a biodegradable aromatic compound at a ratio of a certain level or more with respect to the organic matter in the wastewater in order to increase the decomposition efficiency of the hardly decomposable organic matter, preferably about 5% or more of the organic matter in the wastewater It is preferable that about 10 to 30% (COD conversion) is added so as to be a biodegradable aromatic compound. Although the water solubility of BTX is low, the amount required for the treatment of energy gas purification wastewater can be sufficiently dissolved within the saturation concentration.

活性汚泥処理において使用される活性汚泥の量は、概して、活性汚泥量に対して1日に処理する有機質量(COD換算)の割合が0.2〜0.6kg-COD/(kg活性汚泥・日)程度となるように設定することができる。   The amount of activated sludge used in the activated sludge treatment is generally 0.2 to 0.6 kg-COD / (kg activated sludge · Day).

難分解性有機物質の分解速度は細菌の馴化程度によっても異なるので、処理において嫌気性(脱窒)工程及び好気性(硝化)工程に要する時間は、廃水の水質(硝酸態窒素濃度、有機物質濃度、アンモニア態窒素濃度)を適宜検知して、水質及び細菌の馴化に応じて適宜調整することが好ましいが、BTXを添加する活性汚泥処理では難分解性有機物質の分解速度も向上するので、嫌気性工程の適性時間は、概して10分〜30時間程度に設定することができる。好気性工程に要する時間は、酸素の供給速度等にもよるが、概して30分〜90時間程度に設定することができる。   Since the degradation rate of persistent organic substances varies depending on the degree of acclimatization of the bacteria, the time required for anaerobic (denitrification) and aerobic (nitrification) processes is the quality of wastewater (nitrate nitrogen concentration, organic substances) It is preferable to appropriately detect the concentration and ammonia nitrogen concentration) according to the water quality and the acclimation of bacteria, but the activated sludge treatment to which BTX is added also improves the decomposition rate of the hardly decomposable organic substance. The suitability time for the anaerobic process can be generally set to about 10 minutes to 30 hours. The time required for the aerobic process can be generally set to about 30 minutes to 90 hours, although it depends on the supply rate of oxygen and the like.

好適な活性汚泥処理装置として、例えば、図2に示す活性汚泥処理装置1が挙げられる。   As a suitable activated sludge treatment apparatus, the activated sludge treatment apparatus 1 shown in FIG. 2 is mentioned, for example.

図2の活性汚泥処理装置1は、脱窒反応が進行する脱窒槽10と、硝化反応が進行する硝化槽(曝気槽)20と、廃水から活性汚泥を分離する沈殿池(分離槽)30とを有し、脱窒槽10には廃水Wに活性汚泥Sを均一に混合・分散するための撹拌装置13が取り付けられ、硝化槽20の底部には廃水Wに酸素(空気)を供給するための曝気装置22が設置され、曝気によって活性汚泥Sは廃水Wに均一に分散される。また、硝化後の廃水の一部を硝化槽20から脱窒槽10に還流するポンプ21が設けられている。   2 includes a denitrification tank 10 in which a denitrification reaction proceeds, a nitrification tank (aeration tank) 20 in which a nitrification reaction proceeds, and a sedimentation tank (separation tank) 30 that separates activated sludge from wastewater. The denitrification tank 10 is equipped with a stirrer 13 for uniformly mixing and dispersing the activated sludge S in the waste water W. The bottom of the nitrification tank 20 is for supplying oxygen (air) to the waste water W. An aeration device 22 is installed, and the activated sludge S is uniformly dispersed in the waste water W by aeration. Further, a pump 21 is provided for returning a part of the waste water after nitrification from the nitrification tank 20 to the denitrification tank 10.

この実施形態では、前述のシアン分解酸化装置OXから排出される廃水Wは、ポンプ11によって脱窒槽10に供給され、分液装置LS2から軽質油分として得られる生分解性芳香族化合物(BTX)がポンプ12を介して脱窒槽10の廃水に所望の割合で添加されて、混合・均質化される。脱窒槽10の前段として予備槽を設けて廃水又は生分解性芳香族化合物の貯留槽として使用しても良い。廃水W及び軽質油分を供給した脱窒槽10では、嫌気性工程を開始する。   In this embodiment, the waste water W discharged from the cyan decomposition / oxidation apparatus OX is supplied to the denitrification tank 10 by the pump 11, and the biodegradable aromatic compound (BTX) obtained as a light oil component from the liquid separator LS2 is obtained. It is added to the waste water of the denitrification tank 10 through the pump 12 at a desired ratio, and mixed and homogenized. A preliminary tank may be provided as a front stage of the denitrification tank 10 and used as a storage tank for waste water or a biodegradable aromatic compound. In the denitrification tank 10 to which the waste water W and light oil are supplied, the anaerobic process is started.

脱窒槽10内で、廃水W及び活性汚泥Sを攪拌装置13によって混合し、必要に応じて槽内は外気から遮断されるが、水面からの酸素の溶け混みが無視できる程度であれば外気の遮断は不要である。この工程では、脱窒細菌の活動によって廃水W中の硝酸態窒素(硝化槽20からの還流水に含まれる)が窒素に還元されて廃水Wから放出されるので、硝酸態窒素濃度が減少する。この際、廃水に添加された易分解性芳香族化合物は、脱窒細菌にとって水素供与体として作用し、脱窒細菌の代謝が促進されることによって廃水中の難分解性有機物質の取り込み及び分解が促される。従って、廃水の有機物質濃度も減少する。硝酸態窒素がなくなると脱窒反応が停止する。脱窒反応が終了した廃水は、硝化槽20に流下し、曝気装置11から供給される酸素によって好気性での硝化反応が進行し、廃水W中のアンモニア態窒素が硝化細菌によって酸化されて硝酸を生じる。この際、廃水に供給される酸素の消費は、脱窒細菌の方が硝化細菌より先行し易く、有機物の消費が衰退した頃に硝化の進行が始まる傾向がある。従って、曝気(酸素供給)量の低減による省エネルギー及び反応時間の短縮のためには、好気性工程の開始時点での廃水の有機物濃度ができる限り低い方がよく、この点を考慮して嫌気性工程の廃水に供給される易分解性芳香族化合物の量を設定すると、好気性工程が効率的に進行する。   In the denitrification tank 10, the waste water W and the activated sludge S are mixed by the stirring device 13, and the inside of the tank is blocked from the outside air as necessary. However, if the dissolved oxygen from the water surface is negligible, Blocking is not necessary. In this step, nitrate nitrogen in the wastewater W (included in the reflux water from the nitrification tank 20) is reduced to nitrogen and released from the wastewater W by the activity of the denitrifying bacteria, so that the concentration of nitrate nitrogen decreases. . At this time, the easily decomposable aromatic compound added to the wastewater acts as a hydrogen donor for the denitrifying bacteria, and the metabolism of the denitrifying bacteria is promoted, so that the uptake and decomposition of the hardly decomposable organic substances in the wastewater are promoted. Is prompted. Accordingly, the organic substance concentration in the wastewater is also reduced. When nitrate nitrogen runs out, the denitrification reaction stops. The waste water after the denitrification reaction has flowed down to the nitrification tank 20, and the aerobic nitrification reaction proceeds with the oxygen supplied from the aeration apparatus 11, and the ammonia nitrogen in the waste water W is oxidized by nitrifying bacteria and nitrate. Produce. At this time, the consumption of oxygen supplied to the wastewater tends to precede the nitrification bacteria in the denitrification bacteria, and the progress of nitrification tends to start when the consumption of organic matter declines. Therefore, in order to save energy and shorten the reaction time by reducing the amount of aeration (oxygen supply), it is better that the organic matter concentration in the wastewater at the start of the aerobic process is as low as possible. When the amount of the easily decomposable aromatic compound supplied to the waste water of the process is set, the aerobic process proceeds efficiently.

硝化後の廃水Wの一部は、配管23を通じて沈殿池30に流下し、活性汚泥Sを沈降分離した後、廃水(処理水)は配管32から廃棄される。沈殿池30で分離した活性汚泥Sは、その大部分がポンプ31によって脱窒槽10に返送され、廃水処理に伴う微生物の増殖分に相当する汚泥は余剰汚泥として引き抜かれて系外に排出される。この操作によって脱窒槽10及び硝化槽20内の汚泥濃度は一定に保たれる。   A part of the waste water W after nitrification flows down to the settling basin 30 through the pipe 23 and settles and separates the activated sludge S, and then the waste water (treated water) is discarded from the pipe 32. Most of the activated sludge S separated in the sedimentation basin 30 is returned to the denitrification tank 10 by the pump 31, and the sludge corresponding to the growth of microorganisms accompanying the wastewater treatment is extracted as excess sludge and discharged out of the system. . By this operation, the sludge concentration in the denitrification tank 10 and the nitrification tank 20 is kept constant.

上述のようにして、新たな廃水Wを連続的に脱窒槽10に供給しながら、上述の脱窒工程、硝化工程、汚泥分離、廃水及び汚泥の返送を繰り返すことによって、廃水中のアンモニア態窒素及び有機物質(易分解性芳香族化合物及び難分解性有機物質)が除去され、硝酸態窒素濃度が許容可能な低濃度に減少した被処理廃水が活性汚泥処理装置の沈殿池30から排出される。   As described above, ammonia nitrogen in the wastewater is obtained by repeating the above-mentioned denitrification step, nitrification step, sludge separation, wastewater and return of sludge while continuously supplying new wastewater W to the denitrification tank 10. And organic substances (easily decomposable aromatic compounds and hardly decomposable organic substances) are removed, and wastewater to be treated whose nitrate nitrogen concentration is reduced to an acceptable low concentration is discharged from the sedimentation basin 30 of the activated sludge treatment apparatus. .

或いは、1つの生物反応槽を用いて、タイマー制御等によって槽の機能を脱窒槽、硝化槽及び沈殿池として順次切り換える回分式の処理として上述の処理操作を行うことも可能である。   Alternatively, it is also possible to perform the above-described processing operation as a batch-type process in which the function of the tank is sequentially switched as a denitrification tank, a nitrification tank, and a settling tank using a single biological reaction tank by timer control or the like.

上述の廃水処理の実施形態において、シアン処理としては、オゾン酸化、アルカリ塩素法、電解酸化法、熱加水分解法等の処理を用いることが可能である。また、アンモニア処理としては、アンモニアストリッピングの代わりに、これに燃焼を併用した方法、不連続点法、触媒式湿式酸化法、次亜塩素酸ナトリウムによる高温酸化法等の処理を用いることが可能である。従って、図1の廃水処理装置WTにおいて、アンモニアストリッパAM及びシアン分解装置OXは、これらの代替方法を実施する装置に適宜置換することができる。   In the above-described wastewater treatment embodiment, treatment such as ozone oxidation, alkali chlorine method, electrolytic oxidation method, and thermal hydrolysis method can be used as cyan treatment. In addition, instead of ammonia stripping, it is possible to use treatment such as a method using combustion in combination with this, a discontinuous point method, a catalytic wet oxidation method, a high temperature oxidation method using sodium hypochlorite, etc. It is. Accordingly, in the wastewater treatment apparatus WT of FIG. 1, the ammonia stripper AM and the cyan decomposition apparatus OX can be appropriately replaced with apparatuses that perform these alternative methods.

尚、本発明は、上述したエネルギーガスだけでなく、ガス精製時にBTX類の芳香族化合物が分離されるガスにおいても適用可能であることは明らかであり、例えば、バイオマスからガス化されるエネルギー源において芳香族化合物の含有が報告されている例があり、このようなものについても利用することができる。   It is obvious that the present invention can be applied not only to the energy gas described above but also to a gas from which BTX aromatic compounds are separated during gas purification. For example, an energy source gasified from biomass is used. There are examples in which the inclusion of an aromatic compound is reported, and such a thing can also be used.

以下、実施例を参照して、本発明のエネルギーガス精製廃水の処理装置について具体的に説明する。   Hereinafter, with reference to an Example, the processing apparatus of the energy gas refinement | purification wastewater of this invention is demonstrated concretely.

<処理1:スクラバ廃水の処理>
エネルギーガス精製廃水(スクラバ廃水)に二クロム酸カリウムによる酸素要求量CODCr比で90:10となる割合でベンゼンを混合して、ベンゼン10%の模擬廃水(COD:約850mg-COD/L、ケルダール態窒素:300mg/L)を調製した。
<Treatment 1: Treatment of scrubber wastewater>
Energy gas refining wastewater (scrubber wastewater) is mixed with benzene at a ratio of 90:10 in terms of oxygen demand CODCr ratio due to potassium dichromate. State nitrogen: 300 mg / L) was prepared.

上記模擬廃水を原廃水として、以下のように回分式による硝化脱窒廃水処理を行った。   Using the simulated wastewater as raw wastewater, nitrification and denitrification wastewater was treated by the batch method as follows.

1日の処理水量を1L/dとして、活性汚泥量:3000mg/L、嫌気工程60分、好気工程180分(DO:7〜8mg/L)、静置40分の条件で廃水処理を行った。この廃水処理を2週間継続した。この間に処理後の廃水のCOD値を測定して、COD換算による有機物の除去率を算出したところ、60%前後であった。又、処理後の廃水のケルダール態窒素濃度及び硝酸態窒素濃度を測定し、窒素除去率を算出したところ、50%前後であった。   The amount of activated sludge is 3000 mg / L, the anaerobic process is 60 minutes, the aerobic process is 180 minutes (DO: 7-8 mg / L), and the stationary water is 40 minutes. It was. This wastewater treatment was continued for 2 weeks. During this time, the COD value of the treated wastewater was measured, and the removal rate of organic matter in terms of COD was calculated to be around 60%. Moreover, when the Kjeldahl nitrogen concentration and nitrate nitrogen concentration of the treated wastewater were measured and the nitrogen removal rate was calculated, it was around 50%.

更に、スクラバ廃水にCODCr比で80:20となる割合でベンゼンを混合して、CODが約1000mg-COD/Lであるベンゼン20%の模擬廃水を調製し、これを原廃水として用いて、上記と同様に廃水処理を3週間継続したところ、廃水の有機物の除去率は、COD換算で70%以上となった。このときの窒素除去率は約60%であった。   Further, benzene is mixed with the scrubber wastewater at a ratio of 80:20 in the CODCr ratio to prepare simulated wastewater with 20% benzene having a COD of about 1000 mg-COD / L, and this is used as raw wastewater. When the wastewater treatment was continued for 3 weeks in the same manner as described above, the organic matter removal rate of the wastewater was 70% or more in terms of COD. The nitrogen removal rate at this time was about 60%.

<処理2:スクラバ廃水の処理>
ベンゼンを添加せず、エネルギーガス精製廃水由来CODCr以外の有機物を含まないベンゼン0%の模擬廃水(COD:約750mg-COD/L)を用意し、これを原廃水として、処理1と同様の条件で廃水処理を行い、処理後の廃水のCOD換算による有機物の除去率を求めたところ、50%前後であった。窒素除去率は30%であった。
<Treatment 2: Scrubber wastewater treatment>
Prepare benzene 0% simulated wastewater (COD: about 750 mg-COD / L) that does not contain benzene and does not contain organic substances other than CODCr derived from energy gas refined wastewater. When the wastewater treatment was performed, and the removal rate of organic substances in terms of COD conversion of the wastewater after treatment was determined, it was around 50%. The nitrogen removal rate was 30%.

有機物がベンゼン100%の廃水における生分解率は100%であり、スクラバ廃水CODCrの生分解率は上述のように50%であることから、ベンゼンの混合割合が10%及び20%の場合の理論上の生分解率を計算すると、55%(ベンゼン10%)及び60%(ベンゼン20%)となるが、この計算値を処理1の結果と比較すると、処理1の値が計算値を上回ることから、活性汚泥による難分解性有機物の分解能はベンゼンの添加によって向上することが明らかである。窒素除去能についても、ベンゼン添加による向上が明らかである。   The biodegradation rate in wastewater containing 100% benzene is 100%, and the biodegradation rate of scrubber wastewater CODCr is 50% as described above. Therefore, the theory when the mixing ratio of benzene is 10% and 20%. When the above biodegradation rate is calculated, it becomes 55% (benzene 10%) and 60% (benzene 20%). When this calculated value is compared with the result of treatment 1, the value of treatment 1 exceeds the calculated value. From this, it is clear that the resolution of persistent organic substances by activated sludge is improved by the addition of benzene. The nitrogen removal ability is also clearly improved by the addition of benzene.

<スクラバ廃水の処理>
ベンゼン水溶液にエネルギーガス精製廃水(スクラバ廃水)をCODCr比で30%、50%、60%又は70%となる割合で混合した模擬廃水を各々調製した。曝気槽と沈殿槽とで構成される標準活性汚泥処理装置を用いて、廃水処理量:5.5L/d、活性汚泥量:300mg/Lの条件で、1週間毎に順次模擬廃水を変更してスクラバ廃水比を増加させながら処理を継続した。各模擬廃水毎に、処理による有機物の除去率をCOD換算で求めたところ、除去率は、各々、97%(スクラバ水:30%)、95%(スクラバ水:50%)、95%(スクラバ水:60%)及び93%(スクラバ水:70%)であった。スクラバ廃水CODCrの生分解率は上述のように50%であることを考慮すると、ベンゼンの添加によってスクラバ廃水由来の有機物(難分解性有機物)の分解率が向上することが明らかである。
<Treatment of scrubber wastewater>
Simulated wastewater was prepared by mixing energy gas refined wastewater (scrubber wastewater) with a benzene aqueous solution in a ratio of 30%, 50%, 60% or 70% in terms of CODCr ratio. Using a standard activated sludge treatment device consisting of an aeration tank and a sedimentation tank, simulated wastewater was changed sequentially every week under the conditions of wastewater treatment volume: 5.5 L / d and activated sludge volume: 300 mg / L. The treatment was continued while increasing the scrubber wastewater ratio. For each simulated wastewater, the removal rate of organic substances by treatment was calculated in terms of COD. The removal rates were 97% (scrubber water: 30%), 95% (scrubber water: 50%), and 95% (scrubber), respectively. Water: 60%) and 93% (scrubber water: 70%). Considering that the biodegradation rate of the scrubber wastewater CODCr is 50% as described above, it is clear that the addition of benzene improves the decomposition rate of organic matter (refractory organic matter) derived from the scrubber wastewater.

GP:エネルギーガス精製装置、WT:廃水処理装置、
WS:スクラバ、CT:硫化カルボニル変換器、DS:脱硫装置、
DC:電気集塵器、AR:脱アンモニア装置、PC:加圧凝縮器、CU:洗浄部、
LS1,LS2:分液装置、PS:加圧分離器、AM:アンモニアストリッパ、
OX:オゾン酸化装置、AC:活性汚泥処理装置、
10:脱窒槽、20:硝化槽、30:沈殿池、13:攪拌装置、
22:曝気装置、W:廃水、S:活性汚泥、
GP: energy gas purification device, WT: wastewater treatment device,
WS: scrubber, CT: carbonyl sulfide converter, DS: desulfurizer,
DC: electrostatic precipitator, AR: deammonia device, PC: pressurized condenser, CU: cleaning unit,
LS1, LS2: liquid separator, PS: pressure separator, AM: ammonia stripper,
OX: ozone oxidizer, AC: activated sludge treatment equipment,
10: Denitrification tank, 20: Nitrification tank, 30: Sedimentation basin, 13: Stirring device,
22: Aeration device, W: Waste water, S: Activated sludge,

Claims (14)

エネルギーガス精製で排出される精製廃水を処理するための活性汚泥処理装置と、
エネルギーガス精製で排出される生分解性の芳香族化合物を前記活性汚泥処理装置に供給する有機物供給手段と
を有することを特徴とする廃水処理装置。
Activated sludge treatment equipment for treating refined wastewater discharged by energy gas refining,
An organic matter supply means for supplying a biodegradable aromatic compound discharged by energy gas refining to the activated sludge treatment device.
前記精製廃水は、アンモニア態窒素及び難分解性有機化合物を含有し、前記活性汚泥処理装置は、アンモニア態窒素の硝化と、硝酸態窒素を窒素に変換する脱窒とを交互に実施可能に構成され、供給される前記芳香族化合物は、脱窒において利用される請求項1記載の廃水処理装置。   The refined wastewater contains ammonia nitrogen and a hardly decomposable organic compound, and the activated sludge treatment device is configured to alternately perform nitrification of ammonia nitrogen and denitrification to convert nitrate nitrogen to nitrogen. The wastewater treatment apparatus according to claim 1, wherein the aromatic compound to be supplied is used in denitrification. 前記精製廃水は、化石燃料のガス化物を含むエネルギーガスの精製廃水であってフェノールを含有し、前記有機物供給手段が供給する前記芳香族化合物は、ベンゼン、トルエン及びキシレンからなる群より選択される少なくとも1種を含む請求項1又は2に記載の廃水処理装置。   The refined wastewater is an energy gas refined wastewater containing a gasification product of fossil fuel and contains phenol, and the aromatic compound supplied by the organic substance supply means is selected from the group consisting of benzene, toluene and xylene. The wastewater treatment apparatus according to claim 1 or 2, comprising at least one kind. 前記有機物供給手段は、エネルギーガス精製で排出される前記芳香族化合物に伴う水を前記芳香族化合物から除去する分液装置を有する請求項1〜3の何れかに記載の廃水処理装置。   The said organic substance supply means is a wastewater treatment apparatus in any one of Claims 1-3 which has a liquid separator which removes the water accompanying the said aromatic compound discharged | emitted by energy gas refining from the said aromatic compound. 更に、エネルギーガス精製廃水のアンモニア態窒素濃度を100mg-N/L以下に低下させるストリッピング装置と、エネルギーガス精製廃水のシアンの濃度を実質的に活性汚泥処理に影響を与えない濃度に低下させるシアン分解装置とを有し、前記エネルギーガス精製廃水は、前記ストリッピング装置及び前記シアン分解装置を介して前記活性汚泥処理装置に供給される請求項1〜4の何れかに記載の廃水処理装置。   Furthermore, a stripping device that lowers the ammonia nitrogen concentration of energy gas refining wastewater to 100 mg-N / L or lower, and the cyan concentration of energy gas refining wastewater to a concentration that does not substantially affect the activated sludge treatment. The wastewater treatment apparatus according to any one of claims 1 to 4, further comprising: a cyanide decomposition apparatus, wherein the energy gas refined wastewater is supplied to the activated sludge treatment apparatus via the stripping apparatus and the cyanide decomposition apparatus. . エネルギーガスを精製し、精製廃水及び生分解性の芳香族化合物を排出するエネルギーガス精製装置と、
前記芳香族化合物を用いて、前記精製廃水を活性汚泥処理する請求項1〜5の何れかに記載の廃水処理装置とを有するエネルギーガスの精製システム。
An energy gas purifier for purifying energy gas and discharging purified wastewater and biodegradable aromatic compounds;
The purification system of the energy gas which has a wastewater treatment apparatus in any one of Claims 1-5 which performs the activated sludge process of the said refinement | purification wastewater using the said aromatic compound.
前記エネルギーガス精製装置は、エネルギーガスを水洗するスクラバ装置と、エネルギーガスに含まれる前記芳香族化合物を液化する加圧凝縮器とを有し、前記スクラバ装置から、アンモニア態窒素及び有機化合物を含有する精製廃水が排出される請求項6記載のエネルギーガスの精製システム。   The energy gas purification device has a scrubber device for washing the energy gas with water and a pressure condenser for liquefying the aromatic compound contained in the energy gas, and contains ammonia nitrogen and an organic compound from the scrubber device. The purification system of the energy gas of Claim 6 from which the refinement | purification waste water to discharge is discharged | emitted. エネルギーガス精製で排出される精製廃水を処理する活性汚泥処理を有し、前記活性汚泥処理に、エネルギーガス精製で排出される生分解性の芳香族化合物を供給することを特徴とする廃水処理方法。   A wastewater treatment method comprising an activated sludge treatment for treating purified wastewater discharged by energy gas refining, and supplying the activated sludge treatment with a biodegradable aromatic compound discharged by energy gas refining . 前記精製廃水は、アンモニア態窒素及び難分解性有機化合物を含有し、前記活性汚泥処理は、アンモニア態窒素の硝化と、硝酸態窒素を窒素に変換する脱窒とを実施し、前記活性汚泥処理に供給される前記芳香族化合物は、脱窒において利用される請求項8記載の廃水処理方法。   The refined wastewater contains ammonia nitrogen and a hardly decomposable organic compound, and the activated sludge treatment includes nitrification of ammonia nitrogen and denitrification for converting nitrate nitrogen to nitrogen, and the activated sludge treatment. The wastewater treatment method according to claim 8, wherein the aromatic compound supplied to the tank is used in denitrification. 前記精製廃水は、化石燃料のガス化物を含むエネルギーガスの精製廃水であってフェノールを含有し、前記芳香族化合物は、ベンゼン、トルエン及びキシレンからなる群より選択される少なくとも1種を含む請求項8又は9に記載の廃水処理方法。   The refined wastewater is a refined wastewater of energy gas containing a gasification product of fossil fuel, containing phenol, and the aromatic compound contains at least one selected from the group consisting of benzene, toluene and xylene. The wastewater treatment method according to 8 or 9. エネルギーガス精製で排出される前記芳香族化合物に伴う水を前記芳香族化合物から除去する分液工程を有する請求項8〜10の何れかに記載の廃水処理方法。   The wastewater treatment method according to any one of claims 8 to 10, further comprising a liquid separation step of removing water accompanying the aromatic compound discharged by energy gas purification from the aromatic compound. 更に、エネルギーガス精製廃水のアンモニア態窒素濃度を100mg-N/L以下に低下させるストリッピングと、エネルギーガス精製廃水のシアンの濃度を実質的に活性汚泥処理に影響を与えない濃度に低下させるシアン分解とを有し、前記エネルギーガス精製廃水は、前記ストリッピング及び前記シアン分解を経た後に前記活性汚泥処理によって処理される請求項8〜11の何れかに記載の廃水処理方法。   Further, stripping for reducing the ammonia nitrogen concentration of the energy gas refining wastewater to 100 mg-N / L or less, and cyan for reducing the concentration of cyanide of the energy gas refining wastewater to a concentration that does not substantially affect the activated sludge treatment. The wastewater treatment method according to any one of claims 8 to 11, wherein the energy gas refined wastewater is treated by the activated sludge treatment after the stripping and the cyanide decomposition. エネルギーガスを精製する精製工程と、
請求項8〜12の何れかに記載の廃水処理方法に従って、前記精製工程で排出される生分解性の芳香族化合物を活性汚泥処理に供給して、前記精製工程で排出される精製廃水を活性汚泥処理によって処理する廃水処理工程とを有するエネルギーガスの精製方法。
A purification process for purifying the energy gas;
The biodegradable aromatic compound discharged | emitted by the said refinement | purification process is supplied to the activated sludge process according to the wastewater treatment method in any one of Claims 8-12, and the refinement | purification wastewater discharged | emitted by the said refinement | purification process is activated A method for purifying an energy gas comprising a wastewater treatment process for treatment by sludge treatment.
前記精製工程は、エネルギーガスを水洗するスクラバ処理と、エネルギーガスに含まれる前記芳香族化合物を液化する加圧凝縮処理とを有し、前記スクラバ処理によって、アンモニア態窒素及び有機化合物を含有する精製廃水が排出される請求項13記載のエネルギーガスの精製方法。   The purification step has a scrubber treatment for washing the energy gas with water and a pressure condensation treatment for liquefying the aromatic compound contained in the energy gas, and the purification step contains ammonia nitrogen and an organic compound. The method for purifying energy gas according to claim 13, wherein the waste water is discharged.
JP2009099589A 2009-04-16 2009-04-16 Waste water treatment method, waste water treatment apparatus, energy gas purification method and purification system Active JP5326766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099589A JP5326766B2 (en) 2009-04-16 2009-04-16 Waste water treatment method, waste water treatment apparatus, energy gas purification method and purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099589A JP5326766B2 (en) 2009-04-16 2009-04-16 Waste water treatment method, waste water treatment apparatus, energy gas purification method and purification system

Publications (2)

Publication Number Publication Date
JP2010247072A true JP2010247072A (en) 2010-11-04
JP5326766B2 JP5326766B2 (en) 2013-10-30

Family

ID=43310040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099589A Active JP5326766B2 (en) 2009-04-16 2009-04-16 Waste water treatment method, waste water treatment apparatus, energy gas purification method and purification system

Country Status (1)

Country Link
JP (1) JP5326766B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227450A (en) * 2013-05-21 2014-12-08 株式会社Ihi Syngas production system, and syngas production method
WO2015133048A1 (en) * 2014-03-03 2015-09-11 パナソニックIpマネジメント株式会社 Water processing assistance system and program
JP2020060524A (en) * 2018-10-12 2020-04-16 荏原工業洗浄株式会社 Method and device for treating mineral oil in radioactively controlled area

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834438B1 (en) * 2015-12-29 2018-04-13 엔텍이앤씨 주식회사 Apparatus and method for treating desulfurization waste water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657261A (en) * 1992-08-14 1994-03-01 Nippon Steel Corp Rapid thermal decomposition of coal
JP2000282065A (en) * 1999-03-30 2000-10-10 Kem:Kk Production of gas rich in methane
JP2007098353A (en) * 2005-10-07 2007-04-19 Nippon Steel Corp Activated sludge treatment method of wastewater
JP2008023488A (en) * 2006-07-24 2008-02-07 Central Res Inst Of Electric Power Ind Method for supplying electron donor to microorganism and its device, and bioreactor using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657261A (en) * 1992-08-14 1994-03-01 Nippon Steel Corp Rapid thermal decomposition of coal
JP2000282065A (en) * 1999-03-30 2000-10-10 Kem:Kk Production of gas rich in methane
JP2007098353A (en) * 2005-10-07 2007-04-19 Nippon Steel Corp Activated sludge treatment method of wastewater
JP2008023488A (en) * 2006-07-24 2008-02-07 Central Res Inst Of Electric Power Ind Method for supplying electron donor to microorganism and its device, and bioreactor using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014227450A (en) * 2013-05-21 2014-12-08 株式会社Ihi Syngas production system, and syngas production method
WO2015133048A1 (en) * 2014-03-03 2015-09-11 パナソニックIpマネジメント株式会社 Water processing assistance system and program
JP5866501B1 (en) * 2014-03-03 2016-02-17 パナソニックIpマネジメント株式会社 Water treatment support system, program
JP2020060524A (en) * 2018-10-12 2020-04-16 荏原工業洗浄株式会社 Method and device for treating mineral oil in radioactively controlled area
JP7141302B2 (en) 2018-10-12 2022-09-22 荏原工業洗浄株式会社 Method and equipment for processing mineral oil in radioactive controlled areas

Also Published As

Publication number Publication date
JP5326766B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
Ji et al. A review on the coal gasification wastewater treatment technologies: past, present and future outlook
Thomsen et al. Wet oxidation of aqueous phase from hydrothermal liquefaction of sewage sludge
CN103880242B (en) A kind of coal chemical industrial waste water advanced treatment process
CN101898844B (en) Method for treating salt-containing sewage
CN104496128B (en) A kind of lurgi gasifier advanced waste treatment system and method
JP4859192B2 (en) Advanced sewage treatment method and system
CN102344223A (en) Treatment or recycling method and purpose for coal gasification and coal carbonization waste water
CN106256787B (en) A kind of refinery sewage O3 catalytic oxidation processing method
CN107487966A (en) A kind of coking distilled ammonia wastewater deep treatment method
CN106396258B (en) Handle the process of coking wastewater
JP5326766B2 (en) Waste water treatment method, waste water treatment apparatus, energy gas purification method and purification system
CN104961302A (en) Treatment process for coal-chemical engineering waste water
CN108698855A (en) Wastewater treatment method and equipment
CN108975616A (en) Handle the system and method for biomass pyrolytic water
CN108383335B (en) High-concentration organic wastewater treatment system and method
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
CN102887612A (en) Coal chemical industrial wastewater treating and recycling method combined with coal dressing process
CN108911440A (en) A kind of method and system handling coking wastewater
KR20200024779A (en) Wastewater treatment system
CN208857099U (en) The system for handling biomass pyrolytic water
CN110330187A (en) A kind of greasy filth pyrolysis waste water treatment system
CN102211839A (en) Method for treating coal chemical wastewater
KR102153490B1 (en) High-efficiency biogasfication Process through denitrification of digested waste leachate using digestion gas and CHAR production using digested sludge
Sun et al. Current advances in coal chemical wastewater treatment technology
CN109896692A (en) A kind of coal-to-olefin and its technique of sewage treatment coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5326766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250