JP2010246214A - Device for regulating and monitoring battery voltage - Google Patents

Device for regulating and monitoring battery voltage Download PDF

Info

Publication number
JP2010246214A
JP2010246214A JP2009090785A JP2009090785A JP2010246214A JP 2010246214 A JP2010246214 A JP 2010246214A JP 2009090785 A JP2009090785 A JP 2009090785A JP 2009090785 A JP2009090785 A JP 2009090785A JP 2010246214 A JP2010246214 A JP 2010246214A
Authority
JP
Japan
Prior art keywords
battery
voltage
capacitor
pole double
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009090785A
Other languages
Japanese (ja)
Inventor
Takashi Imai
尊史 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITM KK
Original Assignee
ITM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITM KK filed Critical ITM KK
Priority to JP2009090785A priority Critical patent/JP2010246214A/en
Publication of JP2010246214A publication Critical patent/JP2010246214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery voltage regulating and monitoring device, capable of automatically balancing voltages of multiple batteries without loss, measuring the voltage of each battery through simple circuitry, and automatically determining whether each battery has reached its end of life. <P>SOLUTION: Switches SW1 to SWn provided in correspondence with multiple series-connected batteries BT1 to BTn are changed temporally and connected in parallel with a capacitor C. Electric charges are given and received between the connected batteries and capacitor C to balance the voltages. The voltage between both the ends of the capacitor C after balancing is measured with a voltage measurement unit 1 through a switch SWK and the measured voltage is stored in a storage unit 4. At a predetermined point of time, a measured voltage Vi and a reference voltage VK for the presence of deterioration are compared with each other. When the measured voltage Vi is lower than the reference voltage VK, it is determined that the battery BTi has deteriorated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、電池電圧調整監視装置、特に使用により各電池の電圧にバラツキが生じた場合に、各電池の電圧をバランス良く調整し、かつ各電池の正否を監視し得る電池電圧調整監視装置に関する。   The present invention relates to a battery voltage adjustment monitoring device, and more particularly to a battery voltage adjustment monitoring device capable of adjusting the voltage of each battery in a well-balanced manner and monitoring the correctness of each battery when variations occur in the voltage of each battery due to use. .

一定の電圧を出力する電池を用いて、各電池の電圧より比較的高い電圧を電源電圧として出力する必要がある場合、複数の電池を縦続接続して使用する。このような縦続接続された電池の消耗度合いなどをチェックする必要がある場合、それぞれ各電池の両端電圧を計測することがある。
上記のような電池の両端電圧を計測する技術として、被測定電池としての二次電池の両端電圧に対応する出力電圧を得る差動アンプと、差動アンプの出力電圧値を周波数に変換する電圧―周波数変換器と、周波数を被測定電池の電圧値として検出する検出手段としてのマイコンとを備え、電圧―周波数変換器を用いることによりマイコンとの間で一本の信号線で接続するだけで二次電圧の電圧を検出する構成が開示されている(例えば特許文献1参照)。
また、縦続接続された複数の電池の各電圧のバランスを取るために、それぞれの電池の両極から並列にそれぞれスイッチを介して1つのキャパシター(コンデンサ)の両極を連結し、各電池の両スイッチを連動させ、順次各電池の両極をキャパシターに連結するようにスイッチのON及びOFF操作を所定間隔で繰り返し、各電池の極間電位差のバランスを取るようにした電池パックバランス装置が開示されている(例えば特許文献2参照)。
また、直列に接続された二次電池を効率よく充電するために、二次電池を直列に接続し、その直列接続の両端に接続端子を有する主回路と、各二次電池に並列に接続され、抵抗とスイッチが直列に接続されたバイパス回路と、各二次電池の電圧を計測し、スイッチのオンオフ制御をする計測制御回路とを、備え、主回路の端部端子間に定電流の充電電流を流し、又は放電電流を流し、各二次電池の電圧を計測し、この二次電池の充放電を調整するようにした二次電池の充放電装置が開示されている(例えば特許文献3参照)。
When a battery that outputs a constant voltage and a voltage that is relatively higher than the voltage of each battery needs to be output as a power supply voltage, a plurality of batteries are connected in cascade. When it is necessary to check the degree of consumption of such cascaded batteries, the voltage across each battery may be measured.
As a technique for measuring the voltage across the battery as described above, a differential amplifier that obtains an output voltage corresponding to the voltage across the secondary battery as the battery to be measured, and a voltage that converts the output voltage value of the differential amplifier into a frequency -A frequency converter and a microcomputer as a detection means for detecting the frequency as the voltage value of the battery to be measured. By using a voltage-frequency converter, only a single signal line is connected to the microcomputer. The structure which detects the voltage of a secondary voltage is disclosed (for example, refer patent document 1).
In addition, in order to balance the voltages of a plurality of cascade-connected batteries, both poles of one capacitor (capacitor) are connected in parallel from both poles of each battery via a switch, and both switches of each battery are connected. A battery pack balance device is disclosed in which the switch is turned on and off repeatedly at predetermined intervals so that both electrodes of each battery are sequentially connected to a capacitor in order to balance the potential difference between the electrodes of each battery. For example, see Patent Document 2).
Moreover, in order to efficiently charge the secondary batteries connected in series, the secondary batteries are connected in series and connected to each secondary battery in parallel with a main circuit having connection terminals at both ends of the series connection. A bypass circuit in which a resistor and a switch are connected in series, and a measurement control circuit that measures the voltage of each secondary battery and controls the on / off of the switch, and charging a constant current between the end terminals of the main circuit A secondary battery charging / discharging device is disclosed in which a current is supplied or a discharge current is supplied, the voltage of each secondary battery is measured, and charging / discharging of the secondary battery is adjusted (for example, Patent Document 3). reference).

特開平11−109005号公報JP-A-11-109005 特開2000−166113号公報JP 2000-166113 A 特許第3517844号公報Japanese Patent No. 3517844

上記した特許文献1記載の電池電圧測定装置では、各電池の両端電圧を簡易に測り得るが、各電池の端子電圧にバラツキがある場合に、再充電等して調整する必要があり、各電池の電圧をバランス良くするためには手間を要するという問題があった。
また、特許文献2記載の電池パックバランス装置では、各電池の電圧バランスを簡単な回路構成で自動的になし得るが、電圧バランスを取る過程で電圧を計測する機能を有しないので各電池の端子電圧を測定し得ず、バランス度合いを確認したり、電池の寿命到来の有無を知り得ないという問題があった。
また、特許文献3記載の二次電池の充放電装置は、各電池の電圧バランスを取り得、しかも電圧計測も可能であるが、電圧バランスを取る際は、二次電池への充電と、その後のバイパス回路を通じての放電により低い所定の電圧まで落としてバランスを取るものであり、抵抗への通電によるバランスのため電力を消費するという不具合がある上、各電池毎のバイパス回路、各電池毎の電圧計測という手段を要し、処理が複雑になるという問題があった。
この発明は上記問題点に着目してなされたものであって、複数電池の電圧バランスを自動的にロス無くなし得るとともに、簡単な回路構成で、各電池の電圧を測定でき、その上、各電池の寿命の到来の有無を自動的に判断出来、不良電池を早期に発見し得る電池電圧調整監視装置を提供することを目的とする。
In the battery voltage measuring device described in Patent Document 1 described above, the voltage across each battery can be easily measured. However, when there is variation in the terminal voltage of each battery, it is necessary to adjust it by recharging or the like. There is a problem that it takes time and effort to improve the voltage balance.
Moreover, in the battery pack balance device described in Patent Document 2, the voltage balance of each battery can be automatically achieved with a simple circuit configuration, but since it does not have a function of measuring voltage in the process of voltage balancing, the terminal of each battery There was a problem that the voltage could not be measured, the degree of balance could not be confirmed, and the existence of the battery life could not be known.
Moreover, the charging / discharging device of the secondary battery described in Patent Document 3 can take the voltage balance of each battery and can also measure the voltage. However, when balancing the voltage, charging the secondary battery, The balance is reduced to a low predetermined voltage by discharging through the bypass circuit, and there is a problem that power is consumed for the balance by energizing the resistor, and the bypass circuit for each battery, the voltage for each battery. There is a problem in that it requires a means of measurement and the processing becomes complicated.
The present invention has been made paying attention to the above-mentioned problems, and can automatically reduce the voltage balance of a plurality of batteries without loss, and can measure the voltage of each battery with a simple circuit configuration. An object of the present invention is to provide a battery voltage adjustment monitoring device that can automatically determine whether or not a battery has reached the end of life and can detect a defective battery at an early stage.

この発明の請求項1に係る電池電圧調整監視装置は、縦続接続されてなる複数個(n個)の電池と、この各電池に対応して設けられ、一方端の2極が各電池の正側と負側に接続される複数個(n個)の第1の2極双投スイッチと、両端が前記2極双投スイッチの他方端の2極の一方と他方に接続され、各2極双投スイッチのON時に対応する電池に並列接続される蓄電器(コンデンサ)と、前記蓄電器の両端に一方端の2極が接続される第2の2極双投スイッチと、前記各電池を前記蓄電器に所定順次に切替接続するために、前記各第1の2極双投スイッチに所定順次に投入指令信号を送り、この第1の2極双投スイッチの投入指令信号の間に前記第2の2極双投スイッチに投入指令信号を送る制御部と、前記第2の2極双投スイッチの他方端の2極に入力部が接続され、前記第の2極双投スイッチのON時に前記蓄電器の両端電圧を受けて計測する電圧計測部と、からなることを特徴とする。
又、請求項2に係る電池電圧調整監視装置は、請求項1に係るものにおいて、前記n個のi(i=1〜n)番目の電池と蓄電器との接続に続く第2の2極双投スイッチの投入により前記電圧計測部で計測される電圧を記憶する記憶部と、この記憶部に記憶される電圧値に基づいてi番目の電池の劣化の有無を判断する電池正否評価手段とを、を備えることを特徴とする。
又、請求項3に係る電池電圧調整監視装置は、請求項2に係るものにおいて、前記電池圧正否評価手段が、予め設定する第1の基準電圧と、この第1の基準電圧と前記計測電圧とを比較する手段を含み、前記計測電圧が前記第1の基準電圧より低い場合にその電池が過放電になる恐れがあると判断するものであることを特徴とする。
又、請求項4に係る電池電圧調整装置は、請求項2に係るものにおいて、前記電池成否評価手段は、予め設定する第2の基準電圧と、この第2の基準電圧と前記計測電圧とを比較する手段を含み、前記計測電圧が前記第2の基準電圧より高い場合にその電池が過充電状態になる恐れがあると判断することを特徴とする。
又、この発明において、蓄電器は、一般的なコンデンサのほか等価的な容量の大きいリチューム二次電池、電気二重層コンデンサなど蓄電器容量の大きなものも含まれる。
According to a first aspect of the present invention, there is provided a battery voltage adjustment monitoring device which is provided in correspondence with a plurality (n) of batteries connected in cascade, and two electrodes at one end of each battery. A plurality (n) of first two-pole double-throw switches connected to the negative and negative sides, and both ends connected to one and the other of the two poles at the other end of the two-pole double-throw switch, A capacitor (capacitor) connected in parallel to a battery corresponding to the double-throw switch being turned on, a second two-pole double-throw switch with two poles at one end connected to both ends of the capacitor, and each battery connected to the capacitor In order to switch and connect to each of the first two-pole double-throw switches, a turn-on command signal is sent to the first two-pole double-throw switches in a predetermined order. A control unit for sending a closing command signal to the two-pole double-throw switch, and the other end of the second two-pole double-throw switch And a voltage measuring unit that receives and measures the voltage across the capacitor when the second two-pole double-throw switch is turned on.
According to a second aspect of the present invention, there is provided a battery voltage regulation monitoring device according to the first aspect, wherein the second i-pole battery is connected to the n i (i = 1 to n) -th battery and the capacitor. A storage unit that stores a voltage measured by the voltage measurement unit when a throw switch is turned on, and a battery correctness evaluation unit that determines whether or not the i-th battery has deteriorated based on a voltage value stored in the storage unit. It is characterized by providing.
According to a third aspect of the present invention, there is provided the battery voltage adjustment / monitoring device according to the second aspect, wherein the battery pressure correctness evaluation means sets the first reference voltage, the first reference voltage, and the measured voltage that are set in advance. And a means for judging that the battery may be over-discharged when the measured voltage is lower than the first reference voltage.
According to a fourth aspect of the present invention, there is provided the battery voltage adjusting apparatus according to the second aspect, wherein the battery success / failure evaluation means obtains a second reference voltage set in advance, the second reference voltage, and the measured voltage. Comparing means is included, and when the measured voltage is higher than the second reference voltage, it is determined that the battery may be overcharged.
Further, in the present invention, the capacitor includes not only a general capacitor but also a capacitor having a large capacity such as a rechargeable secondary battery having a large equivalent capacity, an electric double layer capacitor, and the like.

この発明によれば、各電池と蓄電器との間で対応する2極双投スイッチをONすることにより、高い方から低い方へ電荷を移動することにより両者の電圧を等しくして、各電池の電圧を均一化できるともに、その調整過程における電圧を確認できるばかりか、所定のタイミングで、各電池の電圧の正否を評価でき、各電池の消耗を判断でき、電源電池システムの破壊、不具合を未然に察知することができる。 According to the present invention, by turning on the corresponding two-pole double-throw switch between each battery and the battery, the voltage of both is made equal by moving the charge from the higher to the lower. In addition to being able to equalize the voltage and confirm the voltage during the adjustment process, it is possible to evaluate the correctness of the voltage of each battery at a predetermined timing, judge the consumption of each battery, and prevent damage or malfunction of the power battery system. Can be detected.

この発明の一実施形態に係る電池電圧調整監視装置の概略構成を説明する回路図である。It is a circuit diagram explaining the schematic structure of the battery voltage adjustment monitoring apparatus which concerns on one Embodiment of this invention. 同実施形態電池電圧調整監視装置の動作を説明するためのフロー図である。It is a flowchart for demonstrating operation | movement of the battery voltage adjustment monitoring apparatus of the embodiment. 同実施形態電池電圧調整監視装置の動作を説明するための各2極双投スイッチのON,OFFを示すタイミング波形図である。It is a timing waveform diagram which shows ON and OFF of each double pole double throw switch for demonstrating operation | movement of the battery voltage adjustment monitoring apparatus of the embodiment. 同実施形態電池電圧調整監視装置の信号処理装置の記憶部に記憶されるデータマップを示す図である。It is a figure which shows the data map memorize | stored in the memory | storage part of the signal processing apparatus of the battery voltage adjustment monitoring apparatus of the embodiment.

以下、実施の形態により、この発明をさらに詳細に説明する。図1は、この発明の一実施形態に係る電池電圧調整監視装置の回路構成を示す回路図である。
図1において、n個の電池(リチュウム電池)BT1、BT2、・・・、BTnが縦続(直列)接続されている。各電池BT1,BT2、・・・、BTnには、スイッチSR1を介して充電源6より、充電されるとともに、各電池BT1、BT2、・・・、BTnより、スイッチSR2を介して負荷8に放電される。また各電池BT1、BT2、・・・、BTnに対応して2極双投スイッチSW1、SW2、・・・、SWnが配置されている。
2極双スイッチSW1の1方端(左側)の2極端子が個別に電池BT1の+電極と−電極に接続されている。2極双投スイッチSW1の他方端(右側)の2極端子が個別にコンデンサCの一端と他端に接続されている。
また、2極双投スイッチSW2の一方端の2極端子が個別の電池BT2の+電極と−電極に接続されている。2極双投スイッチSW2の他方端の2極端子が個別にコンデンサCの一端と他端に接続されている。
さらに、2極双投スイッチSW3、・・・、SWnも同様に電池BT3、BT4、・・・、BTnの+電極と−電極に接続されており、また、同様の態様でコンデンサCに接続されている。
また、第2の2極双投スイッチSWKの一方端の2極端子が個別にコンデンサの一端と他端に接続されている。さらに、2極双投スイッチSWKの他方端の2極端子の一方が接地(GND)接続され、他方が電圧計測部1の入力端に接続されている。
信号処理装置2は、電池BT1、・・・、BTn、スイッチSW1、・・・、SWn及びSWK、電圧計測部1の制御を行うために配備され、制御演算部3,記憶部4,表示部5を備えている。制御演算部3は、スイッチSW1,SW2、・・・、SWnに所定の順にON信号S1、S2、・・・、Snを送り、スイッチSW1,SW2、・・・、SWnを時分割的に順次ONする。また各信号SI、S2、・・・、Snの間にスイッチSWKをONする信号SKを送り、スイッチSWKをONするとともに、電圧計測部1に計測指令を与え、計測電圧を取り込む。
また、信号処理装置の記憶部4は、電圧計測部1で計測した電圧、及びこの計測電圧に基づいて演算したデータを記憶する。
次に、この実施形態電池電圧調整監視装置の動作を、図2に示すフロー図、図3に示すタイムチャートを参照して説明する。
処理動作が開始されると、ステップST1において、最初にI=0である変数Iを1インクリメントする。これにより、最初はI=1とする。この変数Iは、スイッチSW1、・・・、SWnを何回目に順次切り替えを実行しているかを示す変数である。次に、ステップST2へ移行する。
ステップST2においては、最初にi=0である変数iを1インクリメントする。これにより、先ずi=1とする。この変数iは、スイッチSW1、・・・、SWnの何番目のスイッチをONするかを示す変数である。次にステップST3へ移行する。
ステップST3においては、スイッチSWi(=SW1)をT時間ONするためON指令信号S1で、スイッチSW1をONする。このスイッチSW1のONにより、電池BT1に並列にコンデンサCが接続される。
この電池BT1とコンデンサCの接続により、電池BT1の電荷がコンデンサCに移動し、電池BT1の電圧とコンデンサCに両端電圧が等しい電圧になったときに、電池BT1からの電荷移動が停止する。次に、ステップST4へ移行する。
ステップST4においては、スイッチSWKをT時間ONするためにON指令信号SK1をスイッチSWKに送りONする。これにより、コンデンサCの両端が電圧計測部1の入力端に接続される。次にステップST5へ移行する。
ステップST5においては、制御演算部3より電圧計測部1に計測指令を出し、電圧計測部1は、この計測指令を受けて、コンデンサCの電圧Vi(=V1)を計測し、電圧記憶部4に記憶する。続いて、ステップST6へ移行する。
ステップST6においては、今回記憶した電圧Viと、すでに記憶済みの電圧Vi−1とより、電池BTiと電池BTi−1の電圧差ΔV=Vi―Vi−1を算出し、同じく記憶部4に記憶する。次に、ステップST7へ移行する。
ステップST7においては、i=nか否か判定する。動作開始の当初はi=1であり、i=nではないから、ステップST7の判定NOで、ステップST2へ戻る。ステップST2では、変数iを1インクリメントし、i=2とする。次にステップST3へ移行する。
Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a circuit diagram showing a circuit configuration of a battery voltage adjustment monitoring device according to an embodiment of the present invention.
In FIG. 1, n batteries (lithium batteries) BT1, BT2,..., BTn are connected in cascade (in series). Each of the batteries BT1, BT2,..., BTn is charged from the charging source 6 through the switch SR1, and from each battery BT1, BT2,..., BTn to the load 8 through the switch SR2. Discharged. Further, two-pole double-throw switches SW1, SW2,..., SWn are arranged corresponding to the batteries BT1, BT2,.
Two-pole terminals at one end (left side) of the two-pole double switch SW1 are individually connected to the + electrode and the − electrode of the battery BT1. The two-pole terminal at the other end (right side) of the two-pole double-throw switch SW1 is individually connected to one end and the other end of the capacitor C.
The two-pole terminal at one end of the two-pole double-throw switch SW2 is connected to the + electrode and the − electrode of the individual battery BT2. Two-pole terminals at the other end of the two-pole double-throw switch SW2 are individually connected to one end and the other end of the capacitor C.
Further, the two-pole double-throw switches SW3,..., SWn are also connected to the + and − electrodes of the batteries BT3, BT4,..., BTn, and are connected to the capacitor C in the same manner. ing.
In addition, the two-pole terminal at one end of the second two-pole double-throw switch SWK is individually connected to one end and the other end of the capacitor. Furthermore, one of the other two-pole terminals of the two-pole double-throw switch SWK is connected to ground (GND), and the other is connected to the input end of the voltage measuring unit 1.
The signal processing device 2 is arranged to control the batteries BT1,..., BTn, switches SW1,..., SWn and SWK, and the voltage measuring unit 1, and includes a control calculation unit 3, a storage unit 4, and a display unit. 5 is provided. The control operation unit 3 sends ON signals S1, S2,..., Sn to the switches SW1, SW2,..., SWn in a predetermined order, and sequentially switches the switches SW1, SW2,. Turn on. Further, a signal SK for turning on the switch SWK is sent between the signals SI, S2,..., Sn, the switch SWK is turned on, a measurement command is given to the voltage measuring unit 1, and a measured voltage is taken in.
Moreover, the memory | storage part 4 of a signal processing apparatus memorize | stores the voltage calculated by the voltage measurement part 1, and the data calculated based on this measured voltage.
Next, the operation of the battery voltage adjustment monitoring device according to this embodiment will be described with reference to the flowchart shown in FIG. 2 and the time chart shown in FIG.
When the processing operation is started, in step ST1, first, the variable I where I = 0 is incremented by one. As a result, initially I = 1. This variable I is a variable indicating how many times the switches SW1,..., SWn are sequentially switched. Next, the process proceeds to step ST2.
In step ST2, first, the variable i where i = 0 is incremented by one. As a result, i = 1 is set first. This variable i is a variable that indicates what number of switches SW1,..., SWn are turned on. Next, the process proceeds to step ST3.
In step ST3, the switch SW1 is turned on with an ON command signal S1 to turn on the switch SWi (= SW1) for T time. By turning on the switch SW1, a capacitor C is connected in parallel to the battery BT1.
Due to the connection between the battery BT1 and the capacitor C, the charge of the battery BT1 moves to the capacitor C. When the voltage of the battery BT1 and the voltage across the capacitor C become equal to each other, the charge transfer from the battery BT1 stops. Next, the process proceeds to step ST4.
In step ST4, an ON command signal SK1 is sent to the switch SWK to turn it on to turn on the switch SWK for T time. As a result, both ends of the capacitor C are connected to the input ends of the voltage measuring unit 1. Next, the process proceeds to step ST5.
In step ST5, the control calculation unit 3 issues a measurement command to the voltage measurement unit 1, and the voltage measurement unit 1 receives the measurement command, measures the voltage Vi (= V1) of the capacitor C, and the voltage storage unit 4 To remember. Subsequently, the process proceeds to step ST6.
In step ST6, the voltage difference ΔV = Vi−Vi−1 between the battery BTi and the battery BTi-1 is calculated from the voltage Vi stored this time and the already stored voltage Vi−1, and stored in the storage unit 4 as well. To do. Next, the process proceeds to step ST7.
In step ST7, it is determined whether i = n. Since i = 1 at the beginning of the operation and not i = n, the determination returns to step ST2 in step ST7. In step ST2, the variable i is incremented by 1 and i = 2. Next, the process proceeds to step ST3.

ステップST3においては、スイッチSWi(=SW2)をT時間ONするためON指令信号S2で、スイッチSW2をONする。このスイッチSW2のONにより、電池BT2に並列にコンデンサCが接続される。
この電池BT2とコンデンサCの接続により、電池BT2とコンデンサCの間で電圧の高い方から低い方へ電荷が移動し、電池BT1の電圧とコンデンサCに両端電圧が等しい電圧になったときに、電荷移動が停止する。次に、ステップST4へ移行する。
ステップST4においては、スイッチSWKをT時間ONするためにON指令信号SK2をスイッチSWKに送りONする。これにより、コンデンサCの両端が電圧計測部1の入力端に接続される。次にステップST5へ移行する。
ステップST5においては、制御演算部2より電圧計測部1に計測指令を出し、電圧計測部1は、この計測指令を受けて、コンデンサCの電圧Vi(=V2)を計測し、記憶部4に記憶する。続いて、ステップST6へ移行する。
ステップST6においては、今回記憶した電圧Viと、すでに記憶済みの電圧Vi−1とより、電池BTiと電池BTi−1の電圧差ΔV=Vi―Vi−1を算出し、同じく記憶部4に記憶する。次に、ステップST7へ移行する。
ステップST7においては、i=nか否か判定する。ここでは、i=2であり、i=nではないから、ステップST7の判定NOで、また、ステップST2へ戻る。
以上のようにして、i=nとなるまで、ステップST2〜ST7の処理を繰り返し、スイッチSW1からスイッチSWnまでを順次ONして、バッテリBT1からBTnまでをコンデンサCに切り替え接続し、各電池とコンデンサC間で電圧の大なる方から小なる方向に電荷を移動させ、各電池の電圧が均一化されるようにしている。
電池BTnまでのコンデンサCに対する切り替え接続、及び電圧計測が終了すると、i=nとなり、ステップST7の判定はYESとなり、次にステップST8へ移行する。
ステップST8においては、変数iをクリア(i←0)する。続いてステップST9へ移行する。ステップST9においては、I=mか否か判定する。処理動作開始当初は、やはりI=1であり、I=mでないから、判定NOであり、ステップST1へ戻る。
ステップST1において、変数Iを1インクリメントする。ここでは、I=2となる。続いて、上記したI=1の時と同様に、ステップST2〜ST7の処理を実行し、スイッチSW1からスイッチSWnまでを順次ONして、バッテリBT1からBTnまでをコンデンサCに切り替え接続し、各電池とコンデンサC間で電圧の大なる方から小なる方向に電荷を移動させ、各電池の電圧の均一化をさらに進める。
以上のステップST1〜ST9の処理を、各電池の電圧がバランスされ、均一化されるまで、多数回(=m)にわたり、実行する。I=mとなると、ステップST9の判定は、YESとなり、次にステップST10へ移行する。
ステップST10においては、予め設定記憶してある消耗電池(過放電電池)の判定基準電圧VKと各電池電圧Viを比較し、Vi≦VKか否か判定する。通常は判定NOであり、この場合はステップST13へ移行する。しかし電池BTiが消耗しており、バランス処理後の電圧が極端に小の場合に判定YESで、ステップST11へ移行する。
ステップST11においては、信号処理装置2の表示部5に電池BTiの消耗を表示する。続いてステップST12へ移行し、過放電警告信号を主制御装置7へ出力する。
ここでの処理は、電池TBiの消耗度合,つまり過放電の度合いを判別しており、過放電による電池電圧不足では、電池の劣化に至る過放電状態になる前に、電池への放電禁止を求めるため信号出力を行っている。主制御装置7では、放電状態を考慮し、信号SC2によりスイッチSR2をオフし、放電を停止させることが出来る。
上記ステップST12の処理に続いて、ステップST13へ移行する。ステップST13においては、予め設定記憶している過剰充電電池電圧Vhと各電池電圧Viを比較し、Vi≧Vhか否か判定する。通常は判定NOであり、この場合は処理を終了する。しかし電池BTiが過充電状態にあり、電池電圧が高く、バランス処理を行っても、なお電圧が大である場合は、判定YESでステップST14へ移行する。
ステップST14においては、信号処理装置2の表示部5に電池BTi過充電警告を表示する。続いてステップST15へ移行し、過充電警告信号を主制御装置7に出力する。ここでの過重電警告信号の出力は、電池充電電圧が大では、危険な電池破壊に至る過剰充電になる前に電池への充電停止を求めるために行っている。主制御装置7では、過剰充電状態を考慮し信号SC1によりスイッチSR1をオフし、充電を停止させることができる。
なお、上記実施形態では、電池BTiの消耗を判断するのに、所定の時点で、電池電圧Viと判定基準電圧VKを比較しているが、他の実施形態として、各電圧Viの測定時に、前回の電圧Vi―1と今回の測定電圧Viの差(Vi―Vi―1)を求め、これにコンデンサCの静電容量Cを乗じた移動電気量C((Vi―Vi―1)を求めて記憶しておき、所定の時点での移動電気量、漏れ電気量により充電進行と共に流出量が多く発生し、放電の進行と共に流入量が多く発生する電池は容量の減退が考えられ、電池BTiの消耗度を判断するようにしても良い。これは電池の容量の減退により、他の電池より、電圧上昇/下降が早くなるからである。容量の減退した電池が発生すると、組電池全体の蓄積電気量の減少につながり、電池システムの能力低下になる。充電と共に流出が発生し、放電と共に流入が発生する電池は内部抵抗の増加が考えられ、電池BTiの劣化判断のデータとすることが出来る。
トータルで電荷の流入量が多い電池は漏れ(リーク)の疑いが考えられる。このリーク発生は、組電池の能力減退につながるし、多いリークは安全上にも問題である。上記のように、組電池全体の構成電池の監視を精細に行うことによって、より安全な電池システムを実現できる。
In step ST3, the switch SW2 is turned on with an ON command signal S2 to turn on the switch SWi (= SW2) for T time. By turning on the switch SW2, the capacitor C is connected in parallel to the battery BT2.
When the battery BT2 and the capacitor C are connected, the charge moves between the battery BT2 and the capacitor C from the higher voltage to the lower voltage, and the voltage across the battery BT1 and the capacitor C are equal to each other. Charge transfer stops. Next, the process proceeds to step ST4.
In step ST4, an ON command signal SK2 is sent to the switch SWK to turn it on for T time to turn on the switch SWK. As a result, both ends of the capacitor C are connected to the input ends of the voltage measuring unit 1. Next, the process proceeds to step ST5.
In step ST5, the control calculation unit 2 issues a measurement command to the voltage measurement unit 1, and the voltage measurement unit 1 receives the measurement command, measures the voltage Vi (= V2) of the capacitor C, and stores it in the storage unit 4. Remember. Subsequently, the process proceeds to step ST6.
In step ST6, the voltage difference ΔV = Vi−Vi−1 between the battery BTi and the battery BTi-1 is calculated from the voltage Vi stored this time and the already stored voltage Vi−1, and stored in the storage unit 4 as well. To do. Next, the process proceeds to step ST7.
In step ST7, it is determined whether i = n. Here, since i = 2 and not i = n, the determination in step ST7 is NO, and the process returns to step ST2.
As described above, the processes of steps ST2 to ST7 are repeated until i = n, the switches SW1 to SWn are sequentially turned on, and the batteries BT1 to BTn are switched and connected to the capacitor C. The electric charge is moved between the capacitors C in the direction from the larger voltage to the smaller voltage so that the voltage of each battery is made uniform.
When the switching connection to the capacitor C up to the battery BTn and the voltage measurement are completed, i = n, the determination in step ST7 is YES, and the process proceeds to step ST8.
In step ST8, the variable i is cleared (i ← 0). Subsequently, the process proceeds to step ST9. In step ST9, it is determined whether I = m. At the beginning of the processing operation, since I = 1 and not I = m, the determination is NO, and the process returns to step ST1.
In step ST1, the variable I is incremented by one. Here, I = 2. Subsequently, as in the case of I = 1 described above, the processing of steps ST2 to ST7 is executed, the switches SW1 to SWn are sequentially turned on, the batteries BT1 to BTn are switched and connected to the capacitors C, Electric charges are moved between the battery and the capacitor C in the direction from the larger voltage to the smaller voltage, and the voltage of each battery is further made uniform.
The processes in steps ST1 to ST9 described above are performed many times (= m) until the voltages of the respective batteries are balanced and equalized. When I = m, the determination in step ST9 is YES, and then the process proceeds to step ST10.
In step ST10, the determination reference voltage VK of the consumable battery (overdischarge battery) that has been set and stored in advance is compared with each battery voltage Vi to determine whether Vi ≦ VK. Usually, the determination is NO, and in this case, the process proceeds to step ST13. However, when the battery BTi is exhausted and the voltage after the balancing process is extremely small, the determination is YES, and the process proceeds to step ST11.
In step ST11, the consumption of the battery BTi is displayed on the display unit 5 of the signal processing device 2. Then, it transfers to step ST12 and outputs an overdischarge warning signal to the main controller 7.
In this process, the degree of consumption of the battery TBi, that is, the degree of overdischarge is determined. If the battery voltage is insufficient due to overdischarge, the battery is prohibited from being discharged before the overdischarge state leading to deterioration of the battery. Signal output is performed to obtain this. In main controller 7, in consideration of the discharge state, switch SR2 can be turned off by signal SC2 to stop the discharge.
Following the process of step ST12, the process proceeds to step ST13. In step ST13, the overcharged battery voltage Vh set and stored in advance is compared with each battery voltage Vi to determine whether Vi ≧ Vh. Usually, the determination is NO, and in this case, the process ends. However, if the battery BTi is in an overcharged state, the battery voltage is high, and the balance process is performed, but the voltage is still high, the process proceeds to step ST14 with a determination YES.
In step ST14, a battery BTi overcharge warning is displayed on the display unit 5 of the signal processing device 2. Then, it transfers to step ST15 and outputs an overcharge warning signal to the main controller 7. Here, the output of the over-electricity warning signal is performed in order to obtain a charge stoppage to the battery before the battery is overcharged leading to dangerous battery destruction when the battery charging voltage is large. In main controller 7, the switch SR1 can be turned off by signal SC1 in consideration of the overcharged state to stop charging.
In the above-described embodiment, the battery voltage Vi and the determination reference voltage VK are compared at a predetermined time point to determine the consumption of the battery BTi. However, as another embodiment, at the time of measuring each voltage Vi, The difference (Vi-Vi-1) between the previous voltage Vi-1 and the current measurement voltage Vi is obtained, and the amount of moving electricity C ((Vi-Vi-1)) obtained by multiplying this by the capacitance C of the capacitor C is obtained. A battery that generates a large amount of outflow as the charging progresses due to the amount of moving electricity and the amount of leaked electricity at a predetermined point in time, and a battery that generates a large amount of inflow as the discharge progresses can be considered as a decrease in capacity. It is also possible to determine the degree of consumption of the battery because the decrease in battery capacity causes the voltage to rise / fall faster than other batteries. Battery system A battery in which outflow occurs with charging and inflow occurs with discharge can be considered as an increase in internal resistance, and can be used as data for determining the deterioration of the battery BTi.
A battery with a large amount of inflow of electric charge is considered to be a leak. The occurrence of this leak leads to a decrease in the capacity of the assembled battery, and many leaks are also a safety problem. As described above, a safer battery system can be realized by finely monitoring the constituent batteries of the entire assembled battery.

BT1,BT2,・・・,BTn 電池
SW1,SW2,・・・,SWn 2極双投スイッチ
SWK 第2の2極双投スイッチ
C コンデンサ
1 電圧計測部
2 信号処理装置
3 制御部
4 記憶部
5 表示部
6 充電源
7 主制御装置
8 負荷
BT1, BT2, ..., BTn batteries
SW1, SW2,..., SWn Two-pole double-throw switch SWK Second two-pole double-throw switch C Capacitor 1 Voltage measurement unit 2 Signal processing unit 3 Control unit 4 Storage unit 5 Display unit 6 Charging source 7 Main control unit 8 load

Claims (4)

縦続接続されてなる複数個(n個)の電池と、
この各電池に対応して設けられ、一方端の2極が各電池の正側と負側に接続される複数個(n個)の第1の2極双投スイッチと、
両端が前記2極双投スイッチの他方端の2極の一方と他方に接続され、各2極双投スイッチのON時に対応する電池に並列接続される蓄電器と、
前記蓄電器の両端に一方端の2極が接続される第2の2極双投スイッチと、
前記各電池を前記蓄電器に所定順次に切替接続するために、前記各第1の2極双投スイッチに所定順次に投入指令信号を送り、この第1の2極双投スイッチの投入指令信号の間に前記第2の2極双投スイッチに投入指令信号を送る制御部と、
前記第2の2極双投スイッチの他方端の2極に入力部が接続され、前記第の2極双投スイッチのON時に前記蓄電器の両端電圧を受けて計測する電圧計測部と、
からなることを特徴とする電池電圧調整監視装置。
A plurality (n) of batteries connected in cascade;
A plurality of (n) first two-pole double-throw switches provided corresponding to each of the batteries, the two poles at one end being connected to the positive side and the negative side of each battery;
A battery having both ends connected to one and the other of the two poles at the other end of the two-pole double-throw switch, and connected in parallel to the corresponding battery when each two-pole double-throw switch is ON;
A second double-pole double-throw switch in which two poles at one end are connected to both ends of the capacitor;
In order to switch and connect each battery to the capacitor in a predetermined sequence, a turn-in command signal is sent to each first double-pole double-throw switch in a predetermined sequence. A control unit that sends a closing command signal to the second two-pole double-throw switch in-between;
A voltage measuring unit having an input connected to the other two poles of the second two-pole double-throw switch, and receiving and measuring the voltage across the capacitor when the second two-pole double-throw switch is ON;
A battery voltage adjustment monitoring device comprising:
前記n個のi(i=1〜n)番目の電池と蓄電器との接続に続く第2の2極双投スイッチの投入により前記電圧計測部で計測される電圧を記憶する記憶部と、この記憶部に記憶される電圧値に基づいてi番目の電池の劣化の有無を判断する電池正否評価手段とを、を備えることを特徴とする請求項1記載の電池電圧調整監視装置。     A storage unit for storing a voltage measured by the voltage measurement unit by turning on a second two-pole double-throw switch following the connection of the n i (i = 1 to n) -th battery and the capacitor; The battery voltage adjustment monitoring apparatus according to claim 1, further comprising: a battery correctness evaluation unit that determines whether or not the i-th battery has deteriorated based on a voltage value stored in the storage unit. 前記電池正否評価手段は、予め設定する第1の基準電圧と、前記計測電圧とを比較する手段を含み、前記計測電圧が前記第1の基準電圧より低い場合にその電池が過放電になる恐れがあるものと判断するものであることを特徴とする請求項2記載の電池電圧調整監視装置。     The battery correctness evaluation means includes means for comparing a first reference voltage set in advance with the measured voltage, and the battery may be overdischarged when the measured voltage is lower than the first reference voltage. The battery voltage adjustment monitoring apparatus according to claim 2, wherein the battery voltage adjustment monitoring apparatus is determined to be present. 前記電池正否評価手段は、予め設定する第2の基準電圧と、前記第2の基準電圧と前記計測電圧とを比較する手段を含み、前記計測電圧が前記第2の基準電圧より高い場合に電池が過充電状態になる恐れがあると判断するものであることを特徴とする請求項2記載の電池電圧調整監視装置。     The battery correctness evaluation means includes means for comparing a second reference voltage set in advance with the second reference voltage and the measured voltage, and the battery is measured when the measured voltage is higher than the second reference voltage. The battery voltage adjustment monitoring device according to claim 2, wherein the battery voltage is determined to be in an overcharged state.
JP2009090785A 2009-04-03 2009-04-03 Device for regulating and monitoring battery voltage Pending JP2010246214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090785A JP2010246214A (en) 2009-04-03 2009-04-03 Device for regulating and monitoring battery voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090785A JP2010246214A (en) 2009-04-03 2009-04-03 Device for regulating and monitoring battery voltage

Publications (1)

Publication Number Publication Date
JP2010246214A true JP2010246214A (en) 2010-10-28

Family

ID=43098637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090785A Pending JP2010246214A (en) 2009-04-03 2009-04-03 Device for regulating and monitoring battery voltage

Country Status (1)

Country Link
JP (1) JP2010246214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519803A (en) * 2011-06-17 2014-08-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Battery system and method for supplying an intermediate voltage
CN111668565A (en) * 2020-07-09 2020-09-15 上海百杉智能科技有限公司 Active equalization system and method for storage battery pack
CN115037018A (en) * 2022-08-09 2022-09-09 国网江西省电力有限公司电力科学研究院 Storage battery pack control method and system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201522A (en) * 2000-01-19 2001-07-27 Hitachi Ltd Cell voltage detecting circuit of multi-cell series battery and battery pack by using it
JP2002247777A (en) * 2001-02-20 2002-08-30 Nissan Motor Co Ltd Charge control device of battery pack
JP2007003434A (en) * 2005-06-27 2007-01-11 Honda Motor Co Ltd Detecting device for battery pack voltage
JP2007311256A (en) * 2006-05-19 2007-11-29 Fuji Electric Systems Co Ltd Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program
JP2008125236A (en) * 2006-11-10 2008-05-29 Sanyo Electric Co Ltd Power supply device for vehicles equipped with overcharge/overdischarge detection circuit
JP2009055689A (en) * 2007-08-24 2009-03-12 Toshiba Corp Protection device for assembled battery and assembled battery including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201522A (en) * 2000-01-19 2001-07-27 Hitachi Ltd Cell voltage detecting circuit of multi-cell series battery and battery pack by using it
JP2002247777A (en) * 2001-02-20 2002-08-30 Nissan Motor Co Ltd Charge control device of battery pack
JP2007003434A (en) * 2005-06-27 2007-01-11 Honda Motor Co Ltd Detecting device for battery pack voltage
JP2007311256A (en) * 2006-05-19 2007-11-29 Fuji Electric Systems Co Ltd Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program
JP2008125236A (en) * 2006-11-10 2008-05-29 Sanyo Electric Co Ltd Power supply device for vehicles equipped with overcharge/overdischarge detection circuit
JP2009055689A (en) * 2007-08-24 2009-03-12 Toshiba Corp Protection device for assembled battery and assembled battery including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519803A (en) * 2011-06-17 2014-08-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Battery system and method for supplying an intermediate voltage
CN111668565A (en) * 2020-07-09 2020-09-15 上海百杉智能科技有限公司 Active equalization system and method for storage battery pack
CN115037018A (en) * 2022-08-09 2022-09-09 国网江西省电力有限公司电力科学研究院 Storage battery pack control method and system

Similar Documents

Publication Publication Date Title
KR101256079B1 (en) Balancing Method and Balancing System of Battery Pack
US8653792B2 (en) Power storage system including a plurality of battery modules and on/off devices or voltage converters
EP2418751B1 (en) Battery charger and battery charging method
US9525289B2 (en) Battery control system and battery pack
US9444267B2 (en) Cell voltage equalizer for multi-cell battery pack which determines the waiting time between equalization operations based on the voltage difference and the state of charge level
US9136716B2 (en) Bottom based balancing in lithium ion system
EP2838152B1 (en) Discharging device for electricity storage device
US20130057224A1 (en) Control system of battery pack and method of charging and discharging using the same
JP5910889B2 (en) Power storage system
US10211490B2 (en) Storage battery deterioration measurement device and power storage system
JP5727857B2 (en) Secondary battery deterioration determination method and secondary battery deterioration determination device
WO2015056068A1 (en) Electric storage system
CN108028536B (en) Battery monitoring device
RU2612407C2 (en) Method for charging battery and charged battery
JP2007174894A (en) Battery management system, battery management method, battery system, and automobile
EP3719917B1 (en) Chargeable battery abnormality detection apparatus and chargeable battery abnormality detection method
WO2012132160A1 (en) Device for measuring degradation, rechargeable battery pack, method for measuring degradation, and program
JP2010032412A (en) Power supply for vehicle
JP2007240234A (en) Pack battery with two or more secondary batteries connected in series/parallel
US9863993B2 (en) Storage battery monitoring device with wiring disconnection detection
WO2015178075A1 (en) Battery control device
JP2023522463A (en) Battery management system, battery pack, energy storage system and battery management method
JP5332062B2 (en) Uninterruptible power supply system and battery charging method
JP2010246214A (en) Device for regulating and monitoring battery voltage
KR20190048526A (en) Cell balancing apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140404