JP2007311256A - Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program - Google Patents

Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program Download PDF

Info

Publication number
JP2007311256A
JP2007311256A JP2006140588A JP2006140588A JP2007311256A JP 2007311256 A JP2007311256 A JP 2007311256A JP 2006140588 A JP2006140588 A JP 2006140588A JP 2006140588 A JP2006140588 A JP 2006140588A JP 2007311256 A JP2007311256 A JP 2007311256A
Authority
JP
Japan
Prior art keywords
assembled battery
voltage
deviation
deterioration
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006140588A
Other languages
Japanese (ja)
Other versions
JP4818808B2 (en
Inventor
Ken Aoyama
謙 青山
Takayuki Toyoda
貴之 豊田
Toshiaki Yabumoto
俊昭 薮本
Hitoshi Shishido
仁 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Furukawa Battery Co Ltd
Toyota Motor Corp
Original Assignee
Furukawa Battery Co Ltd
Fuji Electric Systems Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd, Fuji Electric Systems Co Ltd, Toyota Motor Corp filed Critical Furukawa Battery Co Ltd
Priority to JP2006140588A priority Critical patent/JP4818808B2/en
Publication of JP2007311256A publication Critical patent/JP2007311256A/en
Application granted granted Critical
Publication of JP4818808B2 publication Critical patent/JP4818808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily determine deterioration of a battery pack while securing determination precision of deterioration of the battery pack used as an emergency power supply facility. <P>SOLUTION: As for a battery pack status measuring device 7, voltages of respective unit batteries constituting the battery pack 3 are periodically measured at every prescribed time after detecting discharge of the battery pack 3, voltage values of the respective unit batteries in the battery pack 3 in discharging at the same time are classified according to preset partitions, points are imparted to these partitions, and the points are also imparted by means that appearance frequency is divided of deviation of the measurement voltage, and by means that the points decided by the distribution and the appearance frequency of the deviation of the measurement voltage are comprehensively evaluated regarding the all unit batteries constituting the battery pack 3, the deterioration state of the whole battery pack 3 is determined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラムに関し、特に、非常用電源設備として用いられる組電池の劣化判定方法に適用して好適なものである。   The present invention relates to an assembled battery state measurement device, an assembled battery deterioration determination method, and an assembled battery deterioration determination program, and is particularly suitable for application to an assembled battery deterioration determination method used as an emergency power supply facility.

鉛蓄電池は単位電池(セル)当たりの起電力が制限されることから所定の電圧が得られるように、例えば、24セルや48セル分の単位電池を組電池として構成して運用することが一般的に行われている。また、必要な容量が得られるようにするために、単位電池を並列に接続して用いられることもある。すなわち、組電池は、用途に応じた容量および電圧を確保するために、複数の単位電池を直並列に接続して構成される。   Since lead-acid batteries are limited in electromotive force per unit battery (cell), for example, unit batteries for 24 cells or 48 cells are generally configured and operated as an assembled battery so that a predetermined voltage can be obtained. Has been done. In order to obtain a required capacity, unit batteries may be connected in parallel and used. That is, the assembled battery is configured by connecting a plurality of unit batteries in series and parallel in order to ensure a capacity and voltage according to the application.

その際、鉛蓄電池には寿命があることから組電池にも寿命があり、組電池の経済性および信頼性の面から組電池の寿命を正確に判定し、組電池の交換時期を的確に把握できるようにする方法が望まれている。
組電池の劣化形態としては、組電池全体でほぼ均一に劣化が進行する場合もあるが、組電池を構成する一部の単位電池の劣化に起因する場合もある。組電池を構成する一部の単位電池の劣化の原因としては、組電池を構成する単位電池間の製造バラツキに起因する初期からの特性差、あるいは運用中の温度差などの環境条件に起因する劣化の進行の違いなどが考えられる。さらに、この組電池を構成する単位電池間の劣化のバラツキは運用時間の延長とともに拡大していく。
At that time, since the lead-acid battery has a lifetime, the assembled battery also has a lifetime. From the viewpoint of the economic and reliability of the assembled battery, the life of the assembled battery is accurately determined, and the replacement time of the assembled battery is accurately grasped. There is a need for a way to make it possible.
As a deterioration mode of the assembled battery, there are cases where the deterioration progresses almost uniformly in the entire assembled battery, but there are also cases where it is caused by deterioration of some unit cells constituting the assembled battery. The cause of deterioration of some unit cells constituting the assembled battery is caused by environmental characteristics such as a difference in characteristics from the initial stage due to manufacturing variation among the unit cells constituting the assembled battery, or a temperature difference during operation. Differences in the progress of deterioration can be considered. Furthermore, the variation in deterioration among the unit batteries constituting the assembled battery increases as the operation time is extended.

そして、組電池として運用される際には、これらの単位電池の特性の低下が組電池としての特性の低下を引き起こす。特に、劣化が進行した単位電池があると、その単位電池の放電時の電圧の低下が激しくなり、組電池の総電圧の低下を加速し、組電池に対する性能の要求を果たせなくなることから、組電池としての放電時間の短縮を招くようになる。
ここで、例えば、特許文献1には、車両走行時などの組電池の通常の使用中に組電池を構成する単位電池の異常を検出できるようにするため、所定電力放電時の電圧変化を測定し、この時の放電挙動を調べることにより、セルの異常を診断する方法が開示されている。
And when it operates as an assembled battery, the fall of the characteristic of these unit batteries causes the fall of the characteristic as an assembled battery. In particular, if there is a unit battery that has deteriorated, the voltage drop at the time of discharge of the unit battery becomes severe, accelerating the decrease in the total voltage of the battery pack, and cannot meet the performance requirements for the battery pack. The discharge time as a battery is shortened.
Here, for example, in Patent Document 1, a voltage change at the time of discharging a predetermined power is measured in order to be able to detect an abnormality of a unit battery constituting the assembled battery during normal use of the assembled battery such as when the vehicle is running. A method for diagnosing cell abnormality by examining the discharge behavior at this time is disclosed.

また、特許文献2には、鉛蓄電池の劣化状態の検知や容量の推定を精度よく行えるようにするために、1〜1000Hzのいずれかの周波数の交流電源にて鉛蓄電池の交流インピーダンスを測定する方法が開示されている。
また、特許文献3には、組電池を構成する各単電池の最小の電圧値および最大の電圧値が存在し得る電圧判定点の範囲のうち、最低の電圧判定点の電圧値と最大の電圧判定点の電圧値との差で表される単電池の電圧分布域を検出し、単電池の電圧分布域が所定範囲内か否かによって組電池の異常を判定する方法が開示されている。
特許第3559900号公報 特開平5−281310号公報 特許第3711639号公報
In Patent Document 2, the AC impedance of the lead storage battery is measured with an AC power source having a frequency of 1 to 1000 Hz in order to accurately detect the deterioration state of the lead storage battery and estimate the capacity. A method is disclosed.
Further, in Patent Document 3, the voltage value of the lowest voltage determination point and the maximum voltage among the voltage determination point ranges in which the minimum voltage value and the maximum voltage value of each unit cell constituting the assembled battery can exist are disclosed. A method is disclosed in which a battery cell voltage distribution area represented by a difference from a voltage value at a determination point is detected, and an abnormality of the assembled battery is determined based on whether the voltage distribution area of the battery cell is within a predetermined range.
Japanese Patent No. 3559900 JP-A-5-281310 Japanese Patent No. 3711639

しかしながら、特許文献1に開示された方法では、電気自動車のように頻繁に充放電を繰り返すような用途に用いられるため、個々の単位電池の挙動を解析するための処理が煩雑化し、処理に時間を要するとともに装置が複雑化し、非常用電源設備のように定常時充電状態であるような組電池の劣化判定方法には適さないという問題があった。
また、特許文献2に開示された方法では、頻繁に充放電を繰り返すような運用条件では、鉛蓄電池の交流インピーダンスの変化が小さく、組電池の劣化を精度よく判定することができないという問題があった。特に、鉄道用非常用電源などのように計画的に停電が頻繁に繰り返されるような用途には組電池の劣化を正確に判定することができなかった。
However, since the method disclosed in Patent Document 1 is used for applications where charging and discharging are frequently repeated as in an electric vehicle, the processing for analyzing the behavior of individual unit cells becomes complicated, and the processing takes time. In addition, there is a problem that the apparatus becomes complicated and is not suitable for a method for determining deterioration of an assembled battery that is in a steady state charging state as in an emergency power supply facility.
In addition, the method disclosed in Patent Document 2 has a problem in that the change in the AC impedance of the lead storage battery is small and the deterioration of the assembled battery cannot be accurately determined under operating conditions in which charging and discharging are frequently repeated. It was. In particular, it has not been possible to accurately determine the deterioration of the assembled battery in applications where power outages are frequently repeated systematically such as emergency power supplies for railways.

また、特許文献3に開示された方法では、組電池の異常を判定するために、単電池の電圧分布域しか見ていないため、各単電池が均等に劣化している場合は、組電池の劣化の検出が困難になるという問題があった。
そこで、本発明の目的は、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能な組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラムを提供することである。
In addition, in the method disclosed in Patent Document 3, since only the voltage distribution range of the unit cells is seen in order to determine the abnormality of the unit cells, when each unit cell is uniformly deteriorated, There was a problem that it was difficult to detect deterioration.
Accordingly, an object of the present invention is to provide an assembled battery state measuring device and an assembled battery deterioration determination that can easily determine deterioration of the assembled battery while ensuring the accuracy of determining deterioration of the assembled battery used as an emergency power supply facility. A method and a battery pack deterioration determination program are provided.

上述した課題を解決するために、請求項1記載の組電池状態測定装置によれば、非常用電源設備として用いられる組電池を構成する各単位電池の放電時の電圧を測定する電圧測定手段と、設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定する電圧偏差分布判定手段と、前記設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度に基づいて、前記組電池の劣化状態を判定する組電池状態判定手段とを備えることを特徴とする。   In order to solve the above-described problem, according to the assembled battery state measuring device according to claim 1, voltage measuring means for measuring a voltage at the time of discharging of each unit battery constituting the assembled battery used as an emergency power supply facility; A voltage deviation distribution determining means for determining a distribution and an appearance frequency of the deviation of the measured voltage with respect to the equipment design specification voltage, and a distribution and an appearance frequency of the deviation of the measurement voltage with respect to the equipment design specification voltage. And a battery pack state determining means for determining the deterioration state.

これにより、充電器の出力電圧の影響を受けることなく、各単位電池の放電時の電圧を検出することが可能となり、個々の単位電池の電圧異常を精度よく検出することが可能となるとともに、設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定することで、少数の単位電池が重度に劣化した場合だけでなく、多数の単位電池が軽度に劣化した場合においても、非常用電源設備として用いられる組電池全体の劣化を判定することが可能となる。このため、非常用電源設備として用いられる組電池全体の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能となり、装置構成の簡略化を図りつつ、非常用電源設備のように定常時充電状態であるような組電池全体の劣化判定を有効に行うことが可能となる。   Thereby, it becomes possible to detect the voltage at the time of discharge of each unit battery without being affected by the output voltage of the charger, and it is possible to accurately detect the voltage abnormality of each unit battery, By determining the distribution and frequency of occurrence of the deviation of the measured voltage with respect to the design specification voltage, not only when a small number of unit cells are severely degraded, but also when a large number of unit cells are slightly degraded, It becomes possible to determine the deterioration of the entire assembled battery used as equipment. Therefore, it is possible to easily determine the deterioration of the assembled battery while ensuring the accuracy of determining the deterioration of the entire assembled battery used as an emergency power supply facility, and to simplify the device configuration, the emergency power supply facility Thus, it is possible to effectively perform the deterioration determination of the entire assembled battery that is in the steady state charging state.

また、請求項2記載の組電池劣化判定方法によれば、非常用電源設備として用いられる組電池を負荷に接続したまま前記組電池と充電器とを電気的に遮断するステップと、前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧を測定するステップと、設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定するステップと、前記設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度に基づいて、前記組電池の劣化状態を判定するステップとを備えることを特徴とする。   Further, according to the assembled battery deterioration judging method according to claim 2, the step of electrically disconnecting the assembled battery and the charger while the assembled battery used as an emergency power supply facility is connected to a load; and the charger Measuring the voltage at the time of discharge of each unit battery constituting the assembled battery in an electrically disconnected state, determining the distribution and appearance frequency of the deviation of the measured voltage with respect to the facility design specification voltage, Determining a deterioration state of the assembled battery based on a distribution and an appearance frequency of the deviation of the measured voltage with respect to the facility design specification voltage.

これにより、組電池を負荷に接続したまま各単位電池の電圧を計測することが可能となり、組電池の実際の運用時における各単位電池の放電時の電圧を検出することが可能となるとともに、充電器の出力電圧の影響を受けることなく、各単位電池の放電時の電圧を検出することが可能となる。このため、個々の単位電池の電圧異常を精度よく検出することが可能となるとともに、設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定することで、非常用電源設備として用いられる組電池全体の劣化を判定することが可能となり、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池全体の劣化を簡易に判定することが可能となる。   Thereby, it becomes possible to measure the voltage of each unit battery while the assembled battery is connected to the load, and it becomes possible to detect the voltage at the time of discharging each unit battery during the actual operation of the assembled battery, It is possible to detect the voltage when each unit battery is discharged without being affected by the output voltage of the charger. Therefore, it is possible to detect the voltage abnormality of each unit battery with high accuracy, and to determine the distribution of the deviation of the measured voltage with respect to the design specification voltage and the frequency of appearance, so that the set used as an emergency power supply facility is used. It is possible to determine the deterioration of the entire battery, and it is possible to easily determine the deterioration of the entire assembled battery while ensuring the accuracy of determining the deterioration of the assembled battery used as an emergency power supply facility.

また、請求項3記載の組電池劣化判定方法によれば、非常用電源設備として用いられる組電池を負荷に接続したまま前記組電池と充電器とを電気的に遮断するステップと、前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧を測定するステップと、設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定するステップと、前記測定電圧の偏差の分布および出現頻度を設定範囲に従ってレベル分けするとともに、前記レベルに評価点を設定するステップと、前記測定電圧の偏差の分布および出現頻度によって決まる評価点を、前記組電池を構成する全ての単位電池について総合的に評価することにより、前記組電池の劣化状態を判定するステップとを備えることを特徴とする。   Further, according to the assembled battery deterioration determination method according to claim 3, the step of electrically disconnecting the assembled battery and the charger while the assembled battery used as an emergency power supply facility is connected to a load; and the charger Measuring the voltage at the time of discharge of each unit battery constituting the assembled battery in an electrically disconnected state, determining the distribution and appearance frequency of the deviation of the measured voltage with respect to the facility design specification voltage, The measurement battery deviation distribution and appearance frequency are classified into levels according to a set range, an evaluation point is set for the level, and an evaluation point determined by the measurement voltage deviation distribution and appearance frequency is determined for the assembled battery. And a step of determining a deterioration state of the assembled battery by comprehensively evaluating all unit batteries constituting the battery.

これにより、組電池を構成する単位電池のうち、どれだけ劣化した単位電池が何個あるかを全体の単位電池に占める割合として評価することが可能となる。このため、少数の単位電池が重度に劣化した場合の他、多数の単位電池が軽度に劣化した場合などの各種の組電池の劣化モードをほぼ同一の基準で評価することが可能となり、非常用電源設備として用いられる組電池全体の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能となる。   Thereby, it is possible to evaluate how many unit batteries have deteriorated among the unit batteries constituting the assembled battery as a ratio of the entire unit batteries. For this reason, it is possible to evaluate the deterioration modes of various assembled batteries in almost the same standard, such as when a small number of unit cells are severely deteriorated or when a large number of unit cells are slightly deteriorated. It is possible to easily determine the deterioration of the assembled battery while ensuring the accuracy of determining the deterioration of the entire assembled battery used as power supply equipment.

また、請求項4記載の組電池劣化判定方法によれば、前記測定電圧の偏差の分布および出現頻度で規定されるマトリックス上に前記評価点を前記レベルごとに表示するステップをさらに備えることを特徴とする。
これにより、少数の単位電池が重度に劣化した場合だけでなく、多数の単位電池が軽度に劣化した場合においても、組電池全体の劣化状態を目視で容易に確認することが可能となる。
Further, according to the assembled battery deterioration determination method according to claim 4, the method further comprises a step of displaying the evaluation score for each level on a matrix defined by a distribution and an appearance frequency of the deviation of the measured voltage. And
Thereby, not only when a small number of unit cells are seriously deteriorated but also when a large number of unit cells are slightly deteriorated, it is possible to easily confirm the deterioration state of the entire assembled battery visually.

また、請求項5記載の組電池劣化判定プログラムによれば、非常用電源設備として用いられる組電池を負荷に接続したまま前記組電池と充電器とを電気的に遮断させるステップと、前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧を測定するステップと、設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定するステップと、前記設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度に基づいて、前記組電池の劣化状態を判定するステップとをコンピュータに実行させることを特徴とする。   In addition, according to the assembled battery deterioration determination program according to claim 5, the step of electrically disconnecting the assembled battery and the charger while the assembled battery used as an emergency power supply facility is connected to a load; and the charger Measuring the voltage at the time of discharge of each unit battery constituting the assembled battery in an electrically disconnected state, determining the distribution and appearance frequency of the deviation of the measured voltage with respect to the facility design specification voltage, And causing the computer to execute a step of determining a deterioration state of the assembled battery based on a distribution and an appearance frequency of the deviation of the measured voltage with respect to the facility design specification voltage.

これにより、組電池劣化判定プログラムをコンピュータに実行させることで、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池全体の劣化を簡易に判定することが可能となる。このため、非常用電源設備が長期に渡って運用される場合においても、ハードウェア構成の簡略化を図りつつ、非常用電源設備のように定常時充電状態であるような組電池全体の劣化判定を有効に行うことが可能となる。   Accordingly, by causing the computer to execute the assembled battery deterioration determination program, it is possible to easily determine the deterioration of the entire assembled battery while ensuring the determination accuracy of deterioration of the assembled battery used as an emergency power supply facility. . Therefore, even when an emergency power supply facility is operated for a long period of time, it is possible to determine the deterioration of the entire assembled battery that is in a steady state charging state like the emergency power supply facility while simplifying the hardware configuration. Can be performed effectively.

以上説明したように、本発明によれば、充電器の出力電圧の影響を受けることなく、各単位電池の放電時の電圧を検出することが可能となり、個々の単位電池の電圧異常を精度よく検出することが可能となるとともに、設計仕様電圧に対する測定電圧の偏差の分布および出現頻度を判定することで、非常用電源設備として用いられる組電池全体の劣化を判定することが可能となり、非常用電源設備として用いられる組電池の劣化の判定精度を確保しつつ、組電池全体の劣化を簡易に判定することが可能となる。   As described above, according to the present invention, it becomes possible to detect the voltage at the time of discharging each unit battery without being affected by the output voltage of the charger, and to accurately detect the voltage abnormality of each unit battery. It becomes possible to detect the deterioration of the entire assembled battery used as an emergency power supply facility by determining the distribution and appearance frequency of the deviation of the measured voltage with respect to the design specification voltage. It is possible to easily determine the deterioration of the entire assembled battery while ensuring the accuracy of determining the deterioration of the assembled battery used as power supply equipment.

以下、本発明の実施形態に係る組電池状態測定装置および組電池劣化判定方法について図面を参照しながら説明する。
図1は、本発明の一実施形態に係る組電池状態測定装置が用いられる組電池のシステムの概略構成を示すブロック図である。
図1において、電力系統1は、100Vまたは200Vの交流電圧を供給することができる。また、充電器2は、組電池3の充電時に組電池3に接続され、電力系統1から供給される交流電圧を直流電圧に変換してから組電池3に出力することができる。また、組電池3は、インバータ4を介して交流負荷5に接続されるとともに、直流負荷6に直接接続される。なお、組電池3は、鉄道用非常用電源などのように計画的に停電が頻繁に繰り返されるような非常用電源設備として用いることができる。
Hereinafter, an assembled battery state measurement device and an assembled battery deterioration determination method according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of an assembled battery system in which an assembled battery state measuring apparatus according to an embodiment of the present invention is used.
In FIG. 1, the power system 1 can supply an AC voltage of 100V or 200V. The charger 2 is connected to the assembled battery 3 when the assembled battery 3 is charged, and can convert the AC voltage supplied from the power system 1 into a DC voltage and output it to the assembled battery 3. The assembled battery 3 is connected to the AC load 5 via the inverter 4 and is directly connected to the DC load 6. In addition, the assembled battery 3 can be used as an emergency power supply facility in which power failures are frequently repeated in a planned manner such as an emergency power supply for railways.

ここで、組電池3は、組電池3の劣化状態を判定する組電池状態測定装置7に常時接続されている。そして、組電池状態測定装置7は、組電池3の放電検出後に組電池3を構成する各単位電池の電圧を所定時間ごとに周期的に計測し、放電時の組電池3の中の各単位電池の同時刻における電圧値を予め設定された区分に従って分類することができる。なお、これらの区分は、設備が要求機能を満足できるように予め設定されている設備設計仕様電圧(組電池3の要求電圧/セル数)からの偏差に従って設定することができる。   Here, the assembled battery 3 is always connected to the assembled battery state measuring device 7 that determines the deterioration state of the assembled battery 3. The assembled battery state measuring device 7 periodically measures the voltage of each unit battery constituting the assembled battery 3 after detecting the discharge of the assembled battery 3 every predetermined time, and each unit in the assembled battery 3 at the time of discharging The voltage value of the battery at the same time can be classified according to a preset category. These classifications can be set according to a deviation from a preset facility design specification voltage (required voltage of the assembled battery 3 / number of cells) so that the facility can satisfy the required function.

そして、これらの区分ごとに重み付けを行うことにより、これらの区分にポイント(評価点)を付けることができる。なお、この重み付けは、設備設計仕様電圧からの各単位電池の測定電圧の偏差に基づいて設定することができ、単位電池の測定電圧が設備設計仕様電圧よりも高い場合は0とすることができる。また、単位電池の測定電圧との乖離が設備設計仕様電圧よりも低い方向に大きくなるに従って大きなポイントを与えることができる。さらに、測定電圧の偏差の出現頻度(全電池数の中で所定範囲内の偏差を持つ単位電池の割合)も区分し、出現頻度が大きくなるに従って大きなポイントを与えることができる。   Then, points (evaluation points) can be given to these sections by weighting each of these sections. This weighting can be set based on the deviation of the measured voltage of each unit battery from the equipment design specification voltage, and can be set to 0 when the measured voltage of the unit battery is higher than the equipment design specification voltage. . Further, a larger point can be given as the deviation from the measured voltage of the unit battery becomes larger in the direction lower than the equipment design specification voltage. Furthermore, the appearance frequency of the measured voltage deviation (the ratio of unit cells having a deviation within a predetermined range in the total number of batteries) can also be classified, and a larger point can be given as the appearance frequency increases.

そして、測定電圧の偏差の分布および出現頻度によって決まるポイントを、組電池3を構成する全ての単位電池について総合的に評価することにより、組電池3全体の劣化状態を判定する判定することができる。なお、組電池3の放電の検出方法としては、組電池3の電圧が設定値になったかどうかを検出する方法、あるいは放電電流を検出する方法などがある。   Then, a point determined by the distribution of the measured voltage deviation and the appearance frequency is comprehensively evaluated with respect to all the unit batteries constituting the assembled battery 3, whereby the deterioration state of the entire assembled battery 3 can be determined. . In addition, as a detection method of the discharge of the assembled battery 3, there are a method of detecting whether the voltage of the assembled battery 3 has reached a set value, a method of detecting a discharge current, or the like.

なお、組電池3の劣化状態の判定基準となるポイントは設備運転条件から設定することができ、設備設計段階で要求される組電池3の電圧と運用開始時の電圧差より求めることができる。これにより、組電池3の放電時間や負荷電流などに応じて組電池3の劣化状態を判定することが可能となり、設備容量や運転条件に合わせながら組電池3の交換時期を柔軟に設定することが可能となる。   In addition, the point used as the determination criterion of the deterioration state of the assembled battery 3 can be set from the equipment operating conditions, and can be obtained from the voltage of the assembled battery 3 required in the equipment design stage and the voltage difference at the start of operation. This makes it possible to determine the deterioration state of the assembled battery 3 according to the discharge time or load current of the assembled battery 3, and to flexibly set the replacement time of the assembled battery 3 in accordance with the equipment capacity and operating conditions. Is possible.

図2は、図1の組電池状態測定装置7の概略構成を示すブロック図である。
図2において、組電池3には、単位電池3a〜3c・・・が設けられている。ここで、単位電池3a〜3c・・・は、組電池3の用途に応じた容量および電圧を確保するために、例えば、24セルや48セル分の単位電池3a〜3c・・・を直並列に接続して構成することができる。
FIG. 2 is a block diagram showing a schematic configuration of the assembled battery state measurement device 7 of FIG.
2, the assembled battery 3 is provided with unit batteries 3a to 3c. Here, unit batteries 3a to 3c... Are, for example, unit cells 3a to 3c... For 24 cells or 48 cells in series and parallel in order to ensure the capacity and voltage according to the use of the assembled battery 3. It can be configured by connecting to.

一方、組電池状態測定装置7には、組電池3を構成する各単位電池3a〜3c・・・の放電時の電圧を計測する電圧計Va、Vb・・・が設けられるとともに、各単位電池3a〜3c・・・の放電時の電圧を収集するデータ収集部11、データ収集部11にて収集された電圧を記憶する内部メモリ12および各単位電池3a〜3c・・・の放電時の電圧の計測結果に基づいて組電池3の劣化状態を判定する演算機能13が設けられている。   On the other hand, the assembled battery state measuring device 7 is provided with voltmeters Va, Vb,... For measuring voltages at the time of discharging of the unit batteries 3 a to 3 c. The data collection unit 11 that collects the voltage at the time of discharge of 3a to 3c, the internal memory 12 that stores the voltage collected by the data collection unit 11, and the voltage at the time of discharge of each unit battery 3a to 3c. An arithmetic function 13 for determining the deterioration state of the assembled battery 3 based on the measurement result is provided.

ここで、演算機能13には、設備設計仕様電圧に対する測定電圧の偏差の分布および出現頻度を判定する電圧偏差分布判定手段13aおよび設備設計仕様電圧に対する測定電圧の偏差の分布および出現頻度に基づいて、組電池3の劣化状態を判定する組電池状態判定手段13bが設けられている。
そして、図1の電力系統1が正常に稼動している場合には、図1の交流負荷5または直流負荷6には電力系統1から電力が供給され、交流負荷5または直流負荷6の作動が行われる。そして、電力系統1が停電状態になると、組電池3と充電器2とが電気的に遮断されるとともに、交流負荷5または直流負荷6には組電池3から電力が供給されながら、交流負荷5または直流負荷6の作動が行われる。
Here, the calculation function 13 is based on the distribution and appearance frequency of the deviation of the measured voltage with respect to the equipment design specification voltage and the voltage deviation distribution determining means 13a for determining the distribution and appearance frequency of the deviation of the measured voltage with respect to the equipment design specification voltage. An assembled battery state determination means 13b for determining the deterioration state of the assembled battery 3 is provided.
When the power system 1 in FIG. 1 is operating normally, power is supplied from the power system 1 to the AC load 5 or the DC load 6 in FIG. Done. When the power system 1 is in a power failure state, the assembled battery 3 and the charger 2 are electrically disconnected, and the AC load 5 or the DC load 6 is supplied with power from the assembled battery 3 while the AC load 5 is being supplied. Alternatively, the operation of the DC load 6 is performed.

そして、組電池状態測定装置7は組電池3の放電を検出すると、データ収集部11は、各単位電池3a〜3c・・・の放電時の電圧を電圧計Va、Vb・・・を介して収集し、内部メモリ12に記憶する。そして、データ収集部11にて収集されたデータが内部メモリ12に記憶されると、各単位電池3a〜3c・・・の設備設計仕様電圧に対する放電時の測定電圧の偏差の分布および出現頻度が電圧偏差分布判定手段13aにて算出される。そして、各単位電池3a〜3c・・・の設備設計仕様電圧に対する放電時の測定電圧の偏差の分布および出現頻度が算出されると、組電池状態判定手段13bは、設備設計仕様電圧に対する測定電圧の偏差の分布および出現頻度に基づいて、組電池3の劣化状態を判定する。   When the assembled battery state measuring device 7 detects the discharge of the assembled battery 3, the data collecting unit 11 outputs the voltage at the time of discharging the unit batteries 3a to 3c... Via the voltmeters Va, Vb. Collected and stored in the internal memory 12. And when the data collected in the data collection part 11 are memorize | stored in the internal memory 12, the distribution and appearance frequency of the deviation of the measurement voltage at the time of discharge with respect to the equipment design specification voltage of each unit battery 3a-3c ... Calculated by the voltage deviation distribution determining means 13a. When the distribution of the deviation of the measured voltage and the appearance frequency of the unit batteries 3a to 3c... Are discharged with respect to the equipment design specification voltage, the assembled battery state determination unit 13b calculates the measured voltage with respect to the equipment design specification voltage. The deterioration state of the assembled battery 3 is determined based on the deviation distribution and the appearance frequency.

これにより、充電器の出力電圧の影響を受けることなく、各単位電池の放電時の電圧を検出することが可能となり、個々の単位電池の電圧異常を精度よく検出することが可能となるとともに、設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定することで、少数の単位電池が重度に劣化した場合だけでなく、多数の単位電池が軽度に劣化した場合においても、非常用電源設備として用いられる組電池全体の劣化を判定することが可能となる。このため、非常用電源設備として用いられる組電池全体の劣化の判定精度を確保しつつ、組電池の劣化を簡易に判定することが可能となり、装置構成の簡略化を図りつつ、非常用電源設備のように定常時充電状態であるような組電池全体の劣化判定を有効に行うことが可能となる。   Thereby, it becomes possible to detect the voltage at the time of discharge of each unit battery without being affected by the output voltage of the charger, and it is possible to accurately detect the voltage abnormality of each unit battery, By determining the distribution and frequency of occurrence of the deviation of the measured voltage with respect to the design specification voltage, not only when a small number of unit cells are severely degraded, but also when a large number of unit cells are slightly degraded, It becomes possible to determine the deterioration of the entire assembled battery used as equipment. Therefore, it is possible to easily determine the deterioration of the assembled battery while ensuring the accuracy of determining the deterioration of the entire assembled battery used as an emergency power supply facility, and to simplify the device configuration, the emergency power supply facility Thus, it is possible to effectively perform the deterioration determination of the entire assembled battery that is in the steady state charging state.

また、組電池状態判定手段13bは、各単位電池3a〜3c・・・の測定電圧の偏差の分布および出現頻度を2次元マトリックス上に設定し、各単位電池3a〜3c・・・の測定電圧の偏差の分布および出現頻度によって決まるポイントをこの2次元マトリックス上で表示部14に表示させることができる。そして、各単位電池3a〜3c・・・の劣化が進行するほど総ポイント数が増加するように表示させることにより、少数の単位電池3a〜3c・・・が重度に劣化した場合の他、多数の単位電池3a〜3c・・・が軽度に劣化した場合などの各種の組電池の劣化モードをほぼ同一の基準で評価することが可能となる。また、組電池3の劣化の判定結果を表示し、組電池3の劣化に対する対応策を指示することにより、組電池3の劣化に対処できるようにしてもよい。   Moreover, the assembled battery state determination means 13b sets the distribution of the deviation of the measurement voltage and the appearance frequency of each unit battery 3a-3c ... on a two-dimensional matrix, and the measurement voltage of each unit battery 3a-3c ... The points determined by the deviation distribution and the appearance frequency can be displayed on the display unit 14 on this two-dimensional matrix. In addition to the case where a small number of unit batteries 3a to 3c... Are severely deteriorated by displaying so that the total number of points increases as the deterioration of each unit battery 3a to 3c. It is possible to evaluate the deterioration modes of various assembled batteries such as when the unit batteries 3a to 3c. Further, the deterioration determination result of the assembled battery 3 may be displayed, and a countermeasure against the deterioration of the assembled battery 3 may be instructed to cope with the deterioration of the assembled battery 3.

なお、定期点検時などに行われる放電試験などの機会を活用し、組電池3の各放電ごとのデータのみを内部メモリ12に保存し、次回の放電時のデータと比較することにより、組電池3の劣化の進行状況を判定するようにしてもよい。また、必要に応じて各単位電池3a〜3c・・・のセル電圧Vの温度補正を行うようにしてもよい。また、各単位電池3a〜3c・・・の内部抵抗の計測と組み合わせ、各単位電池3a〜3c・・・の内部抵抗の変化と連動させて放電試験を自動的に行えるようにしてもよい。これにより、各単位電池3a〜3c・・・の内部抵抗の変化による組電池3の劣化の予兆検知と合わせてより精度の高い劣化判定を実現することができる。   In addition, by utilizing an opportunity such as a discharge test performed at the time of periodic inspection, only the data for each discharge of the assembled battery 3 is stored in the internal memory 12 and compared with the data at the next discharge, thereby obtaining the assembled battery. The progress status of deterioration 3 may be determined. Moreover, you may make it perform the temperature correction of the cell voltage V of each unit battery 3a-3c ... as needed. Further, in combination with the measurement of the internal resistance of each of the unit batteries 3a to 3c, the discharge test may be automatically performed in conjunction with the change of the internal resistance of each of the unit batteries 3a to 3c. Accordingly, it is possible to realize deterioration determination with higher accuracy in combination with detection of a sign of deterioration of the assembled battery 3 due to a change in internal resistance of each of the unit batteries 3a to 3c.

このように、組電池3の放電時の各単位電池3a〜3c・・・の電圧のバラツキ状態をマトリックス上に配置し、そのマトリックスの区分ごとに与えられたポイントを比較することにより、少数の単位電池が重度に劣化した場合の他、多数の単位電池が軽度に劣化した場合などの各種の組電池の劣化モードをほぼ同一の基準で評価することが可能となり、判定基準を標準化することができる。   Thus, by arranging the voltage variation states of the unit cells 3a to 3c... At the time of discharging the assembled battery 3 on the matrix and comparing the given points for each section of the matrix, a small number of It is possible to evaluate the deterioration modes of various assembled batteries, such as when a unit battery is severely deteriorated, or when many unit batteries are slightly deteriorated, and to standardize the judgment criteria. it can.

また、組電池3の放電時の各単位電池3a〜3c・・・の測定電圧の偏差の分布および出現頻度を活用することにより、制御弁式鉛蓄電池のように電解液量が限定される蓄電池の他、電解液量が豊富な液式鉛蓄電池やアルカリ蓄電池などのように抵抗値の変化が小さな蓄電池や、頻繁に放電を繰り返すような用途に用いられる蓄電池の劣化を精度よく検出することが可能となる。
なお、電圧偏差分布判定手段13aおよび組電池状態判定手段13bは、これらのブロックで行われる処理を遂行させる命令が記述されたプログラムをコンピュータに実行させることにより実現することができる。
Further, by utilizing the distribution and appearance frequency of deviation of the measured voltage of each unit battery 3a to 3c... When discharging the assembled battery 3, a storage battery in which the amount of electrolyte is limited like a control valve type lead storage battery. In addition, it is possible to accurately detect deterioration of storage batteries with small changes in resistance, such as liquid lead storage batteries and alkaline storage batteries with abundant electrolytes, and storage batteries used for applications that frequently discharge. It becomes possible.
Note that the voltage deviation distribution determining unit 13a and the assembled battery state determining unit 13b can be realized by causing a computer to execute a program in which an instruction for performing processing performed in these blocks is described.

そして、このプログラムをCD−ROMなどの記憶媒体に記憶しておけば、コンピュータに記憶媒体を装着し、そのプログラムをコンピュータにインストールすることにより、電圧偏差分布判定手段13aおよび組電池状態判定手段13bで行われる処理を実現することができる。また、このプログラムをインターネットやLANなどの通信網を介してダウンロードすることにより、このプログラムを容易に普及させることができる。
また、電圧偏差分布判定手段13aおよび組電池状態判定手段13bで行われる処理を遂行させる命令が記述されたプログラムをコンピュータに実行させる場合、スタンドアロン型コンピュータで実行させるようにしてもよく、ネットワークに接続された複数のコンピュータに分散処理させるようにしてもよい。
If this program is stored in a storage medium such as a CD-ROM, the voltage deviation distribution determination means 13a and the assembled battery state determination means 13b are installed by installing the storage medium in the computer and installing the program in the computer. Can be realized. Moreover, this program can be easily spread by downloading this program via a communication network such as the Internet or a LAN.
Further, when a computer executes a program in which an instruction for performing the processing performed by the voltage deviation distribution determination unit 13a and the assembled battery state determination unit 13b is executed, the program may be executed by a stand-alone computer or connected to a network. A plurality of computers may be distributed and processed.

図3は、図1の組電池状態測定装置の組電池劣化判定方法を示すフローチャートである。
図3において、組電池状態測定装置7は組電池3の放電を検出すると、データ収集部11は、所定時間の経過後の一定の周期で各単位電池3a〜3c・・・の放電時の電圧を電圧計Va、Vb・・・を介して収集し(ステップS1)、内部メモリ12に記憶する。そして、電圧偏差分布判定手段13aは、放電時の組電池3の中の各単位電池3a〜3c・・・の同時刻における電圧値を設備設計仕様電圧と比較しながら、予め設定された区分に従って分類し(ステップS2)、単位電池の測定電圧との乖離が設備設計仕様電圧よりも低い方向に大きくなるに従って大きなポイントを与えることができる(ステップS3)。また、各単位電池3a〜3c・・・の測定電圧の偏差の出現頻度も区分し、出現頻度が大きくなるに従って大きなポイントを与えることができる(ステップS4)。そして、各単位電池3a〜3c・・・の測定電圧の偏差および出現頻度の積を算出し(ステップS5)、各単位電池3a〜3c・・・の測定電圧の偏差および出現頻度の積をこの2次元マトリックス上に表示させることができる(ステップS6)。
FIG. 3 is a flowchart showing an assembled battery deterioration determination method of the assembled battery state measurement device of FIG.
In FIG. 3, when the assembled battery state measuring device 7 detects the discharge of the assembled battery 3, the data collecting unit 11 detects the voltage at the time of discharging the unit batteries 3a to 3c,. Are collected via the voltmeters Va, Vb... (Step S1) and stored in the internal memory 12. And the voltage deviation distribution determination means 13a compares the voltage value at the same time of each unit battery 3a-3c ... in the assembled battery 3 at the time of discharge with the equipment design specification voltage, according to the preset division. Classification is performed (step S2), and a larger point can be given as the deviation from the measured voltage of the unit battery increases in a direction lower than the facility design specification voltage (step S3). Moreover, the appearance frequency of the deviation of the measured voltage of each unit battery 3a-3c ... can also be classified and a big point can be given as the appearance frequency becomes large (step S4). Then, the product of the measured voltage deviation and the appearance frequency of each unit battery 3a to 3c... Is calculated (step S5), and the product of the measured voltage deviation and the appearance frequency of each unit battery 3a to 3c. It can be displayed on a two-dimensional matrix (step S6).

そして、2次元マトリックス上に配置された各単位電池3a〜3c・・・の測定電圧の偏差および出現頻度に基づいて、各単位電池3a〜3c・・・の劣化を判定する(ステップS7)。また、2次元マトリックス上に配置された各単位電池3a〜3c・・・の測定電圧の偏差および出現頻度の総ポイントを積算することにより(ステップS8)、組電池3全体の劣化を判定する(ステップS9)。そして、各単位電池3a〜3c・・・または組電池3全体の劣化の判定結果に基づいて、単位電池3a〜3c・・・の部分交換や全体交換などの総合対策を立案する(ステップS10)。   Then, the deterioration of the unit cells 3a to 3c... Is determined based on the measured voltage deviation and the appearance frequency of the unit cells 3a to 3c arranged on the two-dimensional matrix (step S7). Further, the deterioration of the entire assembled battery 3 is determined by integrating the deviation of the measured voltage and the total points of the appearance frequencies of the unit batteries 3a to 3c arranged on the two-dimensional matrix (step S8) (step S8). Step S9). And based on the determination result of deterioration of each unit battery 3a-3c ... or the whole assembled battery 3, comprehensive measures, such as partial replacement | exchange and whole replacement | exchange of unit battery 3a-3c ..., are drawn up (step S10). .

図4は、本発明の一実施形態に係る組電池を構成する単位電池の電圧偏差と出現頻度との関係を示す図である。
図4において、各単位電池3a〜3c・・・の測定電圧の偏差の分布および出現頻度が2次元マトリックス上に設定され、各単位電池3a〜3c・・・の測定電圧の偏差および出現頻度の積がこの2次元マトリックス上に配置されている。ここで、単位電池3a〜3c・・・の測定電圧との乖離が設備設計仕様電圧よりも低い方向に大きくなるに従って大きなポイントが与えられるとともに、各単位電池3a〜3c・・・の測定電圧の偏差の出現頻度が大きくなるに従って大きなポイントが与えられている。
FIG. 4 is a diagram showing the relationship between the voltage deviation and the appearance frequency of the unit batteries constituting the assembled battery according to one embodiment of the present invention.
4, the distribution and appearance frequency of the measured voltage deviations of the unit batteries 3a to 3c... Are set on a two-dimensional matrix, and the measured voltage deviation and appearance frequency of the unit batteries 3a to 3c. The products are arranged on this two-dimensional matrix. Here, as the deviation from the measured voltage of the unit batteries 3a to 3c... Increases in a direction lower than the equipment design specification voltage, a larger point is given, and the measured voltage of each of the unit batteries 3a to 3c. Larger points are given as the frequency of deviation increases.

そして、2次元マトリックス上のポイント数の総和を比較することにより、組電池3全体に劣化を判定することができる。また、2次元マトリックスを表示画面上に表示し、各単位電池3a〜3c・・・の測定電圧の偏差および出現頻度の積をこの2次元マトリックスに配置することにより、組電池3の劣化を目視で容易に判定することができる。また、各単位電池3a〜3c・・・の測定電圧の分布状況も把握することができ、特異な単位電池3a〜3c・・・の劣化も容易に検出することができる。   Then, by comparing the total number of points on the two-dimensional matrix, it is possible to determine the deterioration of the assembled battery 3 as a whole. In addition, a two-dimensional matrix is displayed on the display screen, and the product of the measured voltage deviation and the appearance frequency of each unit battery 3a to 3c. Can be easily determined. Moreover, the distribution state of the measured voltage of each unit battery 3a-3c ... can also be grasped | ascertained, and deterioration of a specific unit battery 3a-3c ... can also be detected easily.

例えば、単位電池3a〜3c・・・の電圧偏差が0mV以上ならばポイント“0”、電圧偏差が0〜10mVならばポイント“1”、電圧偏差が10〜20mVならばポイント“2”、電圧偏差が20〜30mVならばポイント“3”、電圧偏差が30〜40mVならばポイント“4”、電圧偏差が40〜50mVならばポイント“5”、電圧偏差が50〜60mVならばポイント“6”、電圧偏差が60〜70mVならばポイント“7”、電圧偏差が70〜80mVならばポイント“8”、電圧偏差が80〜90mV以上ならばポイント“9”を付与することができる。   For example, when the voltage deviation of the unit batteries 3a to 3c is 0 mV or more, the point is “0”, when the voltage deviation is 0 to 10 mV, the point is “1”, and when the voltage deviation is 10 to 20 mV, the point is “2”. Point "3" if the deviation is 20-30 mV, point "4" if the voltage deviation is 30-40 mV, point "5" if the voltage deviation is 40-50 mV, point "6" if the voltage deviation is 50-60 mV. If the voltage deviation is 60 to 70 mV, the point “7” can be given. If the voltage deviation is 70 to 80 mV, the point “8” can be given. If the voltage deviation is 80 to 90 mV or more, the point “9” can be given.

一方、電圧偏差の出現頻度が5%以下ならばポイント“1”、電圧偏差の出現頻度が10〜5%ならばポイント“2”、電圧偏差の出現頻度が20〜10%ならばポイント“3”、電圧偏差の出現頻度が35〜20%ならばポイント“4”、電圧偏差の出現頻度が50〜35%ならばポイント“5”、電圧偏差の出現頻度が50%以上ならばポイント“6”を付与することができる。   On the other hand, if the frequency of occurrence of voltage deviation is 5% or less, point “1”, if the frequency of occurrence of voltage deviation is 10 to 5%, point “2”, and if the frequency of occurrence of voltage deviation is 20 to 10%, point “3”. “4” if the frequency of occurrence of voltage deviation is 35 to 20%, “5” if the frequency of occurrence of voltage deviation is 50 to 35%, and “6” if the frequency of occurrence of voltage deviation is 50% or more. "Can be given.

そして、2次元マトリックス上に配置された各単位電池3a〜3c・・・の測定電圧の偏差および出現頻度の積の総ポイント数pがp≦10ならば健全、10<p≦30ならば注意レベル2、30<p≦50ならば注意レベル3、p<50ならば注意レベル4、p≦10かつ50mV以上の電圧偏差があるならば注意レベル1に設定することができ、それぞれ注意レベル2なら電圧の測定間隔を短縮するとか、注意レベル3ならそろそろ交換することを検討するとか、注意レベル4なら交換するとか、注意レベル1なら偏差の大きい単位電池のみを交換するとかの対策をとることができる。そして、これらの注意レベルに応じて電圧偏差および出現頻度の2次元マトリックスを色分け表示することができる。   And, if the total number of points p of the product of the measured voltage deviation and the appearance frequency of each unit cell 3a to 3c arranged on the two-dimensional matrix is p ≦ 10, then be careful if 10 <p ≦ 30 Level 2 can be set to attention level 3 if 30 <p ≦ 50, attention level 4 if p <50, and attention level 1 if p ≦ 10 and there is a voltage deviation of 50 mV or more. If so, take measures such as shortening the voltage measurement interval, considering replacing it if it is attention level 3, replacing it if it is attention level 4, or replacing only a unit cell with a large deviation if it is attention level 1. Can do. A two-dimensional matrix of voltage deviation and appearance frequency can be displayed in different colors according to these attention levels.

これにより、組電池3の劣化の判定基準を明確化することが可能となり、組電池3の劣化判定方法を標準化することが可能となるとともに、各単位電池3a〜3c・・・の劣化状態を明確化することができ、組電池3の劣化対策および処置を明確化することが可能となる。特に、電圧偏差の大きな単位電池3a〜3c・・・が検出された場合、その単位電池3a〜3c・・・の交換を指示することができる。   This makes it possible to clarify the criteria for determining the deterioration of the assembled battery 3, to standardize the deterioration determining method for the assembled battery 3, and to determine the deterioration states of the unit batteries 3a to 3c. It is possible to clarify, and it becomes possible to clarify the countermeasures and measures for deterioration of the assembled battery 3. In particular, when unit batteries 3a to 3c... Having a large voltage deviation are detected, it is possible to instruct replacement of the unit batteries 3a to 3c.

本発明の一実施形態に係る組電池状態測定装置が用いられる組電池のシステムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the system of the assembled battery in which the assembled battery state measuring apparatus which concerns on one Embodiment of this invention is used. 図1の組電池状態測定装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the assembled battery state measuring apparatus of FIG. 図1の組電池状態測定装置の組電池劣化判定方法を示すフローチャートである。It is a flowchart which shows the assembled battery deterioration determination method of the assembled battery state measuring apparatus of FIG. 本発明の一実施形態に係る組電池を構成する単位電池の電圧偏差と出現頻度との関係を示す図である。It is a figure which shows the relationship between the voltage deviation of the unit battery which comprises the assembled battery which concerns on one Embodiment of this invention, and appearance frequency.

符号の説明Explanation of symbols

1 電力系統
2 充電器
3 組電池
4 インバータ
5 交流負荷
6 直流負荷
7 組電池状態測定装置
3a〜3c 単位電池
Va、Vb 電圧計
11 データ収集部
12 内部メモリ
13 演算機能
13a 電圧偏差分布判定手段
13b 組電池状態判定手段
14 表示部
DESCRIPTION OF SYMBOLS 1 Power system 2 Charger 3 Assembled battery 4 Inverter 5 AC load 6 DC load 7 Assembled battery state measuring device 3a-3c Unit battery Va, Vb Voltmeter 11 Data collection part 12 Internal memory 13 Calculation function 13a Voltage deviation distribution determination means 13b Assembled battery state determination means 14 Display section

Claims (5)

非常用電源設備として用いられる組電池を構成する各単位電池の放電時の電圧を測定する電圧測定手段と、
設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定する電圧偏差分布判定手段と、
前記設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度に基づいて、前記組電池の劣化状態を判定する組電池状態判定手段とを備えることを特徴とする組電池状態測定装置。
Voltage measuring means for measuring the voltage at the time of discharge of each unit battery constituting the assembled battery used as an emergency power supply facility;
A voltage deviation distribution determining means for determining a distribution and an appearance frequency of the deviation of the measured voltage with respect to the facility design specification voltage;
An assembled battery state measuring device, comprising: an assembled battery state determining unit that determines a deterioration state of the assembled battery based on a distribution and an appearance frequency of deviation of the measured voltage with respect to the facility design specification voltage.
非常用電源設備として用いられる組電池を負荷に接続したまま前記組電池と充電器とを電気的に遮断するステップと、
前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧を測定するステップと、
設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定するステップと、
前記設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度に基づいて、前記組電池の劣化状態を判定するステップとを備えることを特徴とする組電池劣化判定方法。
Electrically disconnecting the assembled battery and the charger while the assembled battery used as an emergency power supply facility is connected to a load;
Measuring a voltage at the time of discharging each unit battery constituting the assembled battery in a state of being electrically disconnected from the charger;
Determining the distribution and frequency of occurrence of the deviation of the measured voltage with respect to the facility design specification voltage;
And a step of determining a deterioration state of the assembled battery based on a distribution of the deviation of the measured voltage with respect to the facility design specification voltage and an appearance frequency.
非常用電源設備として用いられる組電池を負荷に接続したまま前記組電池と充電器とを電気的に遮断するステップと、
前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧を測定するステップと、
設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定するステップと、
前記測定電圧の偏差の分布および出現頻度を設定範囲に従ってレベル分けするとともに、前記レベルに評価点を設定するステップと、
前記測定電圧の偏差の分布および出現頻度によって決まる評価点を、前記組電池を構成する全ての単位電池について総合的に評価することにより、前記組電池の劣化状態を判定するステップとを備えることを特徴とする組電池劣化判定方法。
Electrically disconnecting the assembled battery and the charger while the assembled battery used as an emergency power supply facility is connected to a load;
Measuring a voltage at the time of discharging each unit battery constituting the assembled battery in a state of being electrically disconnected from the charger;
Determining the distribution and frequency of appearance of the deviation of the measured voltage with respect to the facility design specification voltage;
Classifying the distribution and frequency of occurrence of the deviation of the measured voltage according to a set range, and setting an evaluation point at the level;
And a step of judging the deterioration state of the assembled battery by comprehensively evaluating the evaluation points determined by the distribution of the deviation of the measured voltage and the appearance frequency for all unit batteries constituting the assembled battery. A battery pack deterioration judging method as a feature.
前記測定電圧の偏差の分布および出現頻度で規定されるマトリックス上に前記評価点を前記レベルごとに表示するステップをさらに備えることを特徴とする請求項3記載の組電池劣化判定方法。   4. The assembled battery deterioration determination method according to claim 3, further comprising the step of displaying the evaluation points for each level on a matrix defined by the distribution of the measured voltage deviation and the appearance frequency. 非常用電源設備として用いられる組電池を負荷に接続したまま前記組電池と充電器とを電気的に遮断させるステップと、
前記充電器と電気的に遮断された状態で前記組電池を構成する各単位電池の放電時の電圧を測定するステップと、
設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度を判定するステップと、
前記設備設計仕様電圧に対する前記測定電圧の偏差の分布および出現頻度に基づいて、前記組電池の劣化状態を判定するステップとをコンピュータに実行させることを特徴とする組電池劣化判定プログラム。
Electrically disconnecting the assembled battery and the charger while the assembled battery used as an emergency power supply facility is connected to a load;
Measuring a voltage at the time of discharging each unit battery constituting the assembled battery in a state of being electrically disconnected from the charger;
Determining the distribution and frequency of occurrence of the deviation of the measured voltage with respect to the facility design specification voltage;
An assembled battery deterioration determination program, which causes a computer to execute a step of determining a deterioration state of the assembled battery based on a distribution of deviation of the measured voltage with respect to the facility design specification voltage and an appearance frequency.
JP2006140588A 2006-05-19 2006-05-19 Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program Expired - Fee Related JP4818808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140588A JP4818808B2 (en) 2006-05-19 2006-05-19 Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140588A JP4818808B2 (en) 2006-05-19 2006-05-19 Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program

Publications (2)

Publication Number Publication Date
JP2007311256A true JP2007311256A (en) 2007-11-29
JP4818808B2 JP4818808B2 (en) 2011-11-16

Family

ID=38843917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140588A Expired - Fee Related JP4818808B2 (en) 2006-05-19 2006-05-19 Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program

Country Status (1)

Country Link
JP (1) JP4818808B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244166A (en) * 2008-03-31 2009-10-22 Mitsubishi Motors Corp Method for evaluating battery, and evaluation apparatus therefor
JP2010246214A (en) * 2009-04-03 2010-10-28 Itm:Kk Device for regulating and monitoring battery voltage
JP2014063617A (en) * 2012-09-20 2014-04-10 Toshiba Corp Device and program for rating residual value of storage battery
JP2014063621A (en) * 2012-09-20 2014-04-10 Toshiba Corp Diagnostic apparatus and method
JP2015068783A (en) * 2013-09-30 2015-04-13 古河電気工業株式会社 Electric power storage device
WO2015118872A1 (en) * 2014-02-07 2015-08-13 日本電気株式会社 Voltage difference correction device, voltage difference correction method
CN105324677A (en) * 2013-04-30 2016-02-10 台湾立凯绿能移动股份有限公司 Power supply architecture for large electric vehicle and method for controlling sequential rest ranking of battery boxes thereof
CN105531866A (en) * 2013-04-30 2016-04-27 台湾立凯绿能移动股份有限公司 Large-scale electric vehicle power architecture and battery pack rotating rest scheduling control method therefor
JP2016065748A (en) * 2014-09-24 2016-04-28 日本電気株式会社 Design device, design method and program
JP2017026616A (en) * 2015-07-21 2017-02-02 三星電子株式会社Samsung Electronics Co.,Ltd. Method and apparatus for estimating state of battery
JP2017073371A (en) * 2015-10-09 2017-04-13 株式会社ピューズ Storage battery maintenance device and storage battery maintenance method
US9660462B2 (en) 2014-05-30 2017-05-23 Samsung Electronics Co., Ltd. Method and apparatus for managing battery
KR101882113B1 (en) * 2015-07-31 2018-08-24 가부시끼가이샤 도시바 Storage-battery evaluation device, energy storage system, and storage-battery evaluation method
JP2018148720A (en) * 2017-03-07 2018-09-20 三菱自動車エンジニアリング株式会社 Battery control device and program
CN110531278A (en) * 2018-05-23 2019-12-03 丰田自动车株式会社 Deterioration state presumption method, deterioration state estimating device, control method and the control system of secondary cell
CN112748345A (en) * 2020-12-25 2021-05-04 广州极飞科技有限公司 Safety performance testing method and device for battery combined system
KR20230068248A (en) * 2021-11-10 2023-05-17 삼성전자주식회사 Storage device comprising secondary power source and method of operation thereof
CN117059866A (en) * 2023-10-11 2023-11-14 宁德时代新能源科技股份有限公司 Battery production control method and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102565272B1 (en) 2016-01-04 2023-08-09 삼성전자주식회사 Method of managing battery and batter management appratus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298503A (en) * 1994-04-20 1995-11-10 Fuji Electric Co Ltd Go/no-go decision device for battery of uninterruptible power supply
JPH1123676A (en) * 1997-06-30 1999-01-29 Sony Corp Method and device for measuring charge characteristics of secondary cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298503A (en) * 1994-04-20 1995-11-10 Fuji Electric Co Ltd Go/no-go decision device for battery of uninterruptible power supply
JPH1123676A (en) * 1997-06-30 1999-01-29 Sony Corp Method and device for measuring charge characteristics of secondary cell

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513886B2 (en) * 2008-03-31 2010-07-28 三菱自動車工業株式会社 Battery evaluation method and evaluation apparatus
JP2009244166A (en) * 2008-03-31 2009-10-22 Mitsubishi Motors Corp Method for evaluating battery, and evaluation apparatus therefor
JP2010246214A (en) * 2009-04-03 2010-10-28 Itm:Kk Device for regulating and monitoring battery voltage
JP2014063617A (en) * 2012-09-20 2014-04-10 Toshiba Corp Device and program for rating residual value of storage battery
JP2014063621A (en) * 2012-09-20 2014-04-10 Toshiba Corp Diagnostic apparatus and method
JP2016524435A (en) * 2013-04-30 2016-08-12 台湾立凱緑能移動股▲ふん▼有限公司 Power system of large electric vehicle, alternating pause battery management and control method thereof
CN105324677A (en) * 2013-04-30 2016-02-10 台湾立凯绿能移动股份有限公司 Power supply architecture for large electric vehicle and method for controlling sequential rest ranking of battery boxes thereof
CN105531866A (en) * 2013-04-30 2016-04-27 台湾立凯绿能移动股份有限公司 Large-scale electric vehicle power architecture and battery pack rotating rest scheduling control method therefor
US9592745B2 (en) 2013-04-30 2017-03-14 Aleees Eco Ark (Cayman) Co. Ltd. Large electric vehicle power structure and alternating-hibernation battery management and control method thereof
JP2016520277A (en) * 2013-04-30 2016-07-11 台湾立凱緑能移動股▲ふん▼有限公司 Large electric vehicle power system, and alternate outage battery management and control method for large electric vehicle power system
JP2015068783A (en) * 2013-09-30 2015-04-13 古河電気工業株式会社 Electric power storage device
JPWO2015118872A1 (en) * 2014-02-07 2017-03-23 日本電気株式会社 Voltage difference correction device and voltage difference correction method
WO2015118872A1 (en) * 2014-02-07 2015-08-13 日本電気株式会社 Voltage difference correction device, voltage difference correction method
US10451679B2 (en) 2014-05-30 2019-10-22 Samsung Electronics Co., Ltd. Method and apparatus for managing battery
US9660462B2 (en) 2014-05-30 2017-05-23 Samsung Electronics Co., Ltd. Method and apparatus for managing battery
US10656209B2 (en) 2014-05-30 2020-05-19 Samsung Electronics Co., Ltd. Method and apparatus for managing battery
JP2016065748A (en) * 2014-09-24 2016-04-28 日本電気株式会社 Design device, design method and program
JP2017026616A (en) * 2015-07-21 2017-02-02 三星電子株式会社Samsung Electronics Co.,Ltd. Method and apparatus for estimating state of battery
US10372183B2 (en) 2015-07-31 2019-08-06 Kabushiki Kaisha Toshiba Storage-battery evaluation device, energy storage system, and storage-battery evaluation method
KR101882113B1 (en) * 2015-07-31 2018-08-24 가부시끼가이샤 도시바 Storage-battery evaluation device, energy storage system, and storage-battery evaluation method
JP2017073371A (en) * 2015-10-09 2017-04-13 株式会社ピューズ Storage battery maintenance device and storage battery maintenance method
JP2018148720A (en) * 2017-03-07 2018-09-20 三菱自動車エンジニアリング株式会社 Battery control device and program
CN110531278A (en) * 2018-05-23 2019-12-03 丰田自动车株式会社 Deterioration state presumption method, deterioration state estimating device, control method and the control system of secondary cell
US11085970B2 (en) 2018-05-23 2021-08-10 Toyota Jidosha Kabushiki Kaisha Secondary battery degradation state estimation method, degradation state estimation device, control method, and control system
CN110531278B (en) * 2018-05-23 2021-10-08 丰田自动车株式会社 Secondary battery degradation state estimation method, degradation state estimation device, control method, and control system
CN112748345A (en) * 2020-12-25 2021-05-04 广州极飞科技有限公司 Safety performance testing method and device for battery combined system
CN112748345B (en) * 2020-12-25 2024-06-11 广州极飞科技股份有限公司 Safety performance test method and device for battery combination system
KR20230068248A (en) * 2021-11-10 2023-05-17 삼성전자주식회사 Storage device comprising secondary power source and method of operation thereof
KR102562316B1 (en) 2021-11-10 2023-08-02 삼성전자주식회사 Storage device comprising secondary power source and method of operation thereof
CN117059866A (en) * 2023-10-11 2023-11-14 宁德时代新能源科技股份有限公司 Battery production control method and system

Also Published As

Publication number Publication date
JP4818808B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4818808B2 (en) Battery pack state measuring device, battery pack deterioration judgment method and battery pack deterioration judgment program
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
JP2007311255A (en) Battery pack status measuring device, battery pack deterioration determining method, and battery pack deterioration determining program
JP5349810B2 (en) Storage device abnormality detection device, method, and program
US8150642B2 (en) Secondary battery deterioration judging device and backup power supply
US11221367B2 (en) Evaluation device, energy storage system, evaluation method and non-transitory computer readable medium
JP6056730B2 (en) Power storage system
JP5089619B2 (en) Secondary battery deterioration diagnosis device
CN113811781B (en) Battery diagnosis device and method
EP2637032A1 (en) Battery abnormality prediction system
JP7515956B2 (en) Battery diagnostic device and method
JP7326237B2 (en) Determination device, power storage system, determination method, and determination program for multiple batteries
EP3832331B1 (en) Cell state estimation device and cell control device
JP2014127404A (en) Method for replacing battery pack
KR101291287B1 (en) Equipped with a spare battery for the maintenance of UPS Systems
US20230118311A1 (en) Secondary battery deterioration degree determination device
JP6018169B2 (en) Storage device failure determination method
JP2001250590A (en) Method for deciding deterioration of storage battery
JP5783116B2 (en) Battery degradation diagnosis method and charge / discharge monitoring control system
JP6532374B2 (en) Storage battery state analysis system, storage battery state analysis method, and storage battery state analysis program
JP3944904B2 (en) Storage battery life diagnosis device and life diagnosis method
KR20190080280A (en) Device and method for detecting status of lithium secondary battery for ga
CN112684362A (en) Fault detection method, device and detection equipment for internal structure of storage battery
JP2020150760A (en) Battery control unit
KR20240000294A (en) Apparatus for managing battery and operating method of the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees