JP2010245159A - Semiconductor device, and method of manufacturing the same - Google Patents

Semiconductor device, and method of manufacturing the same Download PDF

Info

Publication number
JP2010245159A
JP2010245159A JP2009090027A JP2009090027A JP2010245159A JP 2010245159 A JP2010245159 A JP 2010245159A JP 2009090027 A JP2009090027 A JP 2009090027A JP 2009090027 A JP2009090027 A JP 2009090027A JP 2010245159 A JP2010245159 A JP 2010245159A
Authority
JP
Japan
Prior art keywords
conductivity type
region
type mosfet
gate electrode
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009090027A
Other languages
Japanese (ja)
Inventor
Masahiko Kanda
昌彦 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009090027A priority Critical patent/JP2010245159A/en
Publication of JP2010245159A publication Critical patent/JP2010245159A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that has a plurality of thresholds and suppresses a decrease in yield and a decrease in reliability due to dust and local variance of impurities, and to provide a method of manufacturing the same. <P>SOLUTION: The semiconductor device has an MOSFET of a first conductivity type and an MOSFET of a second conductivity type formed on a semiconductor substrate (Sub.), wherein the MOSFET of the first conductivity type has a first gate electrode 15a containing impurities of the first conductivity type and a second gate electrode 15b containing impurities of the second conductivity type, and the MOSFET of the second conductivity type has a third gate electrode 15c containing the impurities of the first conductivity type and a fourth gate electrode 15d containing the impurities of the second conductivity type. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば不純物のプレドーピングにより性能の向上を図ったMOSFETであって、複数の閾値を有する半導体装置とその製造方法に関する。   The present invention relates to a MOSFET whose performance is improved by, for example, impurity pre-doping, and a semiconductor device having a plurality of threshold values, and a method for manufacturing the same.

近年、CMOSFET(Complementary Metal Oxide Semiconductor Field Efect Transistor)などの半導体装置における微細化に伴い、ゲート電極へのプレドーピングによる高性能化が行われている。例えば、半導体基板上にゲート電極となるポリシリコン膜を形成した後、P型MOSFET、N型MOSFETそれぞれの領域において、それぞれP型、N型の不純物のプレドーピングを行うことにより、ゲート電極の空乏化率を低減させることができる(例えば特許文献1など参照)。   In recent years, with the miniaturization of semiconductor devices such as CMOSFET (Complementary Metal Oxide Semiconductor Field Effect Transistor), high performance has been achieved by pre-doping the gate electrode. For example, after a polysilicon film to be a gate electrode is formed on a semiconductor substrate, depletion of the gate electrode is performed by performing pre-doping of P-type and N-type impurities in the respective regions of the P-type MOSFET and the N-type MOSFET. Conversion rate can be reduced (see, for example, Patent Document 1).

一方、CMOSFETなどの半導体装置において、複数の閾値を有する素子を併せて作りこむ手法が種々検討されている。例えば、半導体基板のP型MOSFET、N型MOSFETそれぞれの領域において、それぞれ複数回、チャネル不純物注入を行うことにより、所望の閾値に調整される(例えば特許文献2など参照)。   On the other hand, in a semiconductor device such as a CMOSFET, various methods for making elements having a plurality of threshold values together have been studied. For example, channel impurity implantation is performed a plurality of times in the respective regions of the P-type MOSFET and the N-type MOSFET on the semiconductor substrate to adjust the threshold value to a desired value (see, for example, Patent Document 2).

しかしながら、特に閾値の高いトランジスタを形成する場合は、高濃度の不純物注入が必要であるため、不純物の局所的なばらつきが大きくなるとともに、NBTI(Negative Bias Temperature Instability)により信頼性が低下するという問題が生じる。また、チャネル不純物注入の工程数が増加するとともに、増加した工程数分フォトレジストを剥離する工程数が増加するため、フォトレジストに起因するダストが増加するという問題がある。   However, in the case of forming a transistor with a particularly high threshold, since high-concentration impurity implantation is necessary, local variations in impurities become large, and reliability is lowered due to NBTI (Negative Bias Temperature Instability). Occurs. Further, as the number of channel impurity implantation steps increases, the number of steps for stripping the photoresist increases by the increased number of steps, and there is a problem that dust caused by the photoresist increases.

特開2004−214387号公報([請求項1]など)JP 2004-214387 A ([Claim 1] etc.) 特開2000−323587号公報([請求項1]など)JP 2000-323587 A ([Claim 1] etc.)

本発明は、複数の閾値を有し、ダストや不純物の局所的なばらつきによる歩留りの低下を抑え、信頼性を向上させることが可能な半導体装置とその製造方法を提供することを目的とするものである。   An object of the present invention is to provide a semiconductor device having a plurality of thresholds, capable of suppressing a decrease in yield due to local variations in dust and impurities, and improving reliability, and a method for manufacturing the same. It is.

本発明の一態様によれば、半導体基板に形成された第1導電型のMOSFETと第2導電型のMOSFETを有し、前記第1導電型のMOSFETは、第1導電型の不純物を含む第1のゲート電極と、第2導電型の不純物を含む第2のゲート電極とを備え、前記第2導電型のMOSFETは、第1導電型の不純物を含む第3のゲート電極と、第2導電型の不純物を含む第4のゲート電極とを備え、前記第1導電型のMOSFETおよび前記第2導電型のMOSFETがそれぞれ複数の閾値を有することを特徴とする半導体装置が提供される。   According to one aspect of the present invention, a first conductivity type MOSFET and a second conductivity type MOSFET formed on a semiconductor substrate are included, and the first conductivity type MOSFET includes a first conductivity type impurity. 1 gate electrode and a second gate electrode containing a second conductivity type impurity, and the second conductivity type MOSFET comprises a third gate electrode containing a first conductivity type impurity, and a second conductivity type. There is provided a semiconductor device comprising a fourth gate electrode containing a type impurity, wherein the first conductivity type MOSFET and the second conductivity type MOSFET each have a plurality of threshold values.

また、本発明の一態様によれば、半導体基板に第1導電型のMOSFET領域と、第2導電型のMOSFET領域を形成し、半導体基板上にゲート絶縁膜となる絶縁膜と、ゲート電極となる導電体膜を順次形成し、前記第1導電型のMOSFET領域における第1の領域の導電体膜と、前記第2導電型のMOSFET領域における第1の領域の導電体膜とに、選択的に第1導電型の不純物を前記半導体基板に到達しない条件で注入し、前記第1導電型のMOSFET領域における第2の領域の導電体膜と、前記第2導電型のMOSFET領域における第2の領域の導電体膜とに、選択的に第2導電型の不純物を前記半導体基板に到達しない条件で注入し、前記絶縁体膜と前記導電体膜を選択的に除去し、ゲート電極を形成し、前記第1導電型のMOSFET領域および前記第2導電型のMOSFET領域に、それぞれチャネル不純物を注入することを特徴とする半導体装置の製造方法が提供される。   According to one embodiment of the present invention, a first conductivity type MOSFET region and a second conductivity type MOSFET region are formed on a semiconductor substrate, an insulating film serving as a gate insulating film on the semiconductor substrate, a gate electrode, A conductive film in the first region in the first conductivity type MOSFET region and a conductive film in the first region in the second conductivity type MOSFET region are selectively formed. The first conductivity type impurity is implanted into the semiconductor substrate under conditions that do not reach the semiconductor substrate, and a second region conductor film in the first conductivity type MOSFET region and a second conductivity type MOSFET region in the second conductivity type MOSFET region. A second conductivity type impurity is selectively implanted into the region of the conductor film under a condition that does not reach the semiconductor substrate, and the insulator film and the conductor film are selectively removed to form a gate electrode. The first conductivity type The MOSFET region and the MOSFET region of the second conductivity type, production method of the respective semiconductor device, which comprises injecting a channel impurity is provided.

本発明の一実施態様によれば、複数の閾値を有する半導体装置とその製造方法において、ダストや不純物の局所的なばらつきによる歩留りの低下を抑え、信頼性を向上させることが可能となる。   According to one embodiment of the present invention, in a semiconductor device having a plurality of threshold values and a manufacturing method thereof, it is possible to suppress a decrease in yield due to local variations in dust and impurities and improve reliability.

本発明の一態様による半導体装置を示す断面図。FIG. 6 is a cross-sectional view illustrating a semiconductor device according to one embodiment of the present invention. 本発明の一態様による半導体装置の製造工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a semiconductor device according to one embodiment of the present invention. FIG. 本発明の一態様による半導体装置の製造工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a semiconductor device according to one embodiment of the present invention. FIG. 本発明の一態様による半導体装置の製造工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a semiconductor device according to one embodiment of the present invention. FIG. 本発明の一態様による半導体装置の製造工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a semiconductor device according to one embodiment of the present invention. FIG. 本発明の一態様による半導体装置の製造工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a semiconductor device according to one embodiment of the present invention. FIG. 本発明の一態様による半導体装置の製造工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a semiconductor device according to one embodiment of the present invention. FIG. 本発明の一態様による半導体装置の製造工程を示す断面図。9 is a cross-sectional view illustrating a manufacturing process of a semiconductor device according to one embodiment of the present invention. FIG. 本発明の一態様による半導体装置を示す断面図。FIG. 6 is a cross-sectional view illustrating a semiconductor device according to one embodiment of the present invention.

以下本発明の実施形態について、図を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本実施形態の半導体装置であるCMOSFETの断面図を示す。バルクSiからなる半導体基板(Sub.)に、N型MOSFET領域11と、P型MOSFET領域12が形成され、それぞれ、STI(Shallow Trench Isolation)などの素子分離領域13により素子分離されている。素子分離領域13により分離された各素子において、半導体基板(Sub.)上に、それぞれゲート絶縁膜14を介してゲート電極が形成されている。   FIG. 1 shows a cross-sectional view of a CMOSFET which is a semiconductor device of this embodiment. An N-type MOSFET region 11 and a P-type MOSFET region 12 are formed on a semiconductor substrate (Sub.) Made of bulk Si, and each is isolated by an element isolation region 13 such as STI (Shallow Trench Isolation). In each element isolated by the element isolation region 13, a gate electrode is formed on the semiconductor substrate (Sub.) Via a gate insulating film 14.

N型MOSFET領域11においては、N型不純物であるリンが注入されたゲート電極15a、P型不純物であるホウ素が注入されたゲート電極15bが形成されている。P型MOSFET領域12においては、N型不純物であるリンが注入されたゲート電極15c、P型不純物であるホウ素が注入されたゲート電極15dが形成されている。各ゲート電極15a、15b、15c、15dには、それぞれゲート側壁16が形成されている。   In the N-type MOSFET region 11, a gate electrode 15a into which phosphorus as an N-type impurity is implanted and a gate electrode 15b into which boron as a P-type impurity is implanted are formed. In the P-type MOSFET region 12, a gate electrode 15c into which phosphorus as an N-type impurity is implanted and a gate electrode 15d into which boron as a P-type impurity is implanted are formed. A gate sidewall 16 is formed on each of the gate electrodes 15a, 15b, 15c, and 15d.

半導体基板(Sub.)には、各ゲート電極15a、15b、15c、15dの直下を挟んで、シャロージャンクション(Shallow Junction)17、ソース−ドレイン拡散層18が形成されている。半導体基板(Sub.)上には、層間絶縁膜19が形成されており、さらに、層間絶縁膜19を貫通し、ゲート電極15a、15b、15c、15d、ソース−ドレイン拡散層18と接続するコンタクト20が形成されている。   In the semiconductor substrate (Sub.), A shallow junction 17 and a source-drain diffusion layer 18 are formed with the gate electrodes 15a, 15b, 15c, and 15d interposed therebetween. An interlayer insulating film 19 is formed on the semiconductor substrate (Sub.), And further, contacts that pass through the interlayer insulating film 19 and are connected to the gate electrodes 15a, 15b, 15c, 15d, and the source-drain diffusion layer 18. 20 is formed.

このような半導体装置は、以下のようにして形成される。図2A〜図2Gに本実施形態の半導体装置の製造工程の断面図を示す。先ず、図2Aに示すように、半導体基板(Sub.)に素子分離領域13を形成し、リソグラフィにより、N型MOSFET領域となる領域上に開口部が設けられたフォトレジスト膜(図示せず)でマスクし、例えばホウ素を注入することにより、N型MOSFET領域11となるPウェルを形成する。フォトレジスト膜(図示せず)を剥離した後、リソグラフィにより、今度は、P型MOSFET領域となる領域を開口したフォトレジスト膜(図示せず)でマスクし、例えばリンを注入し、P型MOSFET領域12となるNウェルを形成した後、フォトレジスト膜(図示せず)を剥離する。   Such a semiconductor device is formed as follows. 2A to 2G are cross-sectional views showing the manufacturing process of the semiconductor device of this embodiment. First, as shown in FIG. 2A, a device isolation region 13 is formed in a semiconductor substrate (Sub.), And a photoresist film (not shown) in which an opening is provided on a region to be an N-type MOSFET region by lithography. Then, for example, boron is implanted to form a P-well that becomes the N-type MOSFET region 11. After peeling off the photoresist film (not shown), the region which becomes the P-type MOSFET region is masked with an opened photoresist film (not shown) by lithography, for example, phosphorus is implanted, and the P-type MOSFET After forming the N well which becomes the region 12, the photoresist film (not shown) is peeled off.

次いで、図2Bに示すように、N型MOSFET領域11、P型MOSFET領域12が形成された半導体基板(Sub.)上に、ゲート絶縁膜14となる例えば熱酸化膜21などを形成し、さらに、ゲート電極15a、15b、15c、15dとなる例えばポリシリコン膜22を堆積する。   Next, as shown in FIG. 2B, on the semiconductor substrate (Sub.) On which the N-type MOSFET region 11 and the P-type MOSFET region 12 are formed, for example, a thermal oxide film 21 or the like that becomes the gate insulating film 14 is formed. For example, a polysilicon film 22 to be the gate electrodes 15a, 15b, 15c, 15d is deposited.

次いで、図2Cに示すように、リソグラフィによりN型MOSFET領域11上、P型MOSFET領域12上のそれぞれ所定領域に開口部が設けられたフォトレジスト膜23でマスクし、ポリシリコン膜22に例えばリンをプレドーピングする。このとき、注入条件は、半導体基板(Sub.)に到達しない条件、例えば7KeV、6.0E+15(cm−2)とする。そして、フォトレジスト膜23をウェットエッチングにより剥離する。 Next, as shown in FIG. 2C, the polysilicon film 22 is masked with a photoresist film 23 having openings in predetermined regions on the N-type MOSFET region 11 and the P-type MOSFET region 12 by lithography. Is pre-doped. At this time, the implantation condition is a condition that does not reach the semiconductor substrate (Sub.), For example, 7 KeV, 6.0E + 15 (cm −2 ). Then, the photoresist film 23 is removed by wet etching.

次いで、図2Dに示すように、リソグラフィにより、今度は、N型MOSFET領域11上、P型MOSFET領域12上のそれぞれ所定領域に開口部が設けられたフォトレジスト膜24でマスクし、ポリシリコン膜22に例えばホウ素をプレドーピングする。このとき、注入条件は、半導体基板(Sub.)に到達しない条件、例えば1KeV、2.0E+15(cm−2)とする。そして、フォトレジスト膜24をウェットエッチングにより剥離する。 Next, as shown in FIG. 2D, by lithography, the polysilicon film is masked with a photoresist film 24 having openings in predetermined regions on the N-type MOSFET region 11 and the P-type MOSFET region 12, respectively. For example, boron is predoped with 22. At this time, the implantation condition is a condition that does not reach the semiconductor substrate (Sub.), For example, 1 KeV, 2.0E + 15 (cm −2 ). Then, the photoresist film 24 is peeled off by wet etching.

次いで、図2Eに示すように、不純物注入されたポリシリコン膜22を、リソグラフィによりゲート電極パターンが形成されたフォトレジスト膜(図示せず)でマスクし、RIE(Reactive Ion Etching)などの異方性エッチングを施すことにより、ゲート絶縁膜14、ゲート電極15a、15b、15c、15dを形成する。   Next, as shown in FIG. 2E, the polysilicon film 22 into which the impurity has been implanted is masked with a photoresist film (not shown) in which a gate electrode pattern is formed by lithography, and an anisotropic process such as RIE (Reactive Ion Etching) is performed. The gate insulating film 14 and the gate electrodes 15a, 15b, 15c, and 15d are formed by performing etching.

そして、図2Fに示すように、ゲート電極15a、15b直下を挟んで例えば砒素を、ゲート電極15c、15d直下を挟んで例えばBFをそれぞれ注入し、エクステンション(Extention)構造を形成する。さらに、これらより深い領域に、それぞれBF、砒素を注入し、ハロー(Halo)構造を形成する。このようにして、N型MOSFET領域11、P型MOSFET領域12の各素子において、それぞれシャロージャンクション17を形成する。 Then, as shown in FIG. 2F, for example, arsenic is injected directly under the gate electrodes 15a and 15b, and BF 2 is injected with the gate electrodes 15c and 15d directly under each other, thereby forming an extension structure. Further, BF 2 and arsenic are implanted into deeper regions to form a halo structure. In this manner, shallow junctions 17 are formed in the elements of the N-type MOSFET region 11 and the P-type MOSFET region 12, respectively.

次いで、図2Gに示すように、例えばSi酸化膜、Si窒化膜を堆積し、RIEなどの異方性エッチングを施すことにより、ゲート電極15a、15b、15c、15dにそれぞれゲート側壁16を形成する。そして、N型MOSFET領域11、P型MOSFET領域12の各素子において、それぞれリン、ホウ素を注入し、ソース−ドレイン拡散層18を形成する。   Next, as shown in FIG. 2G, for example, a Si oxide film and a Si nitride film are deposited, and anisotropic etching such as RIE is performed to form gate sidewalls 16 on the gate electrodes 15a, 15b, 15c, and 15d, respectively. . Then, in each element of the N-type MOSFET region 11 and the P-type MOSFET region 12, phosphorus and boron are respectively implanted to form the source-drain diffusion layer 18.

そして、上層にPMD(Pre−Metal Dielectric)などの層間膜19を堆積した後、ゲート電極15a、15b、15c、15d、ソース−ドレイン拡散層18に到達し、かつ上層に形成される多層配線(図示せず)と接続されるコンタクト20を形成する。このようにして、図1に示すようなCMOSFETが形成される。   Then, after an interlayer film 19 such as PMD (Pre-Metal Dielectric) is deposited on the upper layer, it reaches the gate electrodes 15a, 15b, 15c, 15d, the source-drain diffusion layer 18, and is formed in a multilayer wiring ( A contact 20 to be connected to a not-shown is formed. In this way, a CMOSFET as shown in FIG. 1 is formed.

形成されたCMOSFETにおいて、N型MOSFET、P型MOSFETは、ゲート電極15aとゲート電極15b、ゲート電極15cとゲート電極15dの仕事関数がそれぞれ異なることから、それぞれ二つの閾値を有している。図3に示すように、N型MOSFETにおけるゲート電極15aにリンが注入された素子a、P型MOSFETにおけるゲート電極15dにホウ素が注入された素子dは、低い閾値を有しており、例えばI/O回路などに用いられる。また、N型MOSFETにおけるゲート電極15bにホウ素が注入された素子a、P型MOSFETにおけるゲート電極15cにリンが注入された素子dは、高い閾値を有しており、例えば低リーク電流が要求される回路などに用いられる。   Among the formed CMOSFETs, the N-type MOSFET and the P-type MOSFET have two threshold values because the work functions of the gate electrode 15a and the gate electrode 15b and the gate electrode 15c and the gate electrode 15d are different. As shown in FIG. 3, the element a in which phosphorus is injected into the gate electrode 15a in the N-type MOSFET and the element d in which boron is injected into the gate electrode 15d in the P-type MOSFET have a low threshold, for example, I Used for / O circuit and the like. Further, the element a in which boron is implanted into the gate electrode 15b in the N-type MOSFET and the element d in which phosphorus is implanted into the gate electrode 15c in the P-type MOSFET have a high threshold, and for example, a low leakage current is required. Used in circuits.

なお、このようなCMOSFETにおいて、N型MOSFET、P型MOSFETのチャネル不純物濃度は、素子aと素子b、素子cと素子dで実質的に等しくなっており、SIMS(Secondary Ion Mass Spectroscopy)などにより確認することができる。そして、素子aと素子b、素子cと素子dでは、ゲート電極に注入された元素が異なっており、EPMA(Electron Probe Micro Analyzer)、SCM(Scanning Capacitance Microscope)などにより確認することができる。さらに、素子aと素子b、素子cと素子dでは、ゲート電極におけるポリシリコンの結晶粒径が異なっており、TEM(Transmission Electron Microscope)などにより確認することができる。   In such a CMOSFET, the channel impurity concentration of the N-type MOSFET and the P-type MOSFET is substantially equal between the element a and the element b, the element c and the element d, and is determined by SIMS (Secondary Ion Mass Spectroscopy) or the like. Can be confirmed. The element a and the element b, the element c and the element d have different elements injected into the gate electrode, and can be confirmed by EPMA (Electron Probe Micro Analyzer), SCM (Scanning Capacitance Microscope) or the like. Further, the element a and the element b, the element c and the element d have different crystal grain sizes of polysilicon in the gate electrode, and can be confirmed by TEM (Transmission Electron Microscope) or the like.

このようにして形成される複数の閾値を有するCMOSFETにおいて、高濃度の不純物注入を要することなく閾値を高くすることができるため、チャネル不純物濃度を低減できることから、素子間の局所的なばらつきの発生を抑えることができる。これによってSRAM(Static Random Access Memory)などの大規模メモリ装置における規模を増大させることができる。さらに、高濃度の不純物注入を要しないことから、NBTIによる信頼性の低下を抑えることが可能となる。   In the CMOSFET having a plurality of threshold values formed in this way, the threshold value can be increased without requiring high-concentration impurity implantation, so that the channel impurity concentration can be reduced. Can be suppressed. As a result, the scale of a large-scale memory device such as SRAM (Static Random Access Memory) can be increased. Furthermore, since high-concentration impurity implantation is not required, it is possible to suppress a decrease in reliability due to NBTI.

また、チャネル不純物の注入工程数を増加させることなく、単閾値の半導体装置と同様に2回のプレドーピングで複数の閾値を設けることができるため、製造コストを増大させないだけでなく、マスクとして用いられるレジスト膜の剥離の際に発生するダストを低減し、歩留りの低下を抑えることが可能となる。   In addition, since a plurality of thresholds can be provided by two pre-dopings as in the case of a single threshold semiconductor device without increasing the number of channel impurity implantation steps, the manufacturing cost is not increased and the mask is used as a mask. It is possible to reduce dust generated when the resist film is peeled off and suppress a decrease in yield.

このように、プレドーピングにより、ゲート電極の空乏化率を低減するとともに、同じ導電型のMOSFET中に注入される不純物を異なる導電型とすることにより、MOSFETの閾値を変動させることが可能となる。このとき、プレドーピングは、半導体基板に到達しない条件で行う必要がある。プレドーピングにより不純物が半導体基板に到達すると不純物がゲート絶縁膜を突き抜けて素子の特性変動を生じるからであるからである。このようなプレドーピングの条件としては、例えば、ポリシリコンの膜厚が80−150nmで、不純物がホウ素の場合、0.5−1KeV、1E+15−2E+15(cm−2)、不純物がリンの場合、5−10eV、3E+15−7E+15(cm−2)とすることができる。 Thus, by reducing the depletion rate of the gate electrode by pre-doping and making the impurity implanted into the MOSFET of the same conductivity type have a different conductivity type, the threshold value of the MOSFET can be changed. . At this time, the pre-doping needs to be performed under conditions that do not reach the semiconductor substrate. This is because when the impurities reach the semiconductor substrate due to the pre-doping, the impurities penetrate the gate insulating film and cause variations in the characteristics of the device. As such pre-doping conditions, for example, when the thickness of polysilicon is 80-150 nm and the impurity is boron, 0.5-1 KeV, 1E + 15-2E + 15 (cm −2 ), and when the impurity is phosphorus, 5-10 eV, 3E + 15-7E + 15 (cm −2 ).

本実施形態において、N型MOSFET領域、P型MOSFET領域において、それぞれN型不純物のプレドーピングを行う領域とP型不純物のプレドーピングを行う領域の2つの領域を設けたが、これらの領域はオーバーラップしてもよい。この場合、N型MOSFET領域、P型MOSFET領域において、それぞれN型不純物とP型不純物の両方が注入される領域が形成される。この領域における仕事関数は、N型不純物のみ、P型不純物のみが注入される領域と異なるため、さらに閾値の異なる領域を形成することができる。   In the present embodiment, in the N-type MOSFET region and the P-type MOSFET region, two regions, a region for pre-doping with N-type impurities and a region for pre-doping with P-type impurities, are provided. You may wrap. In this case, regions where both N-type impurities and P-type impurities are implanted are formed in the N-type MOSFET region and the P-type MOSFET region, respectively. Since the work function in this region is different from that in which only N-type impurities and only P-type impurities are implanted, regions having different threshold values can be formed.

なお、このようなN型およびP型不純物のプレドーピングは、必ずしもN型MOSFET領域、P型MOSFET領域の双方に行われる必要はなく、N型MOSFET領域、P型MOSFET領域の一方にだけ行われてもよい。   Note that such N-type and P-type impurity pre-doping is not necessarily performed in both the N-type MOSFET region and the P-type MOSFET region, but only in one of the N-type MOSFET region and the P-type MOSFET region. May be.

さらに、従来のチャネル不純物濃度の制御による多閾値化の手法を併せて用いてもよく、その場合もチャネル不純物濃度のみを制御する場合と比較して、工程の追加を抑える、あるいは閾値数を増大させることが可能となる。   In addition, the conventional method of increasing the threshold value by controlling the channel impurity concentration may be used together. In this case, as compared with the case of controlling only the channel impurity concentration, the addition of processes is reduced or the number of thresholds is increased. It becomes possible to make it.

本実施形態において、N型不純物としてリンを、P型不純物としてホウ素を用いているが、これらに限定されるものではなく、プレドーピングに通常用いられるAs、BFなどの不純物を用いることができる。また、半導体基板として、Si基板を用いたが、必ずしもバルクの単結晶Siウェハを用いる必要はなく、エピタキシャルSiウェハや、SOIウェハなどを用いることができる。 In this embodiment, phosphorus is used as the N-type impurity and boron is used as the P-type impurity. However, the present invention is not limited to these, and impurities such as As and BF 2 that are usually used for pre-doping can be used. . Further, although a Si substrate is used as a semiconductor substrate, a bulk single crystal Si wafer is not necessarily used, and an epitaxial Si wafer, an SOI wafer, or the like can be used.

尚、本発明は、上述した実施形態に限定されるものではない。その他要旨を逸脱しない範囲で種々変形して実施することができる。   In addition, this invention is not limited to embodiment mentioned above. Various other modifications can be made without departing from the scope of the invention.

11…N型MOSFET領域
12…P型MOSFET領域
13…素子分離領域
14…ゲート絶縁膜
15a、15b、15c、15d…ゲート電極
16…ゲート側壁
17…シャロージャンクション
18…ソース−ドレイン拡散層
19…層間絶縁膜
20…コンタクト
21…熱酸化膜
22…ポリシリコン膜
23、24…フォトレジスト膜
DESCRIPTION OF SYMBOLS 11 ... N-type MOSFET area | region 12 ... P-type MOSFET area | region 13 ... Element isolation region 14 ... Gate insulating film 15a, 15b, 15c, 15d ... Gate electrode 16 ... Gate side wall 17 ... Shallow junction 18 ... Source-drain diffused layer 19 ... Interlayer Insulating film 20 ... Contact 21 ... Thermal oxide film 22 ... Polysilicon film 23, 24 ... Photoresist film

Claims (5)

半導体基板に形成された第1導電型のMOSFETと第2導電型のMOSFETを有し、
前記第1導電型のMOSFETは、第1導電型の不純物を含む第1のゲート電極と、第2導電型の不純物を含む第2のゲート電極とを備え、
前記第2導電型のMOSFETは、第1導電型の不純物を含む第3のゲート電極と、第2導電型の不純物を含む第4のゲート電極とを備えることを特徴とする半導体装置。
A first conductivity type MOSFET and a second conductivity type MOSFET formed on a semiconductor substrate;
The first conductivity type MOSFET includes a first gate electrode containing a first conductivity type impurity, and a second gate electrode containing a second conductivity type impurity,
The second conductivity type MOSFET includes a third gate electrode containing a first conductivity type impurity and a fourth gate electrode containing a second conductivity type impurity.
前記第1導電型のMOSFETは、第1導電型の不純物および第2導電型の不純物を含む第3のゲート電極を備えることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the first conductivity type MOSFET includes a third gate electrode including a first conductivity type impurity and a second conductivity type impurity. 3. 前記第1導電型の不純物はリン、前記第2導電型の不純物はホウ素であることを特徴とする請求項1または請求項2に記載の半導体装置。   3. The semiconductor device according to claim 1, wherein the first conductivity type impurity is phosphorus, and the second conductivity type impurity is boron. 半導体基板に第1導電型のMOSFET領域と、第2導電型のMOSFET領域を形成し、
半導体基板上にゲート絶縁膜となる絶縁膜と、ゲート電極となる導電体膜を順次形成し、
前記第1導電型のMOSFET領域における第1の領域の導電体膜と、前記第2導電型のMOSFET領域における第1の領域の導電体膜とに、選択的に第1導電型の不純物を前記半導体基板に到達しない条件で注入し、
前記第1導電型のMOSFET領域における第2の領域の導電体膜と、前記第2導電型のMOSFET領域における第2の領域の導電体膜とに、選択的に第2導電型の不純物を前記半導体基板に到達しない条件で注入し、
前記絶縁体膜と前記導電体膜を選択的に除去してゲート電極を形成し、
前記第1導電型のMOSFET領域および前記第2導電型のMOSFET領域に、それぞれチャネル不純物を注入することを特徴とする半導体装置の製造方法。
Forming a first conductivity type MOSFET region and a second conductivity type MOSFET region on a semiconductor substrate;
An insulating film to be a gate insulating film and a conductor film to be a gate electrode are sequentially formed on a semiconductor substrate,
The first conductivity type impurity is selectively applied to the first region conductor film in the first conductivity type MOSFET region and the first region conductor film in the second conductivity type MOSFET region. Injecting under conditions that do not reach the semiconductor substrate,
The second conductivity type impurity is selectively introduced into the second region conductor film in the first conductivity type MOSFET region and the second region conductor film in the second conductivity type MOSFET region. Injecting under conditions that do not reach the semiconductor substrate,
Selectively removing the insulator film and the conductor film to form a gate electrode;
A method of manufacturing a semiconductor device, wherein channel impurities are implanted into the first conductivity type MOSFET region and the second conductivity type MOSFET region, respectively.
前記第1導電型のMOSFET領域における前記第1の領域と前記第1導電型のMOSFET領域における前記第2の領域と、前記第2導電型のMOSFET領域における前記第1の領域と前記第2導電型のMOSFET領域における前記第2の領域は、それぞれ前記第1の領域と前記第2の領域が重複した第3の領域を含むことを特徴とする請求項4に記載の半導体装置の製造方法。   The first region in the first conductivity type MOSFET region, the second region in the first conductivity type MOSFET region, the first region in the second conductivity type MOSFET region, and the second conductivity. 5. The method of manufacturing a semiconductor device according to claim 4, wherein the second region in the type MOSFET region includes a third region in which the first region and the second region overlap each other.
JP2009090027A 2009-04-02 2009-04-02 Semiconductor device, and method of manufacturing the same Pending JP2010245159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009090027A JP2010245159A (en) 2009-04-02 2009-04-02 Semiconductor device, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090027A JP2010245159A (en) 2009-04-02 2009-04-02 Semiconductor device, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010245159A true JP2010245159A (en) 2010-10-28

Family

ID=43097884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090027A Pending JP2010245159A (en) 2009-04-02 2009-04-02 Semiconductor device, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010245159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7347350B2 (en) 2020-07-10 2023-09-20 信越半導体株式会社 Method for setting epitaxial growth conditions and method for manufacturing epitaxial wafers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7347350B2 (en) 2020-07-10 2023-09-20 信越半導体株式会社 Method for setting epitaxial growth conditions and method for manufacturing epitaxial wafers

Similar Documents

Publication Publication Date Title
US6255152B1 (en) Method of fabricating CMOS using Si-B layer to form source/drain extension junction
KR101674398B1 (en) Semiconductor devices and methods of manufacturing the same
US20110006373A1 (en) Transistor Structure
US7947606B2 (en) Methods of forming conductive features and structures thereof
US20110089500A1 (en) Multi-gate semiconductor devices
US20130307091A1 (en) Schottky Diodes Having Metal Gate Electrodes and Methods of Formation Thereof
JP2010034488A (en) Device structures with self-aligned damage layer and methods for forming such device structures
US7919379B2 (en) Dielectric spacer removal
JP2005167252A (en) Integrated circuit structure
US20190006351A1 (en) Semiconductor structure and fabrication method thereof
KR100279264B1 (en) S-O transistor having a double gate structure and method of manufacturing the same
US8273629B2 (en) Through-gate implant for body dopant
WO2008002847A1 (en) Methods of employing a thin oxide mask for high dose implants
JP4501183B2 (en) Manufacturing method of semiconductor device
US8796130B2 (en) Diffusion barrier for oppositely doped portions of gate conductor
KR19990087000A (en) Semiconductor device and manufacturing method thereof
KR100331844B1 (en) Complementary metal oxide semiconductor device
US6362034B1 (en) Method of forming MOSFET gate electrodes having reduced depletion region growth sensitivity to applied electric field
KR20010074630A (en) Method of making shallow junction semiconductor devices
JP2006202850A (en) Semiconductor device and its manufacturing method
JP2010245159A (en) Semiconductor device, and method of manufacturing the same
US20060014389A1 (en) Method of manufacturing semiconductor device
KR20130123327A (en) Increased transistor performance by implementing an additional cleaning process in a stress liner approach
JPH1098186A (en) Semiconductor device and its manufacture
KR100244258B1 (en) Method for manufacturing semiconductor device