JP2010245038A - Positive electrode mixture and lithium battery - Google Patents

Positive electrode mixture and lithium battery Download PDF

Info

Publication number
JP2010245038A
JP2010245038A JP2010063074A JP2010063074A JP2010245038A JP 2010245038 A JP2010245038 A JP 2010245038A JP 2010063074 A JP2010063074 A JP 2010063074A JP 2010063074 A JP2010063074 A JP 2010063074A JP 2010245038 A JP2010245038 A JP 2010245038A
Authority
JP
Japan
Prior art keywords
positive electrode
particles
less
active material
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010063074A
Other languages
Japanese (ja)
Other versions
JP5752890B2 (en
Inventor
Yoshikatsu Kiyono
美勝 清野
Tadatoshi Murota
忠俊 室田
Satoru Fujiwara
哲 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Santoku Corp
Original Assignee
Idemitsu Kosan Co Ltd
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Santoku Corp filed Critical Idemitsu Kosan Co Ltd
Priority to JP2010063074A priority Critical patent/JP5752890B2/en
Publication of JP2010245038A publication Critical patent/JP2010245038A/en
Application granted granted Critical
Publication of JP5752890B2 publication Critical patent/JP5752890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid lithium battery superior in output characteristics. <P>SOLUTION: The positive electrode mixture contains a particle of a compound as expressed by the following formula (1) and a sulfide system solid electrolyte particle, and the tap density of the particle expressed by the formula (1) is 2.0 g/cm<SP>3</SP>or more. Formula (1): Li<SB>a</SB>Ni<SB>b</SB>Co<SB>c</SB>Mn<SB>d</SB>M<SB>e</SB>O<SB>f+σ</SB>. In the formula (1), a is larger than 0.9 and 1.05 or less, f is 2 or 4, σ is -0.2 or more and 0.2 or less, M is one kind or more of element selected from Mg, Ca, Y, rare earth element, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, N, P, S, F and Cl. When f=2, b is 0 or more and 1 or less, c is 0 or more and 1 or less, d is 0 or more and 1 or less, e is 0 or more and 0.5 or less, and b, c, d and e are b+c+d+e=1. When f is 4, b is 0 or more and 2 or less, c is 0 or more and 2 or less, d is 0 or more and 2 or less, e is 0 or more and 1 or less, and b, c, d and e are b+c+d+e=2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム電池等に使用する正極合材に関する。また、不燃性の電解質、即ち、無機固体電解質を用いることにより、高い安全性を有するリチウム電池に関するものである。   The present invention relates to a positive electrode mixture used for a lithium battery or the like. The present invention also relates to a lithium battery having high safety by using a nonflammable electrolyte, that is, an inorganic solid electrolyte.

可燃性の有機溶媒電解質を用いるリチウム電池にとって、発火等のその安全性に対する懸念は本質的な問題である。この問題に対する抜本的な解決法は、可燃性の有機溶媒電解質に代えて、不燃性の電解質を用いることである。
不燃性の電解質の代表的なものとしては、無機物のリチウムイオン伝導性固体電解質を挙げることができる。無機の固体電解質を用いると、安全性を高めることができるのみならず、電池を薄膜化し電子回路と集積化することや、無機固体電解質がイオン選択性を有することから、サイクル寿命や、保存寿命等電池の信頼性をも向上させることができる。
For lithium batteries using flammable organic solvent electrolytes, concerns about their safety, such as ignition, are an essential problem. A drastic solution to this problem is to use a non-flammable electrolyte instead of a flammable organic solvent electrolyte.
A typical non-flammable electrolyte is an inorganic lithium ion conductive solid electrolyte. The use of inorganic solid electrolytes not only increases safety, but also reduces battery life and integrates them with electronic circuits, and because the inorganic solid electrolytes have ion selectivity, cycle life and shelf life It is also possible to improve the reliability of the battery.

液体電解質を使用したリチウム電池において、充放電サイクルに伴う容量低下や自己放電の原因の多くは、電池内で生じる副反応である。具体的に、リチウムイオン電池の電極反応に寄与するイオンはリチウムイオンのみであるが、液体電解質中では、陰イオンあるいは溶媒分子、さらには不純物等も移動する。これらが高い酸化力を有する正極、あるいは高い還元力を有する負極表面に拡散すると、酸化あるいは還元されることがある。このような副反応が電池特性の低下を引き起こす。   In a lithium battery using a liquid electrolyte, many of the causes of capacity reduction and self-discharge associated with charge / discharge cycles are side reactions occurring in the battery. Specifically, lithium ions are the only ions that contribute to the electrode reaction of lithium ion batteries, but in the liquid electrolyte, anions, solvent molecules, and further impurities move. When these diffuse to the positive electrode surface having a high oxidizing power or the negative electrode surface having a high reducing power, they may be oxidized or reduced. Such a side reaction causes a decrease in battery characteristics.

液体電解質はイオン選択性がないため、液体電解質を使用した電池では、上記の副作用が生じる。それに対して、無機固体電解質はイオン選択性を有する。即ち、リチウムイオン伝導性の無機固体電解質中を移動するものは、リチウムイオンのみである。従って、液体電解質中のように、リチウムイオン以外のものが電極表面に拡散することで副反応が継続することがない。そのため、無機固体電解質を用いたリチウムイオン電池(全固体リチウム電池)は、長寿命、低自己放電のものとなる。   Since the liquid electrolyte has no ion selectivity, the above-mentioned side effect occurs in the battery using the liquid electrolyte. On the other hand, the inorganic solid electrolyte has ion selectivity. That is, only lithium ions move through the lithium ion conductive inorganic solid electrolyte. Therefore, as in the liquid electrolyte, side reactions do not continue due to diffusion of substances other than lithium ions on the electrode surface. Therefore, a lithium ion battery (all solid lithium battery) using an inorganic solid electrolyte has a long life and low self-discharge.

しかしながら、全固体リチウム電池では、得られる出力密度が液体電解質系のものに比べ低いという問題がある。
この問題に対し、例えば、全固体リチウム二次電池の負極材料として低い電位と高い容量密度を有する炭素材料を用いる方法が提案されている(特許文献1、2参照)。これにより、全固体リチウム二次電池のエネルギー密度を高めることができるものの、この二次電池において得られる出力密度は、平方センチメートルあたり数百マイクロアンペア程度であり、液体電解質系のものに比べ依然低いものであった。
However, the all-solid lithium battery has a problem that the obtained output density is lower than that of the liquid electrolyte type.
To solve this problem, for example, a method using a carbon material having a low potential and a high capacity density as a negative electrode material of an all-solid lithium secondary battery has been proposed (see Patent Documents 1 and 2). Although this can increase the energy density of the all-solid lithium secondary battery, the output density obtained in this secondary battery is about several hundred microamperes per square centimeter, which is still lower than that of the liquid electrolyte system. Met.

特開2003−68361号公報JP 2003-68361 A 特開2003−217663号公報JP 2003-217663 A

全固体リチウム電池は、上記のように安全性を含めた優れた信頼性を有する。しかしながら、一般的にエネルギー密度あるいは出力密度は液体電解質系のものと比べて低く、特に、汎用電池として用いる際には、この課題を解決する必要がある。
本発明は、上記の課題を解決し、出力特性に優れた全固体リチウム電池を提供することを目的とする。
The all solid lithium battery has excellent reliability including safety as described above. However, in general, the energy density or power density is lower than that of the liquid electrolyte type, and it is necessary to solve this problem particularly when used as a general-purpose battery.
An object of the present invention is to solve the above-described problems and provide an all-solid lithium battery excellent in output characteristics.

本発明によれば、以下の正極合材及びリチウム電池が提供される。
1.下記式(1)で表される正極活物質の粒子と硫化物系固体電解質粒子とを含み、前記式(1)で表される粒子のタップ密度が2.0g/cm以上であることを特徴とする正極合材。
LiNiCoMnf+σ…(1)
[式(1)中、aは0.9より大きく、1.05以下であり、fは2又は4であり、σは−0.2以上0.2以下であり、MはMg、Ca、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Cu、Ag、Zn、B、Al、Ga、C、Si、Sn、N、P、S、F、Clから選択される一種以上の元素である。f=2の場合、bは0以上1以下、cは0以上1以下、dは0以上1以下、eは0以上0.5以下であり、b,c,d及びeはb+c+d+e=1を満たす。f=4の場合、bは0以上2以下、cは0以上2以下、dは0以上2以下、eは0以上1以下であり、b,c,d及びeはb+c+d+e=2を満たす。]
2.前記式(1)で表される正極活物質の粒子がリチウムイオン伝導性酸化物で表面修飾されていることを特徴とする1に記載の正極合材。
3.前記式(1)で表される正極活物質の粒子の粒子径が1μm以上10μm以下であり、比表面積が0.20m/g以上0.8m/g以下であり、前記硫化物系固体電解質粒子の粒子径が0.01μm以上50μm以下であることを特徴とする1又は2に記載の正極合材。
4.前記式(1)で表される正極活物質の粒子の粒子径が4.2μm以上7.0μm以下であり、比表面積が0.35以上0.7m/g以下であることを特徴とする1又は2に記載の正極合材。
5.前記式(1)で表され、かつb=0である正極活物質の粒子が、複数の一次粒子からなる二次粒子及び/又は単結晶粒子を含み、下記式(2)で定義されるAが1以上10以下であることを特徴とする1〜4のいずれかに記載の正極合材。
A=(m+p)/(m+s) (2)
(式中、mは単結晶粒子の個数であり、sは二次粒子の個数であり、pは二次粒子を構成する一次粒子の個数である。)
6.前記式(1)で表される正極活物質がLiCoO2+σであることを特徴とする1〜4のいずれかに記載の正極合材。
7.上記1〜6のいずれかに記載の正極合材からなる正極と、硫化物系固体電解質を含む電解質層を備えることを特徴とするリチウム電池。
According to the present invention, the following positive electrode mixture and lithium battery are provided.
1. The positive electrode active material particles represented by the following formula (1) and sulfide solid electrolyte particles are included, and the tap density of the particles represented by the formula (1) is 2.0 g / cm 3 or more. Characteristic positive electrode composite.
Li a Ni b Co c Mn d Me O f + σ (1)
[In Formula (1), a is larger than 0.9 and 1.05 or less, f is 2 or 4, σ is −0.2 or more and 0.2 or less, M is Mg, Ca, Y, rare earth element, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, N, P, S, F , One or more elements selected from Cl. When f = 2, b is 0 or more and 1 or less, c is 0 or more and 1 or less, d is 0 or more and 1 or less, e is 0 or more and 0.5 or less, and b, c, d, and e are b + c + d + e = 1. Fulfill. When f = 4, b is from 0 to 2, c is from 0 to 2, d is from 0 to 2, e is from 0 to 1, and b, c, d, and e satisfy b + c + d + e = 2. ]
2. 2. The positive electrode composite material according to 1, wherein the particles of the positive electrode active material represented by the formula (1) are surface-modified with a lithium ion conductive oxide.
3. Formula (1) particle size of the particles of the positive electrode active material represented by is at 1μm or more 10μm or less and a specific surface area of not more than 0.20 m 2 / g or more 0.8 m 2 / g, the sulfide-based solid 3. The positive electrode mixture according to 1 or 2, wherein the particle diameter of the electrolyte particles is 0.01 μm or more and 50 μm or less.
4). The positive electrode active material particles represented by the formula (1) have a particle size of 4.2 μm or more and 7.0 μm or less, and a specific surface area of 0.35 or more and 0.7 m 2 / g or less. The positive electrode composite material according to 1 or 2.
5). The positive electrode active material particles represented by the formula (1) and b = 0 include secondary particles and / or single crystal particles composed of a plurality of primary particles, and are defined by the following formula (2). 1 or more and 10 or less, The positive electrode compound material in any one of 1-4 characterized by the above-mentioned.
A = (m + p) / (m + s) (2)
(Where m is the number of single crystal particles, s is the number of secondary particles, and p is the number of primary particles constituting the secondary particles.)
6). The positive electrode composite material according to any one of 1 to 4, wherein the positive electrode active material represented by the formula (1) is Li a CoO 2 + σ .
7). A lithium battery comprising: a positive electrode comprising the positive electrode mixture according to any one of 1 to 6 above; and an electrolyte layer containing a sulfide-based solid electrolyte.

本発明によれば、出力特性に優れた全固体リチウム電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the all-solid-state lithium battery excellent in the output characteristic can be provided.

本発明の一実施形態であるリチウム電池の概略断面図である。It is a schematic sectional drawing of the lithium battery which is one Embodiment of this invention.

本発明の正極合材は、正極活物質粒子と硫化物系固体電解質粒子とを含む。そして、正極活物質粒子のタップ密度が2.0g/cm以上であることを特徴とする。正極合材は電池の正極の材料であり、正極活物質と固体電解質を混合したものである。 The positive electrode mixture of the present invention includes positive electrode active material particles and sulfide-based solid electrolyte particles. The positive electrode active material particles have a tap density of 2.0 g / cm 3 or more. The positive electrode mixture is a material for a positive electrode of a battery, and is a mixture of a positive electrode active material and a solid electrolyte.

本発明の正極合材において、正極活物質は下記式(1)で表される正極活物質の粒子を使用する。
LiNiCoMnf+σ…(1)
[式(1)中、aは0.9より大きく、1.05以下であり、fは2又は4であり、σは−0.2以上0.2以下であり、MはMg、Ca、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Cu、Ag、Zn、B、Al、Ga、C、Si、Sn、N、P、S、F、Clから選択される一種以上の元素である。f=2の場合、bは0以上1以下、cは0以上1以下、dは0以上1以下、eは0以上0.5以下であり、b,c,d及びeはb+c+d+e=1を満たす。f=4の場合、bは0以上2以下、cは0以上2以下、dは0以上2以下、eは0以上1以下であり、b,c,d及びeはb+c+d+e=2を満たす。]
In the positive electrode mixture of the present invention, the positive electrode active material uses particles of the positive electrode active material represented by the following formula (1).
Li a Ni b Co c Mn d Me O f + σ (1)
[In Formula (1), a is larger than 0.9 and 1.05 or less, f is 2 or 4, σ is −0.2 or more and 0.2 or less, M is Mg, Ca, Y, rare earth element, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, N, P, S, F , One or more elements selected from Cl. When f = 2, b is 0 or more and 1 or less, c is 0 or more and 1 or less, d is 0 or more and 1 or less, e is 0 or more and 0.5 or less, and b, c, d, and e are b + c + d + e = 1. Fulfill. When f = 4, b is from 0 to 2, c is from 0 to 2, d is from 0 to 2, e is from 0 to 1, and b, c, d, and e satisfy b + c + d + e = 2. ]

σは、Li、Ni、Co、Mn、Mの含有量、Mの種類により決定される、電荷のバランスをとる値であり、σは−0.2以上0.2以下の範囲である。便宜上、本願においてσの値は0と記載する。
本発明の正極活物質はMを含有することは必ずしも必要としないが、種々の電池特性を改善する目的で含有させることができ、又は不可避的不純物として含有する場合もある。
MとしてTiを含む場合、充放電時におけるLiのディインターカレーション又はインターカレーションの速度が速くなるため、負荷特性が高くなる。MがMgやAlの場合、結晶構造の安定化により熱安定性が向上する。また、正極活物質を合成する際のLiの拡散・反応を促進する効果がある。MがZrやHfの場合、結晶構造の安定化により高電位での充放電が可能になる。
σ is a value that balances charges, determined by the contents of Li, Ni, Co, Mn, and M, and the type of M, and σ is in the range of −0.2 to 0.2. For convenience, the value of σ is described as 0 in the present application.
The positive electrode active material of the present invention does not necessarily contain M, but can be contained for the purpose of improving various battery characteristics, or may be contained as an inevitable impurity.
When Ti is contained as M, the load characteristic is improved because the speed of deintercalation or intercalation of Li during charge / discharge is increased. When M is Mg or Al, the thermal stability is improved by stabilizing the crystal structure. In addition, there is an effect of promoting the diffusion and reaction of Li when synthesizing the positive electrode active material. When M is Zr or Hf, charging / discharging at a high potential becomes possible by stabilizing the crystal structure.

式(1)で表わされる正極活物質は、好ましくはLiCoO2+σ、LiNi0.8Co0.15Al0.052+σ、LiNi0.8Co0.22+σ、LiNiO2+σ、LiMn4+σ、LiMn0.5Ni0.52+σ、LiMn1.5Ni0.54+σ、又はLiMn1/3Ni1/3Co1/32+σである。 The positive electrode active material represented by the formula (1) is preferably Li a CoO 2 + σ , Li a Ni 0.8 Co 0.15 Al 0.05 O 2 + σ , Li a Ni 0.8 Co 0.2 O 2 + σ , Li a NiO 2 + σ , Li a Mn 2 O 4 + σ , Li a Mn 0.5 Ni 0.5 O 2 + σ , Li a Mn 1.5 Ni 0.5 O 4 + σ , or Li a Mn 1/3 Ni 1/3 Co 1 / 3 O 2 + σ .

また、本発明の正極合材では、タップ密度が2.0g/cm以上である正極活物質粒子を使用する。このような粒子を使用することにより、固体電解質との接触面が多くなり、また、正極活物質粒子の流動性が高くなるため、正極合材にしたときに空隙率を低くすることができる。タップ密度は、好ましくは2.1g/cm以上であり、特に好ましくは2.15g/cm以上である。
尚、タップ密度は、第十五改正日本薬局方に準拠した方法により測定した値である。具体的には、正極活物質粒子を、タッピングストロークを30mmとし、200回(2回/sec)タップした後の密度を測定する。
In the positive electrode mixture of the present invention, positive electrode active material particles having a tap density of 2.0 g / cm 3 or more are used. By using such particles, the contact surface with the solid electrolyte increases, and the fluidity of the positive electrode active material particles increases, so that the porosity can be lowered when the positive electrode mixture is formed. The tap density is preferably 2.1 g / cm 3 or more, particularly preferably 2.15 g / cm 3 or more.
The tap density is a value measured by a method based on the 15th revised Japanese Pharmacopoeia. Specifically, the density of the positive electrode active material particles after tapping stroke of 30 mm and tapping 200 times (2 times / sec) is measured.

正極活物質粒子は、リチウムイオン伝導性酸化物で表面修飾されていることが好ましい。表面修飾した粒子を用いると、粒子の流動性が向上するため、タップ密度が向上する。そのため、電池に使用した際、電池の性能が向上する。
表面修飾材であるリチウムイオン伝導性酸化物としては、電子伝導性を有しないリチウムイオン伝導性酸化物が好ましい。例えば、チタン酸リチウム(Li4/3Ti5/3)、LiNbOやLiTaO等の結晶性酸化物、LiO−SiO等の非晶質系(ガラス)酸化物が好ましい。特に、Li4/3Ti5/3が好ましい。
尚、表面修飾した正極活物質粒子を使用する場合、上述したタップ密度は表面修飾した粒子のタップ密度を意味する。後述する粒径等についても同様である。
The positive electrode active material particles are preferably surface-modified with a lithium ion conductive oxide. When the surface-modified particles are used, the fluidity of the particles is improved, so that the tap density is improved. Therefore, when used for a battery, the performance of the battery is improved.
As a lithium ion conductive oxide which is a surface modifier, a lithium ion conductive oxide having no electronic conductivity is preferable. For example, lithium titanate (Li 4/3 Ti 5/3 O 4) , crystalline oxide such as LiNbO 3 and LiTaO 3, Li 2 O-SiO 2 or the like of the amorphous-based (glass) oxide. In particular, Li 4/3 Ti 5/3 O 4 is preferable.
When the surface-modified positive electrode active material particles are used, the tap density described above means the tap density of the surface-modified particles. The same applies to the particle size and the like described later.

表面修飾は、例えば、下記の文献を参照することで実施できる。
N.Ohta, K.Takada, L.Zhang,R.Ma, M.Osada, T.Sasaki, Adv. Mater. 18, 2226 (2005).
The surface modification can be performed by referring to the following literature, for example.
N. Ohta, K .; Takada, L .; Zhang, R.A. Ma, M.M. Osada, T .; Sasaki, Adv. Mater. 18, 2226 (2005).

正極活物質粒子の粒子径(二次粒子 D50)は1〜10μmである。尚、粒子径はレーザー回折法で測定した値である。
また、比表面積は0.1〜3m/gの範囲である。比表面積は、N吸着BET法により測定した値である。
The particle diameter (secondary particle D50) of the positive electrode active material particles is 1 to 10 μm. The particle diameter is a value measured by a laser diffraction method.
The specific surface area is in the range of 0.1 to 3 m 2 / g. The specific surface area is a value measured by the N 2 adsorption BET method.

式(1)で表され、かつb=0である正極活物質粒子は、複数の一次粒子からなる二次粒子及び/又は単結晶粒子を含み、下記式(2)で定義されるAが1以上10以下であることが好ましい。
A=(m+p)/(m+s) (2)
(式中、mは単結晶粒子の個数であり、sは二次粒子の個数であり、pは二次粒子を構成する一次粒子の個数である。)
The positive electrode active material particles represented by the formula (1) and b = 0 include secondary particles and / or single crystal particles composed of a plurality of primary particles, and A defined by the following formula (2) is 1 It is preferable that it is 10 or less.
A = (m + p) / (m + s) (2)
(Where m is the number of single crystal particles, s is the number of secondary particles, and p is the number of primary particles constituting the secondary particles.)

式(2)のAは、上記正極活物質粒子において、二次粒子を構成する一次粒子の数を表す。Aが1以上10以下である場合、一次粒子が粒成長し、表面性状が滑らかな二次粒子の上記正極活物質粒子であるといえる。Aは2以上8以下であることがより好ましい
上記式(2)のm、p及びsは、複数の上記正極活物質粒子を樹脂で包埋処理し、鏡面研磨した試料を偏光顕微鏡にて観察することにより測定できる。具体的に、試料の偏光顕微鏡像(1000倍)から、二次粒子及び/又は単結晶粒子をランダムに20個抽出する。この20個に占める二次粒子の個数が上記sであり、単結晶粒子の個数が上記mである。尚、単結晶粒子とは、上述の偏光顕微鏡での観察で粒界が確認できない単結晶の粒子である。
一次粒子の個数pは、上記で観測された全ての二次粒子の内部に存在する粒界で仕切られた一次粒子の個数を数えることで決定できる。具体的には、上記鏡面処理された面にある、二次粒子の断面に含まれる一次粒子の総数を一次粒子の個数pとする。
A in the formula (2) represents the number of primary particles constituting the secondary particles in the positive electrode active material particles. When A is 1 or more and 10 or less, it can be said that the positive electrode active material particles are secondary particles in which primary particles grow and the surface properties are smooth. A is more preferably 2 or more and 8 or less m, p and s in the above formula (2) are obtained by embedding a plurality of the positive electrode active material particles with a resin and mirror-polishing the sample with a polarizing microscope. Can be measured. Specifically, 20 secondary particles and / or single crystal particles are randomly extracted from a polarizing microscope image (1000 times) of the sample. The number of secondary particles in the 20 particles is s, and the number of single crystal particles is m. Single crystal particles are single crystal particles whose grain boundaries cannot be confirmed by observation with the polarizing microscope described above.
The number p of primary particles can be determined by counting the number of primary particles partitioned by grain boundaries existing inside all the secondary particles observed above. Specifically, the total number of primary particles included in the cross section of secondary particles on the mirror-finished surface is defined as the number p of primary particles.

本発明で使用する正極活物質粒子は、例えば、酸化コバルトや水酸化リチウム等の原料粒子を均一に混合した後、焼成することにより作製できる。
焼成は、目的の焼成温度(例えば、850℃〜1050℃)より低温で仮焼成した後、焼成温度まで昇温してもよく、また、焼成温度で焼成した後、
正極活物質粒子の粒径、タップ密度等は、出発原料、例えば、原料となる酸化物や水酸化物を合成する際の水溶液の濃度、アルカリ水溶液の濃度、添加速度、pH、温度や、得られた原料を用い、正極活物質粒子を合成する際の焼成条件、さらには用いるリチウム塩の種類等により制御することができる。正極活物質粒子の各構成元素の比率は、各原料の混合比を調整することで制御できる。
The positive electrode active material particles used in the present invention can be produced, for example, by uniformly mixing raw material particles such as cobalt oxide and lithium hydroxide and then firing them.
Firing may be pre-baked at a temperature lower than the target firing temperature (for example, 850 ° C. to 1050 ° C.), and then heated to the firing temperature, or after firing at the firing temperature,
The particle size, tap density, etc. of the positive electrode active material particles are determined depending on the starting material, for example, the concentration of the aqueous solution when synthesizing the raw material oxide or hydroxide, the concentration of the alkaline aqueous solution, the addition rate, pH, temperature, It is possible to control the firing conditions when synthesizing the positive electrode active material particles using the obtained raw materials, and the type of lithium salt used. The ratio of the constituent elements of the positive electrode active material particles can be controlled by adjusting the mixing ratio of the raw materials.

硫化物系固体電解質粒子としては、硫黄原子、りん原子及びリチウム原子のみからなるものや、Al、B、Si、Ge等の原子を含むものが挙げられる。
固体電解質粒子の原材料としては、硫化リチウム(LiS)と五硫化二燐(P)、又は硫化リチウムと単体燐及び単体硫黄、さらには硫化リチウム、五硫化二燐、単体燐及び/又は単体硫黄が挙げられる。尚、P、SiS、B、Al、LiPO、LiSiO等を使用しても良い。また、有機化合物、無機化合物、あるいは有機・無機両化合物からなる材料を使用しても良い。
Examples of the sulfide-based solid electrolyte particles include those composed only of sulfur atoms, phosphorus atoms and lithium atoms, and those containing atoms such as Al, B, Si and Ge.
The raw material of the solid electrolyte particles, phosphorus pentasulfide and lithium sulfide (Li 2 S) (P 2 S 5), or lithium and elemental phosphorus and elemental sulfur sulfide, further lithium sulfide, phosphorus pentasulfide, elemental phosphorus and And / or elemental sulfur. P 2 S 3 , SiS 2 , B 2 S 3 , Al 2 S 3 , Li 3 PO 4 , Li 4 SiO 4, etc. may be used. Moreover, you may use the material which consists of an organic compound, an inorganic compound, or both organic and inorganic compounds.

原料の配合について、例えば、硫化リチウムと五硫化二燐を混合する場合、モル比は、通常LiS:P=50:50〜80:20、好ましくは、LiS:P=60:40〜75:25である。特に好ましくは、LiS:P=70:30程度である。 The formulation of raw material, for example, when mixing with lithium phosphorus pentasulfide disulfide, the molar ratio is usually Li 2 S: P 2 S 5 = 50: 50~80: 20, preferably, Li 2 S: P 2 S 5 = 60: 40~75: 25. Particularly preferably, it is about Li 2 S: P 2 S 5 = 70: 30.

上記の原料を溶融反応した後、急冷するか、又は、原料をメカニカルミリング法(MM法)により処理して、ガラス状の固体電解質を得る。さらに熱処理することにより結晶性の固体電解質が得られる。イオン伝導性の観点からは、結晶性の固体電解質が好ましい。
固体電解質の具体的な製造方法は、例えば、特開2005−228570号公報等を参照すればよい。
After the above raw material is melt-reacted, it is cooled rapidly, or the raw material is treated by a mechanical milling method (MM method) to obtain a glassy solid electrolyte. Further, a crystalline solid electrolyte is obtained by heat treatment. From the viewpoint of ion conductivity, a crystalline solid electrolyte is preferable.
For a specific method for producing the solid electrolyte, for example, JP-A-2005-228570 may be referred to.

硫化物系固体電解質粒子の粒径は、0.01〜50μmであることが好ましい。より好ましくは、0.1〜10μmである。さらに好ましくは、0.1〜7μmである。
尚、粒子径はレーザー回折法で測定した平均値(D50)を意味する。
The particle size of the sulfide-based solid electrolyte particles is preferably 0.01 to 50 μm. More preferably, it is 0.1-10 micrometers. More preferably, it is 0.1-7 micrometers.
The particle diameter means an average value (D50) measured by a laser diffraction method.

本発明の正極合材において、正極活物質粒子と硫化物系固体電解質粒子の混合比(正極活物質:電解質 「重量比」)は95:5〜50:50である。   In the positive electrode mixture of the present invention, the mixing ratio of the positive electrode active material particles and the sulfide-based solid electrolyte particles (positive electrode active material: electrolyte “weight ratio”) is 95: 5 to 50:50.

本発明においては、正極活物質粒子の粒子径が1μm以上10μm以下、正極活物質粒子の比表面積が0.25m/g以上0.8m/g以下であり、硫化物系固体電解質粒子の粒径が0.01〜50μmであることが好ましい。
また、正極活物質粒子の粒子径が4.2μm以上7.0μm以下であり、正極活物質粒子の比表面積が0.35以上0.7m/g以下であることが好ましい。
上記の条件は、通常の正極活物質粒子よりも粒度の小さい正極活物質粒子であることを意味する。
In the present invention, the positive electrode active material particles have a particle size of 1 μm to 10 μm, the positive electrode active material particles have a specific surface area of 0.25 m 2 / g to 0.8 m 2 / g, and the sulfide-based solid electrolyte particles The particle size is preferably 0.01 to 50 μm.
The positive electrode active material particles preferably have a particle size of 4.2 μm or more and 7.0 μm or less, and the positive electrode active material particles have a specific surface area of 0.35 or more and 0.7 m 2 / g or less.
The above conditions mean positive electrode active material particles having a smaller particle size than normal positive electrode active material particles.

本発明のリチウム電池は、上述した本発明の正極合材からなる正極と、硫化物系固体電解質を含む電解質層を有すればよく、他の構成部材は本技術分野にて公知のものが使用できる。
図1は、本発明の一実施形態であるリチウム電池の概略断面図である。
リチウム電池1は、正極5及び負極3で電解質層4を挟んだ構成を有する。本実施形態では、正極5には正極集電体6が、負極3には負極集電体2が接している。尚、本発明に係るリチウム電池は、二次電池に限定されず、一次電池も含まれる。
以下、各部材の例を示す。
The lithium battery of the present invention only needs to have a positive electrode made of the above-described positive electrode mixture of the present invention and an electrolyte layer containing a sulfide-based solid electrolyte, and other constituent members known in the art are used. it can.
FIG. 1 is a schematic cross-sectional view of a lithium battery according to an embodiment of the present invention.
The lithium battery 1 has a configuration in which an electrolyte layer 4 is sandwiched between a positive electrode 5 and a negative electrode 3. In the present embodiment, the positive electrode current collector 6 is in contact with the positive electrode 5, and the negative electrode current collector 2 is in contact with the negative electrode 3. In addition, the lithium battery which concerns on this invention is not limited to a secondary battery, A primary battery is also included.
Examples of each member will be shown below.

1.負極
負極は、通常の電池の負極に使用できるものであれば、特に制限されない。
例えば、負極活物質と固体電解質を混合した負極合材から負極を製造してもよく、また、カーボン負極を用いても良い。
1. Negative electrode The negative electrode is not particularly limited as long as it can be used for a negative electrode of a normal battery.
For example, a negative electrode may be manufactured from a negative electrode mixture obtained by mixing a negative electrode active material and a solid electrolyte, or a carbon negative electrode may be used.

負極活物質としては、市販されているものを特に限定なく使用することができる。例えば、炭素材料やSn金属、Si金属、Li金属、In金属等を好適に用いることができる。具体的には、天然黒鉛や各種グラファイト、Sn,Si,Al,Sb,Zn,Bi等の金属粉、SnCu,SnCo,SnFe、TiSi系合金、NiSi系合金、Li系合金等の金属合金粉、Si酸化物等の金属酸化物、その他アモルファス合金やメッキ合金が挙げられる。粒径に関しても特に制限はないが、平均粒径が数μm〜80μmのものを好適に用いることができる。 As a negative electrode active material, what is marketed can be used without limitation. For example, a carbon material, Sn metal, Si metal, Li metal, In metal, or the like can be suitably used. Specifically, natural graphite, various graphites, metal powder such as Sn, Si, Al, Sb, Zn, Bi, Sn 5 Cu 6 , Sn 2 Co, Sn 2 Fe, TiSi alloy, NiSi alloy, Li system Examples thereof include metal alloy powders such as alloys, metal oxides such as Si oxide, other amorphous alloys, and plating alloys. Although there is no restriction | limiting in particular regarding a particle size, A thing with an average particle diameter of several micrometers-80 micrometers can be used suitably.

固体電解質についても特に限定はなく、例えば、本発明の正極合材で説明した固体電解質を使用することができる。
負極活物質と固体電解質を所定の割合で混合することにより負極合材が作製される。
負極は、上記負極合材を使用して従来公知の方法により製造することができる。
There is no limitation in particular also about a solid electrolyte, For example, the solid electrolyte demonstrated by the positive electrode compound material of this invention can be used.
A negative electrode mixture is produced by mixing the negative electrode active material and the solid electrolyte at a predetermined ratio.
The negative electrode can be produced by a conventionally known method using the above negative electrode mixture.

2.固体電解質
特に限定はなく、本技術分野にて公知のものが使用できるが、上述した正極合材に使用する硫化物系固体電解質が好ましい。
2. Solid electrolyte There is no particular limitation, and those known in this technical field can be used, but the sulfide-based solid electrolyte used for the positive electrode mixture described above is preferred.

3.正極集電体及び負極集電体
正極集電体及び負極集電体としては、例えば、ステンレス鋼、金、白金、亜鉛、ニッケル、スズ、アルミニウム、モリブデン、ニオブ、タンタル、タングステン、チタン等の金属、及び、これらの合金にて、シート、箔、網状、パンチングメタル状、エキスパンドメタル状等に形成されたものが用いられる。特に、正極集電体ではアルミニウム箔が、負極集電体ではアルミニウム箔やスズ箔が、集電性、加工性、コストの点で好ましい。
3. Positive electrode current collector and negative electrode current collector Examples of the positive electrode current collector and the negative electrode current collector include metals such as stainless steel, gold, platinum, zinc, nickel, tin, aluminum, molybdenum, niobium, tantalum, tungsten, and titanium. And, these alloys formed into a sheet, foil, net shape, punching metal shape, expanded metal shape or the like are used. In particular, an aluminum foil is preferable for the positive electrode current collector, and an aluminum foil or a tin foil is preferable for the negative electrode current collector in terms of current collection, workability, and cost.

リチウム電池の製造方法は、特に限定されない。例えば、図1に示したリチウム電池1の場合、正極5と正極集電体6とを積層した正極合材シート、負極3と負極集電体2とを積層した負極合材シート、及び固体電解質シート(電解質層3)を、それぞれ作製し、これらを重ね合わせてプレスする方法がある。   The method for producing the lithium battery is not particularly limited. For example, in the case of the lithium battery 1 shown in FIG. 1, a positive electrode mixture sheet in which the positive electrode 5 and the positive electrode current collector 6 are laminated, a negative electrode mixture sheet in which the negative electrode 3 and the negative electrode current collector 2 are laminated, and a solid electrolyte There is a method in which sheets (electrolyte layer 3) are respectively produced, and these are stacked and pressed.

また、正極集電体6上に正極5を形成しておき、その上に電解質層4を形成し、さらにその上に負極集電体2に形成させた負極3を、電解質層4と負極3が接するように重ね合わせてもよい。   Further, the positive electrode 5 is formed on the positive electrode current collector 6, the electrolyte layer 4 is formed thereon, and the negative electrode 3 formed on the negative electrode current collector 2 is further formed on the positive electrode current collector 6. You may superimpose so that it touches.

正極合材シート及び負極合材シートの製造方法としては、例えば、正極5及び負極3を、正極集電体6及び負極集電体2の少なくとも一部に膜状に形成することで作製できる。製膜方法としては、ブラスト法、エアロゾルデポジション法、コールドスプレー法、スパッタリング法、気相成長法又は溶射法等が挙げられる。   As a method for producing the positive electrode mixture sheet and the negative electrode mixture sheet, for example, the positive electrode 5 and the negative electrode 3 can be formed in a film shape on at least a part of the positive electrode current collector 6 and the negative electrode current collector 2. Examples of the film forming method include a blast method, an aerosol deposition method, a cold spray method, a sputtering method, a vapor deposition method, and a thermal spraying method.

また、正極集電体6及び負極集電体2に上記正極5及び負極3の極材をスラリー化し、塗布する方法や、上記正極5及び負極3の極材を正極集電体6及び負極集電体2上に積層し圧縮する方法もある。   In addition, the positive electrode 5 and the negative electrode 3 are made into a slurry by applying the positive electrode 5 and the negative electrode 3 to the positive electrode current collector 6 and the negative electrode current collector 2, and the positive electrode 5 and the negative electrode 3. There is also a method of stacking on the electric body 2 and compressing.

実施例1
(1)LiCoO粒子の作製
粒子径5μm(D50)の酸化コバルトと水酸化リチウムとを均一に混合した後、700℃で4時間焼成し、その後、950℃で5時間焼成した。得られた酸化物粒子をICPにより組成分析を行ったところ、LiとCoの比が0.99:1.00のLiCoO粒子であった。
LiCoO粒子は、N.Ohta, K.Takada, L.Zhang,R.Ma, M.Osada, T.Sasaki, Adv. Mater. 18, 2226 (2005).に記載の方法でLi4/3Ti5/3により表面修飾した。
Example 1
(1) Production of LiCoO 2 Particles Cobalt oxide having a particle diameter of 5 μm (D50) and lithium hydroxide were uniformly mixed, then fired at 700 ° C. for 4 hours, and then fired at 950 ° C. for 5 hours. Composition analysis of the obtained oxide particles by ICP revealed LiCoO 2 particles having a Li / Co ratio of 0.99: 1.00.
LiCoO 2 particles, N. Ohta, K .; Takada, L .; Zhang, R.A. Ma, M.M. Osada, T .; Sasaki, Adv. Mater. 18, 2226 (2005). The surface was modified with Li 4/3 Ti 5/3 O 4 by the method described in 1).

表面修飾したLiCoOの粒子径は5.19μm(D50)、BET表面積は、0.66m/gであった。測定方法は下記のとおりである。
(A)粒子径 レーザー回折式粒度分布測定装置(シスメックス社製、マスターサイザー2000)で測定した。
(B)比表面積(BET表面積)
試料を200℃で20分間脱気後、カンタクロム社製の商品名「NOVA2000」を用いてN吸着BET法により測定した。
The particle diameter of the surface-modified LiCoO 2 was 5.19 μm (D50), and the BET surface area was 0.66 m 2 / g. The measuring method is as follows.
(A) Particle diameter It measured with the laser diffraction type particle size distribution measuring apparatus (the Sysmex company make, Mastersizer 2000).
(B) Specific surface area (BET surface area)
The sample was deaerated at 200 ° C. for 20 minutes and then measured by the N 2 adsorption BET method using a trade name “NOVA2000” manufactured by Cantachrome.

(2)硫化物系固体電解質粒子の作製
高純度硫化リチウム0.6508g(0.01417mol)と五硫化二燐1.3492g(0.00607mol)をよく混合し、混合粉末をアルミナ製ポットに投入し完全密閉した。
混合粉末を投入したポットを遊星型ボールミル機に取り付け、最初、出発原料を十分に混合する目的で、低速回転(85rpm)で数分間ミリングを行った。その後、徐々に回転速度を上げて370rpmとし、さらに、20時間メカニカルミリングを行った。
X線測定により、得られた粉末がガラス化していることを確認した。この粉末を300℃で2時間、熱処理して硫化物系固体電解質を得た。
(2) Preparation of sulfide-based solid electrolyte particles 0.6508 g (0.01417 mol) of high purity lithium sulfide and 1.3492 g (0.00607 mol) of diphosphorus pentasulfide are mixed well, and the mixed powder is put into an alumina pot. Completely sealed.
The pot charged with the mixed powder was attached to a planetary ball mill, and milling was performed for several minutes at a low speed (85 rpm) for the purpose of thoroughly mixing the starting materials. Thereafter, the rotational speed was gradually increased to 370 rpm, and mechanical milling was further performed for 20 hours.
It was confirmed by X-ray measurement that the obtained powder was vitrified. This powder was heat-treated at 300 ° C. for 2 hours to obtain a sulfide-based solid electrolyte.

交流インピーダンス法(測定周波数100Hz〜15MHz)により、得られた硫化物系固体電解質のイオン伝導度を測定したところ、室温で1.0×10−3S/cmのイオン伝導度を示した。
また、硫化物系固体電解質粒子の粒子径は5μmであった。
When the ionic conductivity of the obtained sulfide-based solid electrolyte was measured by an AC impedance method (measurement frequency: 100 Hz to 15 MHz), it showed an ionic conductivity of 1.0 × 10 −3 S / cm at room temperature.
The particle diameter of the sulfide-based solid electrolyte particles was 5 μm.

(3)正極合材の調製
上記(1)で調製したLiCoO粒子(正極活物質)及び(2)で調製した硫化物系固体電解質を、硫化物系固体電解質が30wt%となるように混合し、正極合材とした。
(3) Preparation of positive electrode mixture The LiCoO 2 particles (positive electrode active material) prepared in (1) above and the sulfide solid electrolyte prepared in (2) were mixed so that the sulfide solid electrolyte would be 30 wt%. And it was set as the positive electrode compound material.

(4)リチウム電池の製造
上記(2)で調製した硫化物系固体電解質50mgを、直径10mmのプラスチック製の円筒に投入し、1.7t/cmで加圧成型し、固体電解質層を形成した。
続けて、固体電解質層を形成した円筒に、上記(3)で調製した正極合材を30mg投入し、5t/cmにおいて加圧成型し、固体電解質層と正極の積層体を形成した。
次に、積層体の固体電解質層面にインジウム箔(厚さ0.1mm、9mmφ)を形成して、正極、固体電解質層及び負極の三層構造を有するリチウム電池を作製した。
(4) Manufacture of lithium battery 50 mg of the sulfide-based solid electrolyte prepared in (2) above is put into a plastic cylinder having a diameter of 10 mm, and pressure-molded at 1.7 t / cm 2 to form a solid electrolyte layer. did.
Subsequently, 30 mg of the positive electrode mixture prepared in (3) above was charged into the cylinder on which the solid electrolyte layer was formed, and press-molded at 5 t / cm 2 to form a laminate of the solid electrolyte layer and the positive electrode.
Next, an indium foil (thickness 0.1 mm, 9 mmφ) was formed on the solid electrolyte layer surface of the laminate, and a lithium battery having a three-layer structure of a positive electrode, a solid electrolyte layer, and a negative electrode was produced.

作製したリチウム電池を、1cmあたり500μAで3.9Vまで充電し、その後、10mA/cmの放電電流密度にて放電し、放電容量及び放電電圧を評価した。結果を表1に示す。 The produced lithium battery was charged to 3.9 V at 500 μA per cm 2 , and then discharged at a discharge current density of 10 mA / cm 2 to evaluate the discharge capacity and the discharge voltage. The results are shown in Table 1.

Figure 2010245038
Figure 2010245038

実施例2
下記の製法で得たLiCoO粒子を使用した以外は、実施例1と同様にして正極合材を調製し、リチウム電池を作製し評価した。尚、表面修飾はしていない。結果を表1に示す。
Example 2
A positive electrode mixture was prepared in the same manner as in Example 1 except that LiCoO 2 particles obtained by the following production method were used, and a lithium battery was produced and evaluated. The surface is not modified. The results are shown in Table 1.

[LiCoO粒子の作製]
粒子径7μm(D50)の酸化コバルトと炭酸リチウムとを均一に混合した後、700℃で4時間焼成し、その後、1000℃で5時間焼成した。得られた酸化物粒子をICPにより組成分析を行ったところ、LiとCoの比が1.01:1.00のLiCoO粒子であった。得られたLiCoOの粒子径は7.00μm(D50)、BET表面積は、0.46m/gであった。
[Production of LiCoO 2 particles]
Cobalt oxide having a particle size of 7 μm (D50) and lithium carbonate were uniformly mixed, then fired at 700 ° C. for 4 hours, and then fired at 1000 ° C. for 5 hours. Composition analysis of the obtained oxide particles by ICP revealed LiCoO 2 particles having a Li: Co ratio of 1.01: 1.00. The obtained LiCoO 2 had a particle size of 7.00 μm (D50) and a BET surface area of 0.46 m 2 / g.

実施例3
実施例2で得たLiCoO粒子を、実施例1と同様にして表面修飾した。表面修飾したLiCoOの粒子径は7.20μm(D50)、BET表面積は、0.44m/gであった。このLiCoO粒子を使用した以外は、実施例1と同様にして正極合材を調製し、リチウム電池を作製し評価した。結果を表1に示す。
Example 3
The LiCoO 2 particles obtained in Example 2 were surface modified in the same manner as in Example 1. The particle diameter of the surface-modified LiCoO 2 was 7.20 μm (D50), and the BET surface area was 0.44 m 2 / g. A positive electrode mixture was prepared in the same manner as in Example 1 except that these LiCoO 2 particles were used, and a lithium battery was produced and evaluated. The results are shown in Table 1.

実施例4
インジウム箔の代わりに、下記の負極合材からなる負極を形成した以外は、実施例1と同様にして、リチウム電池を作製し評価した。結果を表1に示す。
[負極合材]
グラファイト(粒径:D50で25μm)及び実施例1の(2)で調製した硫化物系固体電解質粒子を、グラファイト:硫化物系固体電解質粒子=6:4(重量比)となるように混合し、負極合材とした。
この負極合材8.8mgを用い、実施例1の正極合材を14.4mg用いた他は、実施例1と同様にしてリチウム電池を作製した。
尚、負極はプラスチック製の円筒に負極合材を投入し、1.7t/cmで加圧成型して形成した。
負極の上に硫化物系固体電解質50mgを投入し、3.4t/cmで加圧成型し、固体電解質層を形成した。
続けて、固体電解質層を形成した円筒に、正極合材を30mg投入し、5t/cmにおいて加圧成型した。
Example 4
A lithium battery was prepared and evaluated in the same manner as in Example 1 except that a negative electrode composed of the following negative electrode mixture was formed instead of the indium foil. The results are shown in Table 1.
[Negative electrode mixture]
Graphite (particle size: 25 μm in D50) and the sulfide-based solid electrolyte particles prepared in (2) of Example 1 were mixed so that graphite: sulfide-based solid electrolyte particles = 6: 4 (weight ratio). The negative electrode composite was used.
A lithium battery was produced in the same manner as in Example 1 except that 8.8 mg of this negative electrode mixture was used and 14.4 mg of the positive electrode mixture of Example 1 was used.
Incidentally, the negative electrode negative electrode mixture was poured into a plastic cylinder was formed by compression molding at 1.7t / cm 2.
50 mg of a sulfide-based solid electrolyte was put on the negative electrode and pressure-molded at 3.4 t / cm 2 to form a solid electrolyte layer.
Subsequently, 30 mg of the positive electrode mixture was put into a cylinder on which the solid electrolyte layer was formed, and was pressure-molded at 5 t / cm 2 .

実施例5
実施例3の正極合材を14.4mg用いて正極を形成した他は、実施例4と同様にしてリチウム電池を作製し評価した。結果を表1に示す。
Example 5
A lithium battery was prepared and evaluated in the same manner as in Example 4 except that 14.4 mg of the positive electrode mixture of Example 3 was used to form the positive electrode. The results are shown in Table 1.

実施例6
・Li(Ni0.85Co0.15)O(X=1.03)粒子の作製
金属ニッケルを85gと金属コバルトを15g硝酸に溶解した後、純水で希釈し1650mlとした。続いて4N水酸化ナトリウム溶液820mlを加え攪拌した後にろ過し、水酸化物のケーキを得た。得られたケーキを100℃で10時間乾燥し166gのニッケルコバルト複合水酸化物を得た。ここで、水酸化リチウム一水和物(LiOH・HO)をLi/(Ni+Co)=1.03となるようにニッケルコバルト複合水酸化物に添加・混合し、800℃で焼成を行い、Li(Ni0.85Co0.15)O(X=1.03)を合成した。得られたLi(Ni0.85Co0.15)Oの粒子径は9.28μm(D50)、BET表面積は、0.24m/gであった。当該正極活物質を使用した以外は実施例1と同様にして正極合材を調製し、リチウム電池を作製した。
作製したリチウム電池を、1cmあたり500μAで3.6Vまで充電し、その後10mA/cmの放電電流密度にて放電し、放電容量及び放電電圧を評価した。結果を表1に示す。
Example 6
Preparation of Li X (Ni 0.85 Co 0.15 ) O 2 (X = 1.03) Particles After dissolving metallic nickel in 85 g and metallic cobalt in 15 g nitric acid, it was diluted with pure water to 1650 ml. Subsequently, 820 ml of 4N sodium hydroxide solution was added and stirred, followed by filtration to obtain a hydroxide cake. The obtained cake was dried at 100 ° C. for 10 hours to obtain 166 g of nickel cobalt composite hydroxide. Here, lithium hydroxide monohydrate (LiOH.H 2 O) was added to and mixed with nickel-cobalt composite hydroxide so that Li / (Ni + Co) = 1.03, and calcined at 800 ° C., Li X (Ni 0.85 Co 0.15 ) O 2 (X = 1.03) was synthesized. The obtained Li X (Ni 0.85 Co 0.15 ) O 2 had a particle size of 9.28 μm (D50) and a BET surface area of 0.24 m 2 / g. A positive electrode mixture was prepared in the same manner as in Example 1 except that the positive electrode active material was used, and a lithium battery was produced.
The produced lithium battery was charged to 3.6 V at 500 μA per cm 2 and then discharged at a discharge current density of 10 mA / cm 2 to evaluate the discharge capacity and the discharge voltage. The results are shown in Table 1.

実施例7
・Li(Ni0.82Co0.14Al0.04)O(X=1.03)粒子の作製
金属ニッケルを85gと金属コバルトを15g硝酸に溶解した後、純水で希釈し1650mlとした。続いて4N水酸化ナトリウム溶液820mlと1mol/lの硝酸アルミニウム溶液40mlを加え攪拌した後にろ過し、水酸化物のケーキを得た。得られたケーキを100℃で10時間乾燥し168gのニッケルコバルト複合水酸化物を得た。ここで、水酸化リチウム一水和物(LiOH・HO)をLi/(Ni+Co+Al)=1.03となるように添加・混合し、800℃で焼成を行い、Li(Ni0.82Co0.14Al0.04)O(X=1.03)を合成した。得られたLi(Ni0.85Co0.15)Oの粒子径は9.10μm(D50)、BET表面積は、0.25m/gであった。当該正極活物質を使用した以外は実施例8と同様にして正極合材を調製し、リチウム電池を作製し評価した。結果を表1に示す。
Example 7
Preparation of Li X (Ni 0.82 Co 0.14 Al 0.04 ) O 2 (X = 1.03) Particles After dissolving metallic nickel in 85 g and metallic cobalt in 15 g nitric acid, it was diluted with pure water to 1650 ml It was. Subsequently, 820 ml of 4N sodium hydroxide solution and 40 ml of 1 mol / l aluminum nitrate solution were added and stirred, followed by filtration to obtain a hydroxide cake. The obtained cake was dried at 100 ° C. for 10 hours to obtain 168 g of nickel cobalt composite hydroxide. Here, lithium hydroxide monohydrate (LiOH.H 2 O) was added and mixed so that Li / (Ni + Co + Al) = 1.03, followed by firing at 800 ° C., and Li X (Ni 0.82 Co 0.14 Al 0.04 ) O 2 (X = 1.03) was synthesized. The resulting Li X (Ni 0.85 Co 0.15) particle size of the O 2 is 9.10μm (D50), BET surface area was 0.25 m 2 / g. A positive electrode mixture was prepared in the same manner as in Example 8 except that the positive electrode active material was used, and a lithium battery was prepared and evaluated. The results are shown in Table 1.

比較例1
下記の製法で得られたLiCoO粒子を使用した以外は実施例1と同様にして正極合材を調製し、リチウム電池を作製した。結果を表1に示す。
[LiCoO粒子の製造]
粒子径13μm(D50)の酸化コバルトと炭酸リチウムとを均一に混合した後、700℃で4時間焼成し、その後、750℃で5時間焼成した。得られた酸化物粒子をICPにより組成分析を行ったところ、LiとCoの比が0.99:1.00のLiCoO粒子であった。得られたLiCoOの粒子径は12.50μm(D50)、BET表面積は、0.85m/gであった。
Comparative Example 1
Except using LiCoO 2 particles obtained in the following method in the same manner as in Example 1 to prepare a positive electrode mix was prepared a lithium battery. The results are shown in Table 1.
[Production of LiCoO 2 particles]
Cobalt oxide having a particle size of 13 μm (D50) and lithium carbonate were uniformly mixed, then fired at 700 ° C. for 4 hours, and then fired at 750 ° C. for 5 hours. Composition analysis of the obtained oxide particles by ICP revealed LiCoO 2 particles having a Li / Co ratio of 0.99: 1.00. The obtained LiCoO 2 had a particle size of 12.50 μm (D50) and a BET surface area of 0.85 m 2 / g.

比較例2
LiCoO粒子(日本化学工業社製、セルシードC−10)を使用し、表面修飾をしないものを使用した以外は実施例1と同様にして正極合材を調製し、リチウム電池を作製し評価した。結果を表1に示す。
Comparative Example 2
A positive electrode mixture was prepared in the same manner as in Example 1 except that LiCoO 2 particles (manufactured by Nippon Chemical Industry Co., Ltd., cell seed C-10) were used, and those without surface modification were used, and a lithium battery was produced and evaluated. . The results are shown in Table 1.

比較例3
比較例1と同じLiCoO粒子を使用した以外は実施例4と同様にして正極合材を調製し、リチウム電池を作製し評価した。結果を表1に示す。
Comparative Example 3
A positive electrode mixture was prepared in the same manner as in Example 4 except that the same LiCoO 2 particles as in Comparative Example 1 were used, and a lithium battery was produced and evaluated. The results are shown in Table 1.

比較例4
比較例2と同じLiCoO粒子を使用した以外は実施例4と同様にして正極合材を調製し、リチウム電池を作製し評価した。結果を表1に示す。
Comparative Example 4
A positive electrode mixture was prepared in the same manner as in Example 4 except that the same LiCoO 2 particles as in Comparative Example 2 were used, and a lithium battery was prepared and evaluated. The results are shown in Table 1.

比較例5
比較例2と同じLiCoO粒子を使用し、電池を製造する際に、最終成型圧力を7t/cmにした以外は、実施例1と同様にして正極合材を調製し、リチウム電池を作製し評価した。結果を表1に示す。
表1に示したとおり、比較例1〜4では作製した電池は、電池として機能しなかったため、本例では成型時の圧力を高くした。しかしながら、本例においても電池として機能しなかった。
Comparative Example 5
When using the same LiCoO 2 particles as in Comparative Example 2 to produce a battery, a positive electrode mixture was prepared in the same manner as in Example 1 except that the final molding pressure was 7 t / cm 2 to produce a lithium battery. And evaluated. The results are shown in Table 1.
As shown in Table 1, since the batteries produced in Comparative Examples 1 to 4 did not function as batteries, the pressure during molding was increased in this example. However, this example did not function as a battery.

本発明の正極合材は、リチウム電池の正極材料として好適である。また、本発明のリチウム電池は、各種電化製品の電源等として好適に使用できる。   The positive electrode mixture of the present invention is suitable as a positive electrode material for a lithium battery. The lithium battery of the present invention can be suitably used as a power source for various electrical appliances.

1 リチウム電池
2 負極集電体
3 負極
4 電解質層
5 正極
6 正極集電体
DESCRIPTION OF SYMBOLS 1 Lithium battery 2 Negative electrode collector 3 Negative electrode 4 Electrolyte layer 5 Positive electrode 6 Positive electrode collector

Claims (7)

下記式(1)で表される正極活物質の粒子と硫化物系固体電解質粒子とを含み、
前記式(1)で表される粒子のタップ密度が2.0g/cm以上であることを特徴とする正極合材。
LiNiCoMnf+σ…(1)
[式(1)中、aは0.9より大きく、1.05以下であり、fは2又は4であり、σは−0.2以上0.2以下であり、MはMg、Ca、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Fe、Cu、Ag、Zn、B、Al、Ga、C、Si、Sn、N、P、S、F及びClから選択される一種以上の元素である。f=2の場合、bは0以上1以下、cは0以上1以下、dは0以上1以下、eは0以上0.5以下であり、b,c,d及びeはb+c+d+e=1を満たす。f=4の場合、bは0以上2以下、cは0以上2以下、dは0以上2以下、eは0以上1以下であり、b,c,d及びeはb+c+d+e=2を満たす。]
Including positive electrode active material particles represented by the following formula (1) and sulfide-based solid electrolyte particles;
A positive electrode composite material, wherein the tap density of the particles represented by the formula (1) is 2.0 g / cm 3 or more.
Li a Ni b Co c Mn d Me O f + σ (1)
[In Formula (1), a is larger than 0.9 and 1.05 or less, f is 2 or 4, σ is −0.2 or more and 0.2 or less, M is Mg, Ca, Y, rare earth element, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Cu, Ag, Zn, B, Al, Ga, C, Si, Sn, N, P, S, F And at least one element selected from Cl. When f = 2, b is 0 or more and 1 or less, c is 0 or more and 1 or less, d is 0 or more and 1 or less, e is 0 or more and 0.5 or less, and b, c, d, and e are b + c + d + e = 1. Fulfill. When f = 4, b is from 0 to 2, c is from 0 to 2, d is from 0 to 2, e is from 0 to 1, and b, c, d, and e satisfy b + c + d + e = 2. ]
前記式(1)で表される正極活物質の粒子がリチウムイオン伝導性酸化物で表面修飾されていることを特徴とする請求項1に記載の正極合材。   The positive electrode composite material according to claim 1, wherein the particles of the positive electrode active material represented by the formula (1) are surface-modified with a lithium ion conductive oxide. 前記式(1)で表される正極活物質の粒子の粒子径が1μm以上10μm以下であり、比表面積が0.20m/g以上0.8m/g以下であり、
前記硫化物系固体電解質粒子の粒子径が0.01μm以上50μm以下であることを特徴とする請求項1又は2に記載の正極合材。
Formula (1) particle size of the particles of the positive electrode active material represented by is at 1μm or more 10μm or less and a specific surface area of not more than 0.20 m 2 / g or more 0.8 m 2 / g,
3. The positive electrode mixture according to claim 1, wherein a particle diameter of the sulfide-based solid electrolyte particles is 0.01 μm or more and 50 μm or less.
前記式(1)で表される正極活物質の粒子の粒子径が4.2μm以上7.0μm以下であり、比表面積が0.35以上0.7m/g以下であることを特徴とすることを特徴とする請求項1又は2に記載の正極合材。 The positive electrode active material particles represented by the formula (1) have a particle size of 4.2 μm or more and 7.0 μm or less, and a specific surface area of 0.35 or more and 0.7 m 2 / g or less. The positive electrode composite material according to claim 1 or 2, wherein 前記式(1)で表され、かつb=0である正極活物質の粒子が、複数の一次粒子からなる二次粒子及び/又は単結晶粒子を含み、下記式(2)で定義されるAが1以上10以下であることを特徴とする請求項1〜4のいずれか一項に記載の正極合材。
A=(m+p)/(m+s) (2)
(式中、mは単結晶粒子の個数であり、sは二次粒子の個数であり、pは二次粒子を構成する一次粒子の個数である。)
The positive electrode active material particles represented by the formula (1) and b = 0 include secondary particles and / or single crystal particles composed of a plurality of primary particles, and are defined by the following formula (2). 1 or more and 10 or less, The positive electrode compound material as described in any one of Claims 1-4 characterized by the above-mentioned.
A = (m + p) / (m + s) (2)
(Where m is the number of single crystal particles, s is the number of secondary particles, and p is the number of primary particles constituting the secondary particles.)
前記式(1)で表される正極活物質がLiCoO2+σであることを特徴とする請求項1〜4のいずれか一項に記載の正極合材。 Positive electrode according to any one of claims 1 to 4, the positive electrode active material represented by the formula (1) is characterized in that it is a Li a CoO 2 + σ. 請求項1〜6のいずれか一項に記載の正極合材からなる正極と、
硫化物系固体電解質を含む電解質層を備えることを特徴とするリチウム電池。
A positive electrode comprising the positive electrode mixture according to any one of claims 1 to 6,
A lithium battery comprising an electrolyte layer containing a sulfide-based solid electrolyte.
JP2010063074A 2009-03-18 2010-03-18 Positive electrode mixture and lithium battery Active JP5752890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063074A JP5752890B2 (en) 2009-03-18 2010-03-18 Positive electrode mixture and lithium battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009066215 2009-03-18
JP2009066215 2009-03-18
JP2010063074A JP5752890B2 (en) 2009-03-18 2010-03-18 Positive electrode mixture and lithium battery

Publications (2)

Publication Number Publication Date
JP2010245038A true JP2010245038A (en) 2010-10-28
JP5752890B2 JP5752890B2 (en) 2015-07-22

Family

ID=43097798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063074A Active JP5752890B2 (en) 2009-03-18 2010-03-18 Positive electrode mixture and lithium battery

Country Status (1)

Country Link
JP (1) JP5752890B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065982A (en) * 2009-08-18 2011-03-31 Seiko Epson Corp Lithium battery electrode body and lithium battery
WO2012160698A1 (en) * 2011-05-26 2012-11-29 トヨタ自動車株式会社 Coated active material, and lithium solid-state battery
WO2013073038A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Electrolyte-coated positive electrode active material particles, all-solid-state battery, and production method for electrolyte-coated positive electrode active material particles
JP2016039062A (en) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 Positive electrode composite material and sulfide all-solid battery arranged by use thereof
JP2016062683A (en) * 2014-09-16 2016-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
KR20170050138A (en) * 2015-10-29 2017-05-11 주식회사 엘지화학 Cathode active material for all solid battery, all solid secondary battery comprising the same and a preparation method for all solid secondary battery
WO2019065254A1 (en) * 2017-09-28 2019-04-04 Jx金属株式会社 Positive electrode active material, method for producing same, positive electrode, and lithium ion battery
JP2020511757A (en) * 2017-03-15 2020-04-16 ユミコア Nitrate process for producing transition metal hydroxide precursors
JP2020167042A (en) * 2019-03-29 2020-10-08 住友化学株式会社 Cathode active material for all-solid lithium ion battery, electrode, and all-solid lithium ion battery
JP2020167145A (en) * 2020-01-17 2020-10-08 住友化学株式会社 Cathode active material for all-solid lithium ion battery, electrode, and all-solid lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3678231A4 (en) * 2017-08-28 2021-05-26 Mitsui Mining & Smelting Co., Ltd. Positive electrode active substance for all solid-state lithium secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148180A (en) * 1994-09-21 1996-06-07 Matsushita Electric Ind Co Ltd Total solid lithium secondary battery
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2005276680A (en) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial & Technology Lithium manganate series positive electrode active material and all solid lithium secondary battery
JP2006286511A (en) * 2005-04-04 2006-10-19 Nippon Chem Ind Co Ltd Positive active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2007512668A (en) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド Method for producing positive electrode active material for lithium secondary battery, reactive group used in the method, and positive electrode active material for lithium secondary battery produced by the method
JP2008103282A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Electrode material, and solid secondary battery using it
JP2008103280A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Positive electrode plied timber and all-solid secondary battery using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148180A (en) * 1994-09-21 1996-06-07 Matsushita Electric Ind Co Ltd Total solid lithium secondary battery
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell
JP2007512668A (en) * 2003-11-26 2007-05-17 ハンヤン ハク ウォン カンパニー,リミテッド Method for producing positive electrode active material for lithium secondary battery, reactive group used in the method, and positive electrode active material for lithium secondary battery produced by the method
JP2005276680A (en) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial & Technology Lithium manganate series positive electrode active material and all solid lithium secondary battery
JP2006286511A (en) * 2005-04-04 2006-10-19 Nippon Chem Ind Co Ltd Positive active material for lithium secondary battery, method for producing the same, and lithium secondary battery
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2008103282A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Electrode material, and solid secondary battery using it
JP2008103280A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Positive electrode plied timber and all-solid secondary battery using it

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005817B2 (en) 2009-08-18 2015-04-14 Seiko Epson Corporation Electrode for lithium battery comprising solid electrolyte nanoparticles and lithium battery
JP2011065982A (en) * 2009-08-18 2011-03-31 Seiko Epson Corp Lithium battery electrode body and lithium battery
WO2012160698A1 (en) * 2011-05-26 2012-11-29 トヨタ自動車株式会社 Coated active material, and lithium solid-state battery
JPWO2012160698A1 (en) * 2011-05-26 2014-07-31 トヨタ自動車株式会社 Coated active material and lithium solid state battery
JP5578280B2 (en) * 2011-05-26 2014-08-27 トヨタ自動車株式会社 Coated active material and lithium solid state battery
US9214674B2 (en) 2011-05-26 2015-12-15 Toyota Jidosha Kabushiki Kaisha Coated active material and lithium solid state battery
WO2013073038A1 (en) * 2011-11-17 2013-05-23 トヨタ自動車株式会社 Electrolyte-coated positive electrode active material particles, all-solid-state battery, and production method for electrolyte-coated positive electrode active material particles
JP2016039062A (en) * 2014-08-08 2016-03-22 トヨタ自動車株式会社 Positive electrode composite material and sulfide all-solid battery arranged by use thereof
JP2016062683A (en) * 2014-09-16 2016-04-25 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
KR20170050138A (en) * 2015-10-29 2017-05-11 주식회사 엘지화학 Cathode active material for all solid battery, all solid secondary battery comprising the same and a preparation method for all solid secondary battery
JP2020511757A (en) * 2017-03-15 2020-04-16 ユミコア Nitrate process for producing transition metal hydroxide precursors
US11401167B2 (en) 2017-03-15 2022-08-02 Umicore Nitrate process for manufacturing transition metal hydroxide precursors
WO2019065254A1 (en) * 2017-09-28 2019-04-04 Jx金属株式会社 Positive electrode active material, method for producing same, positive electrode, and lithium ion battery
CN110235290A (en) * 2017-09-28 2019-09-13 Jx金属株式会社 Positive active material and its manufacturing method, anode and lithium ion battery
CN110235290B (en) * 2017-09-28 2022-07-29 Jx金属株式会社 Positive electrode active material, method for producing same, positive electrode, and lithium ion battery
JP6568333B1 (en) * 2017-09-28 2019-08-28 Jx金属株式会社 Positive electrode active material, method for producing the same, positive electrode, and lithium ion battery
JP2020167042A (en) * 2019-03-29 2020-10-08 住友化学株式会社 Cathode active material for all-solid lithium ion battery, electrode, and all-solid lithium ion battery
WO2020202708A1 (en) * 2019-03-29 2020-10-08 住友化学株式会社 Positive electrode active material for all-solid-state lithium ion batteries, electrode and all-solid-state lithium ion battery
KR20200117977A (en) * 2019-03-29 2020-10-14 스미또모 가가꾸 가부시끼가이샤 Positive electrode active material for all solid lithium ion batteries, electrodes and all solid lithium ion batteries
KR102247128B1 (en) * 2019-03-29 2021-04-30 스미또모 가가꾸 가부시끼가이샤 Positive electrode active material for all-solid-state lithium-ion batteries, electrodes and all-solid-state lithium-ion batteries
JP2020167145A (en) * 2020-01-17 2020-10-08 住友化学株式会社 Cathode active material for all-solid lithium ion battery, electrode, and all-solid lithium ion battery
JP7194703B2 (en) 2020-01-17 2022-12-22 住友化学株式会社 Positive electrode active material for all-solid-state lithium-ion battery, electrode, and all-solid-state lithium-ion battery

Also Published As

Publication number Publication date
JP5752890B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5752890B2 (en) Positive electrode mixture and lithium battery
WO2010107084A1 (en) All-solid-state lithium battery
EP3774663B1 (en) O3/p2 mixed phase sodium-containing doped layered oxide materials
US20160181657A1 (en) Solid electrolyte, all-solid-state battery including the same, and method for making solid electrolyte
WO2020045633A1 (en) Sulfide solid electrolyte and all-solid-state battery
JP2011065887A (en) Positive electrode material, method for manufacturing the same, and lithium ion battery
TWI700853B (en) Positive electrode active material for sodium ion secondary battery and manufacturing method thereof
JP6679843B2 (en) Electrode, electrode manufacturing method and battery
JP6640434B1 (en) Positive electrode active material for all-solid-state lithium-ion battery, positive electrode for all-solid-state lithium-ion battery, all-solid-state lithium-ion battery
WO2017169599A1 (en) Amorphous oxide-based positive electrode active material, method for producing same and use of same
CN111213272B (en) Bipolar all-solid sodium ion secondary battery
JP2015013775A (en) Ion conductive solid, method for producing the same, and solid-state battery
JP6832073B2 (en) Manufacturing method of positive electrode active material for all-solid-state batteries
JP2014229579A (en) Lithium ion conductive inorganic solid composite
JP5810587B2 (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
JP5710136B2 (en) All solid lithium battery
JP2011105565A (en) Lithium manganate compound replaced by different metal and application thereof
JP2021072288A (en) Solid ion conductor compound, solid electrolyte including solid ion conductor compound, electrochemical cell including solid ion conductor compound, and method of preparing solid ion conductor compound
JP6578743B2 (en) Electrode manufacturing method
CN110313087A (en) Sintered lithium complex oxide plate
JP2002104827A (en) Spinel type lithium manganese compound oxide and its manufacturing method and lithium ion secondary battery esing it
WO2021215403A1 (en) Lithium ion-conductive glass ceramic
JP6754534B2 (en) Positive electrode active material for power storage devices and its manufacturing method
JP2021034199A (en) All-solid battery
JP2014049199A (en) Method of manufacturing sintered body for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150521

R150 Certificate of patent or registration of utility model

Ref document number: 5752890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250