JP2010243470A - Ct device - Google Patents

Ct device Download PDF

Info

Publication number
JP2010243470A
JP2010243470A JP2009111554A JP2009111554A JP2010243470A JP 2010243470 A JP2010243470 A JP 2010243470A JP 2009111554 A JP2009111554 A JP 2009111554A JP 2009111554 A JP2009111554 A JP 2009111554A JP 2010243470 A JP2010243470 A JP 2010243470A
Authority
JP
Japan
Prior art keywords
color
transmission image
image data
radiation
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009111554A
Other languages
Japanese (ja)
Other versions
JP5522350B2 (en
Inventor
Kiichiro Uyama
喜一郎 宇山
Teruo Yamamoto
輝夫 山本
Junichi Iwazawa
純一 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2009111554A priority Critical patent/JP5522350B2/en
Publication of JP2010243470A publication Critical patent/JP2010243470A/en
Application granted granted Critical
Publication of JP5522350B2 publication Critical patent/JP5522350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a sectional image with a wide dynamic range using a radiation detector for output of a transmission image with a plurality of color components. <P>SOLUTION: The CT device includes an X-ray detector 3 having a color X-ray II3a for detecting a radioactive ray and converting to a color visible light image, and a color camera 3b for photographing a color visible light image to output transmission image data for each color component, in which the sectional image of an object 5 to be inspected is reconfigured using monochrome transmission image data that transmission image data for each color component obtained by the color X-ray II3a at a plurality scanning positions is added mutually by an image synthesizing section 9e. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被検体の断面像を撮影するコンピュータ断層撮影装置(以下CT(Computed Tomography)装置と記載する。)に関する。  The present invention relates to a computed tomography apparatus (hereinafter referred to as a CT (Computed Tomography) apparatus) that captures a cross-sectional image of a subject.

従来のCT装置で、所謂RR(Rotate Rotate)方式(第三世代方式)と呼ばれるCT装置は、放射線源から発生する放射線(X線)を被検体に向けて照射し、被検体を放射線の光軸の方向に対し交差する回転軸で放射線に対して相対的に回転させ、一回転中の所定回転位置ごとに被検体から透過してくる放射線を1次元あるいは2次元の複数検出チャンネルを有する放射線検出器で検出し、この検出器出力から被検体の断面像ないし3次元データを得る(断層撮影する)ものである。  A CT apparatus called a so-called RR (Rotate Rotate) method (third generation method) in a conventional CT apparatus irradiates a subject with radiation (X-rays) generated from a radiation source, and irradiates the subject with radiation light. Radiation having a plurality of one-dimensional or two-dimensional detection channels that are rotated relative to the radiation at a rotation axis that intersects the direction of the axis, and that transmits radiation from the subject at each predetermined rotational position during one rotation. This is detected by a detector, and a cross-sectional image or three-dimensional data of the subject is obtained (tomographic imaging) from the detector output.

図7は、特許文献1に記載されている従来のCT装置の構成を示す模式図(正面図)である。X線管101と、ここから発生する角錐状のX線ビーム102を2次元の分解能で検出するX線検出器103が対向して配置され、このX線ビーム102に入るようにテーブル104上に載置された被検体105の透過像(透過像データ)を得るようになっている。  FIG. 7 is a schematic diagram (front view) showing a configuration of a conventional CT apparatus described in Patent Document 1. As shown in FIG. An X-ray tube 101 and an X-ray detector 103 that detects a pyramid-shaped X-ray beam 102 generated from the X-ray tube 101 with a two-dimensional resolution are arranged to face each other, and are placed on a table 104 so as to enter the X-ray beam 102. A transmission image (transmission image data) of the placed subject 105 is obtained.

テーブル104は回転・昇降機構107上に配置され、被検体105の断面像を撮影する時は、テーブル104を回転軸RAに対し回転・昇降機構107により1回転させながら複数の方向について透過像を得る(スキャンと言う)。この複数の透過像を制御処理部108で処理して被検体105の断面像(1枚ないし複数枚)を得る。  The table 104 is disposed on the rotation / elevation mechanism 107, and when taking a cross-sectional image of the subject 105, transmission images are displayed in a plurality of directions while the table 104 is rotated once by the rotation / elevation mechanism 107 with respect to the rotation axis RA. Get (referred to as scanning). The plurality of transmission images are processed by the control processing unit 108 to obtain cross-sectional images (one or more) of the subject 105.

X線検出器103としてはX線ビーム102の強度分布像を可視光像に変換するX線イメージインテンシファイア(以下X線IIと記載する)103aとこの可視光像を撮影して透過像(透過像データ)として出力するカメラ103bより成るX線検出器103が用いられる。  As the X-ray detector 103, an X-ray image intensifier (hereinafter referred to as X-ray II) 103a that converts an intensity distribution image of the X-ray beam 102 into a visible light image, and a visible image obtained by photographing the visible light image (see FIG. An X-ray detector 103 comprising a camera 103b that outputs as transmitted image data) is used.

上述したCT装置では、X線検出器103は単色の透過像を出力するが、他方、複数の色成分の透過像を出力する放射線検出器が知られている。第一の例として、カラーX線イメージインテンシファイア(略してカラーI.I.(登録商標)以下カラーX線IIと記載する)とカラーカメラを用いた放射線検出器が、特許文献2等で知られている。  In the CT apparatus described above, the X-ray detector 103 outputs a single-color transmission image, while a radiation detector that outputs transmission images of a plurality of color components is known. As a first example, a radiation detector using a color X-ray image intensifier (abbreviated as color II (registered trademark) hereinafter referred to as color X-ray II) and a color camera is disclosed in Patent Document 2 and the like. Are known.

カラーX線IIは入力面のシンチレータ層で入射した放射線(X線)の分布を電子の分布に変換し、この電子を加速して出力面に結像させ出力面のカラーシンチレータ層を発光させて可視光像に変換するものである。出力面のカラーシンチレータはカラー(多色)で発光するが、色成分(R,G,B:赤、緑、青)ごとに発光特性曲線が異なる。すなわち電子の入射量に対しR,G,Bの順に感度が高い特性がある。  Color X-ray II converts the radiation (X-ray) distribution incident on the scintillator layer on the input surface into an electron distribution, accelerates the electrons to form an image on the output surface, and causes the color scintillator layer on the output surface to emit light. It converts to a visible light image. The color scintillator on the output surface emits light in colors (multiple colors), but the emission characteristic curve is different for each color component (R, G, B: red, green, blue). That is, there is a characteristic that the sensitivity is higher in the order of R, G, and B with respect to the amount of incident electrons.

カラーカメラは変換されたカラーの可視光像を撮影し色成分(R,G,B)ごとの透過像を出力する。  The color camera captures the converted color visible light image and outputs a transmission image for each color component (R, G, B).

第二の例として、カラーシンシレータとカラーカメラを用いた放射線検出器が、特許文献3等で知られている。  As a second example, a radiation detector using a color scintillator and a color camera is known from Patent Document 3 and the like.

これは、放射線(X線)を入力面のカラーシンシレータ層に入射させて発光させることで、放射線の分布を可視光像に変換して、この可視光像をカラーカメラで撮影するものである。カラーシンチレータはカラーで発光するが、色成分(R,G,B:赤、緑、青)ごとに発光特性曲線が異なる。すなわち放射線の入射量に対しR,G,Bの順に感度が高い特性がある。カラーカメラは変換されたカラーの可視光像を撮影し色成分(R,G,B)ごとの透過像を出力する。  In this method, radiation (X-rays) is incident on a color scintillator layer on the input surface to emit light, thereby converting the radiation distribution into a visible light image and photographing the visible light image with a color camera. . The color scintillator emits light in color, but the emission characteristic curve is different for each color component (R, G, B: red, green, blue). That is, there is a characteristic that the sensitivity is higher in the order of R, G, and B with respect to the amount of incident radiation. The color camera captures the converted color visible light image and outputs a transmission image for each color component (R, G, B).

上述した複数の色成分の透過像をカラー表示で観察すると、低透過率部(低放射線部)は感度の高い赤色で細部がよく観察でき、高透過率部(高放射線部)は赤色は飽和するが感度の低い青色で細部がよく観察できる。すなわち、この構成でダイナミックレンジの広い放射線検出器が可能となる。  When the transmission images of the above-mentioned multiple color components are observed in color display, the low transmittance part (low radiation part) is highly sensitive in red and details can be observed well, and the high transmittance part (high radiation part) is saturated in red. However, details can be observed well in blue with low sensitivity. That is, a radiation detector with a wide dynamic range is possible with this configuration.

図8は複数の色成分の透過像を出力する放射線検出器の検出特性曲線の例を示すグラフである。横軸は1画素への入射X線量、縦軸は1画素の出力である。各色成分R,G,Bそれぞれ、出力がノイズレベルから飽和レベルに達するまでの入力範囲がダイナミックレンジとなる。カラーの透過像のダイナミックレンジは各色成分のダイナミックレンジの論理和の領域となり、単色の場合と比べ増大する。  FIG. 8 is a graph showing an example of a detection characteristic curve of a radiation detector that outputs transmission images of a plurality of color components. The horizontal axis represents the incident X-ray dose to one pixel, and the vertical axis represents the output of one pixel. The input range for each color component R, G, B until the output reaches the saturation level from the noise level is the dynamic range. The dynamic range of the transmitted color image is a region of the logical sum of the dynamic ranges of the respective color components, and is increased as compared with the case of a single color.

上述した複数の色成分の透過像を出力する放射線検出器は、カラーの透過像を表示する放射線透視検査装置に有効に用いられているが、この放射線検出器を使用したCT装置はまだ実現されていない。  The radiation detector that outputs a transmission image of a plurality of color components described above is effectively used in a radiographic inspection apparatus that displays a color transmission image, but a CT apparatus using this radiation detector has not yet been realized. Not.

特開2002−62268号公報JP 2002-62268 A 特開2006−179424号公報JP 2006-179424 A 特開2003−202382号公報JP 2003-202382 A

従来のCT装置で、ダイナミックレンジの広い複数の色成分の透過像を出力する放射線検出器を用いる場合、各色成分の透過像それぞれから断面像を再構成した後、それぞれの断面像を合成してもダイナミックレンジの広い断面像とはならない。  In the case of using a radiation detector that outputs a transmission image of a plurality of color components having a wide dynamic range in a conventional CT apparatus, a cross-sectional image is reconstructed from each transmission image of each color component, and then the respective cross-sectional images are synthesized. However, it is not a cross-sectional image with a wide dynamic range.

その理由は、断面像再構成においては、再構成に用いる透過像データ上に飽和部分やノイズレベル以下の部分があると断面像全体が壊れて(著しく劣化)しまうため、すべての色成分で断面像が壊れない条件として、ダイナミックレンジが各色成分のダイナミックレンジの論理積の領域(図8のA)に狭められるためである。つまり、断面撮影するとき、入射X線量がこの狭まったダイナミックレンジAに収まるようにX線条件、幾何条件を調整して撮影する必要があり、これはすなわちダイナミックレンジの狭い断面像が撮影されることである。  The reason for this is that in cross-sectional image reconstruction, if there is a saturated portion or a portion below the noise level in the transmission image data used for reconstruction, the entire cross-sectional image is broken (remarkably deteriorated), so that the cross-sections of all color components This is because the dynamic range is narrowed to the logical product area (A in FIG. 8) of the dynamic range of each color component as a condition that the image is not broken. That is, when taking a cross section, it is necessary to adjust the X-ray condition and the geometric condition so that the incident X-ray dose falls within the narrow dynamic range A. That is, a cross-sectional image with a narrow dynamic range is taken. That is.

そこで、断面像のダイナミックレンジを広げるには、再構成する前にR,G,Bの透過像を合成して最大にダイナミックレンジを広げた単色の透過像としてから再構成する方法がよいと考えられる。  Therefore, in order to widen the dynamic range of the cross-sectional image, it is preferable to reconstruct the single-color transmission image having the maximum dynamic range by combining the R, G, and B transmission images before reconstruction. It is done.

R,G,Bの透過像から単色の透過像を作る方法は、例えば、特許文献3にあるように、暗い部分はR画像、明るい部分はB画像、中間はG画像を採用して繋ぎ合わせることで単色画像を合成する方法がある。しかし、この方法は、データが無駄なく全て使用されていない。例えば、暗い部分ではG画像とB画像は捨てられており、その分、画像のSN比(シグナル/ノイズ)が下がってダイナミックレンジが狭くなってしまう。また、R,G,Bの継ぎ目が画像に悪影響を与える場合がある。  For example, as disclosed in Patent Document 3, a method of creating a monochromatic transmission image from R, G, and B transmission images employs an R image for a dark portion, a B image for a bright portion, and a G image for an intermediate portion. There is a method for synthesizing a monochrome image. However, this method does not use all data without waste. For example, the G image and the B image are discarded in a dark part, and the S / N ratio (signal / noise) of the image decreases accordingly, and the dynamic range becomes narrow. In addition, the seam of R, G, B may adversely affect the image.

本発明の目的は、複数の色成分の透過像を出力する放射線検出器を用いて、ダイナミックレンジの広い断面像の再構成を行うCT装置を提供することである。  An object of the present invention is to provide a CT apparatus that reconstructs a cross-sectional image with a wide dynamic range using a radiation detector that outputs transmission images of a plurality of color components.

前記目的を達成するため、本発明に係る請求項1記載のCT装置は、テーブル上に載置された被検体に向けて放射線を放射する放射線源と、前記被検体を透過した放射線を検出して透過像データとして出力する放射線検出手段と、前記被検体に対する前記透過の方向を変えるよう前記テーブルと前記放射線とを相対的に走査させる走査手段と、前記透過像データから前記被検体の断面像を再構成する再構成手段を有するCT装置において、前記放射線検出手段は放射線を検出してカラーの可視光像に変換する放射線可視光変換手段と前記カラーの可視光像を撮影して色成分ごとの透過像データを出力する撮像手段より成り、前記色成分ごとの透過像データを互いに加算した単色透過像データを作る画像合成手段を有し、前記再構成手段は複数の前記走査の位置で前記放射線検出手段により得た前記色成分ごとの透過像データを前記画像合成手段により互いに加算した前記単色透過像データを用いて前記被検体の断面像を再構成することを要旨とする。  In order to achieve the above object, a CT apparatus according to claim 1 of the present invention detects a radiation source that emits radiation toward a subject placed on a table, and radiation that has passed through the subject. Radiation detecting means for outputting as transmission image data, scanning means for relatively scanning the table and the radiation so as to change the direction of transmission with respect to the subject, and a cross-sectional image of the subject from the transmission image data In the CT apparatus having the reconstruction means for reconstructing, the radiation detection means detects the radiation and converts the visible light image into a color visible light image and the visible light image of the color for each color component. An image synthesizing unit that produces monochromatic transmission image data obtained by adding the transmission image data for each color component to each other, and the reconstruction unit includes a plurality of reconstruction units. Reconstructing a cross-sectional image of the subject using the monochromatic transmission image data obtained by adding the transmission image data for each color component obtained by the radiation detection unit at the scanning position to each other by the image synthesis unit. And

この構成により、放射線に対し感度が異なる色成分ごとの透過像を、加算して合成することでダイナミックレンジを広げた単色透過像を合成でき、この単色透過像を再構成してダイナミックレンジの広い断面像を再構成できる。  With this configuration, it is possible to synthesize a monochromatic transmission image with an expanded dynamic range by adding and synthesizing transmission images for color components having different sensitivities to radiation, and reconstructing the monochromatic transmission image to widen the dynamic range. A cross-sectional image can be reconstructed.

本発明に係る請求項2記載のCT装置は、請求項1記載のCT装置において、前記単色透過像データに前記単色透過像データの検出特性関数の逆関数で非線形性補正を加える非線形性補正手段を有し、前記再構成手段は前記非線形性補正を加えた後の単色透過像データを用いて再構成することを要旨とする。  A CT apparatus according to a second aspect of the present invention is the CT apparatus according to the first aspect, wherein non-linearity correction means adds a non-linearity correction to the single-color transmission image data by an inverse function of a detection characteristic function of the single-color transmission image data. The reconstructing means reconstructs using the monochromatic transmission image data after the nonlinearity correction is performed.

この構成により、放射線に対し感度の異なる色成分ごとの透過像を、加算してから非線形性補正を加えることで、微分感度で重み付けられたダイナミックレンジを広げた単色透過像を合成でき、この単色透過像を再構成してダイナミックレンジの広い断面像を再構成できる。  With this configuration, transmission images for each color component with different sensitivities to radiation are added, and then nonlinear correction is applied to synthesize a monochrome transmission image with an expanded dynamic range weighted with differential sensitivity. A cross-sectional image with a wide dynamic range can be reconstructed by reconstructing the transmission image.

本発明に係る請求項3記載のCT装置は、請求項1に記載のCT装置において、前記色成分ごとの透過像データに対しそれぞれの検出特性関数の逆関数で非線形性補正を加える非線形性補正手段を有し、前記画像合成手段は前記非線形性補正を加えた後の色成分ごとの透過像データを互いに加算することを要旨とする。  A CT apparatus according to a third aspect of the present invention is the CT apparatus according to the first aspect, wherein the nonlinearity correction is performed by adding a nonlinearity correction to the transmission image data for each color component by an inverse function of each detection characteristic function. And the image composition means adds the transmission image data for each color component after the nonlinearity correction is added to each other.

この構成により、放射線に対し感度の異なる色成分ごとの透過像を、非線形性補正を加えてから加算することで、ダイナミックレンジを広げた単色透過像を合成でき、この単色透過像を再構成してダイナミックレンジの広い断面像を再構成できる。  With this configuration, transmission images for each color component with different sensitivities to radiation can be added after nonlinearity correction, and a monochrome transmission image with an expanded dynamic range can be synthesized, and this monochrome transmission image is reconstructed. Can reconstruct a cross-sectional image with a wide dynamic range.

本発明に係る請求項4記載のCT装置は、請求項3記載のCT装置において、前記加算は前記色成分ごとにそれぞれの検出特性関数の傾斜の二乗に比例する重みを掛けた加算であることを要旨とする。  The CT apparatus according to a fourth aspect of the present invention is the CT apparatus according to the third aspect, wherein the addition is performed by multiplying a weight proportional to the square of the slope of each detection characteristic function for each color component. Is the gist.

この構成により、放射線に対し感度の異なる色成分ごとの透過像を、非線形性補正を加えてから検出特性関数の傾斜(微分感度)の二乗の重みを掛けて加算することで、ダイナミックレンジを最大に広げた単色透過像を合成でき、この単色透過像を再構成してダイナミックレンジの広い断面像を再構成できる。  With this configuration, the transmission range for each color component with different sensitivity to radiation is added with nonlinearity correction and then multiplied by the square of the slope of the detection characteristic function (differential sensitivity) to maximize the dynamic range. A monochromatic transmission image that is widened can be synthesized, and the monochromatic transmission image can be reconstructed to reconstruct a cross-sectional image with a wide dynamic range.

本発明に係る請求項5記載のCT装置は、請求項1乃至4の何れかに記載のCT装置において、前記加算は前記色成分ごとの検出器ノイズの2乗に反比例する重みを掛けた加算であることを要旨とする。  The CT apparatus according to claim 5 of the present invention is the CT apparatus according to any one of claims 1 to 4, wherein the addition is performed by multiplying a weight inversely proportional to the square of the detector noise for each color component. It is a summary.

この構成により、検出器ノイズが色成分で異なる場合に、検出器ノイズの2乗に反比例する重みを掛けた加算をするのでダイナミックレンジを広げた単色透過像を合成でき、この単色透過像を再構成してダイナミックレンジの広い断面像を再構成できる。  With this configuration, when the detector noise differs by color component, an addition multiplied by a weight that is inversely proportional to the square of the detector noise is added, so that a monochrome transmission image with an expanded dynamic range can be synthesized, and this monochrome transmission image can be regenerated. It is possible to reconstruct a cross-sectional image having a wide dynamic range.

本発明に係る請求項6記載のCT装置は、請求項1乃至5の何れかに記載のCT装置において、前記放射線可視光変換手段はカラーX線IIで、前記撮像手段は赤、緑、青の3つの色成分の透過像データを出力するカラーカメラであることを要旨とする。  A CT apparatus according to a sixth aspect of the present invention is the CT apparatus according to any one of the first to fifth aspects, wherein the radiation-visible light converting means is color X-ray II, and the imaging means is red, green, blue. The gist of the present invention is that it is a color camera that outputs transmission image data of the three color components.

この構成により、放射線に対し感度の異なる赤、緑、青の3つの色成分ごとの透過像が得られる。  With this configuration, a transmission image is obtained for each of the three color components of red, green, and blue having different sensitivities to radiation.

本発明に係る請求項7記載のCT装置は、請求項1乃至5の何れかに記載のCT装置において、前記放射線可視光変換手段はカラーシンチレータで、前記撮像手段は赤、緑、青の3つの色成分の透過像データを出力するカラーカメラであることを要旨とする。  A CT apparatus according to a seventh aspect of the present invention is the CT apparatus according to any one of the first to fifth aspects, wherein the radiation-visible light converting means is a color scintillator, and the imaging means is red, green, or blue. The gist of the present invention is that it is a color camera that outputs transmission image data of one color component.

この構成により、放射線に対し感度の異なる赤、緑、青の3つの色成分ごとの透過像が得られる。  With this configuration, a transmission image is obtained for each of the three color components of red, green, and blue having different sensitivities to radiation.

本発明によれば、複数の色成分の透過像を出力する放射線検出器を用いて、ダイナミックレンジの広い断面像の再構成を行うCT装置を提供することができる。  According to the present invention, it is possible to provide a CT apparatus that reconstructs a cross-sectional image with a wide dynamic range using a radiation detector that outputs transmission images of a plurality of color components.

本発明の第一実施形態に係るCT装置の構成を示した模式図(正面図)。The schematic diagram (front view) which showed the structure of CT apparatus which concerns on 1st embodiment of this invention. 第一の実施形態に係る断層撮影に先立つ検出特性の較正のフロー図。FIG. 5 is a flowchart of calibration of detection characteristics prior to tomography according to the first embodiment. 第一の実施形態に係る較正で得られた検出特性関数の例を示すグラフ。The graph which shows the example of the detection characteristic function obtained by the calibration which concerns on 1st embodiment. 第一の実施形態に係る断層撮影のフロー図。FIG. 3 is a flowchart of tomography according to the first embodiment. 第一及び第二の実施形態の効果を説明するための検出特性関数のグラフ。The graph of the detection characteristic function for demonstrating the effect of 1st and 2nd embodiment. 第二の実施形態に係る断層撮影のフロー図。The flowchart of tomography which concerns on 2nd embodiment. 従来のCT装置の構成を示す模式図(正面図)。The schematic diagram (front view) which shows the structure of the conventional CT apparatus. 複数の色成分の透過像を出力する放射線検出器の検出特性曲線の例を示すグラフ。The graph which shows the example of the detection characteristic curve of the radiation detector which outputs the permeation | transmission image of a several color component.

以下、図面を参照して、本発明の実施形態を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(本発明の第一の実施の形態の構成)
以下、本発明の第一の実施形態の構成について図1を参照して説明する。
(Configuration of the first embodiment of the present invention)
The configuration of the first embodiment of the present invention will be described below with reference to FIG.

図1は本発明の第一実施形態に係るCT装置の構成を示した模式図(正面図)である。  FIG. 1 is a schematic view (front view) showing a configuration of a CT apparatus according to the first embodiment of the present invention.

X線管(放射線源)1と、X線管1のX線焦点Fより放射されたX線の一部である角錐状のX線ビーム(放射線)2を2次元の分解能で検出するX線検出器(放射線検出手段)3とが対向して配置され、このX線ビーム2に入るようにテーブル4上に載置された被検体5を透過したX線ビーム2がX線検出器3により検出され、透過像(透過像データ)として出力される。  X-rays that detect a pyramidal X-ray beam (radiation) 2 that is a part of the X-rays emitted from the X-ray tube (radiation source) 1 and the X-ray focal point F of the X-ray tube 1 with two-dimensional resolution. The X-ray beam 2 transmitted through the subject 5 placed on the table 4 so as to enter the X-ray beam 2 is disposed by facing the detector (radiation detection means) 3 by the X-ray detector 3. Detected and output as a transmission image (transmission image data).

テーブル4は回転・昇降機構(走査手段)6上に配置され、回転・昇降機構6によりX線ビーム2の中央の線であるX線光軸Lの方向と垂直に交差する回転軸RAに対して回転されるとともに、回転軸RAと平行なz方向にz移動(昇降)される。  The table 4 is disposed on a rotation / elevation mechanism (scanning means) 6, and is rotated by a rotation / elevation mechanism 6 with respect to a rotation axis RA perpendicular to the direction of the X-ray optical axis L that is the center line of the X-ray beam 2. And is moved (lifted / lowered) in the z direction parallel to the rotation axis RA.

さらに、シフト機構7は、回転・昇降機構6と支柱8とをそれぞれX線光軸Lと平行なy方向に移動させることにより、回転軸RAおよびX線検出器3をX線管1に近づけあるいは遠ざけて、撮影距離FCD(Focus to rotation Center Distance)と検出距離FDD(Focus to Detector Distance)を変更する。  Further, the shift mechanism 7 moves the rotating / raising / lowering mechanism 6 and the support column 8 in the y direction parallel to the X-ray optical axis L, thereby bringing the rotation axis RA and the X-ray detector 3 closer to the X-ray tube 1. Alternatively, the imaging distance FCD (Focus to rotation Center Distance) and the detection distance FDD (Focus to Detector Distance) are changed.

ここで、シフト機構7は目的に応じて撮影倍率(=FDD/FCD)を変更するために用いられ、回転・昇降機構6のz移動は被検体5の着目部をX線ビーム2の高さに合わせるのに用いられる。また、回転・昇降機構6の回転は断面像を撮影する場合に被検体5をX線ビーム2に対し回転させて、複数の回転位置で透過像を得るために用いられる。  Here, the shift mechanism 7 is used to change the imaging magnification (= FDD / FCD) according to the purpose. The z movement of the rotation / lifting mechanism 6 moves the target portion of the subject 5 to the height of the X-ray beam 2. Used to match. The rotation of the rotation / elevating mechanism 6 is used to obtain a transmission image at a plurality of rotational positions by rotating the subject 5 with respect to the X-ray beam 2 when taking a cross-sectional image.

X線検出器3はカラーX線イメージインテンシファイア(略してカラーI.I.(登録商標)、以下カラーX線IIと記載する)(放射線可視光変換手段)3aとカラーカメラ(撮像手段)3bより成る。  The X-ray detector 3 includes a color X-ray image intensifier (abbreviated as color II (registered trademark), hereinafter referred to as color X-ray II) (radiation-visible light conversion means) 3a and a color camera (imaging means). 3b.

カラーX線II3aは、入力面3aaのシンチレータ層と光電層とにより、入射した放射線(X線)の分布を光電子の分布に変換し、この光電子を加速して出力面3abに結像させ出力面3abのカラーシンチレータ層を発光させてカラー(多色)の可視光像に変換するものである。出力面3abのカラーシンチレータ層は、色成分(R,G,B:赤、緑、青)ごとに発光特性曲線が異なる。すなわち電子の入射量に対しR,G,Bの順に感度が高い特性がある。  The color X-ray II3a is obtained by converting the incident radiation (X-ray) distribution into a photoelectron distribution by the scintillator layer and the photoelectric layer of the input surface 3aa, and accelerating the photoelectrons to form an image on the output surface 3ab. The 3ab color scintillator layer emits light and converts it into a color (multicolor) visible light image. The color scintillator layer of the output surface 3ab has a different emission characteristic curve for each color component (R, G, B: red, green, blue). That is, there is a characteristic that the sensitivity is higher in the order of R, G, and B with respect to the amount of incident electrons.

カラーカメラ3bは変換されたカラーの可視光像を撮影し色成分(R,G,B)ごとの透過像(透過像データ)をデジタルデータとして出力する。  The color camera 3b captures the converted color visible light image and outputs a transmission image (transmission image data) for each color component (R, G, B) as digital data.

構成要素として、他に、各機構部(回転・昇降機構6、シフト機構7)を制御し、また、X線検出器3からの透過像を処理する制御処理部9、処理結果等を表示する表示部9a、X線管1を制御するX線制御部(図示省略)等がある。  In addition, as a component, each mechanism unit (rotation / lifting mechanism 6 and shift mechanism 7) is controlled, and a control processing unit 9 that processes a transmission image from the X-ray detector 3, a processing result, and the like are displayed. There are a display unit 9a, an X-ray control unit (not shown) for controlling the X-ray tube 1, and the like.

制御処理部9は通常のコンピュータで、CPU、メモリ、ディスク(不揮発メモリ)、表示部9a、入力部(キーボードやマウス等)9b、機構制御ボード、インターフェース、等より成っている。  The control processing unit 9 is a normal computer and includes a CPU, a memory, a disk (nonvolatile memory), a display unit 9a, an input unit (keyboard, mouse, etc.) 9b, a mechanism control board, an interface, and the like.

制御処理部9は、機構制御ボードにより、各機構部6,7が出力する動作位置の信号を受けて各機構部6,7を制御して被検体の位置合わせやスキャン(断層撮影走査)等を行わせる他、透過像の収集指令パルス等をX線検出器3に送る。  The control processing unit 9 receives the signals of the operation positions output from the mechanism units 6 and 7 by the mechanism control board and controls the mechanism units 6 and 7 to align the subject, scan (tomographic scanning), etc. In addition to the above, a transmission image collection command pulse or the like is sent to the X-ray detector 3.

また、制御処理部9は、断層撮影時にX線検出器3からの透過像を収集し、記憶し、再構成処理して被検体の断面像を作成し、表示部9aに表示する。  Further, the control processing unit 9 collects and stores transmission images from the X-ray detector 3 at the time of tomography, creates a cross-sectional image of the subject by reconstruction processing, and displays the cross-sectional image on the display unit 9a.

また、制御処理部9は、X線制御部(図示省略)に指令を出し、管電圧、管電流を指定すると共に、X線の放射、停止の指示を行なう。管電圧、管電流は被検体に合わせて変えることができる。  In addition, the control processing unit 9 issues a command to an X-ray control unit (not shown), specifies tube voltage and tube current, and instructs X-ray emission and stop. The tube voltage and tube current can be changed according to the subject.

図1に示すように、制御処理部9はソフトウエアを読み込んでCPUが機能する機能ブロックとして、X線検出器3の検出特性の較正を行なう検出特性較正部9c、断層撮影のスキャンをするためのスキャン制御部9d、スキャンで得られた色成分ごとの透過像から単色透過像を合成する画像合成部(画像合成手段)9e、合成した単色透過像あるいは色成分ごとの透過像の非線形性を補正する非線形性補正部(非線形性補正手段)9fと単色透過像から被検体の断面像を作成する再構成部(再構成手段)9g、等を備えている。  As shown in FIG. 1, the control processing unit 9 reads software and functions as a functional block for the CPU to function, a detection characteristic calibration unit 9c for calibrating the detection characteristic of the X-ray detector 3, and a tomographic scan. 9d, an image composition unit (image composition means) 9e for synthesizing a monochromatic transmission image from transmission images for each color component obtained by scanning, and nonlinearity of the synthesized monochromatic transmission image or transmission image for each color component. A non-linearity correction unit (non-linearity correction unit) 9f for correction, a reconstruction unit (reconstruction unit) 9g for creating a cross-sectional image of the subject from the monochromatic transmission image, and the like are provided.

(第一の実施の形態の作用)
図2ないし図4を参照して作用を説明する。
(Operation of the first embodiment)
The operation will be described with reference to FIGS.

図2は第一の実施形態に係る断層撮影に先立つ検出特性の較正のフロー図である。  FIG. 2 is a flowchart of detection characteristic calibration prior to tomography according to the first embodiment.

検出特性較正部9cは、ステップS1で管電圧・管電流、検出距離FDDを初期値に設定しX線を放射開始させる。  In step S1, the detection characteristic calibration unit 9c sets the tube voltage / tube current and the detection distance FDD to initial values, and starts emitting X-rays.

ステップS2で被検体なしのエアー透過像を収集し、そのときの撮影条件とともに制御処理部9内のメモリに記憶する。ステップS3で管電流の所定の範囲について撮影終了したかを判定し、終了してない場合は、ステップS4に進み管電流(あるいは管電圧、検出距離FDD)を撮影未終了の値に変更し、さらにステップS2に戻ってエアー透過像を収集し、撮影条件とともに記憶する。  In step S2, an air transmission image without a subject is collected and stored in a memory in the control processing unit 9 together with the imaging conditions at that time. In step S3, it is determined whether or not the photographing has been completed for a predetermined range of the tube current. If not, the process proceeds to step S4, and the tube current (or tube voltage, detection distance FDD) is changed to a value that has not been photographed. Further, returning to step S2, an air transmission image is collected and stored together with the photographing conditions.

ステップS3で撮影終了と判定するとX線を放射停止し、ステップS5に進む。  If it is determined in step S3 that the imaging is completed, the X-ray emission is stopped and the process proceeds to step S5.

ステップS5で、検出特性較正部9cは、まず、得られた各色成分ごとのエアー透過像それぞれの中央部の平均明るさR,G,Bを求め、規格化した管電流Iに対する表(グラフ)の形態で、検出特性関数R(I),G(I),B(I)を作る。ここで、規格化した管電流とは管電圧、検出距離FDDを変更した場合、それを管電流の変化に置き換えた管電流である。なお、管電流とX線量は比例するので、X線量に対する検出特性関数が得られたことになる。In step S5, the detection characteristic calibration unit 9c first obtains the average brightness R, G, B at the center of each of the obtained air transmission images for each color component, and a table (graph) for the normalized tube current I. In this manner, detection characteristic functions R I (I), G I (I), and B I (I) are created. Here, the standardized tube current is a tube current obtained by replacing a tube voltage and a detection distance FDD with a change in the tube current. Since the tube current and the X-ray dose are proportional, a detection characteristic function for the X-ray dose is obtained.

図3は較正で得られた検出特性関数の例を示すグラフである。  FIG. 3 is a graph showing an example of a detection characteristic function obtained by calibration.

検出特性較正部9cは、さらに、検出特性関数R(I),G(I),B(I)に対し、式、
(I)=b1・R(I)+b2・G(I)+b3・B(I) ……(1)
によって、重みb1、b2、b3を掛けて加算して、単色透過像データの検出特性関数T(I)を得る。ここで、b1、b2、b3は所定の定数で、ここではそれぞれ1とする。
Detecting characteristic calibration section 9c is further detected characteristic function R I (I), G I (I), with respect to B I (I), wherein,
T I (I) = b1 · R I (I) + b2 · G I (I) + b3 · B I (I) (1)
Thus, the weights b1, b2, and b3 are multiplied and added to obtain a detection characteristic function T I (I) of monochromatic transmission image data. Here, b1, b2, and b3 are predetermined constants, and are each set to 1 here.

次に、検出特性較正部9cは、検出特性関数R(I),G(I),B(I),T(I)から、それぞれ、検出特性関数の逆関数、I(R),I(G),I(B),I(T)を、R,G,B,Tの一ステップごとに(たとえば0,1,2,…で)表として求め、制御処理部9内のメモリに記憶する。この検出特性関数の逆関数が非線形性補正関数である。Next, the detection characteristic calibrating unit 9c obtains, from the detection characteristic functions R I (I), G I (I), B I (I), and T I (I), an inverse function of the detection characteristic function, I R ( R), determined I G (G), I B and (B), I T (T ), R, G, B, for each first step of T (e.g. 0,1,2, ... as in) table control The data is stored in the memory in the processing unit 9. The inverse function of this detection characteristic function is a nonlinearity correction function.

なお、本実施形態で、検出特性の較正は頻繁に行なう必要はなく、CT装置の製造時やX線検出器3を交換した時、または定期点検の時などに行えばよい。  In the present embodiment, the detection characteristics need not be frequently calibrated, and may be performed when the CT apparatus is manufactured, when the X-ray detector 3 is replaced, or when a periodic inspection is performed.

次に、図4は第一の実施形態に係る断層撮影のフロー図である。  Next, FIG. 4 is a flowchart of tomography according to the first embodiment.

ステップS10でスキャン(断層撮影走査)が以下のように実施される。操作者がテーブル4に被検体5を載置し撮影条件を設定し、スキャン開始を指令入力すると、スキャン制御部9dは、X線を放射させ、被検体5を回転させながら、所定角度おきの複数の回転位置で色成分(R,G,B)ごとの透過像(透過像データ)を1回転に亘り収集し、制御処理部9内のメモリに記憶する。  In step S10, scanning (tomographic scanning) is performed as follows. When the operator places the subject 5 on the table 4, sets the imaging conditions, and inputs a command to start scanning, the scan control unit 9 d emits X-rays and rotates the subject 5 at predetermined intervals. Transmission images (transmission image data) for each color component (R, G, B) at a plurality of rotation positions are collected over one rotation and stored in a memory in the control processing unit 9.

ステップS11で、画像合成部9eが単色透過像(単色透過像データ)を合成する。単色透過像の合成は、同一回転位置での色成分ごとの透過像R,G,Bに対し、式、
T=b1・R+b2・G+b3・B ……(2)
によって、重みb1、b2、b3を掛けて加算して、単色透過像Tを得る。ここで、加算は画素ごとに行われ、b1、b2、b3は所定の定数で、ここではそれぞれ1とする。全ての回転位置の透過像について式(2)の計算を行い、それぞれ単色透過像Tを得る。
In step S11, the image composition unit 9e composes a monochrome transmission image (monochromatic transmission image data). The composition of the monochromatic transmission image is obtained by using an equation for transmission images R, G, and B for each color component at the same rotational position.
T = b1, R + b2, G + b3, B (2)
, The weights b1, b2, and b3 are multiplied and added to obtain a monochrome transmission image T. Here, addition is performed for each pixel, and b1, b2, and b3 are predetermined constants, and are each set to 1 here. Expression (2) is calculated for the transmission images at all rotational positions, and a monochrome transmission image T is obtained for each.

ステップS12で、非線形性補正部9fが単色透過像Tに対し非線形性を補正する。非線形性補正は単色透過像Tの各画素に対し、記憶してある非線形性補正関数I(T)を用いて、式、
=I(T) ……(3)
を計算することで行われる。全ての回転位置の単色透過像Tに対して、それぞれ非線形性補正が行われる。
In step S12, the non-linearity correction unit 9f corrects the non-linearity with respect to the monochromatic transmission image T. The non-linearity correction is performed using the stored non-linearity correction function I T (T) for each pixel of the monochrome transmission image T,
I T = I T (T) (3)
This is done by calculating Nonlinearity correction is performed on the monochromatic transmission images T at all rotational positions.

ステップS13で、再構成部9gが各回転位置の非線形性補正後の単色透過像Iに対しそれぞれ対数変換やエアー補正等の前処理を行う。In step S13, each performs preprocessing such as logarithmic conversion or air corrected for reconstruction unit 9g monochromatic transmission image I T after nonlinearity corrected for each rotation position.

ステップS14で、各回転位置の前処理後の単色透過像Iを用いて被検体5の断面像(1枚ないし複数枚)を再構成する。再構成は、従来と同様で、フィルター補正逆投影法(FBP(Filtered Back Projection)法)などを用いる。In step S14, to reconstruct a sectional image of the subject 5 (one or plural) using monochromatic transmission image I T pretreatment after each rotational position. The reconstruction is the same as in the prior art, and uses a filtered back projection method (FBP (Filtered Back Projection) method) or the like.

(第一の実施の形態の効果)
図5は第一及び第二の実施形態の効果を説明するための検出特性関数のグラフである。
(Effects of the first embodiment)
FIG. 5 is a graph of detection characteristic functions for explaining the effects of the first and second embodiments.

図5を参照して、第一の実施形態では、色成分ごとの透過像R,G,Bを単純加算して単色透過像Tを合成した後、非線形性補正を加えた単色透過像Iを得ているが、これは透過像R,G,Bそれぞれを非線形性補正した後、検出特性関数の傾斜(微分感度)で重み付けて加算平均するのと誤差は等価である。これは、式、
(T)={(dR/dI)・I(R)+(dG/dI)・I(G)+(dB/dI)・I(B)}/(dR/dI+dG/dI+dB/dI) ……(4)
で表される(証明は後述)。R,G,Bの非線形性補正後の値I(R),I(G),I(B)に検出特性関数の傾斜dR/dI,dG/dI,dB/dIで重み付けて加算することで、誤差が少ない単色透過像が得られる。それは、同じX線量Iの画素は検出特性関数の傾斜の大きな色成分ほど微分感度が高くディテールの情報が増えて精度が高いので、精度の高い色成分に大きな重みを掛けて加算することで誤差が少なくなり、SN比が良くなってダイナミックレンジが広くなった単色透過像が合成できるためである。図5を参照して、Iが小さな時はRの重みが大きく、Iが増すにつれてRが飽和するためGの重みが大きくなり、Iがずっと大きくなるとGも飽和してくるためBの重みが大きくなる。これにより飽和気味の傾斜の小さい色成分は重みが小さくできる。また、なだらかに連続して重みを変化させることができ、継ぎ目などが生じない。
Referring to FIG. 5, in the first embodiment, the transmission image R, G, B for each color component is simply added to synthesize a monochrome transmission image T, and then the monochrome transmission image I T to which nonlinearity correction is applied. However, the error is equivalent to the case where the transmission images R, G, and B are each corrected for nonlinearity and then weighted with the slope (differential sensitivity) of the detection characteristic function and added and averaged. This is the formula,
I T (T) = {(dR I / dI) · I R (R) + (dG I / dI) · I G (G) + (dB I / dI) · I B (B)} / (dR I / DI + dG I / dI + dB I / dI) (4)
(Proof is described later). The values I R (R), I G (G), and I B (B) after correcting the nonlinearity of R, G, and B are the slopes dR I / dI, dG I / dI, and dB I / dI of the detection characteristic function. By adding by weighting, a monochromatic transmission image with few errors can be obtained. This is because pixels with the same X-ray dose I have higher differential sensitivity and higher detail information as the color component with a larger slope of the detection characteristic function increases, so the error is increased by adding a higher weight to the color component with higher accuracy. This is because it is possible to synthesize a monochromatic transmission image with a reduced SNR, an improved SN ratio, and a wide dynamic range. Referring to FIG. 5, when I is small, the weight of R is large. As I increases, R is saturated, so the weight of G is large. When I is much larger, G is saturated, so the weight of B is growing. As a result, the color component having a small saturation inclination can be reduced in weight. Also, the weight can be changed smoothly and continuously, and no seam or the like occurs.

従って、第一の実施形態によれば、複数の色成分の透過像を出力する放射線検出器を用いて、放射線に対し感度の異なる色成分ごとの透過像R,G,Bを加算して単色透過像Tを合成した後、非線形性補正を加えることで、検出特性関数の傾斜(微分感度)で重み付けられてSN比が良くなってダイナミックレンジが広くなった非線形性補正後の単色透過像が得られる。  Therefore, according to the first embodiment, using a radiation detector that outputs transmission images of a plurality of color components, the transmission images R, G, and B for each color component having different sensitivities to radiation are added to obtain a single color. After synthesizing the transmission image T, by adding nonlinearity correction, a monochromatic transmission image after nonlinearity correction, which is weighted by the slope (differential sensitivity) of the detection characteristic function to improve the SN ratio and widen the dynamic range, is obtained. can get.

これにより、ダイナミックレンジの広い単色透過像が得られるのでこれを用いてダイナミックレンジの広い断面像の再構成を行うことができる。  As a result, a monochromatic transmission image with a wide dynamic range can be obtained, and this can be used to reconstruct a cross-sectional image with a wide dynamic range.

<式(4)の証明>
透過像R,G,Bを単純加算して単色透過像Tを合成した後、非線形性補正を加える(式(4)左辺)のと、透過像R,G,Bそれぞれを非線形性補正した後、検出特性関数の傾斜で重み付けて加算平均する(式(4)右辺)のと誤差は等価であることを証明する。
<Proof of Formula (4)>
After the transmission images R, G, and B are simply added to synthesize a monochrome transmission image T, nonlinearity correction is applied (the left side of equation (4)), after each of the transmission images R, G, and B is corrected for nonlinearity. It is proved that the error is equivalent to the weighted average of the slope of the detection characteristic function (the right side of equation (4)).

図5を参照して、まず、誤差(検出器ノイズ)がない場合、非線形性補正後の各値I(T),I(R),I(G),I(B)は全て同じ値であるので、任意のa1,a2,a3を用いた加算平均、
I=(a1・I(R)+a2・I(G)+a3・I(B))/(a1+a2+a3) ……(5)
で得られた値IはI(T)に一致する。
Referring to FIG. 5, first, when there is no error (detector noise), each value I T (T), I R (R), I G (G), and I B (B) after nonlinearity correction is Since all are the same value, the arithmetic mean using arbitrary a1, a2, a3,
I = (a1 · I R ( R) + a2 · I G (G) + a3 · I B (B)) / (a1 + a2 + a3) ...... (5)
The value I obtained in (1) agrees with I T (T).

次に、R,G,Bに正規分布の検出器ノイズσ,σ、σ(rms値:root mean square)が有ったとする。このノイズの非線形性補正後への波及を考える。Next, it is assumed that detector noises σ R , σ G , and σ B (rms values: root mean square) of normal distribution exist in R , G , and B. Consider the spread of noise after nonlinearity correction.

まず、合成してから非線形性補正する場合のノイズσ1(rms値)は、
σ1=√(σ +σ +σ )/(dT/dI)
=√(σ +σ +σ )/(dR/dI+dG/dI+dB/dI) ……(6)
となる。他方、非線形性補正してから、加算平均する場合のノイズσ2(rms値)は、
σ2=√{a1・σ /(dR/dI)+a2・σ /(dG/dI)+a3・σ /(dB/dI)}/(a1+a2+a3) ……(7)
となる。ここで、
a1=dR/dI、a2=dG/dI、a3=dB/dI ……(8)
と置けば、σ2=σ1となる。<>終了。
First, the noise σ1 (rms value) when nonlinearity correction is performed after synthesis is
σ1 = √ (σ R 2 + σ G 2 + σ B 2 ) / (dT I / dI)
= √ (σ R 2 + σ G 2 + σ B 2 ) / (dR I / dI + dG I / dI + dB I / dI) (6)
It becomes. On the other hand, the noise σ2 (rms value) in the case of averaging after nonlinearity correction is
σ2 = √ {a1 2 · σ R 2 / (dR I / dI) 2 + a2 2 · σ G 2 / (dG I / dI) 2 + a3 2 · σ B 2 / (dB I / dI) 2 } / (a1 + a2 + a3 ) (7)
It becomes. here,
a1 = dR I / dI, a2 = dG I / dI, a3 = dB I / dI (8)
Σ2 = σ1. <> End.

(第一の実施の形態の変形)
その他、本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変形して実施することが可能である。以下の変形例は組み合わせて適用することもできる。
(Modification of the first embodiment)
In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. The following modifications can be applied in combination.

(変形例1)
第一の実施形態で、合成の重み係数b1、b2、b3はそれぞれ1としたが、1でなくても良い。例えば、R,G,Bに正規分布の検出器ノイズσ,σ、σ(rms値)が有った場合、検出器ノイズの二乗に反比例するように選んでも良い。すなわち、式、
b1:b2:b3=1/σ :1/σ :1/σ …(9)
とすることで、色別透過像の検出器ノイズに違いがあった場合、誤差の少ない(SN比が良くダイナミックレンジが広い)単色透過像を合成できる。
(Modification 1)
In the first embodiment, the combination weight coefficients b1, b2, and b3 are set to 1, respectively, but may not be 1. For example, R, G, and detector noise sigma R of the normal distribution in B, σ G, σ B if (rms value) there may be selected to be inversely proportional to the square of detector noise. That is, the formula,
b1: b2: b3 = 1 / σ R 2 : 1 / σ G 2 : 1 / σ B 2 (9)
Thus, when there is a difference in the detector noise of the per-color transmission images, it is possible to synthesize a single-color transmission image with little error (good SN ratio and wide dynamic range).

(変形例2)
第一の実施形態で、非線形性が小さい場合、非線形性補正は省略できる。但し、非線形性は対数変換後で評価される。すなわち、リニアな(明るさTとX線量Iの)グラフ上で直線でなくても、対数変換した(LOG(T)とLOG(I)の)グラフ上で直線に近ければ非線形性は小さい。
(Modification 2)
In the first embodiment, when nonlinearity is small, nonlinearity correction can be omitted. However, nonlinearity is evaluated after logarithmic transformation. That is, even if it is not a straight line on a linear graph (brightness T and X-ray dose I), nonlinearity is small if it is close to a straight line on a logarithmically transformed graph (LOG (T) and LOG (I)).

例えば、検出特性が、
T=Iγ ……(10)
の場合でγが0.5のとき、リニアなグラフ上では検出特性関数は大きく曲がった曲線であるが、対数変換したグラフ上では、
LOG(T)=γ・LOG(I) ……(11)
となり、傾きがγの直線となって非線形性はない。
For example, if the detection characteristic is
T = I γ (10)
In this case, when γ is 0.5, the detection characteristic function is a curved curve on the linear graph, but on the logarithmically transformed graph,
LOG (T) = γ · LOG (I) (11)
Thus, the slope becomes a straight line with γ and there is no nonlinearity.

(変形例3)
第一の実施形態では、単色透過像の合成(S11)と非線形性補正(S12)を行なった後で対数変換(S13)を行っているが、順番はこれには限れられない。例えば、対数変換、単色透過像合成、非線形性補正の順でも、単色透過像合成、対数変換、非線形性補正の順でもよい。
(Modification 3)
In the first embodiment, the logarithmic conversion (S13) is performed after the synthesis of the monochrome transmission image (S11) and the nonlinearity correction (S12), but the order is not limited to this. For example, the order of logarithmic conversion, monochromatic transmission image synthesis, and non-linearity correction may be used in the order of monochromatic transmission image synthesis, logarithmic conversion, and non-linearity correction.

(本発明の第二の実施の形態の構成)
本発明の第二の実施形態の構成は図1の第一の実施形態の構成と同じであるので、説明は省略する。
(Configuration of the second embodiment of the present invention)
The configuration of the second embodiment of the present invention is the same as that of the first embodiment of FIG.

(第二の実施の形態の作用)
第二の実施形態の作用で、断層撮影に先立つ検出特性の較正については図2、図3を用いて説明した第一の実施形態の場合とほぼ同じだが、検出特性関数の傾斜を求めることが追加される点のみが異なる。以下追加点のみ説明する。
(Operation of the second embodiment)
With the operation of the second embodiment, the detection characteristic calibration prior to tomography is almost the same as in the first embodiment described with reference to FIGS. 2 and 3, but the slope of the detection characteristic function can be obtained. The only difference is that it is added. Only the additional points will be described below.

図2のステップS5で、検出特性較正部9cは、非線形性補正関数I(R),I(G),I(B),I(T)を求めた後、R(I),G(I),B(I)それぞれの傾斜(微分感度)dR/dI,dG/dI,dB/dIを、R,G,Bの一ステップごとに(たとえば0,1,2,…で)表として求め、制御処理部9内のメモリに記憶する。以下、この記憶した表をR,G,Bの関数としてdR/dI(R),dG/dI(G),dB/dI(B)と記載する。In step S5 of FIG. 2, the detection characteristic calibration unit 9c obtains the nonlinearity correction functions I R (R), I G (G), I B (B), and I T (T), and then R I (I ), G I (I), B I (I) The respective slopes (differential sensitivities) dR I / dI, dG I / dI, dB I / dI are set for each step of R, G, B (for example, 0, (1, 2,...) Is obtained as a table and stored in the memory in the control processing unit 9. Hereinafter, the stored table is described as a function of R, G, and B as dR I / dI (R), dG I / dI (G), and dB I / dI (B).

次に、図6を参照して断層撮影の作用を説明する。図6は第二の実施形態に係る断層撮影のフロー図である。  Next, the operation of tomography will be described with reference to FIG. FIG. 6 is a flowchart of tomography according to the second embodiment.

ステップS20でスキャン(断層撮影走査)が以下のように実施される。操作者がテーブル4に被検体5を載置し撮影条件を設定し、スキャン開始を指令入力すると、スキャン制御部9dは、X線を放射させ、被検体5を回転させながら、所定角度おきの複数の回転位置で色成分(R,G,B)ごとの透過像(透過像データ)を1回転に亘り収集し、制御処理部9内のメモリに記憶する。  In step S20, scanning (tomographic scanning) is performed as follows. When the operator places the subject 5 on the table 4, sets the imaging conditions, and inputs a command to start scanning, the scan control unit 9 d emits X-rays and rotates the subject 5 at predetermined intervals. Transmission images (transmission image data) for each color component (R, G, B) at a plurality of rotation positions are collected over one rotation and stored in a memory in the control processing unit 9.

ステップS21で、非線形性補正部9fが色成分ごとの透過像R,G,Bそれぞれに対し非線形性を補正する。非線形性補正は透過像R,G,Bの各画素に対し、記憶してある非線形性補正関数I(R),I(G),I(B)を用いて、式、
=I(R),
=I(G),
=I(B) ……(12)
を計算することで行われる。全ての回転位置の色成分ごとの透過像に対してそれぞれ非線形性補正が行われる。
In step S21, the nonlinearity correcting unit 9f corrects the nonlinearity for each of the transmitted images R, G, and B for each color component. Nonlinearity correction is performed using the stored nonlinearity correction functions I R (R), I G (G), and I B (B) for each pixel of the transmission images R, G, and B.
I R = I R (R) ,
I G = I G (G),
I B = I B (B) (12)
This is done by calculating Non-linearity correction is performed on the transmission images for all color components at all rotational positions.

ステップS22で、画像合成部9eが単色透過像(単色透過像データ)を合成する。単色透過像の合成は、同一回転位置での色成分ごとの非線形性補正後の透過像I,I,Iに対し、式、
=a1・I+a2・I+a3・I ……(13)
によって、重みa1、a2、a3を掛けて加算して、単色透過像Iを得る。ここで、加算は画素ごとに行われ、全ての回転位置について式(13)の計算を行い、それぞれ単色透過像Iを得る。
In step S22, the image synthesis unit 9e synthesizes a monochrome transmission image (monochromatic transmission image data). The composition of the monochromatic transmission image is obtained by using the following equation for transmission images I R , I G , and I B after nonlinearity correction for each color component at the same rotational position:
I T = a1 · I R + a2 · I G + a3 · I B ...... (13)
The sums by multiplying the weights a1, a2, a3, to obtain a monochromatic transmission image I T. Here, the addition is performed for each pixel, it performs the calculation of equation (13) for all rotational positions, respectively to obtain a monochromatic transmission image I T.

式(13)で、重みa1、a2、a3は、式、
a1:a2:a3={dR/dI(R)}:{dG/dI(G)}:{dB/dI(B)} ……(14)
で表されるように、それぞれ、記憶してある、R,G,Bにおける検出特性関数の傾斜(微分感度)の2乗に比例する重みとする。
In equation (13), the weights a1, a2, and a3 are
a1: a2: a3 = {dR I / dI (R)} 2 : {dG I / dI (G)} 2 : {dB I / dI (B)} 2 (14)
As shown, the weights are proportional to the squares of the gradients (differential sensitivity) of the detected characteristic functions in R, G, and B, respectively.

ステップS23で、再構成部9gが各回転位置の合成後の単色透過像Iに対しそれぞれ対数変換やエアー補正等の前処理を行う。In step S23, each performs preprocessing such as logarithmic conversion or air corrected for reconstruction unit 9g monochromatic transmission image I T after the synthesis of each rotating position.

ステップS24で、各回転位置の前処理後の単色透過像Iを用いて被検体5の断面像(1枚ないし複数枚)を再構成する。再構成は、従来と同様で、フィルター補正逆投影法(FBP(Filtered Back Projection)法)などを用いる。In step S24, to reconstruct a sectional image of the subject 5 (one or plural) using monochromatic transmission image I T pretreatment after each rotational position. The reconstruction is the same as in the prior art, and uses a filtered back projection method (FBP (Filtered Back Projection) method) or the like.

(第二の実施の形態の効果)
第二の実施形態によれば、R,G,Bの非線形性補正後の値I(R),I(G),I(B)に対し検出特性関数の傾斜(微分感度)の2乗(dR/dI),(dG/dI),(dB/dI)に比例する重みを付けて加算することで、誤差が最小(SN比が最大)の透過像が得られる。その理由を以下に示す。
(Effect of the second embodiment)
According to the second embodiment, the slope (differential sensitivity) of the detection characteristic function with respect to the values I R (R), I G (G), and I B (B) after the nonlinearity correction of R, G, B is performed. squared (dR I / dI) 2, (dG I / dI) 2, the transmission image (dB I / dI) by adding with a weight proportional to the error is minimum (SN ratio is the highest) can get. The reason is as follows.

図5は第一及び第二の実施形態の効果を説明するための検出特性関数のグラフである。  FIG. 5 is a graph of detection characteristic functions for explaining the effects of the first and second embodiments.

図5を参照して、まず、誤差(検出器ノイズ)がない場合、非線形性補正後の各値I(R),I(G),I(B)は全て同じ値である。Referring to FIG. 5, first, when there is no error (detector noise), the values I R (R), I G (G), and I B (B) after nonlinearity correction are all the same value.

次に、R,G,Bに正規分布の検出器ノイズσ,σ,σ(rms値)が有ったとする。このノイズの非線形性補正後への波及を考える。I(R),I(G),I(B)それぞれに波及するノイズσIR,σIG,σIB(rms値)は、
σIR=σ/{dR/dI(R)},
σIG=σ/{dG/dI(G)},
σIB=σ/{dB/dI(B)} ……(15)
となる(図5参照)。ここで、理論、
「同一量を複数回測定してそれぞれ正規分布の誤差があるとき、各測定の誤差(rms値)の2乗に逆比例した重みを掛けて平均した場合、誤差が最小となる」
……(M1)
という理論を用いると、I(R),I(G),I(B)に対し、それぞれ、重みa1、a2、a3として、式、
a1:a2:a3 =
{dR/dI(R)}/σ :{dG/dI(G)}/σ :{dB/dI(B)}/σ ……(16)
の比率の重みをかけて平均するとSN比が最大になる。式(16)で、σ,σ,σが等しいとすると式(14)になる。
Next, it is assumed that detector noises σ R , σ G , and σ B (rms values) of normal distribution exist in R , G , and B. Consider the spread of noise after nonlinearity correction. The noises σ IR , σ IG , and σ IB (rms values) that spread to I R (R), I G (G), and I B (B) are:
σ IR = σ R / {dR I / dI (R)},
σ IG = σ G / {dG I / dI (G)},
σ IB = σ B / {dB I / dI (B)} (15)
(See FIG. 5). Where the theory,
“When the same amount is measured multiple times and there is an error in the normal distribution, the error is minimized when averaged by multiplying the square of each measurement error (rms value) by a weight that is inversely proportional to the square.”
...... (M1)
Is used as the weights a1, a2, and a3 for I R (R), I G (G), and I B (B), respectively,
a1: a2: a3 =
{DR I / dI (R)} 2 / σ R 2 : {dG I / dI (G)} 2 / σ G 2 : {dB I / dI (B)} 2 / σ B 2 (16)
When the weights of these ratios are averaged, the SN ratio is maximized. If σ R , σ G , and σ B are equal in equation (16), equation (14) is obtained.

従って、第二の実施形態によれば、複数の色成分の透過像を出力する放射線検出器を用いて、放射線に対し感度の異なる色成分ごとの透過像をそれぞれ非線形性補正した後、それぞれの検出特性関数の傾斜(微分感度)の2乗に比例する重みを付けて加算することで、SN比が最大になってダイナミックレンジが広くなった単色透過像が得られる。  Therefore, according to the second embodiment, after using the radiation detector that outputs transmission images of a plurality of color components, the transmission images of the color components having different sensitivities to radiation are corrected for nonlinearity, respectively. By adding a weight proportional to the square of the slope (differential sensitivity) of the detection characteristic function and adding the result, a monochromatic transmission image having a maximum dynamic range with a high S / N ratio can be obtained.

これにより、ダイナミックレンジの広い単色透過像が得られるのでこれを用いてダイナミックレンジの広い断面像の再構成を行うことができる。  As a result, a monochromatic transmission image with a wide dynamic range can be obtained, and this can be used to reconstruct a cross-sectional image with a wide dynamic range.

<理論(M1)について>
簡単に説明する。
たとえば1回目に一つの量を1回測定して値I1、誤差σ1を得たとする。次に、2回目として同じ測定を4回行い平均して値I2、誤差σ2を得たとする。
<About Theory (M1)>
Briefly described.
For example, assume that one quantity is measured once in the first time to obtain a value I1 and an error σ1. Next, assume that the same measurement is performed four times for the second time and averaged to obtain a value I2 and an error σ2.

このときσ2はσ1の1/√4倍となるので、理論に従えば1回目と2回目測定を1:4で重み(重率)をかけて平均すれば誤差最小となるはずである。実際、この平均は、
I=(I1+I2・4)/5
となり、同じ測定5回を同じ重みで平均したのと同じとなり、最小誤差でIが得られる保証となる。<>終了
At this time, since σ2 is 1 / √4 times σ1, according to the theory, if the first measurement and the second measurement are averaged by weighting (weight) at 1: 4, the error should be minimized. In fact, this average is
I = (I1 + I2 · 4) / 5
This is the same as averaging the same measurement five times with the same weight, and it is guaranteed that I can be obtained with the minimum error. <> End

(第二の実施の形態の変形)
その他、本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変形して実施することが可能である。以下の変形例は組み合わせて適用することもできる。
(Modification of the second embodiment)
In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. The following modifications can be applied in combination.

(変形例1)
第二の実施形態では、色成分ごとの非線形性補正後の値に対し、式(14)の重みを掛けて加算しているが、代わりに、式(16)の重みを掛けて加算してもよい。これで、色成分ごとの検出器ノイズの二乗に反比例する重みを掛けて加算して合成することになる。この場合は、検出器ノイズが色成分で異なる場合に、誤差が最小の(SN比が最大でダイナミックレンジが広い)単色透過像が得られる。
(Modification 1)
In the second embodiment, the value after nonlinearity correction for each color component is added with the weight of Expression (14), but instead, the value is added with the weight of Expression (16). Also good. Thus, the weights that are inversely proportional to the square of the detector noise for each color component are multiplied and combined. In this case, when the detector noise is different in color components, a monochrome transmission image with the smallest error (maximum SN ratio and wide dynamic range) can be obtained.

(変形例2)
第二の実施形態では、非線形性補正(S21)と単色透過像の合成(S22)を行なった後で対数変換(S23)を行っているが、順番はこれには限れられない。例えば、対数変換、非線形性補正、単色透過像合成の順でも、非線形性補正、対数変換、単色透過像合成の順でもよい。
(Modification 2)
In the second embodiment, logarithmic conversion (S23) is performed after nonlinearity correction (S21) and monochromatic transmission image synthesis (S22), but the order is not limited to this. For example, the order of logarithmic conversion, nonlinearity correction, and monochromatic transmission image synthesis may be used, or the order of nonlinearity correction, logarithmic conversion, and monochromatic transmission image synthesis may be used.

(第一の実施の形態と第二の実施の形態の共通の変形)
以下の変形例は組み合わせて適用することもできる。
(Common modification of the first embodiment and the second embodiment)
The following modifications can be applied in combination.

(変形例1)
第一あるいは第二の実施形態で、検出特性関数の較正において、検出特性関数R(I),G(I),B(I)を求める際に、I方向にスムージング(高周波数成分除去)を行って求めると較正時の測定誤差が均されて非線形性補正の誤差が減少する。
(Modification 1)
In the first or second embodiment, when the detection characteristic functions R I (I), G I (I), and B I (I) are obtained in the calibration of the detection characteristic function, smoothing (high frequency component) is performed in the I direction. If it is obtained by performing (removal), the measurement error at the time of calibration is averaged and the error of nonlinearity correction is reduced.

(変形例2)
第一あるいは第二の実施形態では非線形補正関数、及び検出特性関数の傾斜は表として記憶しているが、代わりに測定で求めたグラフに対し数式としてフィティングカーブを求め、数式として記憶してもよい。
(Modification 2)
In the first or second embodiment, the nonlinear correction function and the slope of the detection characteristic function are stored as a table, but instead, a fitting curve is obtained as an equation for the graph obtained by measurement, and is stored as an equation. Also good.

(変形例3)
第一あるいは第二の実施形態ではカラーカメラ3bは透過像をデジタルデータとして出力するものを用いたが、アナログ出力として制御処理部9でデジタルデータに変換してもよい。
(Modification 3)
In the first or second embodiment, the color camera 3b is used to output a transmission image as digital data, but may be converted to digital data by the control processing unit 9 as an analog output.

(変形例4)
第一あるいは第二の実施形態では、カラーX線II(放射線可視光変換手段)3aとカラーカメラ(撮像手段)3bで構成した放射線検出器を使用しているが、これには限られない。例えば、放射線可視光変換手段としてカラーシンチレータ層を持ったプレートを用いてもよく、また、電子を増幅するマイクロチャンネルプレートの入力面にシンチレータ層と光電層を設け、出力面にカラーシンチレータ層を設けたものを用いてもよい。
(Modification 4)
In the first or second embodiment, the radiation detector constituted by the color X-ray II (radiation visible light converting means) 3a and the color camera (imaging means) 3b is used, but is not limited thereto. For example, a plate having a color scintillator layer may be used as a radiation-visible light conversion means, a scintillator layer and a photoelectric layer are provided on the input surface of a microchannel plate for amplifying electrons, and a color scintillator layer is provided on the output surface. May be used.

(変形例5)
第一あるいは第二の実施形態では、X線検出器3は3つの色成分(赤、緑、青)の透過像を出力するものであるが、色成分は赤、緑、青でなくてもよく、また、出力は2つの色成分でも4つ以上の色成分でも良い。この場合でも同様の処理で単色透過像を合成できる。
(Modification 5)
In the first or second embodiment, the X-ray detector 3 outputs a transmission image of three color components (red, green, and blue), but the color components may not be red, green, and blue. The output may be two color components or four or more color components. Even in this case, a monochrome transmission image can be synthesized by the same processing.

(変形例6)
第一あるいは第二の実施形態では、被検体を1回転させる通常のスキャンを行っているが、ハーフスキャンやオフセットスキャンやヘリカルスキャンを行ってもよい。
(Modification 6)
In the first or second embodiment, a normal scan for rotating the subject once is performed, but a half scan, an offset scan, or a helical scan may be performed.

また、第一あるいは第二の実施形態では、X線ビーム2に対しテーブル4を回転させているが、回転は相対的であればよく、X線管1とX線検出器3を一体で回転させることでX線ビーム2を回転させてもよい。  In the first or second embodiment, the table 4 is rotated with respect to the X-ray beam 2. However, the rotation may be relative, and the X-ray tube 1 and the X-ray detector 3 are rotated together. By doing so, the X-ray beam 2 may be rotated.

また、第一あるいは第二の実施形態では、RR方式のCT装置を例にしているが、透過の方向を変えるようテーブルと放射線を相対的に走査させる方式であればどのような方式でもよく、本発明は複数の色成分の透過像を出力する放射線検出器を用いるCT装置には全て適用できる。  In the first or second embodiment, the RR type CT apparatus is taken as an example, but any method may be used as long as the table and the radiation are scanned relatively so as to change the transmission direction. The present invention can be applied to all CT apparatuses using a radiation detector that outputs transmission images of a plurality of color components.

(変形例7)
第一あるいは第二の実施形態では、回転軸RAがX線光軸Lの方向と垂直に交差するCT装置を例にしているが、本発明は、直交していないいわゆる傾斜型CT装置(特開2005−106515等参照)に対しても適用できる。
(Modification 7)
In the first or second embodiment, a CT apparatus in which the rotation axis RA intersects perpendicularly with the direction of the X-ray optical axis L is taken as an example, but the present invention is a so-called inclined CT apparatus (special feature) This can also be applied to the open 2005-106515.

また、断面像を撮影する断層撮影装置(ラミノグラフあるいはトモシンセシス装置とも呼ばれる)に対しても適用できる。  The present invention can also be applied to a tomographic apparatus (also called a laminograph or a tomosynthesis apparatus) that captures a cross-sectional image.

(変形例8)
本発明は、放射線としては、X線だけでなく、被検体に応じ、γ線、マイクロ波等の被検体に対して透過性のある放射線を用いることができる。
(Modification 8)
In the present invention, not only X-rays but also radiation that is transmissive to the subject such as γ rays and microwaves can be used depending on the subject.

1…X線管、2…X線ビーム、3…X線検出器、3a…カラーX線II、3aa…入力面、3ab…出力面、3b…カラーカメラ、4…テーブル、5…被検体、6…回転・昇降機構、7…シフト機構、8…支柱、9…制御処理部、9a…表示部、9b…入力部、9c…検出特性較正部、9d…スキャン制御部、9e…画像合成部、9f…非線形性補正部、9g…再構成部、
101…X線管、102…X線ビーム、103…X線検出器、103a…X線II、103b…カメラ、104…テーブル、105…被検体、107…回転・昇降機構、108…制御処理部
DESCRIPTION OF SYMBOLS 1 ... X-ray tube, 2 ... X-ray beam, 3 ... X-ray detector, 3a ... Color X-ray II, 3aa ... Input surface, 3ab ... Output surface, 3b ... Color camera, 4 ... Table, 5 ... Subject, DESCRIPTION OF SYMBOLS 6 ... Rotation / lifting mechanism, 7 ... Shift mechanism, 8 ... Strut, 9 ... Control processing part, 9a ... Display part, 9b ... Input part, 9c ... Detection characteristic calibration part, 9d ... Scan control part, 9e ... Image composition part , 9f: nonlinearity correction unit, 9g: reconstruction unit,
DESCRIPTION OF SYMBOLS 101 ... X-ray tube, 102 ... X-ray beam, 103 ... X-ray detector, 103a ... X-ray II, 103b ... Camera, 104 ... Table, 105 ... Subject, 107 ... Rotation / lifting mechanism, 108 ... Control processing part

Claims (7)

テーブル上に載置された被検体に向けて放射線を放射する放射線源と、前記被検体を透過した放射線を検出して透過像データとして出力する放射線検出手段と、前記被検体に対する前記透過の方向を変えるよう前記テーブルと前記放射線とを相対的に走査させる走査手段と、前記透過像データから前記被検体の断面像を再構成する再構成手段を有するCT装置において、
前記放射線検出手段は放射線を検出してカラーの可視光像に変換する放射線可視光変換手段と前記カラーの可視光像を撮影して色成分ごとの透過像データを出力する撮像手段より成り、
前記色成分ごとの透過像データを互いに加算した単色透過像データを作る画像合成手段を有し、
前記再構成手段は複数の前記走査の位置で前記放射線検出手段により得た前記色成分ごとの透過像データを前記画像合成手段により互いに加算した前記単色透過像データを用いて前記被検体の断面像を再構成することを特徴とするCT装置。
A radiation source that emits radiation toward the subject placed on the table; radiation detection means that detects the radiation transmitted through the subject and outputs it as transmission image data; and the direction of transmission with respect to the subject In a CT apparatus having scanning means for relatively scanning the table and the radiation so as to change the position, and reconstruction means for reconstructing a cross-sectional image of the subject from the transmission image data,
The radiation detection means comprises a radiation-visible light conversion means for detecting radiation and converting it into a color visible light image, and an imaging means for photographing the color visible light image and outputting transmission image data for each color component,
Image synthesis means for producing monochromatic transmission image data obtained by adding the transmission image data for each color component to each other;
The reconstruction means uses the monochromatic transmission image data obtained by adding the transmission image data for each of the color components obtained by the radiation detection means at a plurality of scanning positions to each other by the image synthesis means. CT apparatus characterized by reconfiguring.
請求項1に記載のCT装置において、
前記単色透過像データに前記単色透過像データの検出特性関数の逆関数で非線形性補正を加える非線形性補正手段を有し、
前記再構成手段は前記非線形性補正を加えた後の単色透過像データを用いて再構成することを特徴とするCT装置。
The CT apparatus according to claim 1,
Non-linearity correction means for applying non-linearity correction to the single-color transmission image data with an inverse function of the detection characteristic function of the single-color transmission image data,
The CT apparatus according to claim 1, wherein the reconstruction means reconstructs using the monochromatic transmission image data after the nonlinearity correction is applied.
請求項1に記載のCT装置において、
前記色成分ごとの透過像データに対しそれぞれの検出特性関数の逆関数で非線形性補正を加える非線形性補正手段を有し、
前記画像合成手段は前記非線形性補正を加えた後の色成分ごとの透過像データを互いに加算することを特徴とするCT装置。
The CT apparatus according to claim 1,
Non-linearity correction means for applying non-linearity correction to the transmission image data for each color component by an inverse function of each detection characteristic function,
The CT apparatus according to claim 1, wherein the image synthesizing unit adds the transmission image data for each color component after the nonlinearity correction is performed.
請求項3に記載のCT装置において、
前記加算は前記色成分ごとにそれぞれの検出特性関数の傾斜の二乗に比例する重みを掛けた加算であるCT装置。
The CT apparatus according to claim 3,
The CT apparatus is an addition in which the addition is performed by multiplying a weight proportional to the square of the slope of each detection characteristic function for each color component.
請求項1乃至請求項4のいずれか1項に記載のCT装置において、
前記加算は前記色成分ごとの検出器ノイズの2乗に反比例する重みを掛けた加算であるCT装置。
The CT apparatus according to any one of claims 1 to 4,
The CT apparatus, wherein the addition is an addition obtained by multiplying the square of the detector noise for each color component by a weight inversely proportional to the square.
請求項1乃至請求項5のいずれか1項に記載のCT装置において、
前記放射線可視光変換手段はカラーX線IIで、前記撮像手段は赤、緑、青の3つの色成分の透過像データを出力するカラーカメラであるCT装置。
The CT apparatus according to any one of claims 1 to 5,
The CT apparatus, which is a color camera that outputs the transmission image data of three color components of red, green, and blue.
請求項1乃至請求項5のいずれか1項に記載のCT装置において、
前記放射線可視光変換手段はカラーシンチレータで、前記撮像手段は赤、緑、青の3つの色成分の透過像データを出力するカラーカメラであるCT装置。
The CT apparatus according to any one of claims 1 to 5,
The CT apparatus, wherein the radiation-visible light conversion means is a color scintillator, and the imaging means is a color camera that outputs transmission image data of three color components of red, green, and blue.
JP2009111554A 2009-04-09 2009-04-09 CT equipment Active JP5522350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111554A JP5522350B2 (en) 2009-04-09 2009-04-09 CT equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111554A JP5522350B2 (en) 2009-04-09 2009-04-09 CT equipment

Publications (2)

Publication Number Publication Date
JP2010243470A true JP2010243470A (en) 2010-10-28
JP5522350B2 JP5522350B2 (en) 2014-06-18

Family

ID=43096626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111554A Active JP5522350B2 (en) 2009-04-09 2009-04-09 CT equipment

Country Status (1)

Country Link
JP (1) JP5522350B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027101A (en) * 2018-08-10 2020-02-20 東芝Itコントロールシステム株式会社 X-ray imaging device
CN111474568A (en) * 2020-05-22 2020-07-31 江苏万略医药科技有限公司 Intelligent radioactive substance balance analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232608A (en) * 1991-12-27 1993-09-10 Fuji Photo Film Co Ltd Method and device for superposition processing of radiation image
JP2000121579A (en) * 1998-10-13 2000-04-28 Nagoya Denki Kogyo Kk Method and apparatus for x-ray image pickup as well as medium with recorded x-ray image pickup control program
JP2003202382A (en) * 2001-12-28 2003-07-18 Toshiba Corp Imaging device and imaging method
JP2004294287A (en) * 2003-03-27 2004-10-21 Toshiba Corp Non-destructive inspection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232608A (en) * 1991-12-27 1993-09-10 Fuji Photo Film Co Ltd Method and device for superposition processing of radiation image
JP2000121579A (en) * 1998-10-13 2000-04-28 Nagoya Denki Kogyo Kk Method and apparatus for x-ray image pickup as well as medium with recorded x-ray image pickup control program
JP2003202382A (en) * 2001-12-28 2003-07-18 Toshiba Corp Imaging device and imaging method
JP2004294287A (en) * 2003-03-27 2004-10-21 Toshiba Corp Non-destructive inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027101A (en) * 2018-08-10 2020-02-20 東芝Itコントロールシステム株式会社 X-ray imaging device
JP7208079B2 (en) 2018-08-10 2023-01-18 東芝Itコントロールシステム株式会社 X-ray imaging device
CN111474568A (en) * 2020-05-22 2020-07-31 江苏万略医药科技有限公司 Intelligent radioactive substance balance analysis method
CN111474568B (en) * 2020-05-22 2024-04-16 江苏万略医药科技有限公司 Intelligent radioactive substance balance analysis method

Also Published As

Publication number Publication date
JP5522350B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US7263167B2 (en) Direct conversion X-ray detector with over-range and pile-up correction
US9459358B2 (en) Reference calibration in photon counting based spectral CT
US7864916B2 (en) X-ray computer tomography apparatus
JP2006105977A (en) System and technique for dynamic optimization of image
JP2016032635A (en) Photon-counting type x-ray ct apparatus
JP2007300964A (en) Radiographic equipment and radiography method
WO2012049940A1 (en) Medical image processing device, x-ray computer tomography device, and medical image processing method
JP2015508001A (en) Spectral imaging
JP5522350B2 (en) CT equipment
US7676074B2 (en) Systems and methods for filtering data in a medical imaging system
US10969503B2 (en) Sensitivity correction method and photon counting detector
JP4041040B2 (en) Radiation tomography equipment
KR101284986B1 (en) Method and apparatus for reconstructing high-resolution tomosynthesis
JP7461102B2 (en) Medical image processing equipment and X-ray CT equipment
US7949174B2 (en) System and method for calibrating an X-ray detector
KR101725495B1 (en) Resolution Improving Method of Medical Imaging, Apparatus, System, Program and Recording Medium thereof
US11307312B2 (en) Image acquisition
JP2022111990A (en) Photon counting type x-ray ct apparatus and method
JP2022013686A (en) X-ray ct apparatus, data processing method, and program
JP2019005490A (en) X-ray CT apparatus
JP2010261917A (en) Transmission image display device and radioscopic inspection apparatus
JP7309988B2 (en) MEDICAL IMAGE PROCESSING APPARATUS AND MEDICAL IMAGE PROCESSING METHOD
JP7144292B2 (en) MEDICAL IMAGE PROCESSING APPARATUS AND MEDICAL IMAGE PROCESSING METHOD
JP7309381B2 (en) Medical image diagnostic device and medical bed device
US10806422B2 (en) Apparatus for generating X-rays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

R150 Certificate of patent or registration of utility model

Ref document number: 5522350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250