JP2010261917A - Transmission image display device and radioscopic inspection apparatus - Google Patents

Transmission image display device and radioscopic inspection apparatus Download PDF

Info

Publication number
JP2010261917A
JP2010261917A JP2009124671A JP2009124671A JP2010261917A JP 2010261917 A JP2010261917 A JP 2010261917A JP 2009124671 A JP2009124671 A JP 2009124671A JP 2009124671 A JP2009124671 A JP 2009124671A JP 2010261917 A JP2010261917 A JP 2010261917A
Authority
JP
Japan
Prior art keywords
transmission image
range
color
value
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009124671A
Other languages
Japanese (ja)
Inventor
Teruo Yamamoto
輝夫 山本
Kiichiro Uyama
喜一郎 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba IT and Control Systems Corp
Original Assignee
Toshiba IT and Control Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba IT and Control Systems Corp filed Critical Toshiba IT and Control Systems Corp
Priority to JP2009124671A priority Critical patent/JP2010261917A/en
Publication of JP2010261917A publication Critical patent/JP2010261917A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission image display device for displaying a color transmission image having improved visibility, and to provide a radioscopic inspection apparatus. <P>SOLUTION: The transmission image display device includes: a gradation conversion section 7d for performing gradation conversion on each transmission image data for each color component for the transmission image data for a plurality of color components, each having different sensitivity obtained by detecting X-ray beams 2 transmitted through a specimen 5 from an X-ray tube 1, by mutually different conversion functions; and a display section 7a for displaying the transmission image data in color. The radioscopic examination apparatus includes the transmission image display device. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、透過性の放射線を用いて、被検体の透過像を撮影し、被検体内部の検査を行う産業用あるいは医療用の放射線透視検査装置及び透過像を表示する透過像表示装置に関する。  The present invention relates to an industrial or medical radiographic inspection apparatus that takes a transmission image of a subject by using transmissive radiation and inspects the inside of the subject, and a transmission image display apparatus that displays the transmission image.

放射線透視検査装置は、放射線源より放射され被検体を透過した放射線ビームを放射線検出器で検出して、出力される透過像(透過像データ)を画像表示して被検体内部を観察し検査する装置である。  The radiographic inspection apparatus detects a radiation beam emitted from a radiation source and transmitted through a subject with a radiation detector, displays an output transmission image (transmission image data), and observes and inspects the inside of the subject. Device.

放射線(X線)検出器としては、例えば、X線ビームの強度分布像を可視光像に変換するX線イメージインテンシファイア(以下X線IIと記載する)とこの可視光像を撮影して透過像(透過像データ)として出力するカメラより成る放射線検出器が用いられる。  As a radiation (X-ray) detector, for example, an X-ray image intensifier (hereinafter referred to as X-ray II) that converts an intensity distribution image of an X-ray beam into a visible light image and the visible light image are photographed. A radiation detector including a camera that outputs a transmission image (transmission image data) is used.

上述した放射線透視検査装置では、近年、複数の色成分の透過像を出力する放射線検出器を用いて透過像のカラー表示が行われている。この種の放射線検出器の第一の例として、カラーX線イメージインテンシファイア(略してカラーI.I.(登録商標)以下カラーX線IIと記載する)とカラーカメラを用いた放射線検出器が、特許文献1等で知られている。  In the radiographic inspection apparatus described above, in recent years, color display of a transmission image is performed using a radiation detector that outputs transmission images of a plurality of color components. As a first example of this type of radiation detector, a color detector using a color X-ray image intensifier (abbreviated as Color II (registered trademark) hereinafter) and a color camera is used. However, it is known from Patent Document 1 and the like.

カラーX線IIは入力面のシンチレータ層で、入射した放射線(X線)の分布を電子の分布に変換し、この電子を加速して出力面に結像させ出力面のカラーシンチレータ層を発光させて可視光像に変換するものである。出力面のカラーシンチレータはカラー(多色)で発光するが、色成分(R,G,B:赤、緑、青)ごとに発光特性曲線が異なる。すなわち電子の入射量に対しR,G,Bの順に感度が高い特性がある。  Color X-ray II is a scintillator layer on the input surface that converts the distribution of incident radiation (X-rays) into an electron distribution, accelerates the electrons to form an image on the output surface, and causes the color scintillator layer on the output surface to emit light. To convert it into a visible light image. The color scintillator on the output surface emits light in colors (multiple colors), but the emission characteristic curve is different for each color component (R, G, B: red, green, blue). That is, there is a characteristic that the sensitivity is higher in the order of R, G, and B with respect to the amount of incident electrons.

カラーカメラは変換されたカラーの可視光像を撮影し色成分(R,G,B)ごとの透過像を出力する。  The color camera captures the converted color visible light image and outputs a transmission image for each color component (R, G, B).

第二の例として、カラーシンチレータとカラーカメラを用いた放射線検出器が、特許文献2等で知られている。  As a second example, a radiation detector using a color scintillator and a color camera is known from Patent Document 2 and the like.

これは、放射線(X線)を入力面のカラーシンチレータ層に入射させて発光させることで、放射線の分布を可視光像に変換して、この可視光像をカラーカメラで撮影するものである。カラーシンチレータはカラーで発光するが、色成分(R,G,B:赤、緑、青)ごとに発光特性曲線が異なる。すなわち放射線の入射量に対しR,G,Bの順に感度が高い特性がある。カラーカメラは変換されたカラーの可視光像を撮影し色成分(R,G,B)ごとの透過像を出力する。  In this method, radiation (X-rays) is incident on a color scintillator layer on the input surface to emit light, thereby converting the radiation distribution into a visible light image and photographing the visible light image with a color camera. The color scintillator emits light in color, but the emission characteristic curve is different for each color component (R, G, B: red, green, blue). That is, there is a characteristic that the sensitivity is higher in the order of R, G, and B with respect to the amount of incident radiation. The color camera captures the converted color visible light image and outputs a transmission image for each color component (R, G, B).

上述した複数の色成分の透過像をカラー表示で観察すると、低透過率部(低放射線部)は感度の高い赤色で細部がよく観察でき、高透過率部(高放射線部)は、赤色は飽和するが感度の低い青色で細部がよく観察できる。すなわち、この構成でダイナミックレンジの広い放射線検出器が可能となる。  When the transmission images of the plurality of color components described above are observed in color display, the low transmittance portion (low radiation portion) can be observed in red with high sensitivity, and the high transmittance portion (high radiation portion) can be observed in red. Saturates, but details are well observable in blue with low sensitivity. That is, a radiation detector with a wide dynamic range is possible with this configuration.

図11は複数の色成分の透過像を出力する放射線検出器の検出特性曲線の例を示すグラフである。横軸は1画素への入射X線量、縦軸は1画素の出力(明るさ)である。各色成分R,G,Bそれぞれ、出力がノイズレベルから飽和レベルに達するまでの入力範囲がダイナミックレンジとなる。カラーの透過像のダイナミックレンジは各色成分のダイナミックレンジの論理和の領域となり、単色の場合と比べ増大する。  FIG. 11 is a graph showing an example of a detection characteristic curve of a radiation detector that outputs transmission images of a plurality of color components. The horizontal axis represents the incident X-ray dose to one pixel, and the vertical axis represents the output (brightness) of one pixel. The input range for each color component R, G, B until the output reaches the saturation level from the noise level is the dynamic range. The dynamic range of the transmitted color image is a region of the logical sum of the dynamic ranges of the respective color components, and is increased as compared with the case of a single color.

特開2006−179424号公報JP 2006-179424 A 特開2003−202382号公報JP 2003-202382 A

従来の放射線透視検査装置で、ダイナミックレンジの広い複数の色成分の透過像を出力する放射線検出器を用いて透過像のカラー表示をする場合、視認性が最もよいカラー表示とは言えなかった。  In a conventional radiographic inspection apparatus, when color display of a transmission image is performed using a radiation detector that outputs a transmission image of a plurality of color components having a wide dynamic range, it cannot be said that the color display has the best visibility.

その理由は、高透過率部は感度の低い青色で細部が観察できはするが、飽和気味の赤色や緑色が重なり、それが青色の細かな濃淡のコントラストを低下させ、最良の識別度にはならないことにある。また、同様に、中間透過率部は感度の中間の緑色で細部が観察できはするが、飽和気味の赤色が重なり、それが緑色の細かな濃淡のコントラストを低下させ、最良の識別度にはならないことにある。  The reason is that the high-transmittance part has low sensitivity in blue and details can be observed, but the red and green colors that appear to be saturated overlap, which reduces the contrast of the fine shades of blue, and the best discrimination is There is something to be done. Similarly, the intermediate transmittance part can be observed with green in the middle of the sensitivity, but details can be observed, but the saturated red color overlaps, which reduces the contrast of the fine shades of green, and for the best discrimination There is something to be done.

本発明の目的は、視認性を向上させたカラーの透過像を表示する放射線透視検査装置及び透過像表示装置を提供することである。  An object of the present invention is to provide a radiographic inspection apparatus and a transmission image display apparatus that display a color transmission image with improved visibility.

前記目的を達成するため、本発明に係る請求項1記載の透過像表示装置は、放射線源から被検体に向けて放射され前記被検体を透過した放射線を検出して得られる感度の異なる複数の色成分ごとの透過像データに対し、前記色成分ごとの透過像データそれぞれに、互いに異なる変換関数で階調変換を加える階調変換手段と、前記階調変換を加えた色成分ごとの透過像データをカラー表示する表示手段より成り、前記階調変換手段は、感度が一番高い第一の色成分の透過像データに対し、値の所定の範囲で入力の増加に対し出力が単調減少する第一の階調変換を行い、感度が一番低い第二の色成分の透過像データに対し、値の所定の範囲で入力の増加に対し出力が単調増加する第二の階調変換を行い、色成分が3以上の場合は少なくとも1つの感度が中間の第三の色成分の透過像データに対し、値の所定の範囲で入力の増加に対し出力が単調増加した後単調減少する第三の階調変換を行うことを要旨とする。  In order to achieve the above object, a transmission image display device according to claim 1 of the present invention includes a plurality of different sensitivities obtained by detecting radiation emitted from a radiation source toward a subject and transmitted through the subject. A gradation conversion unit that performs gradation conversion using a different conversion function for each of the transmission image data for each color component, and a transmission image for each color component that has been subjected to the gradation conversion. The gradation converting means comprises a display means for displaying data in color, and the output of the first color component having the highest sensitivity is monotonously reduced as the input increases within a predetermined range of values. Performs first gradation conversion, and performs second gradation conversion for the output data of the second color component with the lowest sensitivity, where the output increases monotonically with increasing input within a specified range of values. When the color component is 3 or more, at least one Degrees Whereas transmission image data of the third color component of the intermediate, is summarized in that performing the third gradation conversion of monotonic decrease after the output has increased monotonically with respect to increasing input in a predetermined range of values.

この構成により、感度が一番高い第一の色成分に対しては入力の増加に対し出力が単調減少する変換関数を用い、感度が一番低い第二の色成分に対しては入力の増加に対し出力が単調増加する変換関数を用い、感度が中間の第三の色成分に対しては入力の増加に対し出力が単調増加した後単調減少する変換関数を用いて色成分ごとに階調変換することで、低透過率部は第一の色成分で高透過率部は第二の色成分で中間透過率部は第三の色成分でコントラストよく視認性を向上させたカラーの透過像を表示することができる。  This configuration uses a conversion function that monotonically decreases the output for the first color component with the highest sensitivity and increases the input for the second color component with the lowest sensitivity. For the third color component whose output is monotonically increasing, the gradation for each color component using a conversion function whose output monotonically increases and then monotonously decreases with increasing input for the third color component with intermediate sensitivity By converting, the low transmittance part is the first color component, the high transmittance part is the second color component, and the intermediate transmittance part is the third color component. Can be displayed.

本発明に係る請求項2記載の透過像表示装置は、請求項1に記載の透過像表示装置において、前記色成分ごとの透過像データの値の範囲を表す入力範囲をそれぞれの色成分ごとに求める入力範囲求出手段を有し、前記階調変換手段は、前記色成分ごとの入力範囲を、該入力範囲が変化してもそれぞれ常に一定の出力範囲に変換する変換関数で階調変換を加えることを要旨とする。  A transmission image display device according to a second aspect of the present invention is the transmission image display device according to the first aspect, wherein an input range indicating a value range of transmission image data for each color component is set for each color component. Input range obtaining means to obtain, and the gradation converting means performs gradation conversion with a conversion function that always converts the input range for each color component into a constant output range even if the input range changes. The gist is to add.

この構成により、色成分ごとに入力範囲を求め、この入力範囲を常に一定の出力範囲に変換する変換関数を用いて階調変換するので、入射する放射線量の範囲が変化しても、入力範囲を出力の画像信号幅いっぱいに無駄なく変換することが可能になり、階調変換されるカラー透過像は自動的にコントラストを最大限に上げたカラー透過像となり、常に視認性を最大限に向上させたカラーの透過像を表示することができる。  With this configuration, an input range is obtained for each color component, and gradation conversion is performed using a conversion function that always converts this input range into a constant output range, so even if the range of incident radiation dose changes, the input range Can be converted without waste to the full output image signal width, and the color transmission image that is converted to gradation automatically becomes a color transmission image with the maximum contrast automatically, always improving visibility to the maximum. The transmitted color image can be displayed.

本発明に係る請求項3記載の透過像表示装置は、請求項2に記載の透過像表示装置において、前記入力範囲求出手段は、前記色成分ごとの透過像データのそれぞれの透過像上の所定範囲内で求めた最小値から最大値まで、あるいは、最小値より所定番目に大きい値から最大値より所定番目に小さな値までを前記入力範囲とすることを要旨とする。  The transmission image display device according to a third aspect of the present invention is the transmission image display device according to the second aspect, wherein the input range finding means is provided on each transmission image of the transmission image data for each color component. The gist of the present invention is that the input range is from a minimum value to a maximum value obtained within a predetermined range, or from a value that is predetermined larger than the minimum value to a value that is predetermined smaller than the maximum value.

この構成により、透過像データの値の範囲である入力範囲を透過像上の周辺の明るさ低下などの画質低下の影響を受けずに求めることができる。また、最小値より大きめの値から最大値より小さめの値までを入力範囲とすることで、異常画素があった場合、この画素に影響されずに入力範囲を求めることができる。  With this configuration, it is possible to obtain an input range, which is a range of values of transmission image data, without being affected by image quality deterioration such as lowering of brightness around the transmission image. Also, by setting an input range from a value larger than the minimum value to a value smaller than the maximum value, if there is an abnormal pixel, the input range can be obtained without being affected by this pixel.

本発明に係る請求項4記載の透過像表示装置は、請求項2または請求項3に記載の透過像表示装置において、前記第一の階調変換は、前記第一の色成分の透過像データに対し、前記第一の色成分の入力範囲を所定の比で2分し、低い範囲は入力の増加に対し出力を第一値から第二値まで単調減少させ、高い範囲は出力を前記第二値とする階調変換であり、前記第二の階調変換は、前記第二の色成分の透過像データに対し、前記第二の色成分の入力範囲を所定の比で2分し、低い範囲は出力を第三値とし、高い範囲は入力の増加に対し出力を前記第三値から第四値まで単調増加させる階調変換であることを要旨とする。  A transmission image display device according to a fourth aspect of the present invention is the transmission image display device according to the second or third aspect, wherein the first gradation conversion is the transmission image data of the first color component. On the other hand, the input range of the first color component is divided into two at a predetermined ratio, the low range monotonically decreases the output from the first value to the second value with respect to the increase of the input, and the high range outputs the output of the first color component. A binary gradation conversion, wherein the second gradation conversion divides the input range of the second color component by a predetermined ratio with respect to the transmission image data of the second color component; The gist is that the low range is the third value of the output, and the high range is the gradation conversion that monotonously increases the output from the third value to the fourth value with respect to the increase in input.

この構成により、具体的に第一の階調変換及び第二の階調変換を実施できる。  With this configuration, the first gradation conversion and the second gradation conversion can be specifically performed.

本発明に係る請求項5記載の透過像表示装置は、請求項2乃至請求項4のいずれか1項に記載の透過像表示装置において、色成分が3以上の場合は前記第三の階調変換は、前記第三の色成分の透過像データに対し、前記第三の色成分の入力範囲を所定の比で2分し、低い範囲は入力の増加に対し出力を第五値から第六値まで単調増加させ、高い範囲は入力の増加に対し出力を前記第六値から第七値まで単調減少させる階調変換であることを要旨とする。  The transmission image display device according to claim 5 of the present invention is the transmission image display device according to any one of claims 2 to 4, wherein the third gradation is obtained when the color component is 3 or more. In the conversion, the input range of the third color component is divided into two by a predetermined ratio with respect to the transmission image data of the third color component, and the output of the lower range is increased from the fifth value to the sixth in response to an increase in input. The gist of the present invention is a gradation conversion that monotonically increases to a value and the high range is a monotonous conversion that monotonously decreases the output from the sixth value to the seventh value as the input increases.

この構成により、具体的に第三の階調変換を実施できる。  With this configuration, the third gradation conversion can be specifically performed.

本発明に係る請求項6記載の透過像表示装置は、請求項1乃至請求項5のいずれか1項に記載の透過像表示装置において、前記階調変換手段は、前記単調減少を単調増加で、前記単調増加を単調減少で置き換えた階調変換を加えることを要旨とする。  The transmission image display device according to a sixth aspect of the present invention is the transmission image display device according to any one of the first to fifth aspects, wherein the gradation converting unit is configured to monotonically increase the monotonous decrease. The gist of the invention is to add gradation conversion in which the monotonic increase is replaced by the monotonic decrease.

この構成により、階調変換された色成分ごとの透過像はそれぞれ明暗が反転し、カラー表示はカラーが反転し、低透過率部は第一の色成分の補色で、高透過率部は第二の色成分の補色で中間透過率部は第三の色成分の補色でコントラストよく視認性を向上させたカラーの透過像を表示することができ、請求項1乃至請求項5と同様の効果をあげることができる。  With this configuration, the transmission image for each color component subjected to gradation conversion is inverted in brightness, the color display is inverted in color, the low transmittance portion is a complementary color of the first color component, and the high transmittance portion is the first. 6. The intermediate transmittance portion of the complementary color of the second color component can display a transmitted image of a color with a high contrast and improved visibility by the complementary color of the third color component, and the same effects as in claims 1 to 5. Can give.

本発明に係る請求項7記載の放射線透視検査装置は、被検体に向けて放射線を放射する放射線源と、前記被検体を透過した放射線を検出して放射線に対し感度の異なる複数の色成分ごとの透過像データを出力する放射線検出手段と、前記色成分ごとの透過像データに、階調変換を加えてカラー表示する請求項1乃至請求項6のいずれか1項に記載の透過像表示装置を有することを要旨とする。  According to a seventh aspect of the present invention, there is provided a radiographic inspection apparatus according to the present invention, a radiation source that emits radiation toward a subject, and a plurality of color components that detect radiation transmitted through the subject and have different sensitivities to radiation. The transmission image display apparatus according to any one of claims 1 to 6, wherein a radiation detection unit that outputs the transmission image data of the image and a transmission image data for each of the color components is subjected to gradation conversion to perform color display. It is summarized as having.

この構成により、視認性を向上させたカラーの透過像を表示することができる。  With this configuration, a color transmission image with improved visibility can be displayed.

本発明に係る請求項8記載の放射線透視検査装置は、請求項7に記載の放射線透視検査装置において、前記放射線検出手段は放射線を検出してカラーの可視光像に変換する放射線可視光変換手段と前記カラーの可視光像を撮影して複数の色成分ごとの透過像データを出力する撮像手段より成ることを要旨とする。  The radiographic inspection apparatus according to an eighth aspect of the present invention is the radiological inspection apparatus according to the seventh aspect, wherein the radiation detecting means detects radiation and converts it into a color visible light image. And imaging means for taking a visible light image of the color and outputting transmission image data for each of a plurality of color components.

この構成により、視認性を向上させたカラーの透過像を表示することができる。  With this configuration, a color transmission image with improved visibility can be displayed.

本発明によれば、複数の色成分の透過像を出力する放射線検出器を用いて、視認性を向上させたカラーの透過像を表示する放射線透視検査装置及び透過像表示装置を提供することができる。  According to the present invention, it is possible to provide a radiographic inspection apparatus and a transmission image display apparatus that display a color transmission image with improved visibility using a radiation detector that outputs transmission images of a plurality of color components. it can.

本発明の第一実施形態に係る放射線透視検査装置の構成を示した模式図(正面図)。The schematic diagram (front view) which showed the structure of the radiographic inspection apparatus which concerns on 1st embodiment of this invention. 第一の実施形態に係るX線検出器の検出特性関数の例を示すグラフ。The graph which shows the example of the detection characteristic function of the X-ray detector which concerns on 1st embodiment. 第一の実施形態に係る透過像表示のフロー図。FIG. 3 is a flowchart of transmission image display according to the first embodiment. 第一実施形態に係る透過像上の入力範囲計算領域の一例。An example of the input range calculation area | region on the transmission image which concerns on 1st embodiment. 第一実施形態に係る透過像の入力範囲の一例を示すグラフ。The graph which shows an example of the input range of the transmission image which concerns on 1st embodiment. 第一実施形態に係る階調変換の変換関数の一例。An example of the conversion function of the gradation conversion which concerns on 1st embodiment. 第一実施形態における透過像のカラー表示の一例(カラー表示をグレースケール変換したもの)((a)階調変換前、(b)階調変換後)。An example of color display of a transmission image in the first embodiment (color display obtained by gray scale conversion) ((a) before gradation conversion, (b) after gradation conversion). 第一実施形態の変形例2に係る階調変換の変換関数の一例。An example of the conversion function of the gradation conversion which concerns on the modification 2 of 1st embodiment. 第一実施形態の変形例3に係る階調変換の変換関数の一例。An example of the conversion function of the gradation conversion which concerns on the modification 3 of 1st embodiment. 第一実施形態の変形例4に係る階調変換の変換関数の一例((a)2色の場合、(b)5色の場合)。An example of a conversion function of gradation conversion according to Modification 4 of the first embodiment ((a) in the case of 2 colors, (b) in the case of 5 colors). 複数の色成分の透過像を出力する放射線検出器の検出特性曲線の例を示すグラフ。The graph which shows the example of the detection characteristic curve of the radiation detector which outputs the permeation | transmission image of a several color component.

以下図面を参照して、本発明実施形態を説明する。  Embodiments of the present invention will be described below with reference to the drawings.

(本発明の第一の実施の形態の構成)
以下、本発明の第一の実施形態の構成について図1、図2を参照して説明する。
(Configuration of the first embodiment of the present invention)
The configuration of the first embodiment of the present invention will be described below with reference to FIGS.

図1は本発明の第一実施形態に係る放射線透視検査装置の構成を示した模式図(正面図)である。  FIG. 1 is a schematic view (front view) showing a configuration of a radiographic inspection apparatus according to the first embodiment of the present invention.

X線管(放射線源)1と、X線管1のX線焦点Fより放射されたX線の一部である角錐状のX線ビーム(放射線)2を2次元の分解能で検出するX線検出器(放射線検出手段)3とが対向して配置され、このX線ビーム2に入るようにテーブル4上に載置された被検体5を透過したX線ビーム2がX線検出器3により検出され、透過像(透過像データ)として出力される。  X-rays that detect a pyramidal X-ray beam (radiation) 2 that is a part of the X-rays emitted from the X-ray tube (radiation source) 1 and the X-ray focal point F of the X-ray tube 1 with two-dimensional resolution. The X-ray beam 2 transmitted through the subject 5 placed on the table 4 so as to enter the X-ray beam 2 is disposed by facing the detector (radiation detection means) 3 by the X-ray detector 3. Detected and output as a transmission image (transmission image data).

テーブル4はテーブル駆動機構6により3次元的な平行移動、テーブル面に沿った回転、およびテーブル面の傾斜等がなされ、被検体5の透視位置、透視角度、拡大率などが変更される。  The table 4 is subjected to three-dimensional parallel movement, rotation along the table surface, tilting of the table surface, and the like by the table driving mechanism 6, and the fluoroscopic position, the fluoroscopic angle, the magnification rate, etc. of the subject 5 are changed.

X線検出器3はカラーX線イメージインテンシファイア(略してカラーI.I.(登録商標)、以下カラーX線IIと記載する)(放射線可視光変換手段)3aとカラーカメラ(撮像手段)3bより成る。  The X-ray detector 3 includes a color X-ray image intensifier (abbreviated as color II (registered trademark), hereinafter referred to as color X-ray II) (radiation-visible light conversion means) 3a and a color camera (imaging means). 3b.

カラーX線II3aは、入力面3aaのシンチレータ層と光電層とにより、入射した放射線(X線)の分布を光電子の分布に変換し、この光電子を加速して出力面3abに結像させ出力面3abのカラーシンチレータ層を発光させてカラー(多色)の可視光像に変換するものである。出力面3abのカラーシンチレータ層は、色成分(R,G,B:赤、緑、青)ごとに発光特性曲線が異なる。すなわち電子の入射量に対しR,G,Bの順に感度が高い特性がある。  The color X-ray II3a is obtained by converting the incident radiation (X-ray) distribution into a photoelectron distribution by the scintillator layer and the photoelectric layer of the input surface 3aa, and accelerating the photoelectrons to form an image on the output surface 3ab. The 3ab color scintillator layer emits light and converts it into a color (multicolor) visible light image. The color scintillator layer of the output surface 3ab has a different emission characteristic curve for each color component (R, G, B: red, green, blue). That is, there is a characteristic that the sensitivity is higher in the order of R, G, and B with respect to the amount of incident electrons.

図2は第一の実施形態に係るX線検出器の検出特性関数の例を示すグラフである。横軸は1画素への入射X線量I、縦軸は1画素の明るさ(検出器の出力の大きさで大きいほど明るい)である。R,G,Bの検出特性関数をそれぞれ、R(I),G(I),B(I)で表す。放射線(X線)の入射量に対しR,G,Bの順に感度が高く、また、R,G,Bの順で低いX線量で飽和する特性である。FIG. 2 is a graph showing an example of a detection characteristic function of the X-ray detector according to the first embodiment. The horizontal axis represents the incident X-ray dose I to one pixel, and the vertical axis represents the brightness of one pixel (the larger the detector output, the brighter it is). The detection characteristic functions of R, G, and B are represented by R I (I), G I (I), and B I (I), respectively. The sensitivity is high in the order of R, G, and B with respect to the incident amount of radiation (X-rays), and is saturated at a low X-ray dose in the order of R, G, and B.

カラーカメラ3bは変換されたカラーの可視光像を撮影し色成分(R,G,B)ごとの透過像(透過像データ)をデジタルデータとして出力する。  The color camera 3b captures the converted color visible light image and outputs a transmission image (transmission image data) for each color component (R, G, B) as digital data.

構成要素として、他に、テーブル駆動機構6を制御し、また、X線検出器3からの透過像を処理する制御処理部(透過像表示装置)7、処理結果等を表示する表示部7a、X線管1を制御するX線制御部(図示省略)等がある。  As other components, the table driving mechanism 6 is also controlled, and a control processing unit (transmission image display device) 7 that processes a transmission image from the X-ray detector 3, a display unit 7a that displays a processing result, and the like. There is an X-ray control unit (not shown) for controlling the X-ray tube 1.

表示部7aはカラー表示を行う液晶パネル等で構成されるものである。  The display unit 7a is composed of a liquid crystal panel that performs color display.

制御処理部7は通常のコンピュータで、CPU、メモリ、ディスク(不揮発メモリ)、表示部7a、入力部(キーボードやマウス等)7b、機構制御ボード、インターフェース、等より成っている。  The control processing unit 7 is a normal computer, and includes a CPU, a memory, a disk (nonvolatile memory), a display unit 7a, an input unit (keyboard, mouse, etc.) 7b, a mechanism control board, an interface, and the like.

制御処理部7は、機構制御ボードにより、テーブル駆動機構6が出力する動作位置の信号を受けてテーブル駆動機構6を制御して被検体の位置合わせを行わせる。  The control processing unit 7 receives the signal of the operation position output from the table driving mechanism 6 by the mechanism control board and controls the table driving mechanism 6 to align the subject.

また、制御処理部7は、X線検出器3から動画像として順次送られる透過像を収集し、画像処理し、動画像としてリアルタイムで表示部7aに表示するほか、メモリに記憶した透過像を、動画像または静止画像として表示部7aに表示する。  Further, the control processing unit 7 collects transmission images sequentially transmitted as moving images from the X-ray detector 3, performs image processing, displays them on the display unit 7 a in real time as moving images, and displays the transmission images stored in the memory. Then, it is displayed on the display unit 7a as a moving image or a still image.

また、制御処理部7は、X線制御部(図示省略)に指令を出し、管電圧、管電流を指定すると共に、X線の放射、停止の指示を行なう。管電圧、管電流は被検体に合わせて変えることができる。  Further, the control processing unit 7 issues a command to an X-ray control unit (not shown), specifies tube voltage and tube current, and instructs X-ray emission and stop. The tube voltage and tube current can be changed according to the subject.

図1に示すように、制御処理部7はソフトウエアを読み込んでCPUが機能する機能ブロックとして、X線検出器3から入力した透過像の値の入力範囲を求める入力範囲求出部7c、この入力範囲を反映して透過像の階調を変換する階調変換部7d、等を備えている。  As shown in FIG. 1, the control processing unit 7 reads the software and functions as a function block for the CPU to function as an input range finding unit 7c that obtains an input range of transmission image values input from the X-ray detector 3. A gradation converting unit 7d that converts the gradation of the transmission image reflecting the input range is provided.

(第一の実施の形態の作用)
図3ないし図6を参照して作用を説明する。
(Operation of the first embodiment)
The operation will be described with reference to FIGS.

図3は第一の実施形態に係る透過像表示のフロー図である。  FIG. 3 is a flow chart of transmission image display according to the first embodiment.

ステップS1で表示すべき色成分ごとの透過像R,G,BがX線検出器3から、あるいは制御処理部7のメモリから入力範囲求出部7cに入力される。  Transmission images R, G, and B for each color component to be displayed in step S1 are input from the X-ray detector 3 or from the memory of the control processing unit 7 to the input range finding unit 7c.

ステップS2で、入力範囲求出部7cはR,G,Bごとに、値の範囲である入力範囲を以下のように求める。  In step S2, the input range obtaining unit 7c obtains an input range that is a value range for each of R, G, and B as follows.

図4は第一実施形態に係る透過像上の入力範囲計算領域の一例である。透過像10上の周辺を除いた領域が入力範囲計算領域11である。  FIG. 4 is an example of the input range calculation area on the transmission image according to the first embodiment. An area on the transmission image 10 excluding the periphery is an input range calculation area 11.

入力範囲求出部7cは透過像R,G,Bごとに入力範囲計算領域11内の最小値Rmin,Gmin,Bminと最大値Rmax,Gmax,Bmaxをそれぞれ求め、この最小値Rmin,Gmin,Bminと最大値Rmax,Gmax,Bmaxまでを入力範囲とする。The input range finding unit 7c obtains the minimum values R min , G min , B min and the maximum values R max , G max , B max in the input range calculation area 11 for each of the transmission images R, G, B, and this minimum The values R min , G min , B min and the maximum values R max , G max , B max are input ranges.

図5は第一実施形態に係る透過像の入力範囲の一例を示すグラフである。横軸はX線量I、縦軸は明るさR,G,Bで、入力範囲計算領域11に対して入射するX線量の範囲12に対応して、Rの入力範囲13が明るい位置に、Gの入力範囲14が中間に、Bの入力範囲15が暗い位置に、それぞれ求められる。  FIG. 5 is a graph showing an example of an input range of a transmission image according to the first embodiment. The horizontal axis is the X-ray dose I, the vertical axis is the brightness R, G, B, and the R input range 13 is in a bright position corresponding to the X-ray dose range 12 incident on the input range calculation region 11. Input range 14 in the middle, and B input range 15 in the dark position.

図3に戻り、ステップS3で階調変換部7dは透過像R,G,Bごとに階調変換を以下のように行う。  Returning to FIG. 3, in step S3, the gradation conversion unit 7d performs gradation conversion for each of the transmission images R, G, and B as follows.

図6は第一実施形態に係る階調変換の変換関数の一例である。横軸は階調変換の入力、縦軸は階調変換の出力である。  FIG. 6 is an example of a conversion function for gradation conversion according to the first embodiment. The horizontal axis is the input of gradation conversion, and the vertical axis is the output of gradation conversion.

図6に示すように、変換関数は基本的に透過像データに対し、値の所定の範囲内で、感度が一番高いR成分の変換関数R(r)は入力の増加に対し出力が単調減少する関数を用い、感度が一番低いB成分の変換関数B(b)は入力の増加に対し出力が単調増加する関数を用いる。さらに、感度が中間のG成分の変換関数G(g)は入力の増加に対し出力が単調増加した後単調減少する関数を用いる。ここで、単調減少とはどの値も直前の値以下であることであり、単調増加とはどの値も直前の値以上であることである。また、図6の変換関数の場合、上述した「透過像データに対し、値の所定の範囲」は図3のステップ2で求めた入力範囲に相当する。As shown in FIG. 6, the conversion function is basically the same as the transmission image data, and the R component conversion function R V (r) having the highest sensitivity within the predetermined range of the value is output as the input increases. A monotonically decreasing function is used, and the B component conversion function B V (b) having the lowest sensitivity uses a function whose output monotonously increases with an increase in input. Further, as the conversion function G V (g) for the G component having an intermediate sensitivity, a function that decreases monotonically after the output increases monotonously with respect to an increase in input is used. Here, monotonically decreasing means that any value is less than or equal to the previous value, and monotonically increasing means that any value is greater than or equal to the immediately preceding value. In the case of the conversion function of FIG. 6, the above-mentioned “predetermined range of values for transmission image data” corresponds to the input range obtained in step 2 of FIG.

なお、R成分とG成分は入力範囲内で単調減少後に微少な増減(例えば出力全幅の1/10以下)があっても影響が少ないのでこれで良い。また、B成分とG成分は入力範囲内で単調増加前に微少な増減(例えば出力全幅の1/10以下)があっても影響が少ないのでこれで良い。この場合は、「透過像データに対し、値の所定の範囲」は入力範囲から微少な増減部分を除いた部分である。  It should be noted that the R component and the G component are sufficient because there is little influence even if there is a slight increase / decrease (for example, 1/10 or less of the total output width) after monotonous decrease within the input range. Further, the B component and the G component are sufficient because there is little influence even if there is a slight increase / decrease (for example, 1/10 or less of the total output width) before monotonous increase within the input range. In this case, the “predetermined value range with respect to the transmission image data” is a portion obtained by excluding a slight increase / decrease portion from the input range.

なお、「透過像データに対し、値の所定の範囲」は入力範囲内で階調変換の出力がほぼ出力範囲全体に及ぶ主要な値の範囲である。  The “predetermined range of values with respect to the transmission image data” is a main value range in which the output of the gradation conversion almost covers the entire output range within the input range.

また、図6に示すように、変換関数R(r),G(g),B(b)は、色成分ごとの入力範囲が一定の出力範囲に出力されるように変換する。すなわち、入力範囲が変化しても、常に出力範囲は一定で、画像信号幅のほぼ全体が出力範囲として使われる。Also, as shown in FIG. 6, the conversion functions R V (r), G V (g), and B V (b) are converted so that the input range for each color component is output to a constant output range. That is, even if the input range changes, the output range is always constant, and almost the entire image signal width is used as the output range.

具体的に、変換関数R(r),G(g),B(b)は、色成分ごとの入力範囲に対しそれぞれ規格化された入力r,g,bに対して定められた変換関数である。すなわち、変換関数は入力範囲の変化に追従して変化し、入力の入力範囲に対する位置(何%位置か)で出力が決定する関数である。Specifically, the conversion functions R V (r), G V (g), and B V (b) are determined for the inputs r, g, and b that are normalized with respect to the input range for each color component. It is a conversion function. In other words, the conversion function changes following the change of the input range, and the output is determined at the position of the input with respect to the input range (how many% position).

色成分ごとの入力値をR,G,B、入力範囲に対しそれぞれ規格化された入力値をr,g,bとすると、r,g,bは式、
r=(R−Rmin)/(Rmaxmin) ………(1)
g=(G−Gmin)/(Gmax−Gmin) ………(2)
b=(B−Bmin)/(Bmax−Bmin) ………(3)
で計算される。ここで、r,g,bはR,G,Bがminのとき0、maxのとき1となる。
If the input values for each color component are R, G, B, and the input values normalized to the input range are r, g, b, then r, g, b are
r = (R−R min ) / (R max −min ) (1)
g = (G−G min ) / (G max −G min ) (2)
b = (B−B min ) / (B max −B min ) (3)
Calculated by Here, r, g, and b are 0 when R, G, and B are min, and 1 when max.

図6に示す階調変換の変換関数は、具体的には、R成分の変換関数R(r)は、Rの入力範囲を所定の比(1:1)で2分し、低い範囲は入力の増加に対し出力を第一値R1から第二値R0まで単調減少させ、高い範囲は出力を第二値R0とする関数であり、B成分の変換関数B(b)は、Bの入力範囲を所定の比(1:1)で2分し、低い範囲は出力を第三値B0とし、高い範囲は入力の増加に対し出力を第三値B0から第四値B1まで単調増加させる関数である。さらに、G成分の変換関数G(g)は、Gの入力範囲を所定の比(1:1)で2分し、低い範囲は入力の増加に対し出力を第五値G0から第六値G1まで単調増加させ、高い範囲は入力の増加に対し出力を第六値G1から第七値G0’まで単調減少させる関数である。Specifically, the conversion function of the gradation conversion shown in FIG. 6 is that the R component conversion function R V (r) divides the R input range into two by a predetermined ratio (1: 1), and the low range is The output is monotonously decreased from the first value R1 to the second value R0 with respect to the increase in input, and the high range is a function that sets the output to the second value R0. The conversion function B V (b) of the B component is The input range is divided into two by a predetermined ratio (1: 1), the output in the low range is the third value B0, and the output in the high range is monotonically increased from the third value B0 to the fourth value B1 with respect to the increase in input. It is a function. Furthermore, the G component conversion function G V (g) divides the input range of G by a predetermined ratio (1: 1), and the lower range outputs the fifth value G0 to the sixth value as the input increases. The function increases monotonically up to G1, and the high range is a function that monotonously decreases the output from the sixth value G1 to the seventh value G0 ′ as the input increases.

図6に示す階調変換の変換関数R(r),G(g),B(b)は、式、

Figure 2010261917
で表される。ここで、定数R0,G0,G0’,B0,R1,G1,B1は任意に選べ るが、画像信号幅を広く使うように選ぶ。例えば、8ビット画像信号の場合、R0,G 0,G0’,B0を0、R1,G1,B1を255とする。The conversion functions R V (r), G V (g), and B V (b) of the gradation conversion shown in FIG.
Figure 2010261917
It is represented by Here, the constants R0, G0, G0 ′, B0, R1, G1, and B1 can be arbitrarily selected, but are selected so that the image signal width is widely used. For example, in the case of an 8-bit image signal, R0, G0, G0 ′, and B0 are set to 0, and R1, G1, and B1 are set to 255.

階調変換部7dは透過像R,G,Bごとに、透過像10内の各画素で式(1)、式(2)、式(3)及び、式(4)、式(5)、式(6)を計算することで階調変換後の透過像R,G,Bを得る(図3のステップS3)。For each of the transmission images R, G, and B, the gradation conversion unit 7d uses the equations (1), (2), (3), (4), (5), and (E) for each pixel in the transmission image 10. The transmission images R V , G V , and B V after gradation conversion are obtained by calculating Expression (6) (Step S3 in FIG. 3).

図3のステップS4で、表示部7aに色成分R,G,Bごとの透過像R,G,Bを送りカラー表示させる。In step S4 of FIG. 3, the transmission images R V , G V , and B V for the color components R, G, and B are sent to the display unit 7a for color display.

以上のフローで述べたように、色成分ごとの透過像R,G,Bが入力範囲求出部7cに入力されると階調変換された透過像R,G,Bが表示部7aに表示される。ここで、透過像R,G,BがX線検出器3から動画像として順次送られて来る場合、これを順次階調変換して表示することで、階調変換した透過像R,G,Bを動画像としてリアルタイムで表示部7aに表示できる。また、メモリに記憶した透過像R,G,Bを、階調変換して動画像または静止画像として表示部7aに表示することもできる。As described in the above flow, when the transmission images R, G, and B for each color component are input to the input range obtaining unit 7c, the gradation-converted transmission images R V , G V , and B V are displayed on the display unit. 7a. Here, when the transmission images R, G, B are sequentially sent from the X-ray detector 3 as moving images, the gradation images of the transmission images R V , G after gradation conversion are displayed by sequentially converting the gradations. V, and B V can be displayed on the display section 7a in real time as a moving image. Further, the transmission images R, G, and B stored in the memory can be subjected to gradation conversion and displayed on the display unit 7a as a moving image or a still image.

(第一の実施の形態の効果)
図7は第一実施形態における透過像のカラー表示の一例(カラー表示をグレースケール変換したもの)で、コンデンサを撮影した透過像である。図7(a)は階調変換前、図7(b)は階調変換後の表示である。
(Effects of the first embodiment)
FIG. 7 is an example of a color display of a transmission image in the first embodiment (a color display obtained by gray scale conversion), which is a transmission image obtained by photographing a capacitor. FIG. 7A shows a display before gradation conversion, and FIG. 7B shows a display after gradation conversion.

図7(a)の階調変換前の表示においては、青色で細かな濃淡が表せる高透過率部が飽和気味の赤色と緑色が加算され淡赤っぽくなって不明瞭となっている。また緑色で細かな濃淡が表せる中間透過率部も飽和気味の赤色が加算され赤っぽくて不明瞭となり、また、低透過率部は暗い赤となり、全体に赤っぽくなって不明瞭である。  In the display before gradation conversion shown in FIG. 7A, the high transmittance portion that is blue and can express a light and shaded color is not clear because the saturated red and green colors are added and light reddish. In addition, the intermediate transmittance part that can be displayed in green with fine shading is also reddish and unclear because of the addition of saturated red, and the low transmittance part is dark red and is entirely reddish and unclear. .

これに対し、図7(b)の階調変換後の表示においては、低透過率部は赤色で細部がコントラストよく観察でき、中間透過率部は飽和気味の赤色が加算されることがなくなるので緑色で細部がコントラストよく観察でき、高透過率部は飽和気味の赤色と緑色が加算されることがなくなるので青色で細部がコントラストよく表示できる。  On the other hand, in the display after gradation conversion in FIG. 7B, the low transmittance part is red and the details can be observed with good contrast, and the intermediate transmittance part is not added with a saturated red color. The details can be observed in green with good contrast, and the high transmittance portion can be displayed in blue with high contrast because the saturated red and green are not added.

すなわち、第一の実施形態によれば、感度が一番高いR成分に対しては入力の増加に対し出力が単調減少する変換関数R(r)を用い、感度が中間のG成分に対しては入力の増加に対し出力が単調増加した後単調減少する変換関数G(g)を用い、感度が一番低いB成分に対しては入力の増加に対し出力が単調増加する変換関数B(b)を用いて色成分ごとに階調変換することで、低透過率部は赤色で中間透過率部は緑色で高透過率部は青色でコントラストよく視認性を向上させたカラーの透過像を表示することができる。That is, according to the first embodiment, for the R component with the highest sensitivity, the conversion function R V (r) whose output monotonously decreases with the increase in input is used, and for the G component with an intermediate sensitivity. The conversion function G V (g) that monotonously decreases after the output monotonously increases with respect to the input increases, and the conversion function B monotonically increases with respect to the input increase for the B component having the lowest sensitivity. By converting the gradation for each color component using V (b), the low transmittance portion is red, the intermediate transmittance portion is green, and the high transmittance portion is blue. An image can be displayed.

また、第一の実施形態によれば、色成分ごとに入力範囲を求め、この入力範囲をそれぞれ常に一定の出力範囲に変換する(入力範囲に対しそれぞれ規格化された入力r,g,bに対して定められた)変換関数を用いて階調変換するので、入射するX線量の範囲12(図5参照)が変化しても、自動的に入力範囲13,14,15(図5参照)の変化に変換関数が追従して変化し、入力範囲を出力の画像信号幅いっぱいに無駄なく変換している(図6参照)ので、階調変換されるカラー透過像は自動的にコントラストを最大限に上げたカラー透過像となり、常に視認性を最大限に向上させたカラーの透過像を表示することができる。  In addition, according to the first embodiment, an input range is obtained for each color component, and each input range is always converted into a fixed output range (to input r, g, b normalized to the input range, respectively). Since gradation conversion is performed using a conversion function (determined for the input), even if the incident X-ray dose range 12 (see FIG. 5) changes, the input ranges 13, 14, and 15 (see FIG. 5) automatically. The conversion function changes following this change, and the input range is converted without waste to the full width of the output image signal (see FIG. 6). The color transmission image is increased to the limit, and a color transmission image with improved visibility can be displayed at all times.

さらに、第一の実施形態によれば、透過像上で周辺を除いた入力範囲計算領域で入力範囲を求めるので周辺の明るさ低下などの画質低下の影響を受けずに入力範囲を求めることができる。  Furthermore, according to the first embodiment, since the input range is obtained in the input range calculation area excluding the periphery on the transmission image, the input range can be obtained without being affected by image quality deterioration such as a decrease in peripheral brightness. it can.

(第一の実施の形態の変形)
その他、本発明は、上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変形して実施することが可能である。また、以下の変形例は組み合わせて適用することもできる。
(Modification of the first embodiment)
In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. Also, the following modifications can be applied in combination.

(変形例1)
第一実施形態で、階調変換はまず、式(1)、式(2)、式(3)でr,g,bを求めて、次に、式(4)、式(5)、式(6)で変換して階調変換後の透過像R,G,Bを得ているが、これは説明を判りやすくするための記載であり、実際は、式(1)、式(2)、式(3)を式(4)、式(5)、式(6)に代入してr,g,bを消去して整理した変換関数を用いて、r,g,bを求めることなくR,G,Bから直接階調変換後の透過像R,G,Bを求めている。このようにしても、計算上等価で入力範囲の変化に変換関数が追従して変化し、「色成分ごとの入力範囲に対しそれぞれ規格化された入力r,g,bに対して定められた変換関数」あるいは「色成分ごとの入力範囲を、該入力範囲が変化してもそれぞれ常に一定の出力範囲に変換する変換関数」を用いて階調変換していることに変わりはない。
(Modification 1)
In the first embodiment, the gradation conversion is performed by first obtaining r, g, and b using Equation (1), Equation (2), and Equation (3), and then Equation (4), Equation (5), and Equation. The transmission images R V , G V , and B V after the gradation conversion are obtained by conversion in (6), but this is a description for easy understanding of the explanation, and actually, the expressions (1) and ( 2) Substituting Equation (3) into Equation (4), Equation (5), and Equation (6) to eliminate r, g, and b, and using the conversion function that is arranged, find r, g, and b. The transmission images R V , G V , and B V obtained after direct gradation conversion are obtained directly from R, G, and B. Even in this case, the conversion function changes in accordance with the calculation and is equivalent to the change of the input range, and is “determined for the input r, g, and b normalized for the input range for each color component. The gradation conversion is still performed using the “conversion function” or “the conversion function that always converts the input range for each color component into a constant output range even if the input range changes”.

(変形例2)
第一の実施形態で、階調変換の変換関数は明暗を反転させる変換関数を用いてもよい。この場合、第一の実施形態における変換関数に対して、単調減少を単調増加で、単調増加を単調減少で置き換えた変換関数を用いる。
(Modification 2)
In the first embodiment, the conversion function for gradation conversion may be a conversion function that inverts light and dark. In this case, a conversion function is used in which the monotonic decrease is replaced with a monotone increase and the monotonic increase is replaced with a monotone decrease with respect to the conversion function in the first embodiment.

図8は第一実施形態の変形例2に係る階調変換の変換関数の一例である。横軸は階調変換の入力、縦軸は階調変換の出力である。図8の変換関数は図6の変換関数の縦軸方向を反転させた関数で、R0,G0,G0’,B0を255、R1,G1,B1を0として式(4)、式(5)、式(6)そのままで表される関数ある。  FIG. 8 is an example of a conversion function for gradation conversion according to Modification 2 of the first embodiment. The horizontal axis is the input of gradation conversion, and the vertical axis is the output of gradation conversion. The conversion function of FIG. 8 is a function obtained by inverting the vertical axis direction of the conversion function of FIG. 6, and R0, G0, G0 ′, B0 is 255, R1, G1, B1 is 0, and Expressions (4) and (5) , There is a function represented by the equation (6) as it is.

図8の変換関数を用いた場合、変換されたカラーの透過像R,G,Bはカラーが反転し、赤、緑、青に見える部分はそれぞれ補色の青緑、赤紫、黄色に見える画像となる。すなわち、低透過率部は青緑で中間透過率部は赤紫で高透過率部は黄色で表される。しかし、赤が青緑に、緑が赤紫に、青が黄色に変わるだけで、第一実施形態と同様にコントラストよく視認性を向上させたカラーの透過像を表示することができる。When the conversion function of FIG. 8 is used, the colors of the converted color transmission images R V , G V , and B V are inverted, and red, green, and blue appearing portions are complementary blue-green, red purple, and yellow, respectively. The image looks like this. That is, the low transmittance part is blue-green, the intermediate transmittance part is reddish purple, and the high transmittance part is yellow. However, just by changing red to blue-green, green to magenta, and blue to yellow, it is possible to display a color transmission image with improved contrast and good visibility as in the first embodiment.

なお、図8の変換関数で変換することは、図6の変換関数で変換した後、明暗を反転させる反転変換を施すことと同じである。また、図8の変換関数で変換することは、明暗を反転させる反転変換で変換した後、図6の変換関数で変換を施すこととも同じである。  Note that the conversion by the conversion function of FIG. 8 is the same as the conversion by the conversion function of FIG. Further, the conversion by the conversion function of FIG. 8 is the same as the conversion by the conversion function of FIG. 6 after the conversion by the inversion conversion for inverting light and dark.

(変形例3)
第一の実施形態で、階調変換の変換関数(図6)はこれには限られずさまざまな変形が可能である。例えば、R0,G0,G0’,B0は0でなく画像信号幅の端部に近い値であればよく、互いに異なる値でもよい。R1,G1,B1も255でなく画像信号幅の他方の端部に近い値であればよく、互いに異なる値でもよい。
(Modification 3)
In the first embodiment, the conversion function (FIG. 6) for gradation conversion is not limited to this, and various modifications are possible. For example, R0, G0, G0 ′, and B0 are not 0, but may be values close to the end of the image signal width, and may be different from each other. R1, G1, and B1 may be values close to the other end of the image signal width instead of 255, and may be different from each other.

また、入力範囲を所定の比(1:1)で2分して低い範囲と高い範囲で関数の傾斜を切換えているが、この比率は1対1でなくてもよくR,G,Bで異なっていてもよい。  In addition, the input range is divided into two at a predetermined ratio (1: 1), and the slope of the function is switched between a low range and a high range. However, this ratio may not be 1: 1, but R, G, B May be different.

また、Rの入力範囲の高い範囲と、Bの入力範囲の低い範囲は一定値であるが厳密に一定値でなくてもゆるい傾斜なら、上り傾斜でも下り傾斜でも画像はあまり変わらず許容できる。  In addition, the range where the input range of R is high and the range where the input range of B is low are constant values. However, if the slope is gentle even if it is not exactly a constant value, the image can be accepted with little change whether it is uphill or downhill.

また、変換関数は折れ線グラフのように多数の直線の組み合わせでもよく、曲線とすることもできる。  The conversion function may be a combination of a large number of straight lines such as a line graph, or may be a curved line.

図9は第一実施形態の変形例3に係る階調変換の変換関数の一例である。これは、曲線の変換関数の一例である。  FIG. 9 is an example of a conversion function for gradation conversion according to Modification 3 of the first embodiment. This is an example of a curve conversion function.

その他、第一実施形態からの変形として、Rの変換関数は入力範囲内で、単調減少した後、フラット部の代わりに微少な増減(例えば出力全幅の1/10以下)が有っても、この増減は明るいB(青)あるいはG(緑)にかくれて目立たなくなって問題ない。  In addition, as a modification from the first embodiment, after the R conversion function monotonously decreases within the input range, even if there is a slight increase / decrease (for example, 1/10 or less of the total output width) instead of the flat portion, This increase / decrease is not noticeable due to bright B (blue) or G (green).

同様に、Bの変換関数は入力範囲内で、単調増加する前に、フラット部の代わりに微少な増減(例えば出力全幅の1/10以下)が有っても、この増減は明るいR(赤)あるいはG(緑)にかくれて目立たなくなって問題ない。  Similarly, even if the conversion function of B has a slight increase / decrease (for example, 1/10 or less of the total output width) instead of the flat portion before monotonically increasing within the input range, this increase / decrease is bright R (red ) Or G (green).

さらに、同様に、Gの変換関数は入力範囲内で、単調増加する前に微少な増減(例えば出力全幅の1/10以下)が有っても、この増減は明るいR(赤)にかくれて目立たなくなって問題なく、また、入力範囲内で、単調増加してから単調減少した後に微少な増減(例えば出力全幅の1/10以下)が有っても、この増減は明るいB(青)にかくれて目立たなくなって問題ない。  Similarly, even if the G conversion function has a slight increase / decrease (for example, 1/10 or less of the total output width) before monotonically increasing within the input range, this increase / decrease is bright R (red). Even if there is a slight increase / decrease (for example, 1/10 or less of the full width of the output) after the monotonous increase and then the monotonic decrease within the input range, this increase / decrease is bright B (blue). There is no problem if it becomes inconspicuous.

(変形例4)
第一の実施形態で、色成分は3色としたが、何色でも良い。図10は第一実施形態の変形例4に係る階調変換の変換関数の一例である。図10(a)はR,Bの2色の場合、図10(b)はR,Y(黄),G,B,P(紫)の5色の場合である。
(Modification 4)
In the first embodiment, there are three color components, but any number of colors may be used. FIG. 10 is an example of a conversion function for gradation conversion according to Modification 4 of the first embodiment. FIG. 10A shows the case of two colors R and B, and FIG. 10B shows the case of five colors R, Y (yellow), G, B, and P (purple).

(変形例5)
第一の実施形態で、入力範囲を求めるとき、透過像10上の入力範囲計算領域11で求めたが、入力範囲計算領域11は透過像10の全体としてもよければ、操作者が選択できるようにしてもよい。
(Modification 5)
In the first embodiment, the input range is obtained in the input range calculation area 11 on the transmission image 10, but the input range calculation area 11 can be selected by the operator if the entire transmission image 10 is acceptable. It may be.

(変形例6)
第一の実施形態で、入力範囲を求めるとき、透過像10上の入力範囲計算領域11の最小値と最大値を求めこの範囲を入力範囲としたが、最小値から最大値までを昇順にならべて、最小値より所定番目に大きい値から最大値より所定番目に小さな値までを前記入力範囲とすることもできる。また、同じことであるが画像値のヒストグラム(画像値に対する画素数頻度)を作り、下より積分画素数が所定数になる位置から上より積分画素数が所定数になる位置までを入力範囲とすることもできる。
(Modification 6)
In the first embodiment, when the input range is obtained, the minimum value and the maximum value of the input range calculation area 11 on the transmission image 10 are obtained and set as the input range, but the minimum value to the maximum value are arranged in ascending order. Thus, the input range may be from a value that is predetermined larger than the minimum value to a value that is predetermined smaller than the maximum value. Similarly, a histogram of image values (frequency of the number of pixels with respect to the image value) is created, and an input range from a position where the number of integrated pixels is a predetermined number from the bottom to a position where the number of integrated pixels is a predetermined number from the top. You can also

これにより、異常値(例えば常に0)を生じる異常画素があった場合、この画素に影響されずに入力範囲を求めることができる。  Thereby, when there is an abnormal pixel that generates an abnormal value (for example, always 0), the input range can be obtained without being affected by this pixel.

(変形例7)
第一の実施形態では、X線検出器3の出力する色成分ごとの透過像をそのまま階調変換しているが、画像処理を行ってから、第一の実施形態で用いた変換関数で階調変換を行っても良い。画像処理としては例えばLOG変換、感度補正、オフセット補正、平均処理、フィルター処理等がある。
(Modification 7)
In the first embodiment, the transmission image for each color component output from the X-ray detector 3 is subjected to gradation conversion as it is. However, after the image processing is performed, the conversion function used in the first embodiment is used for the scale conversion. Tone conversion may be performed. Examples of image processing include LOG conversion, sensitivity correction, offset correction, average processing, filter processing, and the like.

(変形例8)
第一の実施形態ではカラーカメラ3bは透過像をデジタルデータとして出力するものを用いたが、アナログ出力として制御処理部7でデジタルデータに変換してもよい。
(Modification 8)
In the first embodiment, the color camera 3b is used to output a transmission image as digital data, but may be converted into digital data by the control processing unit 7 as an analog output.

(変形例9)
第一の実施形態では、カラーX線II(放射線可視光変換手段)3aとカラーカメラ(撮像手段)3bで構成した放射線検出器3を使用しているが、これには限られない。例えば、放射線可視光変換手段としてカラーシンチレータ層を持ったプレートを用いてもよく、また、電子を増幅するマイクロチャンネルプレートの入力面にシンチレータ層と光電層を設け、出力面にカラーシンチレータ層を設けたものを用いてもよい。
(Modification 9)
In the first embodiment, the radiation detector 3 constituted by the color X-ray II (radiation-visible light conversion means) 3a and the color camera (imaging means) 3b is used, but is not limited thereto. For example, a plate having a color scintillator layer may be used as a radiation-visible light conversion means, a scintillator layer and a photoelectric layer are provided on the input surface of a microchannel plate for amplifying electrons, and a color scintillator layer is provided on the output surface. May be used.

(変形例10)
第一の実施形態で、階調変換したカラーの透過像R,G,Bはメモリに記憶し、メモリから読み出してそのまま表示することもできる。
(Modification 10)
In the first embodiment, tone-converted color transmission images R V , G V , and B V can be stored in a memory, read from the memory, and displayed as they are.

また、第一の実施形態の制御処理部7は、収集されたカラーの透過像R,G,B、あるいは階調変換したカラーの透過像R,G,BをLANなどで通信して、あるいはDVDなどのメディアを用いて他所のコンピュータに送り表示させることができる。In addition, the control processing unit 7 of the first embodiment communicates the collected color transmission images R, G, and B or the gradation-converted color transmission images R V , G V , and B V via a LAN or the like. Or by using a medium such as a DVD or the like and sent to another computer.

また、第一の実施形態の制御処理部7は、他の第一の実施形態と同様の透視検査装置からLANなどで通信して、あるいはDVDなどのメディアを用いて送られてきたカラーの透過像R,G,B、に対し階調変換してカラー表示することもできる。  In addition, the control processing unit 7 of the first embodiment transmits the color transmitted from the same fluoroscopic inspection apparatus as that of the other first embodiment through a LAN or the like or using a medium such as a DVD. It is also possible to perform color conversion on the images R, G, and B and perform color display.

(変形例11)
本発明は機構部の方式には関係せず、色成分ごとの透過像データを出力する放射線検出手段を持ちさえすれば、どのような方式の放射線透視検査装置にも適用できる。
(Modification 11)
The present invention is not related to the system of the mechanism part, and can be applied to any type of radiographic inspection apparatus as long as it has radiation detection means for outputting transmission image data for each color component.

(変形例12)
本発明は、放射線としては、X線だけでなく、被検体に応じ、γ線、マイクロ波等の被検体に対して透過性のある放射線を用いることができる。
(Modification 12)
In the present invention, not only X-rays but also radiation that is transmissive to the subject such as γ rays and microwaves can be used depending on the subject.

1…X線管、2…X線ビーム、3…X線検出器、3a…カラーX線II、3aa…入力面、3ab…出力面、3b…カラーカメラ、4…テーブル、5…被検体、6…テーブル駆動機構、7…制御処理部、7a…表示部、7b…入力部、7c…入力範囲求出部、7d…階調変換部、10…透過像、11…入力範囲計算領域、12…X線量の範囲、13…Rの入力範囲、14…Gの入力範囲、15…Bの入力範囲  DESCRIPTION OF SYMBOLS 1 ... X-ray tube, 2 ... X-ray beam, 3 ... X-ray detector, 3a ... Color X-ray II, 3aa ... Input surface, 3ab ... Output surface, 3b ... Color camera, 4 ... Table, 5 ... Subject, DESCRIPTION OF SYMBOLS 6 ... Table drive mechanism, 7 ... Control processing part, 7a ... Display part, 7b ... Input part, 7c ... Input range acquisition part, 7d ... Tone conversion part, 10 ... Transmission image, 11 ... Input range calculation area, 12 ... X dose range, 13 ... R input range, 14 ... G input range, 15 ... B input range

Claims (8)

放射線源から被検体に向けて放射され前記被検体を透過した放射線を検出して得られる感度の異なる複数の色成分ごとの透過像データに対し、前記色成分ごとの透過像データそれぞれに、互いに異なる変換関数で階調変換を加える階調変換手段と、前記階調変換を加えた色成分ごとの透過像データをカラー表示する表示手段より成り、
前記階調変換手段は、感度が一番高い第一の色成分の透過像データに対し、値の所定の範囲で入力の増加に対し出力が単調減少する第一の階調変換を行い、感度が一番低い第二の色成分の透過像データに対し、値の所定の範囲で入力の増加に対し出力が単調増加する第二の階調変換を行い、色成分が3以上の場合は少なくとも1つの感度が中間の第三の色成分の透過像データに対し、値の所定の範囲で入力の増加に対し出力が単調増加した後単調減少する第三の階調変換を行うことを特徴とする透過像表示装置。
For transmission image data for each of a plurality of color components having different sensitivities obtained by detecting radiation emitted from a radiation source toward the subject and transmitted through the subject, Gradation conversion means for applying gradation conversion with different conversion functions, and display means for color-displaying transmission image data for each color component subjected to the gradation conversion,
The gradation converting means performs first gradation conversion in which the output monotonously decreases with respect to an increase in input within a predetermined range of values with respect to the transmission image data of the first color component having the highest sensitivity. Is applied to the transmission image data of the second color component having the lowest value in the predetermined range of the value, and the second gradation conversion in which the output monotonously increases with respect to the increase of the input. A third gradation conversion in which the output monotonically increases and then monotonously decreases with respect to the increase in input in a predetermined range of values is performed on the transmission image data of the third color component having an intermediate sensitivity. A transmission image display device.
請求項1に記載の透過像表示装置において、
前記色成分ごとの透過像データの値の範囲を表す入力範囲をそれぞれの色成分ごとに求める入力範囲求出手段を有し、
前記階調変換手段は、前記色成分ごとの入力範囲を、該入力範囲が変化してもそれぞれ常に一定の出力範囲に変換する変換関数で階調変換を加えることを特徴とする透過像表示装置。
The transmission image display device according to claim 1,
Input range obtaining means for obtaining an input range representing a range of values of transmission image data for each color component for each color component;
The transmission image display apparatus characterized in that the gradation conversion means performs gradation conversion with a conversion function that always converts the input range for each color component into a constant output range even if the input range changes. .
請求項2に記載の透過像表示装置において、
前記入力範囲求出手段は、前記色成分ごとの透過像データのそれぞれの透過像上の所定範囲内で求めた最小値から最大値まで、あるいは、最小値より所定番目に大きい値から最大値より所定番目に小さな値までを前記入力範囲とする透過像表示装置。
The transmission image display device according to claim 2,
The input range finding means is a minimum value to a maximum value obtained within a predetermined range on each transmission image of the transmission image data for each color component, or from a value that is a predetermined value larger than the minimum value to a maximum value. A transmission image display apparatus having the input range up to a predetermined smallest value.
請求項2または請求項3に記載の透過像表示装置において、
前記第一の階調変換は、前記第一の色成分の透過像データに対し、前記第一の色成分の入力範囲を所定の比で2分し、低い範囲は入力の増加に対し出力を第一値から第二値まで単調減少させ、高い範囲は出力を前記第二値とする階調変換であり、前記第二の階調変換は、前記第二の色成分の透過像データに対し、前記第二の色成分の入力範囲を所定の比で2分し、低い範囲は出力を第三値とし、高い範囲は入力の増加に対し出力を前記第三値から第四値まで単調増加させる階調変換である透過像表示装置。
The transmission image display device according to claim 2 or 3,
The first gradation conversion divides the input range of the first color component by a predetermined ratio with respect to the transmission image data of the first color component by a predetermined ratio, and the low range outputs an output with respect to an increase in input. A monotone decrease from the first value to the second value, and a high range is gradation conversion in which the output is the second value, and the second gradation conversion is performed on the transmission image data of the second color component. The input range of the second color component is divided into two by a predetermined ratio, the output of the lower range is the third value, and the output of the higher range is monotonically increasing from the third value to the fourth value with respect to the increase in input. A transmission image display apparatus that performs gradation conversion.
請求項2乃至請求項4のいずれか1項に記載の透過像表示装置において、
色成分が3以上の場合は前記第三の階調変換は、前記第三の色成分の透過像データに対し、前記第三の色成分の入力範囲を所定の比で2分し、低い範囲は入力の増加に対し出力を第五値から第六値まで単調増加させ、高い範囲は入力の増加に対し出力を前記第六値から第七値まで単調減少させる階調変換である透過像表示装置。
The transmission image display device according to any one of claims 2 to 4,
When the color component is 3 or more, the third gradation conversion is performed by dividing the input range of the third color component into two by a predetermined ratio with respect to the transmission image data of the third color component, and a low range. The transmission image display is a gradation conversion that monotonically increases the output from the fifth value to the sixth value with an increase in input, and the high range monotonously decreases the output from the sixth value to the seventh value with respect to the increase in input. apparatus.
請求項1乃至請求項5のいずれか1項に記載の透過像表示装置において、
前記階調変換手段は、前記単調減少を単調増加で、前記単調増加を単調減少で置き換えた階調変換を加える透過像表示装置。
The transmission image display device according to any one of claims 1 to 5,
The transmissive image display device, wherein the gradation converting means applies gradation conversion in which the monotonic decrease is replaced with a monotone increase and the monotonic increase is replaced with a monotonic decrease.
被検体に向けて放射線を放射する放射線源と、前記被検体を透過した放射線を検出して放射線に対し感度の異なる複数の色成分ごとの透過像データを出力する放射線検出手段と、
前記色成分ごとの透過像データに、階調変換を加えてカラー表示する請求項1乃至請求項6のいずれか1項に記載の透過像表示装置を有する放射線透視検査装置。
A radiation source that emits radiation toward the subject; and radiation detection means that detects the radiation transmitted through the subject and outputs transmission image data for each of a plurality of color components having different sensitivities to the radiation;
The radiographic inspection apparatus having the transmission image display device according to any one of claims 1 to 6, wherein the transmission image data for each color component is subjected to gradation conversion to perform color display.
請求項7に記載の放射線透視検査装置において、
前記放射線検出手段は放射線を検出してカラーの可視光像に変換する放射線可視光変換手段と前記カラーの可視光像を撮影して複数の色成分ごとの透過像データを出力する撮像手段より成る放射線透視検査装置。
The radiographic inspection apparatus according to claim 7,
The radiation detection means comprises radiation-visible light conversion means for detecting radiation and converting it into a color visible light image, and an imaging means for photographing the color visible light image and outputting transmission image data for each of a plurality of color components. Radioscopic inspection equipment.
JP2009124671A 2009-04-28 2009-04-28 Transmission image display device and radioscopic inspection apparatus Pending JP2010261917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124671A JP2010261917A (en) 2009-04-28 2009-04-28 Transmission image display device and radioscopic inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124671A JP2010261917A (en) 2009-04-28 2009-04-28 Transmission image display device and radioscopic inspection apparatus

Publications (1)

Publication Number Publication Date
JP2010261917A true JP2010261917A (en) 2010-11-18

Family

ID=43360100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124671A Pending JP2010261917A (en) 2009-04-28 2009-04-28 Transmission image display device and radioscopic inspection apparatus

Country Status (1)

Country Link
JP (1) JP2010261917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038775A (en) * 2015-08-19 2017-02-23 株式会社島津製作所 Radioscopic apparatus
WO2017159851A1 (en) * 2016-03-18 2017-09-21 株式会社イシダ Optical inspecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017038775A (en) * 2015-08-19 2017-02-23 株式会社島津製作所 Radioscopic apparatus
WO2017159851A1 (en) * 2016-03-18 2017-09-21 株式会社イシダ Optical inspecting device
JPWO2017159851A1 (en) * 2016-03-18 2019-01-24 株式会社イシダ Optical inspection device

Similar Documents

Publication Publication Date Title
JP3670439B2 (en) X-ray equipment
JP2006105977A (en) System and technique for dynamic optimization of image
KR100738943B1 (en) Radiographic apparatus and radiographic method
JP3290027B2 (en) X-ray image display method and apparatus
JP3459745B2 (en) Image processing apparatus, radiation imaging apparatus, and image processing method
JPH0666911B2 (en) X-ray image generator
JP5868119B2 (en) Image processing apparatus, radiation imaging system, image processing method, and recording medium
JP2003198938A (en) Method and apparatus for enhancing contrast of medical diagnostic image that includes foreign object
US7469034B2 (en) Method for analyzing and representing x-ray projection images and x-ray examination unit
JP3595303B2 (en) Imaging device and imaging method
JP4832900B2 (en) Image output apparatus, image output method, and computer program
JP2006242935A (en) X-ray inspection device
US7274770B2 (en) X-ray examination apparatus and a method of controlling an output of an X-ray source of an X-ray examination apparatus
JP2010261917A (en) Transmission image display device and radioscopic inspection apparatus
JP6105903B2 (en) Image processing apparatus, image processing method, radiation imaging system, and program
JP2019090886A (en) Display device, display control method, and program
JPWO2011074471A1 (en) X-ray diagnostic imaging apparatus, X-ray exposure control method and program
JP2002034961A (en) Radiographing apparatus and radiographing method
JP2016024362A (en) Image display device, image output device, control method of image display device, control method of image output device and program
US6710321B2 (en) Display image quality measuring system
JP6414386B2 (en) Image processing apparatus and image processing program
JP5522350B2 (en) CT equipment
JP2008258828A (en) Imaging apparatus
JP3945976B2 (en) Image display method and apparatus
JP6132938B2 (en) Image processing apparatus, radiation imaging system, image processing method, and recording medium