JP2010243400A - Building berth support interference correcting method in subsonic half model wind tunnel test - Google Patents

Building berth support interference correcting method in subsonic half model wind tunnel test Download PDF

Info

Publication number
JP2010243400A
JP2010243400A JP2009094076A JP2009094076A JP2010243400A JP 2010243400 A JP2010243400 A JP 2010243400A JP 2009094076 A JP2009094076 A JP 2009094076A JP 2009094076 A JP2009094076 A JP 2009094076A JP 2010243400 A JP2010243400 A JP 2010243400A
Authority
JP
Japan
Prior art keywords
wind tunnel
stern
aspect ratio
effect
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009094076A
Other languages
Japanese (ja)
Other versions
JP5354660B2 (en
Inventor
Yoshihisa Aoki
良尚 青木
Shinji Nagai
伸治 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2009094076A priority Critical patent/JP5354660B2/en
Publication of JP2010243400A publication Critical patent/JP2010243400A/en
Application granted granted Critical
Publication of JP5354660B2 publication Critical patent/JP5354660B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make clear an influence of building berth support interference on half model wind tunnel test data in a half wind tunnel test using a building berth easily adaptable to a large-sized developing wind tunnel and to provide a method of estimating aircraft model wind tunnel test data from the half model wind tunnel test data interfered by building berth support regardless of the half span of half model or the height of the building berth. <P>SOLUTION: The building berth support interference correcting method corrects an interference amount in a resulting half model test data based on an increase rate or a change amount of an effective aspect ratio in the half wind tunnel test using the building berth easily adaptable to a wind tunnel. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、風洞試験において半裁模型を船台に支持させたときに起きる空力的干渉を計測データから修正する方法に関する。   The present invention relates to a method for correcting aerodynamic interference that occurs when a half model is supported on a stern in a wind tunnel test from measurement data.

半裁模型風洞試験は、模型の対称性を仮定し、対称面で裁断した模型を用いる風洞試験法である。この試験法は、全機模型と比較して大型の模型を設置できることから、レイノルズ数の増大、模型詳細部正確さの向上という利点がある反面、大型化による風洞壁干渉効果と、風洞側壁境界層による半裁模型周りの流れの干渉を引き起こすという欠点がある。この点については、例えば、非特許文献1の1115〜1116頁に報告が紹介されている。この影響を避けるために、模型と風洞壁との間に台を設置して半裁模型を設置する方法が提示されている。この台の呼び方は様々であるが、この明細書では船台と呼ぶことにする。この船台は、半裁模型の対称面の断面を二次元的に延長した形状[図6(B)参照]で、NASAによれば、ハーフスパンの3%の高さとすると、全機模型風洞試験データに対して良い相関が得られるとされている。但し、この値は風洞固有の値となることが知られている(例えば、非特許文献2の10頁参照)。そして、この方法は、使用する模型のハーフスパンが変わると、船台の高さを変更しなくてはならないという問題点がある。   The semi-circular model wind tunnel test is a wind tunnel test method using a model cut on a symmetry plane assuming the symmetry of the model. This test method has the advantage of increasing the Reynolds number and improving the accuracy of the detailed part of the model because it can install a larger model compared to the full model. It has the disadvantage of causing flow interference around the half model by the layers. Regarding this point, a report is introduced on pages 1115 to 1116 of Non-Patent Document 1, for example. In order to avoid this influence, a method of installing a half-cut model by installing a stand between the model and the wind tunnel wall is proposed. There are various ways to call this platform, but in this specification, it will be called a boat platform. This stern has a two-dimensionally extended cross section of the half-model symmetry plane [see Fig. 6 (B)]. According to NASA, the model wind tunnel test data is 3% higher than half span. It is said that a good correlation can be obtained. However, this value is known to be a value unique to the wind tunnel (for example, see page 10 of Non-Patent Document 2). And this method has a problem that the height of the stern must be changed when the half span of the model to be used is changed.

この方法の他、風洞側壁境界層の影響を少なくする方法としては、風洞側壁境界層の外側に、反射板と呼ばれる対称面を設置し、半裁模型を設置する方法[図6(A)参照]がある。反射板は測定室内に風洞側壁と平行に距離をおいて設置される平面板であるが、風洞側壁と異なりその長さは高々模型1.5倍の長さであるから、そこでの境界層の形成は風洞側壁とは比べものにならない程小さい。この方法を使うと、全機模型風洞試験データに対して良い相関が得られる事が知られている。しかしながら、大型風洞にこのような反射板を設置することは、費用や設置作業の困難さから容易に採用できず非現実的である。   In addition to this method, as a method of reducing the influence of the wind tunnel side wall boundary layer, a method of installing a half face model by installing a symmetry plane called a reflector outside the wind tunnel side wall boundary layer [see FIG. 6 (A)] There is. The reflector is a flat plate installed in the measurement chamber at a distance parallel to the wind tunnel side wall, but unlike the wind tunnel side wall, its length is 1.5 times as long as the model. The formation is so small that it cannot be compared with the side wall of the wind tunnel. Using this method, it is known that a good correlation can be obtained for all model wind tunnel test data. However, it is unrealistic to install such a reflector in a large wind tunnel because it cannot be easily adopted due to cost and difficulty in installation work.

大型風洞に比較的容易に適用可能な船台を用いた半裁風洞試験において、全機模型風洞試験データに対して良い相関が得られる半裁模型風洞試験の船台の高さは、前述したように半裁模型のハーフスパンに対する割合で決まり、その値は風洞固有のものとされる。従って、半裁模型のハーフスパンに対する船台の高さの割合の検討と、使用する模型のハーフスパンに応じた高さの船台、半裁天秤への設置方法を用意することが求められることとなる。本発明者らは、この様な制約にとらわれず、船台が発生する揚力が半裁模型試験データに与える干渉という観点からその現象を解明し、その修正法を提案することを目指した。   In the half-cut wind tunnel test using a pedestal that can be applied relatively easily to a large wind tunnel, the height of the half-cut model wind tunnel test pedestal that provides good correlation with the full-model wind tunnel test data is as described above. It is determined by the ratio to the half span, and the value is specific to the wind tunnel. Therefore, it is required to examine the ratio of the height of the pedestal to the half span of the half-cut model, and to prepare a method for installing the pedestal and the half-balance in a height corresponding to the half span of the model to be used. The present inventors have sought to elucidate the phenomenon from the viewpoint of interference that the lift generated by the stern has on the half-cut model test data, and propose a correction method, without being bound by such restrictions.

本発明の課題は、大型の開発風洞に容易に適用可能な船台を用いた半裁風洞試験において、船台支持干渉による半裁模型風洞試験データに与える影響を明らかにし、半裁模型のハーフスパンや船台の高さにかかわらず、船台による支持干渉を受けた半裁模型風洞試験データから、全機模型風洞試験データを推定する方法を提供することにある。
また、船台による支持干渉効果がスパン効率と全機空力中心にはほとんど影響を与えず、有効アスペクト比を増加させることを利用して、この効果による影響を修正する方法を提供することにある。
本発明の更なる課題は、揚力傾斜が圧縮性による影響を受けた場合にも、線形理論のPrandtl-Glauert変換に基づいてこの影響を考慮して、船台支持干渉効果を修正する方法を提供することにある。
また本発明の更なる課題は、船台と半裁模型を楕円翼と見なし、それらのスパンの比によって決まる有効アスペクト比増加率が、実際の半裁模型試験における船台の高さと半裁模型のハーフスパンの比によって生じる有効アスペクト比増加率と一致すると仮定して、船台支持干渉による有効アスペクト比増加率を推定する方法を提供することにある。
The object of the present invention is to clarify the effect of stern support interference on half-cut model wind tunnel test data in a half-cut wind tunnel test using a stern that can be easily applied to a large development wind tunnel. Regardless of the circumstances, the object is to provide a method for estimating the full-model wind tunnel test data from the half-cut model wind tunnel test data subjected to support interference by the stern.
Another object of the present invention is to provide a method for correcting the influence of this effect by increasing the effective aspect ratio, while the support interference effect by the stern has little influence on the span efficiency and the aerodynamic center.
A further object of the present invention is to provide a method for correcting the stern support interference effect in consideration of this influence based on the Prandtl-Glauert transformation of linear theory even when the lift inclination is affected by compressibility. There is.
Another object of the present invention is to consider the stern and the half-cut model as elliptic wings, and the effective aspect ratio increase rate determined by the ratio of their spans is the ratio between the height of the stern and the half-span of the half-cut model in the actual half-model test. It is intended to provide a method for estimating the effective aspect ratio increase rate due to the stern support interference, assuming that the effective aspect ratio increase rate caused by the

本発明の船台支持干渉の影響を修正する方法は、風洞に容易に適用可能な船台を用いた半裁風洞試験において、船台が発生する揚力が、半裁模型の揚力傾斜を増加させ、誘導抗力係数増加率を減少させる干渉効果を持つことに基づいて、該船台支持干渉について流体理論から修正方式を導き、得られた半裁模型試験データに含まれる船台支持干渉の影響を修正するものとした。
その流体理論から得た修正方式は、船台支持干渉が揚力傾斜と誘導抗力係数増加率に与える影響は、スパン効率にはほとんど影響を与えないが、有効アスペクト比を増加させる効果に相当するという、揚力線理論から導かれる楕円翼の揚力傾斜と一般翼の誘導抗力係数増加率・有効アスペクト比・スパン効率の関係式であって、スパン効率と全機空力中心が変化しないとして有効アスペクト比の増加率に基づいて、半裁模型試験データに含まれる、船台支持干渉の影響を修正するものとした。
圧縮性が揚力傾斜に及ぼす影響については、線形理論のPrandtl-Glauert変換から導かれる圧縮性の効果を圧縮性パラメータによって導入し、圧縮性が揚力傾斜に及ぼす影響を補償するものとした。
また、本発明の船台支持干渉の影響を修正する方法は、船台支持干渉による有効アスペクト比の増加率を、理論又は数値シミュレーションを用いて、計測される領域のみから得られる有効アスペクト比と、船台に相当する計測されない領域を含む場合に計測される領域から得られる有効アスペクト比を比較することによって推定するものとした。
船台支持干渉による有効アスペクト比の増加率は、揚力線理論によって、楕円翼を構成する一部分の空力特性から導かれる有効アスペクト比の増加率に基づき、船台の高さと半裁模型のハーフスパンの比から推定するものとした。
The method of correcting the influence of the stern support interference according to the present invention is based on the half wind tunnel test using the stern that can be easily applied to the wind tunnel, and the lift generated by the stern increases the lift slope of the half model and increases the induced drag coefficient. Based on the fact that it has an interference effect that reduces the rate, a correction method was derived from the fluid theory for the stern support interference, and the effect of the stool support interference included in the obtained half-cut model test data was corrected.
The correction method obtained from the fluid theory says that the effect of the support support interference on the lift inclination and the induction drag coefficient increase rate has little effect on the span efficiency, but corresponds to the effect of increasing the effective aspect ratio. The relationship between the lift inclination of the elliptic wing derived from the lift line theory and the induction drag coefficient increase rate / effective aspect ratio / span efficiency of the general wing, and the effective aspect ratio increases as the span efficiency and the center of aerodynamics do not change Based on the rate, the effect of stern support interference included in the half model test data was corrected.
Regarding the influence of compressibility on lift gradient, the compressibility effect derived from the Prandtl-Glauert transformation of linear theory was introduced by compressibility parameters to compensate for the influence of compressibility on lift gradient.
Further, the method of correcting the influence of the stern support interference according to the present invention includes the effective aspect ratio obtained from only the measured area using the theoretical or numerical simulation, and the stern support rate. When an unmeasured region corresponding to is included, the effective aspect ratio obtained from the measured region is compared to estimate.
The increase rate of the effective aspect ratio due to the stern support interference is based on the ratio of the height of the stern and the half span of the half-cut model based on the increase rate of the effective aspect ratio derived from the aerodynamic characteristics of a part of the elliptic wing by lift line theory. Estimated.

本発明の船台支持干渉の影響を修正する方法は、大型の開発風洞に容易に適用可能な船台を用いた半裁風洞試験において、船台支持干渉による半裁模型風洞試験データに与える影響を明らかにするものであるから、半裁模型のハーフスパンや船台の高さにかかわらず、船台による支持干渉を受けた半裁模型風洞試験データから、全機模型風洞試験データを推定することができる。
本発明の船台支持干渉の影響を修正する方法は、船台による支持干渉効果がスパン効率と全機空力中心にはほとんど影響を与えないとの知見に基づき、有効アスペクト比から、修正する方法を提供するものであるから、この効果による影響を容易に修正することができる。
The method of correcting the influence of stern support interference according to the present invention is to clarify the effect of stern support interference on half model wind tunnel test data in a half wind tunnel test using a stern that can be easily applied to a large development wind tunnel. Therefore, the full-model wind tunnel test data can be estimated from the half-cut model wind tunnel test data subjected to support interference by the stern regardless of the half span of the half-cut model and the height of the stern.
The method of correcting the influence of the stern support interference of the present invention provides a method of correcting from the effective aspect ratio based on the knowledge that the support interference effect by the stern has little effect on the span efficiency and the center of aerodynamics of all aircraft. Therefore, the influence of this effect can be easily corrected.

揚力傾斜が圧縮性による影響を受けた場合にも、線形理論のPrandtl-Glauert変換に基づいてこの影響を考慮して、船台支持干渉効果を修正する方法が採用されるので、精度の高い修正が可能である。
本発明の船台支持干渉の影響を修正する方法は、船台と半裁模型を楕円翼と見なし、それらのスパンの比によって生じる有効アスペクト比増加率が、実際の半裁模型試験における船台の高さと半裁模型のハーフスパンの比によって生じる有効アスペクト比増加率と一致すると仮定することにより、船台支持干渉による有効アスペクト比増加率を精度良く推定することが出来た。
Even when the lift inclination is affected by compressibility, a method of correcting the stern support interference effect is adopted in consideration of this effect based on the Prandtl-Glauert transformation of the linear theory. Is possible.
The method for correcting the influence of the stern support interference according to the present invention regards the stern and the half-cut model as elliptic wings, and the effective aspect ratio increase rate caused by the ratio of their spans is the height of the stern and the half-cut model in the actual half-cut model test. Assuming that the effective aspect ratio increase rate caused by the half-span ratio is the same, the effective aspect ratio increase rate due to the pedestal support interference can be estimated accurately.

翼根側を船台相当、翼端側を半裁模型相当とする本発明の楕円翼モデルを示す図である。It is a figure which shows the elliptic wing model of this invention which makes a wing root side correspond to a ship stand, and makes a wing tip side correspond to a half-cut model. 本発明の干渉修正方法の妥当性を確認するための風洞実験に用いたAGARD−B標準模型の全機模型を示す図である。It is a figure which shows the whole machine model of the AGARD-B standard model used for the wind tunnel experiment for confirming the validity of the interference correction method of this invention. 本発明の検証実験での迎角−揚力係数計測結果の1例を示すグラフである。It is a graph which shows an example of the angle-of-attack-lift coefficient measurement result in the verification experiment of this invention. 本発明の検証実験での揚力係数の二乗−前面誘導抗力係数計測結果の1例を示すグラフである。It is a graph which shows one example of the square of a lift coefficient-front guidance drag coefficient measurement result in the verification experiment of this invention. 本発明の検証実験での迎角−ピッチングモーメント係数計測結果の1例を示すグラフである。It is a graph which shows an example of the angle-of-attack-pitching moment coefficient measurement result in the verification experiment of this invention. Aは半裁模型を反射板に支持させた形態を、Bは半裁模型を船台に設置した形態を示す図である。A is a view showing a form in which a half-cut model is supported on a reflector, and B is a view showing a form in which a half-cut model is installed on a stern.

本発明は翼型として作用する船台が発生する揚力が半裁模型試験データに与える干渉という現象を解明し、その修正法を提案するものである。本発明に係る船台支持干渉修正方法は、以下に詳細に説明する揚力線理論の基づくものの他、揚力面理論やDatcomの手法などが適用できる。
ここでは揚力線理論を用いてこの船台が発生する揚力が半裁模型試験データに与える干渉について解析をする。揚力線理論を用いて、図6(B)のような船台に設置された半裁模型をここでは捻りのない楕円翼とモデル化して、揚力と誘導抗力を検討する。
揚力線理論によれば、循環すなわち揚力が楕円分布の翼は誘導抵抗最小となる。この時、揚力傾斜と誘導抗力増加率は、下式となる。

Figure 2010243400
ここで、kは二次元翼の理論揚力傾斜、λはアスペクト比、eはスパン効率、Mはマッハ数であり、スパン効率は楕円翼の場合には1となる。また、二次元翼の理論揚力傾斜には、揚力傾斜に対する線形理論によるPrandtl-Glauert変換から導かれる圧縮性の効果を導入した。
この式の左辺に、実験で得られた揚力傾斜と誘導抗力係数増加率を代入し、有効アスペクト比とスパン効率を求めると、表1となる。表1の結果では、船台模型は全機模型に対して、有効アスペクト比が増加するが、スパン効率はほぼ一致している。従って、船台の影響は、全機模型に対して有効アスペクト比を増加させる効果を持つことがわかった。
Figure 2010243400
なお、この表では反射板に半裁模型を取付けたものについても参考的に比較する。 The present invention elucidates the phenomenon of interference caused by the lift generated by the stern acting as the airfoil to the half-cut model test data, and proposes a correction method thereof. As the stern support interference correcting method according to the present invention, a lift surface theory, a Datcom method, and the like can be applied in addition to a lift line theory described in detail below.
Here, we analyze the interference of the lift generated by this stern to the half-cut model test data using the lift line theory. Using the lift line theory, the half model installed on the stern as shown in FIG. 6B is modeled as an elliptic wing without twisting here, and the lift and induced drag are examined.
According to the lift line theory, a wing with an elliptical distribution of circulation, that is, lift has the minimum induced resistance. At this time, the lift inclination and the induced drag increase rate are as follows.
Figure 2010243400
Here, k theory lift slope of the two-dimensional wing, lambda is the aspect ratio, e is the span efficiency, M is the Mach number, the span efficiency is 1 in the case of elliptical wing. Also, the theoretical lift gradient of the two-dimensional wing was introduced with the effect of compressibility derived from the Prandtl-Glauert transformation by the linear theory for the lift gradient.
Table 1 shows the effective aspect ratio and span efficiency obtained by substituting the lift gradient and the induced drag coefficient increase rate obtained in the experiment into the left side of this equation. According to the results in Table 1, the effective efficiency is increased in the stern model compared to the entire model, but the span efficiencies are almost the same. Therefore, it was found that the effect of the stern has the effect of increasing the effective aspect ratio for all models.
Figure 2010243400
In this table, the reference plate is also compared for reference when a half-cut model is attached to the reflector.

次に、揚力線理論を用いて、図1のような、捻りのない楕円翼の翼根の一部が船台となった場合の、揚力と誘導抗力を検討する。対称性を仮定すると、Anを未知数とした循環Γが満たす揚力線理論の式は、スパンをB、翼弦長をc、二次元翼理論揚力傾斜をk、スパン座標をy=B/2cosθ、迎角をαとすると下式となる。

Figure 2010243400
楕円翼(c=csinθ)の場合、揚力係数Cと誘導抗力係数CDiは、元の楕円翼のアスペクト比λ=4B/πcを用いると下式となる。
Figure 2010243400
これらの式から、揚力係数と誘導抗力係数は、yに依存しない。従って、図1の楕円翼の一部となる、ハッチングの部分の揚力係数と誘導抗力係数は、元の楕円翼の揚力係数と誘導抗力係数に一致する。 Next, using lift line theory, the lift force and induced drag force when a part of the blade root of an elliptic wing without twist as shown in FIG. Assuming symmetry, the equation of lift line theory satisfying circulation Γ with An as an unknown is: span is B, chord length is c, two-dimensional blade theoretical lift slope is k , and span coordinates are y = B / 2cosθ When the angle of attack is α, the following equation is obtained.
Figure 2010243400
In the case of an elliptic wing (c = c 0 sin θ), the lift coefficient C L and the induced drag coefficient C Di are expressed by the following equations when the aspect ratio λ = 4B / πc 0 of the original elliptic wing is used.
Figure 2010243400
From these equations, induced drag coefficient with lift coefficient does not depend on y 0. Therefore, the lift coefficient and the induced drag coefficient of the hatched portion, which is a part of the elliptic wing of FIG. 1, coincide with the lift coefficient and the induced drag coefficient of the original elliptic wing.

次に、図1のハッチの部分をハーフスパンとする翼の、揚力係数と誘導抗力係数を求める。揚力線理論の式(10)より、0≦φ≦π/2の範囲で循環Γが満たす式は下式となる。

Figure 2010243400
この式をφ=0からφ=π/2の範囲を40等分した位置で満たすような級数を求めて計算する。すると、揚力係数と誘導抗力係数は、この部分楕円翼のアスペクト比λoから下式と近似できる。
Figure 2010243400
従って、部分楕円翼の揚力係数と誘導抗力係数は、部分楕円翼のアスペクト比λoを用いて楕円翼として推定される値とほぼ一致する。 Next, the lift coefficient and induction drag coefficient of the wing having the hatched portion of FIG. 1 as a half span are obtained. From the lift line theory equation (10), the equation that the circulation Γ satisfies in the range of 0 ≦ φ ≦ π / 2 is as follows.
Figure 2010243400
A series that satisfies this equation at a position obtained by dividing the range of φ = 0 to φ = π / 2 into 40 equal parts is obtained and calculated. Then, the lift coefficient and the induced drag coefficient can be approximated by the following equation from the aspect ratio λo of the partial elliptic wing.
Figure 2010243400
Therefore, the lift coefficient and the induced drag coefficient of the partial elliptic wing substantially coincide with the values estimated as the elliptic wing using the aspect ratio λo of the partial elliptic wing.

以上より、船台の有無による部分楕円翼の空力特性への影響を整理すれば、楕円翼の翼根の一部を船台とした場合、船台を含むアスペクト比を持つ楕円翼の空力特性と、部分楕円翼のそれとは一致する。また、部分楕円翼のみの空力係数は部分楕円翼のアスペクト比を持つ楕円翼の空力特性とほぼ一致する。よって、船台はアスペクト比を増やす効果がある。しかし、スパン効率にはほとんど影響を与えないことがわかった。これは、確認試験結果から得られる結論と一致する。従って、船台支持干渉の修正は、干渉を受けた有効アスペクト比から、干渉を受けない有効アスペクト比を推定する問題となる。   From the above, if the influence on the aerodynamic characteristics of the partial elliptic wing due to the presence or absence of the stern is arranged, the aerodynamic characteristics of the elliptic wing having the aspect ratio including the slat and the partial It agrees with that of an elliptical wing. In addition, the aerodynamic coefficient of the partial elliptic wing is almost the same as the aerodynamic characteristics of the elliptic wing with the aspect ratio of the partial elliptic wing. Therefore, the stern has the effect of increasing the aspect ratio. However, it was found that the span efficiency was hardly affected. This is consistent with the conclusion obtained from the confirmation test results. Therefore, the correction of the stern support interference becomes a problem of estimating the effective aspect ratio that does not receive interference from the effective aspect ratio that receives interference.

船台支持干渉を受け、有効アスペクト比がκ倍(=λ/λo)となった場合を考える。揚力線理論から導かれる揚力傾斜と誘導抗力係数、有効アスペクト比、スパン効率の関係式から、揚力傾斜補正率μと誘導抗力係数増加率の補正率νは、揚力傾斜に対する線形理論によるPrandtl-Glauert変換から導かれる圧縮性の効果を、圧縮性パラメータβによって導入して、一様流マッハ数をM、支持干渉を受けた有効アスペクト比をλ、支持干渉を受けない有効アスペクト比をλ、支持干渉を受けた揚力傾斜をCLα、支持干渉を受けたスパン効率をe、支持干渉を受けないスパン効率をeoとすると、下式となる。

Figure 2010243400
ここで、CL0、CDi0、Cm0、はそれぞれ、α=αoにおける船台支持干渉を受けた揚力係数、誘導抗力係数、ピッチングモーメント係数である。また、上記のスパン効率には影響を与えないとの知見から、e≒eoとしている。
従って、有効アスペクト比の増加率κがわかれば、船台支持干渉を修正した揚力係数CLc、誘導抗力係数CDic、ピッチングモーメント係数Cmcを推定することができる。
船台支持干渉を受けた揚力傾斜Cα、誘導抗力係数増加率δCDi/δ(CL)、船台のゼロ揚力角αoにおける揚力係数CL0、誘導抗力係数CDi0、ピッチングモーメント係数Cm0、全機空力中心x/cから、支持干渉の修正式は下式となる。
Figure 2010243400
Consider a case where the effective aspect ratio becomes κ times (= λ / λo) due to the stern support interference. From the relational expression of lift slope and induced drag coefficient, effective aspect ratio, and span efficiency derived from the lift line theory, lift slope correction factor μ and induction drag coefficient increase rate correction rate ν are expressed by Prandtl-Glauert based on linear theory for lift slope. The compressibility effect derived from the transformation is introduced by the compressibility parameter β, the uniform flow Mach number is M, the effective aspect ratio subjected to the support interference is λ, the effective aspect ratio not receiving the support interference is λ 0 , If the lift inclination that has received the support interference is C , the span efficiency that has received the support interference is e, and the span efficiency that does not receive the support interference is eo, the following equation is obtained.
Figure 2010243400
Here, C L0 , C Di0 , and C m0 are respectively a lift coefficient, an induced drag coefficient, and a pitching moment coefficient that are subjected to stern support interference when α = αo . In addition, e≈eo from the knowledge that the span efficiency is not affected.
Therefore, if the increase rate κ of the effective aspect ratio is known, the lift coefficient C Lc , the induced drag coefficient C Dic , and the pitching moment coefficient C mc corrected for the stern support interference can be estimated.
Lift inclination C L α that has received the stern support interference, induction drag coefficient increase rate δC Di / δ (CL) 2 , lift coefficient C L0 , induced drag coefficient C Di0 , pitching moment coefficient C m0 , zero lift angle αo of the stern From the aerodynamic center x / c of all aircraft, the formula for correcting the support interference is as follows.
Figure 2010243400

有効アスペクト比の増加率κの推定は、簡単のために半裁模型のハーフスパンに対する船台の高さの比をrと定義する。そして、この比が先に検討した楕円翼とその一部の比r=x/(B/2−x)と一致すると仮定する。この場合の有効アスペクト比増加率κは下式となる。

Figure 2010243400
For the purpose of estimating the increase rate κ of the effective aspect ratio, the ratio of the height of the stern to the half span of the half model is defined as r. Then, it is assumed that this ratio matches the ratio r = x 0 / (B / 2−x 0 ) of the elliptic wing studied earlier and a part thereof. In this case, the effective aspect ratio increase rate κ is expressed by the following equation.
Figure 2010243400

本発明の船台支持干渉修正法を、船台模型試験結果に適用して検証した。すなわち、図2に示す、胴体直径を基準として定義されるAGARD-B標準模型の、全機風洞試験と、船台に設置された半裁模型試験の比較を行った。この形態における半裁模型のハーフスパンに対する船台の高さの比rは、0.60である。式(17)より、有効アスペクト比増加率はκ=1.37となる。式(12),式(13)より揚力傾斜と誘導抗力係数増加率の補正率が求まる。したがって、修正結果は表2となる。

Figure 2010243400
参考に、有効アスペクト比も示す。揚力傾斜は修正前では2割程度差があったものが、修正後では5%程度の差となった。誘導抗力係数増加率は修正前では3割程度差があったものが、修正後では6%程度の差となった。以上より、本発明の修正法が有効であることが確認できた。 The stern support interference correction method of the present invention was applied to a stern model test result and verified. That is, a comparison was made between the full-scale wind tunnel test of the AGARD-B standard model defined on the basis of the fuselage diameter shown in FIG. 2 and the half model test installed on the stern. The ratio r of the height of the stern to the half span of the half-cut model in this embodiment is 0.60. From equation (17), the effective aspect ratio increase rate is κ = 1.37. From Equations (12) and (13), the lift rate and the correction factor of the induced drag coefficient increase rate can be obtained. Therefore, the correction result is shown in Table 2.
Figure 2010243400
For reference, the effective aspect ratio is also shown. The lift gradient had a difference of about 20% before the correction, but after the correction, the difference was about 5%. The induction drag coefficient increase rate had a difference of about 30% before the correction, but a difference of about 6% after the correction. From the above, it was confirmed that the correction method of the present invention is effective.

図2に示す、胴体直径を基準として定義されるAGARD-B標準模型の、全機風洞試験と、船台に設置された半裁模型試験の比較を行った。この試験は試験条件としてマッハ数0.3,レイノルズ数2.7×10、マッハ数0.3,レイノルズ数6.8×10、マッハ数0.8,レイノルズ数2.7×10、の三条件で揚力係数、前面誘導抗力係数増加率、全機空力中心、有効アスペクト比、スパン効率について、全機風洞試験と、船台に設置された半裁模型試験データをとり、半裁模型試験データについて本発明の船台支持による干渉修正を施した値を出して、それぞれを比較した。表3はそれを比較する表にまとめたものである。

Figure 2010243400
その内、M=0.8の条件で取得した、船台と半裁模型のハーフスパンの比rが0.60である風洞試験結果に、この修正法を適用した結果をグラフ図示する。
まず、推定される有効アスペクト比の増加率κは、1.37である。この値から、揚力傾斜と前面誘導抗力係数増加率の補正率を求め、修正を行った結果が、図3〜図5である。但し、図4の直線は、最小二乗フィッティング直線である。いずれも船台支持干渉修正を施した値は全機模型のデータに近いものであることが確認できる。 A comparison was made between the full-scale wind tunnel test of the AGARD-B standard model defined on the basis of the fuselage diameter shown in Fig. 2 and the half-cut model test installed on the stern. This test has three conditions: Mach number 0.3, Reynolds number 2.7 × 10 6 , Mach number 0.3, Reynolds number 6.8 × 10 6 , Mach number 0.8, Reynolds number 2.7 × 10 6 , lift coefficient, front induced drag coefficient For the rate of increase, center of aerodynamics, effective aspect ratio, and span efficiency, we took the whole wind tunnel test and the half-cut model test data installed on the stern, and the half-model test data was subjected to interference correction by the stern support of the present invention. Each value was compared and compared. Table 3 summarizes the comparison table.
Figure 2010243400
The graph shows the result of applying this correction method to the wind tunnel test result obtained under the condition of M = 0.8, where the ratio r of the half span between the stern and the half-cut model is 0.60.
First, the estimated increase rate κ of the effective aspect ratio is 1.37. From these values, the correction rates of the lift inclination and the front induced drag coefficient increase rate are obtained and corrected, as shown in FIGS. However, the straight line in FIG. 4 is a least square fitting straight line. It can be confirmed that the values after the stern support interference correction are close to the data for all models.

本発明は、空力特性を取得する必要があり、そのために半裁風洞試験法を用いる産業分野について広く適用ができる。   The present invention needs to acquire aerodynamic characteristics, and can be widely applied to the industrial field using the half-cut wind tunnel test method for that purpose.

William E. Milholen II and Ndaona Chokani, “Development of Semispan Model Test Techniques", Journal of aircraft, Vol,33, No.6, November-December 1996William E. Milholen II and Ndaona Chokani, “Development of Semispan Model Test Techniques”, Journal of aircraft, Vol, 33, No. 6, November-December 1996 G. M. Gatlin, P. A. Parker and L. R. Owens Jr.,"Development of a Semi-Span Test CaPability at the National Transonic Facility(lnvited)", AIAA-2001-0759, 第39回 AIAA Aerospace Sciences Meeting & Exhibit 2001年1月8日〜11日GM Gatlin, PA Parker and LR Owens Jr., "Development of a Semi-Span Test CaPability at the National Transonic Facility (lnvited)", AIAA-2001-0759, 39th AIAA Aerospace Sciences Meeting & Exhibit January 8, 2001 Sun to 11th

Claims (5)

風洞に容易に適用可能な船台を用いた半裁風洞試験において、船台が発生する揚力が、半裁模型の揚力傾斜を増加させ、誘導抗力係数増加率を減少させる干渉効果を持つことに基づき、該船台支持干渉について流体理論から修正方式を導き、得られた半裁模型試験データに含まれる船台支持干渉の影響を修正する方法。   In a half-cut wind tunnel test using a platform that can be easily applied to a wind tunnel, the lift generated by the platform has an interference effect that increases the lift slope of the half-cut model and decreases the rate of increase of the induced drag coefficient. A method of deriving a correction method for support interference from the fluid theory, and correcting the effect of support support interference included in the obtained half-cut model test data. 船台支持干渉が揚力傾斜と誘導抗力係数増加率に与える影響は、スパン効率にはほとんど影響を与えないが、有効アスペクト比を増加させる効果に相当するという、揚力線理論から導かれる楕円翼の揚力傾斜と一般翼の誘導抗力係数増加率・有効アスペクト比・スパン効率の関係式を用い、スパン効率と全機空力中心が変化しないとして有効アスペクト比の増加率に基づいて、半裁模型試験データに含まれる、船台支持干渉の影響を修正する請求項1に記載の方法。   The effect of pedestal support interference on lift slope and induced drag coefficient increase rate has little effect on span efficiency, but corresponds to the effect of increasing the effective aspect ratio. Included in the semi-circular model test data based on the increase rate of the effective aspect ratio, assuming that the span efficiency and the center of all aircraft aerodynamics do not change, using the relationship between the slope and the increase in induced drag coefficient of the general wing, effective aspect ratio, and span efficiency. The method of claim 1, wherein the effect of stern support interference is corrected. 線形理論のPrandtl-Glauert変換から導かれる圧縮性の効果を圧縮性パラメータによって導入し、圧縮性が揚力傾斜に及ぼす影響を補償するものとした請求項2に記載の船台支持干渉効果を修正する方法。   The method for correcting the support effect of stern support according to claim 2, wherein the effect of compressibility derived from the Prandtl-Glauert transformation of linear theory is introduced by compressibility parameters to compensate for the effect of compressibility on lift slope. . 船台支持干渉による有効アスペクト比の増加率を、理論又は数値シミュレーションを用いて、計測される領域のみから得られる有効アスペクト比と、船台に相当する計測されない領域を含む場合に計測される領域から得られる有効アスペクト比を比較することによって推定する請求項1乃至3のいずれかに記載の船台支持干渉の影響を修正する方法。   The increase rate of the effective aspect ratio due to the stern support interference is obtained from the measured area when the effective aspect ratio obtained only from the measured area and the non-measured area corresponding to the stern are included using theoretical or numerical simulation. 4. A method for correcting the effects of stern support interference according to any one of claims 1 to 3 estimated by comparing the effective aspect ratios obtained. 船台支持干渉による有効アスペクト比の増加率を、揚力線理論によって、楕円翼を構成する一部分の空力特性から導かれる有効アスペクト比の増加率に基づき、船台の高さと半裁模型のハーフスパンの比から推定する請求項1乃至4のいずれかに記載の船台支持干渉の影響を修正する方法。   From the ratio of the height of the stern and the half span of the half-cut model based on the rate of increase of the effective aspect ratio derived from the aerodynamic characteristics of the part of the elliptic wing by lift line theory. The method of correcting the influence of the support support interference in any one of Claims 1 thru | or 4 to estimate.
JP2009094076A 2009-04-08 2009-04-08 Substation support interference correction method in subsonic half model wind tunnel test Expired - Fee Related JP5354660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094076A JP5354660B2 (en) 2009-04-08 2009-04-08 Substation support interference correction method in subsonic half model wind tunnel test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094076A JP5354660B2 (en) 2009-04-08 2009-04-08 Substation support interference correction method in subsonic half model wind tunnel test

Publications (2)

Publication Number Publication Date
JP2010243400A true JP2010243400A (en) 2010-10-28
JP5354660B2 JP5354660B2 (en) 2013-11-27

Family

ID=43096561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094076A Expired - Fee Related JP5354660B2 (en) 2009-04-08 2009-04-08 Substation support interference correction method in subsonic half model wind tunnel test

Country Status (1)

Country Link
JP (1) JP5354660B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940575A (en) * 2014-04-21 2014-07-23 西南交通大学 Wind tunnel test balance assessment method based on strain signal energy
CN104198154A (en) * 2014-09-18 2014-12-10 中国空气动力研究与发展中心高速空气动力研究所 Double-end force measurement device and double-end measurement method
CN104390760A (en) * 2014-10-20 2015-03-04 中国矿业大学 Wind resistance test method for vertical material transporting and feeding
CN108204879A (en) * 2017-12-29 2018-06-26 中国航天空气动力技术研究院 The measuring method and system of a kind of rotary inertia
CN108303227A (en) * 2018-02-14 2018-07-20 中国空气动力研究与发展中心高速空气动力研究所 Aeroelastic effect wind tunnel test half model system and test method
CN108645591A (en) * 2018-06-27 2018-10-12 空气动力学国家重点实验室 A kind of V-type tail support device for flat fusion aircraft in transonic wind tunnel
CN113514222A (en) * 2021-06-07 2021-10-19 中国航天空气动力技术研究院 Aerodynamic force measurement device and method for air breathing model of air breathing type air inlet aircraft
CN115219147A (en) * 2022-09-15 2022-10-21 中国空气动力研究与发展中心设备设计与测试技术研究所 Adjustable fan blade type second throat and test section Mach number control method
CN116929703A (en) * 2023-09-18 2023-10-24 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature wind tunnel Mach number determination method considering blocking effect and application thereof
CN117129179A (en) * 2023-10-26 2023-11-28 中国航空工业集团公司沈阳空气动力研究所 Mach number correction method for double-support test under continuous wind tunnel wing
CN117216491A (en) * 2023-11-09 2023-12-12 中国航空工业集团公司哈尔滨空气动力研究所 Neural network-based low-speed wind tunnel bracket interference quantity prediction method and equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132923A (en) * 1987-11-18 1989-05-25 Natl Aerospace Lab Truncated cone-shaped model wind tunnel testing apparatus equipped with power
JP2004109067A (en) * 2002-09-20 2004-04-08 National Aerospace Laboratory Of Japan Transonic flutter stop device
JP2008249528A (en) * 2007-03-30 2008-10-16 Japan Aerospace Exploration Agency Technique for correcting temperature dependency of pressure-sensitive coating measuring method by time-serial temperature change

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132923A (en) * 1987-11-18 1989-05-25 Natl Aerospace Lab Truncated cone-shaped model wind tunnel testing apparatus equipped with power
JP2004109067A (en) * 2002-09-20 2004-04-08 National Aerospace Laboratory Of Japan Transonic flutter stop device
JP2008249528A (en) * 2007-03-30 2008-10-16 Japan Aerospace Exploration Agency Technique for correcting temperature dependency of pressure-sensitive coating measuring method by time-serial temperature change

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013023835; 日高亜希子, 室田勝一, 星野秀雄, 細江信幸, 青木良尚, 伊藤健, 山本一臣, 森田義郎, 真城仁: '半裁模型風洞試験に対するパネル法風洞壁境界修正の適用' 宇宙航空研究開発機構特別資料 JAXA-SP- No.06-020, 20070330, Page.15-22 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940575A (en) * 2014-04-21 2014-07-23 西南交通大学 Wind tunnel test balance assessment method based on strain signal energy
CN104198154A (en) * 2014-09-18 2014-12-10 中国空气动力研究与发展中心高速空气动力研究所 Double-end force measurement device and double-end measurement method
CN104390760A (en) * 2014-10-20 2015-03-04 中国矿业大学 Wind resistance test method for vertical material transporting and feeding
CN108204879A (en) * 2017-12-29 2018-06-26 中国航天空气动力技术研究院 The measuring method and system of a kind of rotary inertia
CN108204879B (en) * 2017-12-29 2019-11-29 中国航天空气动力技术研究院 A kind of measuring method and system of rotary inertia
CN108303227A (en) * 2018-02-14 2018-07-20 中国空气动力研究与发展中心高速空气动力研究所 Aeroelastic effect wind tunnel test half model system and test method
CN108303227B (en) * 2018-02-14 2024-04-05 中国空气动力研究与发展中心高速空气动力研究所 Static aeroelastic wind tunnel test semi-model system and test method
CN108645591B (en) * 2018-06-27 2024-02-20 中国空气动力研究与发展中心高速空气动力研究所 V-shaped tail supporting device for flat fusion aircraft in transonic wind tunnel
CN108645591A (en) * 2018-06-27 2018-10-12 空气动力学国家重点实验室 A kind of V-type tail support device for flat fusion aircraft in transonic wind tunnel
CN113514222A (en) * 2021-06-07 2021-10-19 中国航天空气动力技术研究院 Aerodynamic force measurement device and method for air breathing model of air breathing type air inlet aircraft
CN113514222B (en) * 2021-06-07 2024-06-11 中国航天空气动力技术研究院 Aerodynamic force measuring device and method for ventilation model of air suction type air inlet channel aircraft
CN115219147A (en) * 2022-09-15 2022-10-21 中国空气动力研究与发展中心设备设计与测试技术研究所 Adjustable fan blade type second throat and test section Mach number control method
CN115219147B (en) * 2022-09-15 2022-11-18 中国空气动力研究与发展中心设备设计与测试技术研究所 Adjustable fan blade type second throat and test section Mach number control method
CN116929703B (en) * 2023-09-18 2023-11-21 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature wind tunnel Mach number determination method considering blocking effect and application thereof
CN116929703A (en) * 2023-09-18 2023-10-24 中国空气动力研究与发展中心高速空气动力研究所 Low-temperature wind tunnel Mach number determination method considering blocking effect and application thereof
CN117129179A (en) * 2023-10-26 2023-11-28 中国航空工业集团公司沈阳空气动力研究所 Mach number correction method for double-support test under continuous wind tunnel wing
CN117129179B (en) * 2023-10-26 2023-12-26 中国航空工业集团公司沈阳空气动力研究所 Mach number correction method for double-support test under continuous wind tunnel wing
CN117216491A (en) * 2023-11-09 2023-12-12 中国航空工业集团公司哈尔滨空气动力研究所 Neural network-based low-speed wind tunnel bracket interference quantity prediction method and equipment
CN117216491B (en) * 2023-11-09 2024-02-09 中国航空工业集团公司哈尔滨空气动力研究所 Neural network-based low-speed wind tunnel bracket interference quantity prediction method and equipment

Also Published As

Publication number Publication date
JP5354660B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5354660B2 (en) Substation support interference correction method in subsonic half model wind tunnel test
Murayama et al. Experimental study on slat noise from 30P30N three-element high-lift airfoil at JAXA hard-wall lowspeed wind tunnel
CN103895876B (en) The wing wallboard guided based on provincial characteristics and the evaluation method in Skeleton assembly gap
Moreau et al. Wall-mounted finite airfoil-noise production and prediction
CN109766630B (en) Equivalent electromagnetic parameter extraction method of honeycomb wave-absorbing material
Lum et al. The application of a five-hole probe wake-survey technique to the study of swept wing icing aerodynamics
Woodard et al. Summary of ice shape geometric fidelity studies on an iced swept wing
Boiko et al. Numerical prediction of laminar-turbulent transition on an airfoil
US20110246097A1 (en) Method and System for Determining Aerodynamic Loads from Leading Edge Flow Parameters
Baker Drag reduction of a blunt trailing-edge airfoil
Boorsma et al. New MEXICO experiment
Campbell A comparison of downwind sail coefficients from tests in different wind tunnels
Chwalowski et al. FUN3D analyses in support of the First Aeroelastic Prediction Workshop
JP2006317460A (en) Method of creating contour diagram of physical quantity, and method of estimating physical quantity
Huebsch et al. Effects of surface ice roughness on dynamic stall
Andreou et al. Aeroacoustic comparison of airfoil leading edge high-lift geometries and supports
Broughton et al. Experimental Investigations of the NASA Common Research Semi-Span Model in the NRC 5-ft Trisonic Wind Tunnel
Krynytzky et al. Computational modeling of a slotted wall test section
Sitorus et al. Hydrodynamic characteristics of cambered NACA0012 for flexible-wing application of a flapping-type tidal stream energy harvesting system
Altman et al. A Comparison of the Turbulent Boundary-layer Growth on an Unswept and a Swept Wing
Romblad Experiments on the laminar to turbulent transition under unsteady inflow conditions
Abdullah et al. Two-dimensional wind tunnel measurement corrections by the singularity method
Giguere et al. Freestream velocity corrections for two-dimensional testing with splitter plates
Toledano et al. Study of the Subsonic Wall Interference in Stall of the NASA CRM at the NRC 1.5 m Trisonic Wind Tunnel
Yahyaoui Generalized vortex lattice method for predicting characteristics of wings with flap and aileron deflection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5354660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees