JP2010243309A - Measuring method of fluid force distribution and measuring device - Google Patents

Measuring method of fluid force distribution and measuring device Download PDF

Info

Publication number
JP2010243309A
JP2010243309A JP2009091785A JP2009091785A JP2010243309A JP 2010243309 A JP2010243309 A JP 2010243309A JP 2009091785 A JP2009091785 A JP 2009091785A JP 2009091785 A JP2009091785 A JP 2009091785A JP 2010243309 A JP2010243309 A JP 2010243309A
Authority
JP
Japan
Prior art keywords
distribution
resistance
lift
component velocity
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009091785A
Other languages
Japanese (ja)
Other versions
JP5354659B2 (en
Inventor
Hiroyuki Kato
裕之 加藤
Shigeya Watanabe
重哉 渡辺
Kisa Matsushima
紀佐 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2009091785A priority Critical patent/JP5354659B2/en
Publication of JP2010243309A publication Critical patent/JP2010243309A/en
Application granted granted Critical
Publication of JP5354659B2 publication Critical patent/JP5354659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method that measures fluid forces (a drag force and a lift force) applied to an object even when measurement by using a balance is impossible, does not change flowing by insertion of a probe or the like, and does not take a measuring time period as compared to measurement by a pressure probe so as to complete the measurement in a short time, and to provide a measuring device. <P>SOLUTION: This method for measuring distributions of a shape resistance, an inductive resistance and a lift force applied to an object includes the step of measuring a three-component velocity distribution value of rear flow of an object residing in a fluid field, and the step of calculating a pressure distribution by means of a numerical fluid analysis method by using the three-component velocity distribution value as an input. The method further includes a rear flow integration method with the use of the three-component velocity distribution value and the pressure distribution value, thereby calculating out the distributions of the shape resistance, the inductive resistance and the lift force applied to the object. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、風洞試験における計測装置、航空宇宙、自動車、鉄道車両、船舶、建築物、風車、生物、スポーツ等における空力設計に関する。   The present invention relates to an aerodynamic design in a measuring device, aerospace, automobile, railway vehicle, ship, building, windmill, organism, sports, etc. in a wind tunnel test.

従来、物体に作用する流体力(抗力及び揚力)は、例えば非特許文献1に見られるような天秤を使用した計測が主流であるが、微小物体等の天秤の使用が困難な状況では、物体に作用する流体力を計測することが難しい。さらに、天秤による計測では、抗力を形状抵抗と誘導抵抗に分離して計測することができない。また、物体全体でどれだけの力が働いているかの合計のみしか計測できず、流体力の物体の各構成要素における流体力分布は計測できないため、物体のどの構成要素において、抗力や揚力が生じているか知ることができない。
抵抗成分を形状抵抗と誘導抵抗に分離し、その各構成要素における流体力分布を計測するための手法として、後流積分法という手法が知られている[非特許文献2参照]が、従来の後流積分法では、物体後流の計測に、圧力プローブを使用し、物体後流領域全域に対して、プローブを移動させながら計測を行うために、計測に時間がかかるとともに、プローブの挿入により、流れが変化し、プローブのない状態とは結果が変わってしまい、正確な計測が困難であるといった問題がある。
Conventionally, the fluid force (drag and lift) acting on an object is mainly measured using a balance such as that shown in Non-Patent Document 1, but in situations where it is difficult to use a balance such as a micro object, It is difficult to measure the fluid force acting on Furthermore, in the measurement using a balance, it is impossible to measure the drag separately into shape resistance and induction resistance. In addition, since only the total of how much force is acting on the entire object can be measured, and the fluid force distribution in each component of the fluid force object cannot be measured, drag and lift occur in which component of the object. I can't know if
As a method for separating a resistance component into a shape resistance and an inductive resistance and measuring a fluid force distribution in each component, a method called a wake integration method is known [see Non-Patent Document 2]. In the wake integration method, a pressure probe is used to measure the wake of the object, and the measurement is performed while moving the probe over the entire wake region of the object. However, there is a problem that the flow changes, the result changes from the state without the probe, and accurate measurement is difficult.

後流計測の別の計測手法として、粒子画像流速測定法(PIV)を使った方法がある。PIVは、流体中に分散させた微小粒子をシート状にしたレーザ光で2回発光させ、その2回の発光の間に微小粒子が移動した距離を画像処理技術によって求め、その移動距離を2回の発光の時間間隔で割ることで、空間の速度を計測する手法[従来技術文献3参照]である。PIVの特徴としては、1回の計測で、シート光面内の2次元空間の計測が可能であること、プローブを使った計測と異なり、流れにセンサを挿入しないため、流れを変化させることのない計測が可能であること、といった特徴がある。しかしながら、PIVで直接計測できるものは流体の速度のみであり、圧力プローブのように流体の圧力に関する情報を測ることはできない。PIVの計測結果から、圧力を推算する手法に関しては、既に何件かの報告[例えば従来技術文献4参照]があり、物体後流の速度分布から圧力を推算することが示されている。   As another measurement method of the wake measurement, there is a method using a particle image velocimetry (PIV). In PIV, fine particles dispersed in a fluid are emitted twice with a sheet-form laser beam, and the distance that the fine particles have moved between the two times of light emission is determined by an image processing technique. This is a method of measuring the velocity of space by dividing by the time interval of light emission [see Prior Art Document 3]. The characteristics of PIV are that it is possible to measure the two-dimensional space in the light plane of the sheet with a single measurement. Unlike the measurement using a probe, no sensor is inserted in the flow, so the flow can be changed. There is a feature that no measurement is possible. However, what can be directly measured by the PIV is only the velocity of the fluid, and information on the pressure of the fluid cannot be measured like a pressure probe. Regarding the method for estimating the pressure from the PIV measurement result, there have already been several reports [see, for example, Prior Art Document 4], which indicate that the pressure is estimated from the velocity distribution of the wake of the object.

本発明の課題は、天秤を使用した計測が不可能な場合でも、物体に作用する流体力(抗力及び揚力)計測を可能とするものであって、プローブ等の挿入により流れを変化させてしまうことがなく、圧力プローブによる計測のように計測時間がかからず、短時間で計測が終了可能となる後流積分法を用いた計測方法及び計測装置を提案することにある。   An object of the present invention is to enable measurement of fluid force (drag and lift) acting on an object even when measurement using a balance is impossible, and the flow is changed by inserting a probe or the like. Therefore, it is an object of the present invention to propose a measurement method and a measurement device using a wake integration method that does not take a measurement time as in the case of measurement with a pressure probe and can complete the measurement in a short time.

本発明の物体に作用する形状抵抗、誘導抵抗及び揚力分布を計測する方法は、流体場に存する物体の後流の3成分速度分布を計測するステップと、前記3成分速度分布値を入力として、数値流体解析手法により、圧力分布を計算するステップと、前記3成分速度分布値と前記圧力分布値を用いて後流積分法により、物体に作用する形状抵抗、誘導抵抗及び揚力分布を算出するようにした。
本発明の物体に作用する流体力(抗力及び揚力)を計測する方法は、請求項1に記載の方法によって得られた物体に作用する形状抵抗、誘導抵抗及び揚力分布を次式により積分することにより、物体に作用する抗力及び揚力を計測する方法。
ただし、CFは抗力係数、揚力係数それぞれについてCD、CLを表し、形状抵抗係数、誘導抵抗係数それぞれについてCDP、CDIを表す。Cfは形状抵抗係数、誘導抵抗係数、揚力係数それぞれについて、Cdp、Cdi、Clを表し、Cf*Cは各係数と翼弦長の積を表す。cfは、形状抵抗係数、誘導抵抗係数それぞれについて、cdp、cdiを表し、WAは積分領域が後流領域であることを示す。
また、物体後流の3成分速度分布を計測する手法として、粒子画像流速測定法、レーザドップラ流速計、2焦点式レーザ流速計、ドップラーグローバル流速計、レーザ誘起蛍光法、超音波流速計のいずれかを用いることにより、流体の流れを変化させることなく計測するようにした。
本発明は、上記方法において流れと交叉する複数方向の計測面における物体後流の3成分速度分布値を総合することにより、流れ方向の速度変化に対し、高精度の圧力分布を推算するものとした。
The method of measuring the shape resistance, the induction resistance and the lift distribution acting on the object of the present invention includes a step of measuring a three-component velocity distribution of the wake of the object existing in the fluid field, and the three-component velocity distribution value as input. The step of calculating the pressure distribution by the numerical fluid analysis method, and the shape resistance, the induction resistance and the lift distribution acting on the object are calculated by the wake integration method using the three-component velocity distribution value and the pressure distribution value. I made it.
The method of measuring the fluid force (drag and lift) acting on the object of the present invention is to integrate the shape resistance, induction resistance and lift distribution acting on the object obtained by the method according to claim 1 by the following equation. To measure drag and lift acting on an object.
However, CF represents CD and CL for drag coefficient and lift coefficient, respectively, and CDP and CDI for shape resistance coefficient and induction resistance coefficient, respectively. Cf represents Cdp, Cdi, and Cl for each of the shape resistance coefficient, the induction resistance coefficient, and the lift coefficient, and Cf * C represents the product of each coefficient and the chord length. cf represents cdp and cdi for the shape resistance coefficient and the induction resistance coefficient, respectively, and WA indicates that the integration region is the wake region.
In addition, as a method for measuring the three-component velocity distribution in the wake of an object, any of particle image velocimetry, laser Doppler velocimeter, bifocal laser velocimeter, Doppler global velocimeter, laser induced fluorescence method, and ultrasonic velocimeter By using this, measurement was made without changing the flow of fluid.
The present invention estimates the pressure distribution with high accuracy with respect to the velocity change in the flow direction by integrating the three component velocity distribution values of the wake of the object on the measurement surface in a plurality of directions intersecting with the flow in the above method. did.

本発明の物体に作用する形状抵抗、誘導抵抗及び揚力分布を計測する装置は、流体場に存する物体の後流の3成分速度分布を計測する手段と、前記3成分速度分布値を入力として、数値流体解析手法により、圧力分布を計算する手段と、前記3成分速度分布値と前記圧力分布値を用いて後流積分法により、形状抵抗、誘導抵抗及び揚力分布を算出する手段とを備えるものとした。
本発明の模型に作用する抗力及び揚力を計測する装置は、風洞内に模型とシーディングジェネレータを配置すると共に、前記模型の後方部にレーザーライトシートを形成する手段と、該レーザーライトシートを異なる角度から撮影するステレオカメラと、制御用パソコンとを備えたものであって、該制御用パソコンはステレオ画像情報から3成分速度分布を、該3成分速度分布値を入力として数値流体解析手法により圧力分布を、前記3成分速度分布値と前記圧力分布値を用いて後流積分法により形状抵抗、誘導抵抗及び揚力分布を、さらには、これを積分することにより、抗力及び揚力を計測するようにした。
The apparatus for measuring the shape resistance, the induction resistance and the lift distribution acting on the object of the present invention has means for measuring the three-component velocity distribution of the wake of the object existing in the fluid field, and the three-component velocity distribution value as an input. Means for calculating pressure distribution by a numerical fluid analysis method, and means for calculating shape resistance, induction resistance and lift distribution by wake integration using the three-component velocity distribution value and the pressure distribution value It was.
The apparatus for measuring drag and lift acting on the model of the present invention is different from the laser light sheet in that a model and a seeding generator are arranged in a wind tunnel and a laser light sheet is formed in the rear part of the model. A stereo camera that captures an image from an angle and a control personal computer, the control personal computer uses a three-component velocity distribution from the stereo image information and inputs the three-component velocity distribution value as a pressure by a numerical fluid analysis method. Using the three-component velocity distribution value and the pressure distribution value, the shape resistance, the induction resistance and the lift distribution are calculated by the wake integration method, and the drag and the lift are measured by integrating the distribution. did.

本発明の計測方法及び計測装置は、計測方法として、PIVやレーザードップラー流速計(LDV)を使用することで、圧力プローブ等を使用する場合と異なり、流れを変化させることなく、計測が行えるため、より正確な空気力分布を求めることができる。
本発明の計測方法及び計測装置は、1回の計測で、2次元平面の計測が可能なため、PIV等における圧力プローブ等の1点1点の計測と異なり、計測時間が大幅に短縮される。
本発明の計測方法及び計測装置は、得られる速度分布のみでは、抵抗成分を直接計測することはできないが、速度分布から圧力分布を推算する手法を採用することにより、抵抗成分を推定することが可能となる。
The measurement method and measurement apparatus of the present invention can measure without changing the flow by using PIV or a laser Doppler velocimeter (LDV) as a measurement method, unlike when using a pressure probe or the like. More accurate aerodynamic force distribution can be obtained.
Since the measurement method and the measurement apparatus of the present invention can measure a two-dimensional plane in one measurement, the measurement time is greatly shortened unlike measurement of one point such as a pressure probe in PIV or the like. .
Although the measuring method and measuring device of the present invention cannot directly measure the resistance component only by the obtained velocity distribution, the resistance component can be estimated by adopting a method of estimating the pressure distribution from the velocity distribution. It becomes possible.

本発明の計測・演算ステップを説明するフローチャートである。It is a flowchart explaining the measurement and calculation step of this invention. 本発明が使用する風洞における粒子画像流速測定(PIV)法による計測システムのモデルを示す図である。It is a figure which shows the model of the measurement system by the particle image velocimetry (PIV) method in the wind tunnel which this invention uses. 風洞に設置された本発明の流体力分布計測装置を説明する図である。It is a figure explaining the fluid force distribution measuring apparatus of this invention installed in the wind tunnel. 本発明で計測した3成分速度分布を示す図である。It is a figure which shows 3 component velocity distribution measured by this invention. 本発明で計測した3成分速度分布を用い、数値流体解析手法によって、空間圧力分布を計算した結果を示す図である。It is a figure which shows the result of having calculated spatial pressure distribution by the numerical fluid analysis method using the three-component velocity distribution measured by this invention. 得られた3成分速度分布と空間圧力分布を用いて、後流積分法により、計算された形状抵抗分布を示すグラフである。It is a graph which shows the shape resistance distribution calculated by the wake integration method using the obtained three-component velocity distribution and spatial pressure distribution. 得られた3成分速度分布と空間圧力分布を用いて、後流積分法により、計算された誘導抵抗分布を示すグラフである。It is a graph which shows the induced resistance distribution calculated by the wake integration method using the obtained three-component velocity distribution and spatial pressure distribution. 得られた3成分速度分布と空間圧力分布を用いて、後流積分法により、計算された揚力分布を示すグラフである。It is a graph which shows the lift distribution calculated by the wake integration method using the obtained three-component velocity distribution and spatial pressure distribution. 得られた3成分速度分布と空間圧力分布を用いて、後流積分法により、計算された後流断面における形状抵抗分布を示す図である。It is a figure which shows the shape resistance distribution in the wake flow cross section calculated by the wake flow integration method using the obtained three-component velocity distribution and space pressure distribution. 得られた3成分速度分布と空間圧力分布を用いて、後流積分法により、計算された後流断面における誘導抵抗分布を示す図である。It is a figure which shows the induced resistance distribution in the wake flow cross section calculated by the wake integration method using the obtained three-component velocity distribution and spatial pressure distribution.

以下、本発明の実施の形態について、詳細に説明する。
第1ステップでは物体が配置されている流体場において、物体後流の3成分速度分布を計測する。3成分速度分布計測は、流れ方向に1または複数の面を対象とする。また、3成分速度分布計測では、流れを変化させることなく、計測が可能な方法として、ステレオPIV、LGV、2焦点式レーザ流速計(L2F)、ドップラーグローバル流速計(DGV)、レーザ誘起蛍光法(LIF)、超音波流速計等を用いる。ステレオPIVを使った方法では、短時間のデータ取得で、広範囲の3成分速度分布を計測することが可能である。
Hereinafter, embodiments of the present invention will be described in detail.
In the first step, the three-component velocity distribution of the wake of the object is measured in the fluid field where the object is arranged. The three-component velocity distribution measurement targets one or more surfaces in the flow direction. In three-component velocity distribution measurement, stereo PIV, LGV, bifocal laser anemometer (L2F), Doppler global anemometer (DGV), laser-induced fluorescence method can be used without changing the flow. (LIF), an ultrasonic current meter or the like is used. In the method using the stereo PIV, it is possible to measure a wide range of three-component velocity distribution by acquiring data in a short time.

第2のステップでは、数値流体解析手法を用いて、1つのy−z平面内の3成分速度場から、空間圧力分布を計算する。本手法は、物体の後流においては、主流方向(x方向)の流れは、主流に垂直な方向(y及びz方向)と比較して変化が少なく、主流方向(x方向)の流れの状態量の変化はy方向やz方向の変化に比べて十分小さいということを仮定している。主流(x軸)方向の圧力及び速度勾配を0と仮定し、時間については定常と仮定すると、圧力のPoisson方程式は(1)のようになり、これに、PIVにより計測された空間速度場データを式(1)の右辺に代入し、差分法により、圧力を求める。
In the second step, a spatial pressure distribution is calculated from a three-component velocity field in one yz plane using a numerical fluid analysis method. In this method, in the wake of an object, the flow in the main flow direction (x direction) is less changed compared to the direction perpendicular to the main flow (y and z directions), and the flow state in the main flow direction (x direction) It is assumed that the change in quantity is sufficiently small compared to the change in the y direction or the z direction. Assuming that the pressure and velocity gradient in the main flow (x-axis) direction is 0 and the time is assumed to be steady, the Poisson equation of pressure is as shown in (1), and the space velocity field data measured by PIV Is substituted into the right side of Equation (1), and the pressure is obtained by the difference method.

第3ステップで、後流積分法を使用して、抗力係数CDと揚力係数CLを算出する。その際、3成分速度分布に加え、3成分速度分布から求めた圧力推算値を使用し、以下に示す演算式に基づいてそれぞれの物理量を算出する。
抗力係数CDは、次式より求める。
ここで、CDP、CDI、CDP2は、それぞれ形状抵抗係数、誘導抵抗係数、2次形状抵抗係数を表す。O(Δ)は、3次の微小量を表し、本計測では無視できる。よって、抗力係数CDは、形状抵抗係数CDP、誘導抵抗係数CDI、2次形状抵抗係数CDP2の和として求める。
In the third step, the drag coefficient CD and the lift coefficient CL are calculated using the wake integration method. At that time, in addition to the three-component velocity distribution, the pressure estimated value obtained from the three-component velocity distribution is used, and each physical quantity is calculated based on the following arithmetic expression.
The drag coefficient CD is obtained from the following equation.
Here, CDP, CDI, and CDP2 represent a shape resistance coefficient, an induction resistance coefficient, and a secondary shape resistance coefficient, respectively. O (Δ 3 ) represents a third-order minute amount and can be ignored in this measurement. Therefore, the drag coefficient CD is obtained as the sum of the shape resistance coefficient CDP, the induction resistance coefficient CDI, and the secondary shape resistance coefficient CDP2.

形状抵抗係数CDPは、以下の式で表される。
ここで、右辺分母は動圧、Sは代表面積を表す。P、ρ、Uは、それぞれ、一様流の静圧、密度、速度、Δsはエントロピの変化量、Rは気体定数を表す。また、WAは積分領域が後流領域であることを表す。
The shape resistance coefficient CDP is expressed by the following equation.
Here, the right side denominator represents the dynamic pressure, and S represents the representative area. P , ρ , and U are the static pressure, density, and velocity of uniform flow, Δs is the amount of change in entropy, and R is the gas constant. WA represents that the integration region is the wake region.

誘導抵抗係数CDIは次の式で表される。ここで、次式の誘導抵抗は、Maskellの誘導抵抗である。
ここで、xは渦度の一様流方向成分を表す。yおよびfは、次式を満たすスカラ関数である。
The induction resistance coefficient CDI is expressed by the following equation. Here, the induction resistance of the following equation is Maskell's induction resistance.
Here, x represents a uniform flow direction component of vorticity. y and f are scalar functions that satisfy the following expression.

2次形状抵抗係数CDP2は、次式のように表される。
The secondary shape resistance coefficient CDP2 is expressed as follows.

揚力係数CLは、次式より求める。
The lift coefficient CL is obtained from the following equation.

図3に示す実際の風洞実験の計測結果では、抗力係数CD、形状抵抗係数CDP、誘導抵抗係数CDIと揚力係数CLを示した。なお、2次形状抵抗係数CDP2は、その値が1カウント程度であったため、今回の結果には含めなかった。また、形状抵抗と誘導抵抗及び揚力に関しては、翼断面(翼をy=一定値でカットしたもの)での各係数と翼弦長の積Cf*Cのスパン方向分布を示した。さらに、形状抵抗と誘導抵抗に関しては、後流領域の局所の抗力係数cfをy−z断面の2次元分布図として示した。各係数の定義は次式の通りである。ここで、CF及びCfは、形状抵抗係数、誘導抵抗係数、揚力係数それぞれについて、CDP、CDI、CL及び、Cdp、Cdi、Clを表し、cfは形状抵抗係数、誘導抵抗係数それぞれについて、cdp、cdiを表す。
なお、Cfは後流積分法によって求めることができるもので、翼断面(翼をy=一定値でカットしたもの)に働く抵抗・揚力を表し、断面抗力係数(cross-sectional Profile-drag coefficient) CDP、CDIが該当する。そして、cfは後流積分法で、後流断面(y−z面)における局所の形状抵抗及び誘導抵抗を表し、cdi、cdpが該当する。
In the measurement result of the actual wind tunnel experiment shown in FIG. 3, the drag coefficient CD, the shape resistance coefficient CDP, the induction resistance coefficient CDI, and the lift coefficient CL are shown. The secondary shape resistance coefficient CDP2 was not included in this result because the value was about 1 count. In addition, regarding the shape resistance, induction resistance, and lift force, the distribution in the span direction of the product Cf * C of each coefficient and the chord length in the blade cross section (the blade cut with y = constant value) is shown. Further, regarding the shape resistance and the inductive resistance, the local drag coefficient cf in the wake region is shown as a two-dimensional distribution diagram of the yz section. The definition of each coefficient is as follows. Here, CF and Cf represent CDP, CDI, CL and Cdp, Cdi, and Cl for the shape resistance coefficient, the induction resistance coefficient, and the lift coefficient, respectively, and cf represents the cdp, represents cdi.
Cf can be obtained by the wake integration method, and represents the resistance and lift acting on the blade cross section (the blade cut with y = constant value), and the cross-sectional profile-drag coefficient. CDP and CDI are applicable. Cf is a wake integration method, which represents local shape resistance and induction resistance in the wake cross section (yz plane), and corresponds to cdi and cdp.

風洞試験において、図2のようなステレオPIV装置を用いて、風洞試験模型の後流の3成分速度分布を計測した。ステレオPIV装置は、PIVカメラ2台、ダブルパルスNd:YAGレーザ及び制御用PCから構成されており、シーディングジェネレータによって発生させたシード粒子を風洞内に導入し、風路全域に分散させた。シーディングジェネレータは測定部の後方に設置されているが、ここで導入されたシード粒子は循環される過程で風路全域に一様な分布となって測定部に流入されることとなる。レーザはシート光学系により、シート状に広げて照射されることにより、風路内に分散したシード粒子が、PIVカメラによって撮影される。PIVカメラとダブルパルスNd:YAGレーザとは制御用PCによって、同期信号が送られ、PIVカメラで撮影される2枚1組の画像のそれぞれにおいて、1回、レーザが発光するように制御されており、2回の発光の間にシード粒子が移動する移動量を撮影された画像から、画像解析により計測し、その移動量を発光間隔で割って、速度を算出する。2台のカメラそれぞれにおいて計測された2次元速度分布は、事前に行ったカメラキャリブレーションで求められたカメラパラメータによって、3成分速度分布(一般にはx,y,z直交座標成分)に変換される。   In the wind tunnel test, the ternary velocity distribution in the wake of the wind tunnel test model was measured using a stereo PIV apparatus as shown in FIG. The stereo PIV apparatus is composed of two PIV cameras, a double pulse Nd: YAG laser, and a control PC. The seed particles generated by the seeding generator are introduced into the wind tunnel and dispersed throughout the wind path. The seeding generator is installed behind the measurement unit, but the seed particles introduced here are introduced into the measurement unit in a uniform distribution over the entire air path in the process of circulation. The laser is spread and irradiated in a sheet form by the sheet optical system, and the seed particles dispersed in the air path are photographed by the PIV camera. The PIV camera and the double pulse Nd: YAG laser are controlled by the control PC so that the synchronization signal is sent and the laser is emitted once in each of a pair of images taken by the PIV camera. In addition, the amount of movement of the seed particles between the two times of light emission is measured by image analysis from the captured image, and the speed is calculated by dividing the amount of movement by the light emission interval. The two-dimensional velocity distribution measured by each of the two cameras is converted into a three-component velocity distribution (generally, x, y, z orthogonal coordinate components) according to camera parameters obtained by camera calibration performed in advance. .

本実施例では、図3のような航空機模型を計測対象とした風洞試験を実施した。図2のPIVシステムモデルはレーザーライトシートを前後から挟むようにPIVカメラが設置されているが、本実験の場合PIVカメラは測定部の下流レーザーライトシートの左右後方から撮影するように設置され、計測面の撮影を行った。この実施例では、1回の計測では、計測面全体を計測することができなかったため、計測面を複数に分けて、計測することで、計測面全体の撮影を行った。この風洞試験によって計測された3成分速度分布を図4に示す。上段が主流方向の速度(u)分布、中段が横方向の速度(v)分布、そして下段が上下方向の速度(w)分布である。
図4で示された3成分速度分布を入力として、数値流体解析手法を用いて、空間圧力分布を計算した結果を図5に示す。図4で示された3成分速度分布と図5で示された空間圧力分布を入力とし、後流積分法を使用して、計算された形状抵抗分布(Cdp*C)、誘導抵抗分布(Cdi*C)及び揚力分布(Cl*C)を図6〜8、また、後流積分法を使用して計算された後流断面での形状抵抗分布(cdp)及び誘導抵抗分布(cdi)を図9、10に示す。図6より、模型中心部分と翼の左右で形状抵抗が大きいことが分かり、さらに、図9の後流断面の分布では、より明確に模型と形状抵抗の対応が明確にわかる。図7より、翼端付近で誘導抵抗が大きいことが分かり、図10の後流断面の分布でも同様の結果となっている。
In the present example, a wind tunnel test was performed on an aircraft model as shown in FIG. In the PIV system model of FIG. 2, the PIV camera is installed so that the laser light sheet is sandwiched from the front and back, but in the case of this experiment, the PIV camera is installed so as to shoot from the left and right rear of the downstream laser light sheet of the measurement unit. The measurement surface was photographed. In this example, since the entire measurement surface could not be measured by one measurement, the entire measurement surface was photographed by dividing the measurement surface into a plurality of measurements. FIG. 4 shows a three-component velocity distribution measured by this wind tunnel test. The upper row is the velocity (u) distribution in the mainstream direction, the middle row is the velocity (v) distribution in the horizontal direction, and the lower row is the velocity (w) distribution in the vertical direction.
FIG. 5 shows the result of calculating the spatial pressure distribution using the numerical fluid analysis method with the three-component velocity distribution shown in FIG. 4 as an input. Using the three-component velocity distribution shown in FIG. 4 and the spatial pressure distribution shown in FIG. 5 as inputs, the calculated shape resistance distribution (Cdp * C), induced resistance distribution (Cdi) using the wake integration method. * C) and lift distribution (Cl * C) are shown in FIGS. 6 to 8, and the shape resistance distribution (cdp) and induced resistance distribution (cdi) in the wake cross section calculated using the wake integration method are shown. 9 and 10. From FIG. 6, it can be seen that the shape resistance is large between the left and right sides of the model center and the wing, and further, the distribution of the wake cross section of FIG. 9 clearly shows the correspondence between the model and the shape resistance. From FIG. 7, it can be seen that the induced resistance is large in the vicinity of the blade tip, and the distribution of the wake cross section of FIG.

本明細書では航空機に作用する空力を例に説明してきたが、本発明はこれに限らず、航空宇宙、自動車、鉄道車両、船舶、建築物、風車、生物、スポーツ等の空力設計において、模型を使った風洞実験を実施する際に、本計測方法及び装置を利用することにより、物体の各構成要素における形状抵抗、誘導抵抗及び揚力の分布を知ることで、空力設計の妥当性評価及び、各流体力の発生要因の把握が可能となる。
物体の各構成要素における流体力の分布を知ることで、空力設計において、抗力及び揚力を低下あるいは増大させることを目的とした装置の効果を直接評価することが可能となる。
本発明の計測方法及び装置を使うことで、天秤を使った空気力計測が困難な状況においても、その物体の後流を計測することで、抗力と揚力を計測することができる。
In the present specification, aerodynamics acting on an aircraft has been described as an example. However, the present invention is not limited to this, and in aerodynamic design of aerospace, automobiles, railway vehicles, ships, buildings, windmills, living things, sports, etc. By using this measurement method and device when carrying out wind tunnel experiments using, we can evaluate the validity of aerodynamic design by knowing the distribution of shape resistance, induction resistance and lift in each component of the object, and It is possible to grasp the cause of each fluid force.
Knowing the distribution of fluid forces in each component of an object makes it possible to directly evaluate the effectiveness of a device aimed at reducing or increasing drag and lift in aerodynamic design.
By using the measurement method and apparatus of the present invention, drag and lift can be measured by measuring the wake of the object even in situations where it is difficult to measure aerodynamic force using a balance.

Jewel B. Barolow, William H. Rae, Jr., Alan Pope, “Low-Speed Wind Tunnel Testing”,Wiley-Interscience 1999年発行Jewel B. Barolow, William H. Rae, Jr., Alan Pope, “Low-Speed Wind Tunnel Testing”, published by Wiley-Interscience 1999 Kazuhiro Kusunose, “A Wake Integration Method for Airplane Drag Prediction”, Tohoku University Press 2005年発行Kazuhiro Kusunose, “A Wake Integration Method for Airplane Drag Prediction”, Tohoku University Press 2005 Markus Raffel, Jurgen Kompenhans, Christian E. Willert, 小林 敏雄(監修), 岡本孝司(翻訳), 西尾茂(翻訳), 川橋正昭(翻訳),小林敏雄(監修), 「PIVの基礎と応用―粒子画像流速測定法」、シュプリンガー・フェアラーク東京 2000年6月20日発行Markus Raffel, Jurgen Kompenhans, Christian E. Willert, Toshio Kobayashi (supervised), Takashi Okamoto (translation), Shigeru Nishio (translation), Masaaki Kawahashi (translation), Toshio Kobayashi (supervision), `` PIV Basics and Applications-Particle Image "Flow velocity measurement method", Springer Fairlark Tokyo, June 20, 2000 麻生智大、松島紀佐、中橋和博、「PIV風洞実験結果によるCFDの圧力推定」、航空宇宙数値シミュレーション技術シンポジウム2006論文集、pp.56-59 2006年6月23日Tomohiro Aso, Kisa Matsushima, Kazuhiro Nakahashi, “Pressure Estimation of CFD Based on PIV Wind Tunnel Experiment Results”, Aerospace Numerical Simulation Symposium 2006, pp.56-59 June 23, 2006

Claims (6)

流体場に存する物体の後流の3成分速度分布を計測するステップと、前記3成分速度分布値を入力として、数値流体解析手法により、圧力分布を計算するステップと、前記3成分速度分布値と前記圧力分布値を用いて後流積分法により、物体に作用する形状抵抗、誘導抵抗及び揚力分布を算出して得る方法。   A step of measuring a three-component velocity distribution of the wake of an object existing in a fluid field; a step of calculating a pressure distribution by a numerical fluid analysis method using the three-component velocity distribution value as an input; and the three-component velocity distribution value; A method of calculating and obtaining shape resistance, induction resistance and lift distribution acting on an object by a wake integration method using the pressure distribution value. 請求項1に記載の方法によって得られた物体に作用する形状抵抗、誘導抵抗及び揚力分布を次式により積分することにより、物体に作用する抗力及び揚力を計測する方法。
ただし、CFは抗力係数、揚力係数それぞれについてCD、CLを表し、形状抵抗係数、誘導抵抗係数それぞれについてCDP、CDIを表す。Cfは形状抵抗係数、誘導抵抗係数、揚力係数それぞれについて、Cdp、Cdi、Clを表し、Cf*Cは各係数と翼弦長の積を表す。cfは、形状抵抗係数、誘導抵抗係数それぞれについて、cdp、cdiを表し、WAは積分領域が後流領域であることを示す。
A method for measuring drag and lift acting on an object by integrating shape resistance, induction resistance and lift distribution acting on the object obtained by the method according to claim 1 according to the following equations.
However, CF represents CD and CL for drag coefficient and lift coefficient, respectively, and CDP and CDI for shape resistance coefficient and induction resistance coefficient, respectively. Cf represents Cdp, Cdi, and Cl for each of the shape resistance coefficient, the induction resistance coefficient, and the lift coefficient, and Cf * C represents the product of each coefficient and the chord length. cf represents cdp and cdi for the shape resistance coefficient and the induction resistance coefficient, respectively, and WA indicates that the integration region is the wake region.
物体後流の3成分速度分布を流体の流れを変化させることなく計測する手法として、粒子画像流速測定法、レーザドップラ流速計、2焦点式レーザ流速計、ドップラーグローバル流速計、レーザ誘起蛍光法、超音波流速計のいずれかを用いて計測した請求項1に記載の形状抵抗、誘導抵抗及び揚力分布を計測する方法。   Particle image velocimetry, laser Doppler velocimeter, two-focus laser velocimeter, Doppler global velocimeter, laser-induced fluorescence method, as a method to measure the three-component velocity distribution of the wake of the object without changing the fluid flow, The method of measuring shape resistance, induction resistance, and lift distribution according to claim 1, which is measured using any one of ultrasonic velocimeters. 流れと交叉する複数方向の計測面における物体後流の3成分速度分布値を総合することにより、流れ方向の速度変化に対し、高精度の圧力分布を推算する請求項1に記載の形状抵抗、誘導抵抗及び揚力分布を計測する方法。   The shape resistance according to claim 1, wherein a high-precision pressure distribution is estimated with respect to a velocity change in the flow direction by integrating three-component velocity distribution values of the object wake on a measurement surface in a plurality of directions intersecting with the flow. A method of measuring induction resistance and lift distribution. 流体場に存する物体の後流の3成分速度分布を計測する手段と、前記3成分速度分布値を入力として、数値流体解析手法により、圧力分布を計算する手段と、前記3成分速度分布値と前記圧力分布値を用いて後流積分法により、形状抵抗、誘導抵抗及び揚力分布を算出する手段とを備えた物体に作用する形状抵抗、誘導抵抗及び揚力分布を計測する装置。   Means for measuring the three-component velocity distribution of the wake of the object in the fluid field, means for calculating the pressure distribution by the numerical fluid analysis method using the three-component velocity distribution value as input, and the three-component velocity distribution value; An apparatus for measuring shape resistance, induction resistance and lift distribution acting on an object having means for calculating shape resistance, induction resistance and lift distribution by wake integration using the pressure distribution value. 風洞内に模型とシーディングジェネレータを配置すると共に、前記模型の後方部にレーザーライトシートを形成する手段と、該レーザーライトシートを異なる角度から撮影するステレオカメラと、制御用パソコンとを備えたものであって、該制御用パソコンはステレオ画像情報から3成分速度分布を、該3成分速度分布値を入力として数値流体解析手法により圧力分布を、前記3成分速度分布値と前記圧力分布値を用いて後流積分法により形状抵抗、誘導抵抗及び揚力分布を、さらには、これを積分することにより、物体に作用する抗力及び揚力を計測する装置。   A model and a seeding generator are arranged in a wind tunnel, provided with means for forming a laser light sheet at the rear of the model, a stereo camera for photographing the laser light sheet from different angles, and a control personal computer The personal computer for control uses a three-component velocity distribution from stereo image information, a pressure distribution by a numerical fluid analysis method using the three-component velocity distribution value as an input, and the three-component velocity distribution value and the pressure distribution value. An apparatus for measuring drag and lift acting on an object by integrating the shape resistance, induction resistance and lift distribution by the wake integration method.
JP2009091785A 2009-04-06 2009-04-06 Fluid force distribution measuring method and measuring device Expired - Fee Related JP5354659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091785A JP5354659B2 (en) 2009-04-06 2009-04-06 Fluid force distribution measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091785A JP5354659B2 (en) 2009-04-06 2009-04-06 Fluid force distribution measuring method and measuring device

Publications (2)

Publication Number Publication Date
JP2010243309A true JP2010243309A (en) 2010-10-28
JP5354659B2 JP5354659B2 (en) 2013-11-27

Family

ID=43096476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091785A Expired - Fee Related JP5354659B2 (en) 2009-04-06 2009-04-06 Fluid force distribution measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP5354659B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251877A (en) * 2011-06-03 2012-12-20 Ihi Corp Method and device for measuring shear stress distribution of flow field
FR2982024A1 (en) * 2011-10-28 2013-05-03 Airbus Operations Sas Method for simulating aerodynamic flow around aircraft to detect aerodynamic efforts exerted on horizontal tail unit of aircraft, involves determining local dynamic pressure around surface, and calculating total dynamic pressure
CN103134657A (en) * 2012-12-19 2013-06-05 中国空气动力研究与发展中心高速空气动力研究所 Rear space flow field optimizing method for flexible wall spray pipe supersonic velocity first diamond area
WO2014133424A1 (en) * 2013-02-27 2014-09-04 Volvo Truck Corporation System and method for improving aerodynamic conditions around a ground travelling vehicle
KR101772219B1 (en) * 2015-09-17 2017-09-05 한국과학기술원 System and method for measuring planar motion of ship in indoor aquarium environment
WO2020019416A1 (en) * 2018-07-26 2020-01-30 江苏大学 Device and method for detecting assembly quality of air screen cleaning system on basis of streamline pattern
CN111623952A (en) * 2020-04-29 2020-09-04 中国航天空气动力技术研究院 Three-dimensional space flow field measuring device and method in sub-span wind tunnel
CN111649903A (en) * 2020-05-29 2020-09-11 中国科学院力学研究所 Method for indirectly measuring aerodynamic drag coefficient by using dynamic model experiment
CN113111599A (en) * 2021-03-10 2021-07-13 中国科学院工程热物理研究所 High-precision hybrid testing method for global flow field of wind power blade
CN114493219A (en) * 2022-01-19 2022-05-13 华中科技大学 Inter-region transverse multi-dimensional ecological compensation standard measuring and calculating method based on entropy curve increasing surface method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092495A (en) * 2016-05-26 2016-11-09 中国人民解放军63820部队吸气式高超声速技术研究中心 The measuring method of aircraft body resistance in wind tunnel test
CN115628877A (en) * 2022-12-20 2023-01-20 中国航空工业集团公司沈阳空气动力研究所 Continuous scanning type wake measurement method and device for wing test

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011420A (en) * 1996-06-20 1998-01-16 Toshio Miyauchi Estimation method for flow around object
JP2001147234A (en) * 1999-11-22 2001-05-29 Sanpo Denki Kk Tracer-particle scattering nozzle structure and airflow measuring apparatus
JP2004155218A (en) * 2002-11-01 2004-06-03 Kawasaki Heavy Ind Ltd Simulation method of helicopter aerofoil section
JP2005147744A (en) * 2003-11-12 2005-06-09 National Maritime Research Institute Wave pressure measurement instrumentation in experimental water tank
JP2005308735A (en) * 2004-03-26 2005-11-04 Vinas Co Ltd Numerical calculation method, numerical calculation device, and numerical calculation program
JP2006275722A (en) * 2005-03-29 2006-10-12 Bridgestone Sports Co Ltd Method of simulating trajectory of golf ball, and flight simulation method for golf ball
JP2008008686A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Flow field measuring method using particle tracking method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1011420A (en) * 1996-06-20 1998-01-16 Toshio Miyauchi Estimation method for flow around object
JP2001147234A (en) * 1999-11-22 2001-05-29 Sanpo Denki Kk Tracer-particle scattering nozzle structure and airflow measuring apparatus
JP2004155218A (en) * 2002-11-01 2004-06-03 Kawasaki Heavy Ind Ltd Simulation method of helicopter aerofoil section
JP2005147744A (en) * 2003-11-12 2005-06-09 National Maritime Research Institute Wave pressure measurement instrumentation in experimental water tank
JP2005308735A (en) * 2004-03-26 2005-11-04 Vinas Co Ltd Numerical calculation method, numerical calculation device, and numerical calculation program
JP2006275722A (en) * 2005-03-29 2006-10-12 Bridgestone Sports Co Ltd Method of simulating trajectory of golf ball, and flight simulation method for golf ball
JP2008008686A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Flow field measuring method using particle tracking method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013023833; 麻生智大, 松島紀佐, 中橋和博: 'PIV風洞実験結果によるCFDの圧力推定' 宇宙航空研究開発機構特別資料 JAXA-SP- No.06-010, 20061201, Page.56-59 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251877A (en) * 2011-06-03 2012-12-20 Ihi Corp Method and device for measuring shear stress distribution of flow field
FR2982024A1 (en) * 2011-10-28 2013-05-03 Airbus Operations Sas Method for simulating aerodynamic flow around aircraft to detect aerodynamic efforts exerted on horizontal tail unit of aircraft, involves determining local dynamic pressure around surface, and calculating total dynamic pressure
US9187187B2 (en) 2011-10-28 2015-11-17 Airbus Operations Sas Method of calculating dynamic pressure at the level of an aircraft surface
CN103134657A (en) * 2012-12-19 2013-06-05 中国空气动力研究与发展中心高速空气动力研究所 Rear space flow field optimizing method for flexible wall spray pipe supersonic velocity first diamond area
WO2014133424A1 (en) * 2013-02-27 2014-09-04 Volvo Truck Corporation System and method for improving aerodynamic conditions around a ground travelling vehicle
KR101772219B1 (en) * 2015-09-17 2017-09-05 한국과학기술원 System and method for measuring planar motion of ship in indoor aquarium environment
WO2020019416A1 (en) * 2018-07-26 2020-01-30 江苏大学 Device and method for detecting assembly quality of air screen cleaning system on basis of streamline pattern
US11428603B2 (en) 2018-07-26 2022-08-30 Jiangsu University Assembly quality detecting device and method for wind screen cleaning system based on streamline pattern
CN111623952A (en) * 2020-04-29 2020-09-04 中国航天空气动力技术研究院 Three-dimensional space flow field measuring device and method in sub-span wind tunnel
CN111649903A (en) * 2020-05-29 2020-09-11 中国科学院力学研究所 Method for indirectly measuring aerodynamic drag coefficient by using dynamic model experiment
CN113111599A (en) * 2021-03-10 2021-07-13 中国科学院工程热物理研究所 High-precision hybrid testing method for global flow field of wind power blade
CN113111599B (en) * 2021-03-10 2024-01-19 中国科学院工程热物理研究所 High-precision hybrid testing method for global flow field of wind power blade
CN114493219A (en) * 2022-01-19 2022-05-13 华中科技大学 Inter-region transverse multi-dimensional ecological compensation standard measuring and calculating method based on entropy curve increasing surface method

Also Published As

Publication number Publication date
JP5354659B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5354659B2 (en) Fluid force distribution measuring method and measuring device
Raffel et al. On the applicability of background oriented optical tomography for large scale aerodynamic investigations
Hudy et al. Stochastic estimation of a separated-flow field using wall-pressure-array measurements
Zhang et al. Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil
Raffel et al. Background oriented stereoscopic schlieren (BOSS) for full scale helicopter vortex characterization
de Kat et al. Instantaneous planar pressure from PIV: analytic and experimental test-cases
Sun et al. An overview of room air motion measurement: technology and application
Hou et al. A novel single-camera approach to large-scale, three-dimensional particle tracking based on glare-point spacing
JP5437389B2 (en) Sound source distribution measuring device in 3D space
Stepanov et al. A stereo PIV system for measuring the velocity vector in complex gas flows
US8977508B2 (en) Method and system for determining a force acting on a body
Kaiser et al. Large-scale volumetric particle tracking using a single camera: analysis of the scalability and accuracy of glare-point particle tracking
Manovski et al. Smoke flow visualisation and particle image velocimetry measurements over a generic submarine model
Schaeffler et al. Isolated synthetic jet in crossflow: experimental protocols for a validation dataset
Leclaire et al. First Lagrangian Particle Tracking and Data Assimilation challenge: datasets description and evolution to an open online benchmark
Leclaire et al. First challenge on Lagrangian Particle Tracking and Data Assimilation: datasets description and planned evolution to an open online benchmark
Jenkins et al. Flow-field measurements in a wing-fuselage junction using an embedded particle image velocimetry system
Schaeffler et al. The isolated synthetic jet in crossflow: a benchmark for flow control simulation
Ferrari Image analysis techniques for the study of turbulent flows
Bartow et al. Experimental investigations of vehicle base drag reduction using passive jet boat-tail flow control
Ansell et al. Measurement of unsteady flow reattachment on an airfoil with a leading-edge horn-ice shape
Sayed et al. Flow Visualisation by Laser Sheet in a Smoke-Tunnel
Stab et al. Influence of Flat Plate Leading Edge Sweep and Boundary Layer State on Unswept Shock Boundary Layer Interaction
Funes-Gallanzi Tunnelling Velocimetry: consilience comes to the study of fluid dynamics
Sakib et al. Effect of the boundary conditions, temporal, and spatial resolution on the pressure from PIV for an oscillating flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5354659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees