JP2010243179A - Cover glass for timepiece, and method for manufacturing the cover glass - Google Patents

Cover glass for timepiece, and method for manufacturing the cover glass Download PDF

Info

Publication number
JP2010243179A
JP2010243179A JP2009088844A JP2009088844A JP2010243179A JP 2010243179 A JP2010243179 A JP 2010243179A JP 2009088844 A JP2009088844 A JP 2009088844A JP 2009088844 A JP2009088844 A JP 2009088844A JP 2010243179 A JP2010243179 A JP 2010243179A
Authority
JP
Japan
Prior art keywords
spinel
cover glass
sintered body
pores
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009088844A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Masaki Fukuma
正樹 福間
Yutaka Tsuji
裕 辻
Shigeru Nakayama
茂 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009088844A priority Critical patent/JP2010243179A/en
Publication of JP2010243179A publication Critical patent/JP2010243179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive cover glass for a timepiece which is excellent in light transmission properties, mechanical strength, abrasion resistance, and also corrosion resistance, and to provide a method for manufacturing the cover glass. <P>SOLUTION: In the cover glass for the timepiece made of spinel, comprising a spinel sintered body, the maximum diameter of pores included in the spinel sintered body is 100 μm or less, and the number of pores whose maximum diameter is 10 μm or more is not more than 2 per volume of 1 cm3 of the spinel sintered body. The method for manufacturing the cover glass for the timepiece made of spinel, wherein a relative density of a spinel molded body after a primary sintering process is 95-96%, and the relative density of the spinel-molded body after a secondary sintering process is over 99.9%, includes a process for manufacturing the spinel-molded body; a primary sintering process for sintering the spinel molded body at 1,500-1,900°C under a normal pressure or in vacuum; and a secondary sintering process for sintering the spinel molded body at 1,500-2,000°C in the pressured state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スピネル焼結体からなり、複屈折を発生せず、光透過性が高く、機械的強度に優れた時計用のカバーグラス及びその製造方法に関する。   The present invention relates to a cover glass for a watch, which is made of a spinel sintered body, does not generate birefringence, has high light transmittance, and has excellent mechanical strength, and a method for manufacturing the same.

時計用カバーガラス、特に腕時計用カバーガラスは、文字盤や指針を鮮明に視認することができ、割れ難く、表面が傷つき難く汚れ難いことが要求される。このため、時計用カバーガラスの材料としては、複屈折が発生せず、可視光のほぼ全域に亘って光透過性が高く、機械的強度および耐摩耗性に優れ、耐食性が良好な材料が要求される。   A watch cover glass, particularly a watch cover glass, is required to be able to clearly see a dial and a pointer, hardly break, have a scratched surface, and be difficult to get dirty. For this reason, materials for watch cover glass that do not generate birefringence, have high light transmittance over almost the entire visible light range, have excellent mechanical strength and wear resistance, and have good corrosion resistance are required. Is done.

そして、通常のガラスは機械的強度や耐摩耗性が充分でないため、通常のガラスに替えて表面を結晶化させた表面結晶化高強度ガラス(特許文献1)、サファイア(サファイアガラス)あるいは表面にサファイア板を接合した無機ガラス等が使用されている(特許文献2)。   And since normal glass does not have sufficient mechanical strength and wear resistance, surface-crystallized high-strength glass (Patent Document 1), sapphire (sapphire glass), or surface that has been crystallized instead of normal glass is used. An inorganic glass or the like joined with a sapphire plate is used (Patent Document 2).

特許3829338号公報Japanese Patent No. 3829338 特許2777041号公報Japanese Patent No. 2777041

しかしながら、近年の時計用カバーガラスの性能と価格に対するユーザの要求は、益々厳しくなってきている。このため、前記の材料では、必ずしもユーザの厳しい要求を充たさなくなってきている。即ち、表面を結晶化させた高強度ガラスは、光透過性が充分ではなく、生産性も良いとは言えない。また、サファイアや表面にサファイア板を接合した無機ガラスは複屈折が発生する問題がある。また、材料が高価であり、さらに高硬度で加工が困難であるため一層高価格となる。   However, user requirements for performance and price of watch cover glasses in recent years have become increasingly severe. For this reason, the above-mentioned materials do not always satisfy the strict requirements of users. That is, high-strength glass having a crystallized surface does not have sufficient light transmittance and cannot be said to have good productivity. In addition, sapphire and inorganic glass with a sapphire plate bonded to the surface have a problem that birefringence occurs. In addition, since the material is expensive, and it is difficult to process due to its high hardness, the price is further increased.

本発明は、上記従来の時計用カバーガラスの問題に鑑み、複屈折が発生せず優れた光透過性を有し、機械的強度および耐摩耗性に優れ、しかも安価な時計用カバーガラスおよびその製造方法を提供することを課題とする。   In view of the problems of the above-described conventional watch cover glass, the present invention has an excellent light transmission without birefringence, excellent mechanical strength and wear resistance, and an inexpensive watch cover glass. It is an object to provide a manufacturing method.

本発明者は、鋭意検討の結果、材料にスピネル焼結体を用い、さらにスピネル焼結体内に含まれる気孔の大きさ及びその密度(一定体積内に含まれる気孔数)を所定の範囲内とすることにより、優れた光透過性、機械的強度および耐摩耗性が得られることを見出し、以下に示す構成からなる本発明を完成した。   As a result of intensive studies, the inventor has used a spinel sintered body as a material, and further has a pore size and density (the number of pores contained in a certain volume) contained in the spinel sintered body within a predetermined range. As a result, it was found that excellent light transmittance, mechanical strength and abrasion resistance were obtained, and the present invention having the following constitution was completed.

請求項1に記載の発明は、
スピネル焼結体からなり、前記スピネル焼結体中に含有される気孔の最大径が100μm以下であり、かつ最大径10μm以上の気孔数が前記スピネル焼結体1cmあたり2.0個以下であることを特徴とするスピネル製の時計用カバーガラスである。
The invention described in claim 1
It consists of a spinel sintered body, the maximum diameter of the pores contained in the spinel sintered body is 100 μm or less, and the number of pores having a maximum diameter of 10 μm or more is 2.0 or less per 1 cm 3 of the spinel sintered body. A spinel watch cover glass made of spinel.

本発明の時計用カバーグラスは、スピネル焼結体からなるため、多結晶であり複屈折が発生せず優れた光透過性を有する。また、スピネル焼結体は機械的強度および耐摩耗性に優れるため、割れ難く、表面が傷つき難い。さらに、耐食性も良好である。   Since the watch cover glass of the present invention is made of a spinel sintered body, it is polycrystalline and does not generate birefringence and has excellent light transmittance. In addition, since the spinel sintered body is excellent in mechanical strength and wear resistance, it is difficult to crack and the surface is hardly damaged. Furthermore, the corrosion resistance is also good.

また、スピネル焼結体中に含有される気孔の最大径が100μm以下であり、かつ最大径10μm以上の気孔数がスピネル焼結体中1cm当たり2.0個以下と、従来の時計用カバーグラスに比べて光の散乱因子が低減されているため、時計用カバーガラスを通過する光の散乱が抑制され、光透過性に一層優れる。 Further, the maximum diameter of pores contained in the spinel sintered body is 100 μm or less, and the number of pores having a maximum diameter of 10 μm or more is 2.0 or less per 1 cm 3 in the spinel sintered body. Since the light scattering factor is reduced as compared with glass, scattering of light passing through the watch cover glass is suppressed, and the light transmittance is further improved.

さらに、本発明の時計用カバーガラスは、機械的強度のばらつきの指標であるワイブル係数も向上し、安定した製品が得られる。この優れた機械的性質は、気孔数が少ないことによりもたらされたものと思われる。   Furthermore, the watch cover glass of the present invention also improves the Weibull coefficient, which is an index of variation in mechanical strength, and provides a stable product. This excellent mechanical property seems to have been brought about by the low number of pores.

また、材料が安価であることに加え粉末冶金技術を用いて製造することができるため、低コストで製造することができる。また形状が限定されない。さらに、サファイアに比べて加工が容易である。   Moreover, since it can manufacture using powder metallurgy technology in addition to being inexpensive, it can manufacture at low cost. The shape is not limited. Furthermore, it is easier to process than sapphire.

本発明の時計用カバーガラス中の気孔の最大径は、時計用カバーガラスの一定の範囲を、透過光を用いて顕微鏡により観察して測定される。通常、時計用カバーガラスを、一定の体積(好ましくは、厚さ10〜15mm、長さ20mm、幅20mm)に切りだして上下面を研磨し、得られたサンプルを顕微鏡写真により観察し、その中に含まれる気孔の径を測定することにより得ることができる。気孔が球形でない場合は、気孔中の各方向の径の大きさが異なるが、その中で最大の大きさのものを最大径とする。   The maximum diameter of the pores in the watch cover glass of the present invention is measured by observing a certain range of the watch cover glass with a microscope using transmitted light. Usually, a watch cover glass is cut into a fixed volume (preferably 10 to 15 mm in thickness, 20 mm in length and 20 mm in width), the upper and lower surfaces are polished, and the obtained sample is observed with a micrograph. It can be obtained by measuring the diameter of the pores contained therein. If the pores are not spherical, the diameters in each direction in the pores are different, but the largest one is the maximum diameter.

本発明の時計用カバーガラスは、最大径が100μmを超える気孔を含まないことを特徴とするが、含まないとは、実質的に含まないとの意味であり、本発明の趣旨を損ねない範囲、即ち光の散乱因子の増大をもたらさない範囲で、最大径が100μmを超える気孔が微量に含まれていてもよい。気孔の最大径が50μm以下の場合は、光の散乱因子がさらに低減されるため好ましい。   The watch cover glass of the present invention is characterized in that it does not include pores having a maximum diameter exceeding 100 μm, but not including means that it does not substantially include and does not impair the spirit of the present invention. That is, pores having a maximum diameter exceeding 100 μm may be contained in a trace amount within a range that does not increase the light scattering factor. A maximum pore diameter of 50 μm or less is preferable because the light scattering factor is further reduced.

通常、厚さ15mm、長さ20mm、幅20mmに切りだし、上下面を研磨したサンプル10個について前記の測定を行い、8個以上のサンプルについて最大径が100μmを越える気孔が観察されない場合は、最大径が100μmを超える気孔を実質的に含まないとされる。又は、厚さ15mmであって、上下面を研磨したサンプル(複数でも単数でもよい)の40cm以上の面積について前記の測定を行い、その80%以上の体積の部分について最大径が100μmを越える気孔が観察されない場合等も、最大径が100μmを越える気孔を実質的に含まないとされる。 Usually, when the above measurement is performed on 10 samples having a thickness of 15 mm, a length of 20 mm, and a width of 20 mm, and the upper and lower surfaces are polished, and pores exceeding the maximum diameter of 100 μm are not observed for 8 or more samples, It is assumed that pores having a maximum diameter exceeding 100 μm are not substantially included. Alternatively, the above measurement is performed on an area of 40 cm 2 or more of a sample (which may be plural or singular) having a thickness of 15 mm and whose upper and lower surfaces have been polished, and the maximum diameter exceeds 80 μm for a portion having a volume of 80% or more. Even when no pores are observed, the pores having a maximum diameter exceeding 100 μm are not substantially included.

スピネル焼結体の1cmあたりの最大径10μm以上の気孔数も、スピネル焼結体の一定の体積を、透過光を用いて顕微鏡により観察して測定される。通常、スピネル焼結体を、厚さ10〜15mm、長さ20mm、幅20mmに(又は、合計の体積が前記と同じ大きさとなるように複数のスピネル焼結体を)切りだして上下面を研磨し、得られたサンプルを顕微鏡写真により観察し、観察される最大径10μm以上の気孔数が8を超えるか否かで、本発明の範囲に該当するか否かを判定する。 The number of pores having a maximum diameter of 10 μm or more per 1 cm 3 of the spinel sintered body is also measured by observing a certain volume of the spinel sintered body with a microscope using transmitted light. Usually, the spinel sintered body is cut into a thickness of 10 to 15 mm, a length of 20 mm, and a width of 20 mm (or a plurality of spinel sintered bodies so that the total volume becomes the same size as above), and the upper and lower surfaces are cut. The sample obtained after polishing is observed with a micrograph, and whether or not the number of pores having a maximum diameter of 10 μm or more exceeds 8 is determined as being within the scope of the present invention.

スピネル焼結体を形成するスピネルとは、分子式がMgO・nAl(n=1〜6)で示される化合物である。本発明においては、nの値として、1.05〜1.30が好ましく、1.07〜1.125がより好ましく、1.08〜1.09であることが特に好ましい。 The spinel forming the spinel sintered body is a compound whose molecular formula is represented by MgO.nAl 2 O 3 (n = 1 to 6). In the present invention, the value of n is preferably 1.05 to 1.30, more preferably 1.07 to 1.125, and particularly preferably 1.08 to 1.09.

スピネル焼結体中に含まれるスピネル構成元素以外の元素、即ち不純物も、気孔等の内部欠陥を形成して光の散乱因子が増大するため、時計用カバーガラスの光の透過性を低下させる。又、屈折率等にも影響を与える。これらの不純物は、原料粉末に由来して及び焼結体を作製する際に混入して、スピネル焼結体中に含まれるので、原料粉末としては高純度(好ましくは、焼結により除去されない成分についての純度が99.9質量%以上)のスピネルを用い、後述する焼結工程においても不純物の混入がないように管理することが望まれる。   Elements other than the spinel constituent elements contained in the spinel sintered body, that is, impurities, also form internal defects such as pores and increase the light scattering factor, thereby reducing the light transmittance of the watch cover glass. It also affects the refractive index and the like. Since these impurities are derived from the raw material powder and mixed in the production of the sintered body and are contained in the spinel sintered body, the raw material powder has a high purity (preferably a component that is not removed by sintering). It is desirable to use a spinel having a purity of 99.9% by mass or more) and to control so that no impurities are mixed even in the sintering step described later.

原料粉末に含まれやすい不純物及び焼結体を作製する際に混入しやすい不純物としては、具体的には、W、Co、Fe、C、Cu、Sn、Zn、Ni等を挙げることができる。焼結工程において、これらの不純物同士が合体あるいは析出して、光学的特性に悪影響を与える大きさの不純物粒子を形成し、光の散乱因子を増大させ、透過性に影響を与えるものと考えられる。好ましくは、スピネル焼結体中のこれらの不純物の含有量がそれぞれ10ppm未満、より好ましくは5ppm未満となるように、原料粉末の純度、焼結工程の管理を行う。   Specific examples of impurities that are likely to be contained in the raw material powder and impurities that are likely to be mixed when the sintered body is produced include W, Co, Fe, C, Cu, Sn, Zn, and Ni. In the sintering process, these impurities coalesce or precipitate to form impurity particles with a size that adversely affects the optical properties, increase the light scattering factor, and affect the transmission. . Preferably, the purity of the raw material powder and the sintering process are controlled so that the content of these impurities in the spinel sintered body is less than 10 ppm, more preferably less than 5 ppm.

前記のスピネル製の時計用カバーガラスは、
スピネル粉末を成形し、スピネル成形体を作製する工程、
前記スピネル成形体を、常圧以下の雰囲気又は真空中で温度範囲が1500〜1900℃で焼結する1次焼結工程、及び
1次焼結工程後のスピネル成形体を、雰囲気圧力5〜300MPa、かつ温度範囲1500〜2000℃で焼結する2次焼結工程を有し、
1次焼結工程後のスピネル成形体の相対密度が95〜96%であり、2次焼結工程後のスピネル成形体の相対密度が99.9%以上であることを特徴とする方法により製造することができる。請求項2の発明は、このスピネル製の時計用カバーガラスの製造方法に該当する。
The spinel watch cover glass is
Forming a spinel powder and producing a spinel compact,
A primary sintering step in which the spinel molded body is sintered at an atmospheric pressure or below in an atmosphere or vacuum at a temperature range of 1500 to 1900 ° C., and a spinel molded body after the primary sintering step is subjected to an atmospheric pressure of 5 to 300 MPa. And a secondary sintering step of sintering at a temperature range of 1500 to 2000 ° C.,
Manufactured by a method characterized in that the relative density of the spinel compact after the primary sintering step is 95 to 96% and the relative density of the spinel compact after the secondary sintering step is 99.9% or more. can do. The invention of claim 2 corresponds to the method of manufacturing the spinel watch cover glass.

スピネル粉末を成形しスピネル成形体を作製する工程は、例えば、スピネル粉末を分散媒に分散させてスラリーを作製し、次にこのスラリーをスプレードライ等により顆粒状とした後、この顆粒を金型に充填し、所定の形状にプレスして行うことができる。スピネル粉末を分散する分散媒としては、水や各種有機溶媒を用いることができる。   The step of forming a spinel powder by forming a spinel powder includes, for example, preparing a slurry by dispersing spinel powder in a dispersion medium, and then granulating the slurry by spray drying or the like, and then forming the granule into a mold. It is possible to carry out by pressing into a predetermined shape. As a dispersion medium for dispersing the spinel powder, water or various organic solvents can be used.

均一な分散を可能にするためポリアクリル酸アンモニウム塩(分散媒が水の場合)やオレイン酸エチル、ソルビタンモノオレート、ソルビンタントリオレート、ポリカルボン酸系(分散媒が有機溶媒の場合)等の分散剤や、顆粒の形成を容易にするためポリビニルアルコール、ポリビニルアセタール、各種アクリル系ポリマー、メチルセルロース、ポリ酢酸ビニル、ポリビニルブチラール系、各種ワックス、各種多糖類等の有機バインダーをスラリーに添加してもよい。   Polyacrylic acid ammonium salt (when the dispersion medium is water), ethyl oleate, sorbitan monooleate, sorbitan trioleate, polycarboxylic acid (when the dispersion medium is an organic solvent), etc., to enable uniform dispersion To facilitate the formation of dispersants and granules, organic binders such as polyvinyl alcohol, polyvinyl acetal, various acrylic polymers, methyl cellulose, polyvinyl acetate, polyvinyl butyral, various waxes, various polysaccharides, etc. may be added to the slurry. Good.

前記のように原料のスピネル粉末としては高純度のものが望ましいが、原料中に含まれる有機物、ハロゲンや水は1次焼結の工程で原料中より除去されスピネル焼結体の特徴を損うものではないので、1次焼結前の段階での混入は許容される。   As described above, high-purity spinel powder is desirable as the raw material, but organic matter, halogen and water contained in the raw material are removed from the raw material in the primary sintering step, and the characteristics of the spinel sintered body are impaired. Therefore, mixing in the stage before the primary sintering is allowed.

プレスの方法としては、冷間等方圧プレス(CIP)を挙げることができる。プレスの圧力は、好ましくは、1次焼結工程後のスピネル成形体の相対密度が95〜96%の範囲になる範囲から選択されるが、通常100〜300MPaである。   An example of the pressing method is cold isostatic pressing (CIP). The pressure of the press is preferably selected from the range in which the relative density of the spinel compact after the primary sintering step is in the range of 95 to 96%, but is usually 100 to 300 MPa.

所定の形状に成形の後、成形体は1次焼結される。1次焼結とは、成形体を、所定の常圧又は減圧(真空)雰囲気下、1500〜1900℃に加熱して焼結する工程である。常圧又は減圧(真空)雰囲気としては、水素等の還元雰囲気やAr等の不活性ガスの雰囲気が好ましく挙げられる。雰囲気の圧力としては、減圧(真空)が好ましく、具体的には、1〜200Pa程度が好ましい。1次焼結の時間は、1〜5時間程度が好ましい。   After molding into a predetermined shape, the molded body is primarily sintered. The primary sintering is a step of heating and sintering the molded body at 1500 to 1900 ° C. in a predetermined normal pressure or reduced pressure (vacuum) atmosphere. Preferred examples of the normal pressure or reduced pressure (vacuum) atmosphere include a reducing atmosphere such as hydrogen and an inert gas atmosphere such as Ar. The pressure of the atmosphere is preferably reduced pressure (vacuum), specifically, about 1 to 200 Pa is preferable. The primary sintering time is preferably about 1 to 5 hours.

本発明の製造方法では、1次焼結工程後のスピネル成形体(スピネル1次焼結体)の相対密度を95〜96%の範囲とすることを特徴とする。ここで相対密度とは、スピネルの理論密度(25℃で3.60g/cm)に対する実際の密度の比(理論密度比。%で表示する)を表し、例えば、相対密度95%のスピネルの密度(25℃)は3.42g/cmである。 The production method of the present invention is characterized in that the relative density of the spinel molded body (spinel primary sintered body) after the primary sintering step is in the range of 95 to 96%. Here, the relative density represents the ratio of the actual density to the theoretical density of spinel (3.60 g / cm 3 at 25 ° C.) (theoretical density ratio, expressed in%). The density (25 ° C.) is 3.42 g / cm 3 .

この相対密度が95%未満の場合は、2次焼結工程における焼結が進みにくく透明なスピネル焼結体が得られにくい。一方、この相対密度が96%を超える場合は、2次焼結工程においてスピネル成形体内に既に存在している気孔の合体が進みやすく、最大径が100μを超える気孔が生成しやすい。又気孔数も増え、スピネル焼結体1cmあたりの最大径10μm以上の気孔数が2.0個以下のスピネル焼結体が得られにくくなる。 When this relative density is less than 95%, sintering in the secondary sintering process is difficult to proceed, and it is difficult to obtain a transparent spinel sintered body. On the other hand, when the relative density exceeds 96%, the coalescence of pores already existing in the spinel molded body is likely to proceed in the secondary sintering step, and pores having a maximum diameter exceeding 100 μm are easily generated. In addition, the number of pores increases, and it becomes difficult to obtain a spinel sintered body having 2.0 or less pores having a maximum diameter of 10 μm or more per 1 cm 3 of the spinel sintered body.

1次焼結工程後のスピネル成形体の相対密度は、1次焼結前の成形体の密度や1次焼結の温度や時間により変動する。又、1次焼結前の成形体の密度は、成形時のプレスの圧力により変動する。従って、95〜96%の範囲の相対密度は、成形時のプレスの圧力や1次焼結の温度や時間を調整することにより得ることができる。   The relative density of the spinel molded body after the primary sintering step varies depending on the density of the molded body before the primary sintering, the temperature and time of the primary sintering. Further, the density of the molded body before the primary sintering varies depending on the pressure of the press at the time of molding. Therefore, a relative density in the range of 95 to 96% can be obtained by adjusting the pressure of the press during molding and the temperature and time of primary sintering.

1次焼結工程により得られたスピネル1次焼結体は、2次焼結される。2次焼結とは、成形体を、加圧下、1500〜2000℃、好ましくは1600〜1900℃に加熱して焼結する工程である。加圧の圧力としては、5〜300MPaの範囲であり、好ましくは50〜250MPa程度、より好ましくは100〜200MPa程度である。2次焼結の時間は、1〜5時間程度が好ましい。又、2次焼結の雰囲気としては、Ar等の不活性ガスの雰囲気が好ましく挙げられる。   The spinel primary sintered body obtained by the primary sintering step is secondarily sintered. The secondary sintering is a step in which the compact is heated and sintered at 1500 to 2000 ° C., preferably 1600 to 1900 ° C. under pressure. The pressurizing pressure is in the range of 5 to 300 MPa, preferably about 50 to 250 MPa, and more preferably about 100 to 200 MPa. The secondary sintering time is preferably about 1 to 5 hours. As an atmosphere for secondary sintering, an atmosphere of an inert gas such as Ar is preferable.

本発明の製造方法では、さらに、2次焼結工程後のスピネル成形体(スピネル焼結体)の相対密度を99.9%以上とすることも特徴とする。2次焼結工程後の相対密度は、2次焼結工程における圧力や温度及び2次焼結の時間により変動する。従って、99.9%以上の相対密度は、2次焼結工程における圧力や温度及び2次焼結の時間を調整することにより得ることができる。   The production method of the present invention is further characterized in that the relative density of the spinel molded body (spinel sintered body) after the secondary sintering step is 99.9% or more. The relative density after the secondary sintering process varies depending on the pressure and temperature in the secondary sintering process and the time of the secondary sintering. Accordingly, a relative density of 99.9% or more can be obtained by adjusting the pressure and temperature in the secondary sintering step and the time of secondary sintering.

以上のようにして、2次焼結工程後のスピネル焼結体の相対密度が99.9%以上となるように調整することにより、焼結工程中のスピネルの粒成長が制御され、スピネルの粒成長に伴う微細な気孔の合体を抑制することができる。その結果、最大径が100μmを超えるような気孔の発生を抑制し、又気孔数を抑制して、本発明の時計用カバーガラスを形成するスピネル焼結体を得ることができる。   As described above, by adjusting the relative density of the spinel sintered body after the secondary sintering process to be 99.9% or more, the grain growth of the spinel during the sintering process is controlled, and the spinel The coalescence of fine pores accompanying grain growth can be suppressed. As a result, it is possible to obtain a spinel sintered body that suppresses the generation of pores having a maximum diameter exceeding 100 μm and the number of pores to form the watch cover glass of the present invention.

このようにして得られたスピネル焼結体は、所定の形状への切断、研磨等の工程を経て、時計用カバーガラスに加工される。時計用カバーガラスの大きさや厚さは、適用される時計の文字盤の大きさやデザイン等に応じて決定されればよく、特に限定されない。また凸型の形状に形成されたり、文字盤のカレンダー表示等を拡大表示するためのレンズが形成されたりしてもよい。   The spinel sintered body thus obtained is processed into a watch cover glass through steps such as cutting into a predetermined shape and polishing. The size and thickness of the watch cover glass are not particularly limited as long as they are determined according to the size and design of the dial of the watch to be applied. Further, it may be formed in a convex shape, or a lens for enlarging and displaying a calendar display or the like on the dial may be formed.

また、必要に応じて反射防止コーティング層や光学的作用を行なう層をスピネル焼結体からなる時計用カバーガラスの表面に形成することもできる。例えば時計用カバーガラスとして用いられるスピネル焼結体の片面または両面に、反射防止コーティング層を形成することにより光透過機能をより向上させることができる。   Further, if necessary, an antireflection coating layer or an optically acting layer can be formed on the surface of a watch cover glass made of a spinel sintered body. For example, the light transmission function can be further improved by forming an antireflection coating layer on one side or both sides of a spinel sintered body used as a watch cover glass.

反射防止コーティング層は、例えば金属酸化物や金属弗化物の層であり、その形成方法としては、従来公知のPVD法(物理蒸着法)、具体的には、スパッタリング法、イオンプレーティング法、真空蒸着法等を用いることができる。   The antireflection coating layer is, for example, a metal oxide or metal fluoride layer, and the formation method thereof is a conventionally known PVD method (physical vapor deposition method), specifically, a sputtering method, an ion plating method, a vacuum. An evaporation method or the like can be used.

本発明の時計用カバーガラスは、気孔が抑制されたスピネル焼結体より形成されているため、複屈折が発生せず可視光の全領域に亘って光の透過性が高い。そして、機械的強度および耐摩耗性等に優れ、耐食性も良好である。   Since the watch cover glass of the present invention is formed of a spinel sintered body in which pores are suppressed, birefringence does not occur and light transmittance is high over the entire visible light region. And it is excellent in mechanical strength, abrasion resistance, etc., and also has good corrosion resistance.

本発明によれば、複屈折が発生せず優れた光透過性を有し、機械的強度および耐摩耗性に優れ、しかも安価な時計用カバーガラスを提供することができる。そして、本発明の時計用カバーガラスは、本発明のスピネル製の時計用カバーガラスの製造方法により容易に得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, birefringence does not generate | occur | produce, it has the outstanding light transmittance, it is excellent in mechanical strength and abrasion resistance, and also the inexpensive cover glass for watches can be provided. And the watch cover glass of this invention can be easily obtained with the manufacturing method of the spinel-made watch cover glass of this invention.

以下、本発明を実施するための形態について、スピネル焼結体の製造方法の一実施例に基づき説明する。なお、本発明は、以下の実施例に限定されるものではない。本発明と同一および均等の範囲内において、以下の種々の変更を加えることが可能である。   Hereinafter, the form for implementing this invention is demonstrated based on one Example of the manufacturing method of a spinel sintered compact. The present invention is not limited to the following examples. The following various modifications can be made within the same and equivalent scope as the present invention.

(実施例)
1.成形体作製工程
この例のスピネル焼結体の製造では、先ずスピネル粉末(原料粉末)が分散されたスラリーが作製される。スラリーの作製は、高純度のスピネル粉末、分散媒、分散剤等を適量配合し機械的に撹拌混合して行うことができる。
(Example)
1. Molded body production process In the production of the spinel sintered body of this example, first, a slurry in which spinel powder (raw material powder) is dispersed is produced. The slurry can be prepared by blending appropriate amounts of high-purity spinel powder, dispersion medium, dispersant, etc., and mechanically stirring and mixing.

イ.スラリーの作製
機械的な撹拌混合の方法としては、ボールミルにより混合する方法、超音波槽を用いて外部より超音波を照射する方法、超音波ホモジナイザーにより超音波を照射する方法を挙げることができる。スピネル粉末は、分散媒中で容易に分散し、均一なスラリーとなりやすいこと、セラミックスボール等を使用する分散方法は、不純物となる酸化物あるいは塩類が混入しやすいと考えられることから、超音波を用いる方法が好ましい。
I. Production of slurry Examples of the mechanical stirring and mixing method include a method of mixing by a ball mill, a method of irradiating ultrasonic waves from the outside using an ultrasonic bath, and a method of irradiating ultrasonic waves by an ultrasonic homogenizer. Since spinel powder is easily dispersed in a dispersion medium and easily becomes a uniform slurry, and a dispersion method using a ceramic ball or the like is considered to easily contain oxides or salts as impurities, ultrasonic waves are used. The method used is preferred.

撹拌混合後は、静置沈降、遠心分離、ロータリーエバポレーター等による減圧濃縮等を行い、スラリー中のスピネル濃度を高めることもできる。   After stirring and mixing, the concentration of spinel in the slurry can be increased by performing static sedimentation, centrifugation, vacuum concentration using a rotary evaporator, or the like.

本実施例では、高純度(純度99.9%以上)のスピネル粉末4750g、水(分散媒)3100g、ポリカルボン酸アンモニウム40質量%水溶液(分散剤、サンノプコ社製:商品名SN−D5468)125gを、超音波槽に入れ、超音波を照射しながら、30分間撹拌混合を行った。その後有機バインダーとしてポリビニルアルコール(クラレ社製:商品名PVA−205C)の10質量%溶液を1000gと、可塑剤としてポリエチレングリコール#400(試薬特級)を10g添加し、60分間撹拌混合してスラリーを調製した。   In this example, 4750 g of high-purity (purity 99.9% or more) spinel powder, 3100 g of water (dispersion medium), and 40 g of ammonium polycarboxylate 40% by mass aqueous solution (dispersant, manufactured by San Nopco: trade name SN-D5468) 125 g The mixture was stirred and mixed for 30 minutes while irradiating ultrasonic waves. Thereafter, 1000 g of a 10 mass% solution of polyvinyl alcohol (trade name PVA-205C, manufactured by Kuraray Co., Ltd.) as an organic binder and 10 g of polyethylene glycol # 400 (reagent special grade) as a plasticizer are added, and the slurry is stirred and mixed for 60 minutes. Prepared.

なお超音波槽としては、容量40リットルの槽を用いた。撹拌混合時間は該スラリーの量や超音波の照射量により適宜調整するべきであるが、例えばスラリー量が10リットルで、照射能力が25キロヘルツ程度の超音波槽を用いる場合、30分以上行うことが望ましい。   A tank having a capacity of 40 liters was used as the ultrasonic tank. The stirring and mixing time should be adjusted as appropriate according to the amount of slurry and the amount of ultrasonic irradiation. For example, when using an ultrasonic tank with a slurry amount of 10 liters and an irradiation capacity of about 25 kilohertz, it should be performed for 30 minutes or longer. Is desirable.

ロ.成形
次にスラリーをスプレードライにより顆粒状とし、さらに顆粒の含水率を0.5質量%に調湿した後、金型に充填し、プレスにて196MPaの圧力で1次成形し、さらに196MPaの圧力で冷間等方圧プレス(CIP)により2次成形し、スピネル成形体を得た。
B. Molding Next, the slurry is granulated by spray drying, and the moisture content of the granules is adjusted to 0.5% by mass, then filled in a mold, and primary molded with a press at a pressure of 196 MPa. Secondary forming was performed by a cold isostatic press (CIP) under pressure to obtain a spinel molded body.

2.1次焼結工程
該成形体をグラファイト製の容器に入れ、真空中(5Pa以下)で1650℃×4時間で1次焼結した。アルキメデス法にて相対密度を測定したところ、95.8%(すなわち95〜96%の範囲内)であった。
2.1 Primary Sintering Step The molded body was put in a graphite container and subjected to primary sintering in vacuum (5 Pa or less) at 1650 ° C. for 4 hours. When the relative density was measured by the Archimedes method, it was 95.8% (that is, in the range of 95 to 96%).

3.2次焼結工程
1次焼結体に、Ar雰囲気下、雰囲気圧力196MPaの条件の下、温度1650℃にて2時間、熱間等方圧プレス(HIP)による加熱、加圧を行い、2次焼結体を得た。アルキメデス法にて相対密度を測定したところ、99.95%(すなわち99.9%以上であった)。
3. Secondary Sintering Step The primary sintered body is heated and pressurized by hot isostatic pressing (HIP) at a temperature of 1650 ° C. for 2 hours under conditions of Ar atmosphere and atmospheric pressure of 196 MPa. A secondary sintered body was obtained. When the relative density was measured by the Archimedes method, it was 99.95% (that is, 99.9% or more).

4.時計用カバーガラスの作製
前記の方法で得られたスピネルの2次焼結体を、約1.2mmの厚さの板に切断し、スピネル焼結体からなる時計用カバーガラスを作製した。得られた時計用カバーガラスの両面を鏡面加工して、一辺100mmの正方形で厚さ1mmの大きさの時計用カバーガラスを得た(体積1.0cm)。
4). Production of watch cover glass The spinel secondary sintered body obtained by the above method was cut into a plate having a thickness of about 1.2 mm to produce a watch cover glass made of a spinel sintered body. Both surfaces of the obtained watch cover glass were mirror-finished to obtain a watch cover glass having a square of 100 mm on a side and a thickness of 1 mm (volume: 1.0 cm 3 ).

5.物性評価
イ.光透過性の評価
得られた時計用カバーガラスの波長550nmにおける光透過率を測定したところ、85%(厚み1.0mm)であった。
5). Physical property evaluation a. Evaluation of light transmittance When the light transmittance at a wavelength of 550 nm of the obtained watch cover glass was measured, it was 85% (thickness: 1.0 mm).

ロ.気孔の観察
光学顕微鏡(ニコン社製T−300)を使用して倍率50倍で得られた時計用カバーガラスの表面を観察し、気孔径と最大径10μm以上の気孔数を測定した。その結果、気孔の最大径は13μm以下であり、100μmを超える最大径を有する気孔は観察されず、又観察された気孔数も1個であり、1cmあたり1.25個、すなわち2個以下であった。
B. Observation of pores The surface of the watch cover glass obtained at a magnification of 50 times was observed using an optical microscope (Nikon T-300), and the pore diameter and the number of pores having a maximum diameter of 10 µm or more were measured. As a result, the maximum pore diameter is 13 μm or less, no pore having a maximum diameter exceeding 100 μm is observed, and the number of pores observed is one, 1.25 per cm 3 , ie, 2 or less. Met.

ハ.機械的強度の測定
前記の方法で得られたスピネルの2次焼結体のサンプルを用いて、JIS1601Rに準拠した3点曲げ測定を行った(n=15)。その結果、強度は426MPaであり、ワイブル係数は9であった。
C. Measurement of mechanical strength Three-point bending measurement based on JIS1601R was performed using a sample of a spinel secondary sintered body obtained by the above method (n = 15). As a result, the strength was 426 MPa and the Weibull coefficient was 9.

以上の結果が示すように、本発明の製造方法により、スピネル焼結体からなる時計用カバーガラスであって、前記スピネル焼結体中に含有される気孔の最大径が100μm以下であり、かつ前記気孔数(最大径10μm以上の気孔数)が前記スピネル焼結体1cmあたり2.0個以下であることを特徴とするスピネル焼結体が得られた。このスピネル焼結体により形成される時計用カバーガラスは、優れた光透過性、機械的強度を有し、また高いワイブル係数を有することが確認された。 As shown in the above results, according to the manufacturing method of the present invention, a watch cover glass made of a spinel sintered body, the maximum diameter of pores contained in the spinel sintered body is 100 μm or less, and A spinel sintered body characterized in that the number of pores (the number of pores having a maximum diameter of 10 μm or more) was 2.0 or less per 1 cm 3 of the spinel sintered body was obtained. It was confirmed that the timepiece cover glass formed from this spinel sintered body has excellent light transmittance and mechanical strength, and also has a high Weibull coefficient.

(比較例1〜3)
1次焼結工程後の相対密度及び2次焼結工程後の相対密度を表1に示す値になるようにした以外は、上記実施例(具体例)と同様にしてスピネル焼結体からなる時計用カバーガラスを作製し、気孔の観察及び機械的強度の測定を行った。その結果を、上記実施例(具体例)の結果とともに表1に示す。(表中の1次焼結密度、2次焼結密度は、それぞれ1次焼結工程後の相対密度(%)及び2次焼結工程後の相対密度(%)を表す。)
(Comparative Examples 1-3)
It consists of a spinel sintered body in the same manner as in the above-described example (specific example) except that the relative density after the primary sintering step and the relative density after the secondary sintering step are the values shown in Table 1. A watch cover glass was prepared, and the pores were observed and the mechanical strength was measured. The results are shown in Table 1 together with the results of the above examples (specific examples). (The primary sintering density and secondary sintering density in the table represent the relative density (%) after the primary sintering step and the relative density (%) after the secondary sintering step, respectively.)

Figure 2010243179
Figure 2010243179

表1の結果より明らかなように、本発明の製造方法による実施例では本発明のスピネル製の時計用カバーガラスが得られるが、1次焼結工程後の相対密度が95〜96%の範囲外でありかつ2次焼結工程後の相対密度が99.9%未満である比較例1〜3では、最大径が100μmより大きい気孔が生成し、又、最大径が10μm以上の気孔数も多く、本発明のスピネル製の時計用カバーガラスは得られていない。また機械的強度やワイブル係数も低いことが、表1の結果に示されている。   As is clear from the results in Table 1, in the examples according to the production method of the present invention, the spinel watch cover glass of the present invention is obtained, but the relative density after the primary sintering step is in the range of 95 to 96%. In Comparative Examples 1 to 3, which are outside and the relative density after the secondary sintering step is less than 99.9%, pores having a maximum diameter of more than 100 μm are generated, and the number of pores having a maximum diameter of 10 μm or more is also included. Many spinel watch cover glasses of the present invention have not been obtained. Also, the results of Table 1 show that the mechanical strength and the Weibull coefficient are low.

Claims (2)

スピネル焼結体からなり、前記スピネル焼結体中に含有される気孔の最大径が100μm以下であり、かつ最大径10μm以上の気孔数が前記スピネル焼結体1cmあたり2.0個以下であることを特徴とするスピネル製の時計用カバーガラス。 It consists of a spinel sintered body, the maximum diameter of the pores contained in the spinel sintered body is 100 μm or less, and the number of pores having a maximum diameter of 10 μm or more is 2.0 or less per 1 cm 3 of the spinel sintered body. A spinel watch cover glass characterized by being. スピネル粉末を成形し、スピネル成形体を作製する工程、
前記スピネル成形体を、常圧以下の雰囲気又は真空中で温度範囲が1500〜1900℃で焼結する1次焼結工程、及び
1次焼結工程後のスピネル成形体を、雰囲気圧力5〜300MPa、かつ温度範囲1500〜2000℃で焼結する2次焼結工程を有し、
1次焼結工程後のスピネル成形体の相対密度が95〜96%であり、2次焼結工程後のスピネル成形体の相対密度が99.9%以上であることを特徴とするスピネル製の時計用カバーガラスの製造方法。
Forming a spinel powder and producing a spinel compact,
A primary sintering step in which the spinel molded body is sintered at an atmospheric pressure or below in an atmosphere or vacuum at a temperature range of 1500 to 1900 ° C., and a spinel molded body after the primary sintering step is subjected to an atmospheric pressure of 5 to 300 MPa. And a secondary sintering step of sintering at a temperature range of 1500 to 2000 ° C.,
The relative density of the spinel compact after the primary sintering step is 95 to 96%, and the relative density of the spinel compact after the secondary sintering step is 99.9% or more. A method for producing a watch cover glass.
JP2009088844A 2009-04-01 2009-04-01 Cover glass for timepiece, and method for manufacturing the cover glass Pending JP2010243179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088844A JP2010243179A (en) 2009-04-01 2009-04-01 Cover glass for timepiece, and method for manufacturing the cover glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088844A JP2010243179A (en) 2009-04-01 2009-04-01 Cover glass for timepiece, and method for manufacturing the cover glass

Publications (1)

Publication Number Publication Date
JP2010243179A true JP2010243179A (en) 2010-10-28

Family

ID=43096355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088844A Pending JP2010243179A (en) 2009-04-01 2009-04-01 Cover glass for timepiece, and method for manufacturing the cover glass

Country Status (1)

Country Link
JP (1) JP2010243179A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155727A (en) * 2017-03-17 2018-10-04 巨擘科技股▲ふん▼有限公司 Input device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155727A (en) * 2017-03-17 2018-10-04 巨擘科技股▲ふん▼有限公司 Input device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5435397B2 (en) Spinel light-transmitting window material and manufacturing method
JP5563766B2 (en) Transparent spinel ceramics, method for producing the same, and optical material using the transparent spinel ceramics
US20100221530A1 (en) Sintered product with a cubic structure
US8679996B2 (en) Spinel optoceramics
JP6438588B2 (en) Translucent rare earth aluminum garnet ceramics
JP6195838B2 (en) Transparent ceramic
US20090137380A1 (en) Sintered alumina product transparent to infrared radiation and in the visible region
JP2010243179A (en) Cover glass for timepiece, and method for manufacturing the cover glass
JPWO2018168666A1 (en) Translucent ceramics sintered body and its manufacturing method
JP6269827B2 (en) LCD touch panel protective plate
WO2021111970A1 (en) Oxide sputtering target and oxide sputtering target production method
EP3310740B1 (en) Transparent ceramic material as component for a unbreakable lenses
CN101713833A (en) Optical material and optical element
JP2004323877A (en) Ito thin film manufacturing target, and method for manufacturing the same
WO2016039164A1 (en) Liquid crystal protection plate and method for producing liquid crystal protection plate
EP1996529A2 (en) A sintered and doped yttrium oxide product
JP7250434B6 (en) Optical glass, optical elements, optical instruments, methods for manufacturing optical glasses, and methods for manufacturing optical elements
WO2019187269A1 (en) Oxide sintered body, sputtering target, and transparent conductive film
JP2005272946A (en) Combined sintered target material for dielectric film and method for manufacturing the same
JP2005133105A (en) Sputtering target for depositing film having high refractive index, and its production method
TW201544486A (en) Protection plate for liquid crystal touch panel
JPWO2018008207A1 (en) Oriented alumina sintered body and method for producing the same
JP2014062007A (en) Translucent ceramic, method of producing the same, optical element and method of producing the same
WO2023032456A1 (en) Oxide sintered body, production method for same, and sputtering target material
JP2012218973A (en) METHOD FOR PRODUCING LaAlO3 CERAMIC