JP2010242708A - Air-fuel ratio control device of internal combustion engine - Google Patents

Air-fuel ratio control device of internal combustion engine Download PDF

Info

Publication number
JP2010242708A
JP2010242708A JP2009095064A JP2009095064A JP2010242708A JP 2010242708 A JP2010242708 A JP 2010242708A JP 2009095064 A JP2009095064 A JP 2009095064A JP 2009095064 A JP2009095064 A JP 2009095064A JP 2010242708 A JP2010242708 A JP 2010242708A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
range
fuel
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009095064A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009095064A priority Critical patent/JP2010242708A/en
Publication of JP2010242708A publication Critical patent/JP2010242708A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain the occurrence of a misfire, even when an error is caused in the estimate air-fuel ratio, in air-fuel ratio control of an internal combustion engine. <P>SOLUTION: In the air-fuel ratio control of the internal combustion engine, an upper limit value and a lower limit value of the takable air-fuel ratio are determined, and an air-fuel ratio range is determined by these upper limit value and lower limit value. The ignition timing is set in the timing of not causing the misfire even if the actual air-fuel ratio is any air-fuel ratio in a predetermined air-fuel ratio range. For example, when starting the internal combustion engine, a starting time air-fuel ratio range is set so that when fuel is heavy fuel, the air-fuel ratio measured when starting is set as the upper limit value, and when the fuel is light fuel, the air-fuel ratio measured when starting is set as the lower limit value. When starting the internal combustion engine, in any air-fuel ratio in the starting time air-fuel ratio range, the ignition timing is advanced to a range of not causing the misfire, and the ignition timing is delayed after starting ignition. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、内燃機関の空燃比制御装置に関する。   The present invention relates to an air-fuel ratio control apparatus for an internal combustion engine.

例えば、特許文献1には、内燃機関の空燃比を制御する技術が開示されている。具体的に、この技術の内燃機関の空燃比制御においては、内燃機関の正規空燃比の上限値、下限値が設定される。そして、一定の空燃比の濃いサイクルと薄いサイクルの間で、空燃比が上限値を上回る時限及び空燃比が下限値を下回る時限を測定する。その後、両時限を比較することで、空燃比が濃い状態にあるか薄い状態にあるかを判断し、この判断に基づいて空燃比を調整している。   For example, Patent Document 1 discloses a technique for controlling the air-fuel ratio of an internal combustion engine. Specifically, in the air-fuel ratio control of the internal combustion engine of this technique, the upper limit value and the lower limit value of the normal air-fuel ratio of the internal combustion engine are set. Then, a time period when the air-fuel ratio exceeds the upper limit value and a time period when the air-fuel ratio falls below the lower limit value are measured between a cycle where the air-fuel ratio is deep and a light cycle. Thereafter, by comparing both time periods, it is determined whether the air-fuel ratio is in a rich state or a thin state, and the air-fuel ratio is adjusted based on this determination.

特開平4−269348号公報JP-A-4-269348 特開2000−234550号公報JP 2000-234550 A 特開2008−115802号公報JP 2008-115802 A 特開平09−217640号公報JP 09-217640 A 特開2005−120886号公報JP 2005-120886 A

しかしながら、このような内燃機関の空燃比のフィードバック制御において算出される空燃比の推定値には、吸入空気量の推定誤差、エンジン回転速度の検出誤差、エンジンフリクションの推定誤差等に起因する誤差が含まれる。このため、推定空燃比に基づいて燃料噴射量や点火時期が決定され制御されることとなると、実際の空燃比は要求される空燃比とは異なるものとなり、例えばリーン失火を発生する事態を生じ得る。   However, the estimated value of the air-fuel ratio calculated in the feedback control of the air-fuel ratio of the internal combustion engine includes errors due to an intake air amount estimation error, an engine rotational speed detection error, an engine friction estimation error, and the like. included. For this reason, when the fuel injection amount and the ignition timing are determined and controlled based on the estimated air-fuel ratio, the actual air-fuel ratio differs from the required air-fuel ratio, for example, causing a lean misfire. obtain.

従って、この発明は、上記課題を解決することを目的として、推定空燃比に誤差が生じる場合にも、失火の発生を抑制するよう改良した内燃機関の空燃比制御装置を提供するものである。   Accordingly, in order to solve the above problems, the present invention provides an air-fuel ratio control apparatus for an internal combustion engine that is improved so as to suppress the occurrence of misfire even when an error occurs in an estimated air-fuel ratio.

第1の発明は、上記目的を達成するため、内燃機関の空燃比制御装置であって、
内燃機関の空燃比の取り得る範囲である空燃比範囲を推定する空燃比範囲推定手段と、
前記空燃比範囲内のいかなる空燃比においても、失火を起こさないように点火時期を設定する点火時期設定手段と、
を備えることを特徴とする。
In order to achieve the above object, a first invention is an air-fuel ratio control apparatus for an internal combustion engine,
An air-fuel ratio range estimating means for estimating an air-fuel ratio range which is a possible range of the air-fuel ratio of the internal combustion engine;
Ignition timing setting means for setting the ignition timing so as not to cause misfire at any air-fuel ratio within the air-fuel ratio range;
It is characterized by providing.

第2の発明は、第1の発明において、
前記内燃機関の始動時において、燃料が重質燃料である場合に始動時に測定される空燃比を上限値をとし、燃料が軽質燃料である場合に始動時に測定される空燃比を下限値とする、始動時空燃比範囲を設定する始動時空燃比範囲設定手段を更に備え、
前記点火時期設定手段は、
前記内燃機関の始動時に、前記始動時空燃比範囲内のいかなる空燃比においても、失火を起こさない範囲に点火時期を進角させると共に、
各気筒内の着火が開始された後、前記空燃比範囲推定手段において推定される空燃比範囲内のいかなる空燃比においても、失火を起こさない範囲で、点火時期を最大限に遅角させることを特徴とする。
According to a second invention, in the first invention,
When starting the internal combustion engine, when the fuel is heavy fuel, the upper limit is the air-fuel ratio measured at the start, and when the fuel is light fuel, the air-fuel ratio measured at the start is the lower limit. , Further comprising a starting air-fuel ratio range setting means for setting the starting air-fuel ratio range,
The ignition timing setting means includes
At the start of the internal combustion engine, at any air-fuel ratio within the starting air-fuel ratio range, the ignition timing is advanced to a range that does not cause misfire,
After ignition in each cylinder is started, the ignition timing is retarded to the maximum within a range in which no misfire occurs at any air-fuel ratio within the air-fuel ratio range estimated by the air-fuel ratio range estimation means. Features.

第1の発明によれば、空燃比制御において空燃比を推定する場合に、その空燃比が取り得る値を範囲として推定する。その上で、この空燃比範囲内のいかなる空燃比においても、失火を起こさないように点火時期が設定される。従って、空燃比の推定値の誤差等により失火が生じるのを抑えることができる。また、このように空燃比を範囲として推定し、空燃比範囲全体に応じて失火を起こさないように制御することができるため、燃料の蒸発特性ごとに制御を切り替える必要がなく、制御の工程を減らすことができる。   According to the first aspect of the invention, when the air-fuel ratio is estimated in the air-fuel ratio control, the value that the air-fuel ratio can take is estimated as a range. In addition, the ignition timing is set so that misfire does not occur at any air-fuel ratio within this air-fuel ratio range. Therefore, it is possible to suppress misfire due to an error in the estimated value of the air-fuel ratio. In addition, since the air-fuel ratio can be estimated as a range and control can be performed so as not to cause misfire according to the entire air-fuel ratio range, there is no need to switch the control for each fuel evaporation characteristic, and the control process is reduced. Can be reduced.

第2の発明によれば、始動時に空燃比範囲の幅を、燃料性状を考慮した上限値及び下限値により予め設定しておき、この範囲で失火を起こさないように制御することができる。これにより、始動時の燃料性状に応じた制御を不要とすることができる。また、筒内の着火開始後は、空燃比範囲において失火を起こさない範囲で点火時期を最大限に遅角させる。これにより、HCの排出量を低減することができる。   According to the second aspect of the invention, the range of the air-fuel ratio range can be set in advance by the upper limit value and the lower limit value in consideration of the fuel properties at the start, and control can be performed so as not to cause misfire within this range. Thereby, the control according to the fuel property at the time of starting can be made unnecessary. In addition, after the start of ignition in the cylinder, the ignition timing is retarded to the maximum in a range where no misfire occurs in the air-fuel ratio range. Thereby, the discharge amount of HC can be reduced.

この発明の実施の形態1における空燃比と点火時期との関係について説明するための図である。It is a figure for demonstrating the relationship between the air fuel ratio and ignition timing in Embodiment 1 of this invention. この発明の実施の形態2における空燃比と点火時期との関係について説明するための図である。It is a figure for demonstrating the relationship between the air fuel ratio and ignition timing in Embodiment 2 of this invention.

以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is simplified or omitted.

実施の形態1.
[推定空燃比範囲の算出方法]
内燃機関の出力トルクは、次式(1)のように、筒内空気量、点火時期、機関回転数に基づき決定される。なお、ここで、筒内空気量は別のモデル式に従って算出される推定値である。
トルク=f(筒内空気量,点火時期,推定A/F,機関回転数) ・・・(1)
Embodiment 1 FIG.
[Calculation method of estimated air-fuel ratio range]
The output torque of the internal combustion engine is determined based on the in-cylinder air amount, the ignition timing, and the engine speed, as shown in the following equation (1). Here, the in-cylinder air amount is an estimated value calculated according to another model formula.
Torque = f (In-cylinder air amount, ignition timing, estimated A / F, engine speed) (1)

また、内燃機関の出力トルクは次式(2)のように、機関回転変動と内燃機関のフリクションに基づいて算出することもできる。
J・dω/dt=トルク−フリクション ・・・(2)
なお、式(2)において、Jは内燃機関の慣性モーメント、dω/dtは角加速度であり内燃機関の機関回転数変動から算出される。フリクションは、水温と機関回転数から算出される推定値である。
Further, the output torque of the internal combustion engine can also be calculated based on the engine rotational fluctuation and the internal combustion engine friction as in the following equation (2).
J ・ dω / dt = Torque-Friction (2)
In equation (2), J is the moment of inertia of the internal combustion engine, dω / dt is the angular acceleration, and is calculated from the engine speed fluctuation of the internal combustion engine. Friction is an estimated value calculated from water temperature and engine speed.

上記式(1)、(2)により、空燃比(推定A/F)は以下のように推定される。
推定A/F=f-1(J・dω/dt+フリクション,筒内空気量,点火時期,機関回転数) ・・・(3)
From the above equations (1) and (2), the air-fuel ratio (estimated A / F) is estimated as follows.
Estimated A / F = f -1 (J ・ dω / dt + friction, cylinder air quantity, ignition timing, engine speed) (3)

ところで、上記式(3)に従って算出される推定A/Fには、角加速度dω/dt、フリクション、筒内空気量によって誤差αが発生すると考えられる。即ち、推定A/Fと実A/Fとの間には誤差αの差が生じていると考えられる。   By the way, it is considered that an error α occurs in the estimated A / F calculated according to the above equation (3) due to the angular acceleration dω / dt, the friction, and the in-cylinder air amount. That is, it is considered that there is a difference in error α between the estimated A / F and the actual A / F.

従って、例えば、実A/Fが16であるにもかかわらず、推定A/Fは14.7と算出されるといった事態を生じうる。この例のように推定A/Fが目標空燃比を示す場合、燃料噴射量は修正されないこととなる。従って、実際にはA/Fを16とする量のまま燃料が供給されることとなる。一方、このように燃料噴射量が実際にはA/Fが16に応じた量であっても、点火時期はA/Fが14.7である場合に設定されるべき点火時期のままに制御される。その結果、リーン失火を起こすことも考えられる。   Therefore, for example, although the actual A / F is 16, the estimated A / F may be calculated as 14.7. When the estimated A / F indicates the target air-fuel ratio as in this example, the fuel injection amount is not corrected. Therefore, in actuality, the fuel is supplied with the amount of A / F being 16. On the other hand, even when the fuel injection amount is actually an amount corresponding to A / F of 16, the ignition timing is controlled as it is when the A / F is 14.7. . As a result, a lean misfire may occur.

従って、この実施の形態1では、推定A/Fの算出に替えて、生じ得る筒内空燃比(即ち、実A/Fが取り得る値)の範囲全体(A/F範囲)を算出する。その上で、点火時期は、A/F範囲全体に対して失火を生じさせないようなタイミングに設定する。これにより実A/FがそのA/F範囲内のどのような値であっても、失火が生じるのが抑制される。   Therefore, in the first embodiment, instead of calculating the estimated A / F, the entire range (A / F range) of the in-cylinder air-fuel ratio (that is, the value that the actual A / F can take) is calculated. In addition, the ignition timing is set to a timing that does not cause misfire for the entire A / F range. This suppresses the occurrence of misfire regardless of the value of the actual A / F within the A / F range.

[A/F範囲の算出方法]
A/F範囲の算出は、上記式(3)の変数の誤差による推定A/Fの上限値(上限A/F)及び下限値(下限A/F)を算出することで算出される。具体的に、式(3)において比較的大きな誤差を含みやすいのが、モデル式により算出される筒内空気量と、フリクションである。また、実A/Fが大きくなるのは、実際のトルクが小さい場合であり、この場合、筒内空気量が大きい物理特性がある。従って、式(3)において、推定A/Fが最も大きくなるのは、実際のフリクションが誤差範囲の中で最低値であった場合であり、かつ実際の筒内空気量が誤差範囲の中で最大値であった場合であると考えられる。以上より、上限A/Fは式(3)において、フリクションをフリクション−Δフリクションとし、筒内空気量を筒内空気量+Δ空気量、とすることで求められる。
[A / F range calculation method]
The A / F range is calculated by calculating an upper limit value (upper limit A / F) and a lower limit value (lower limit A / F) of the estimated A / F due to the error of the variable in the above equation (3). Specifically, the in-cylinder air amount calculated by the model equation and friction are likely to include a relatively large error in equation (3). The actual A / F is increased when the actual torque is small. In this case, there is a physical characteristic that the in-cylinder air amount is large. Therefore, in Equation (3), the estimated A / F is the largest when the actual friction is the lowest value in the error range, and the actual in-cylinder air amount is within the error range. This is considered to be the maximum value. From the above, the upper limit A / F can be obtained by setting the friction as friction−Δfriction and the in-cylinder air amount as in-cylinder air amount + Δair amount in equation (3).

同様に、推定A/Fが最も小さくなるのは、実際のフリクションが誤差範囲の中で最大値であった場合であり、かつ筒内空気量が誤差範囲の中で最低値であった場合であると考えられる。従って、下限A/Fは式(3)において、フリクションをフリクション+Δフリクションとし、筒内空気量を筒内空気量−Δ空気量とすることで算出される。   Similarly, the estimated A / F is the smallest when the actual friction is the maximum value within the error range, and when the in-cylinder air amount is the minimum value within the error range. It is believed that there is. Therefore, the lower limit A / F is calculated by setting the friction as friction + Δfriction and the in-cylinder air amount as in-cylinder air amount−Δair amount in the equation (3).

なお、Δの項(即ち、Δフリクション、Δ空気量)は、共に、推定値の誤差の見積もり量であり、予め求めて制御装置に記憶しておく。なお、これらの値にはある程度の余裕を持たせて設定する。   Note that the terms of Δ (that is, Δ friction and Δ air amount) are both estimated amounts of estimated value errors, and are obtained in advance and stored in the control device. These values are set with a certain margin.

[実施の形態1の空燃比制御の手法]
図1は、この発明の実施の形態1における筒内空燃比と点火時期との関係を説明するための図である。図1において横軸は筒内空燃比であり、縦軸は点火時期を表している。図1において、算出されたA/F範囲は直線(A)により表される。
[Method of Air-Fuel Ratio Control of Embodiment 1]
FIG. 1 is a diagram for illustrating the relationship between in-cylinder air-fuel ratio and ignition timing in Embodiment 1 of the present invention. In FIG. 1, the horizontal axis represents the in-cylinder air-fuel ratio, and the vertical axis represents the ignition timing. In FIG. 1, the calculated A / F range is represented by a straight line (A).

また、筒内空燃比と、それに対する失火しない点火時期の限界値は、一点鎖線(B)、破線(C)で表される。一点鎖線(B)より点火時期が進角側の領域は失火領域であり、同様に破線(C)より点火時期が遅角側の領域は失火領域となる。また一点鎖線(D)はノックイングを起こすと予想される領域(ノック領域)を表している。   Further, the in-cylinder air-fuel ratio and the limit value of the ignition timing with which it does not misfire are represented by a one-dot chain line (B) and a broken line (C). A region where the ignition timing is advanced from the alternate long and short dash line (B) is a misfire region, and similarly, a region where the ignition timing is retarded from the broken line (C) is a misfire region. An alternate long and short dash line (D) represents a region (knock region) where knocking is expected to occur.

実施の形態1のシステムでは、算出されたA/F範囲(直線(A))全体が、一点鎖線(B)、(C)、(D)で囲まれる領域(着火領域)内に納まるように、点火時期を制御する。より具体的には、上限A/F、又は下限A/Fがこの着火領域外にある場合、その上限A/F、下限A/Fが、着火領域内に納まるように、点火時期をMBT側に近づけるように制御する。   In the system of the first embodiment, the entire calculated A / F range (straight line (A)) falls within the area (ignition area) surrounded by the alternate long and short dash lines (B), (C), and (D). Control ignition timing. More specifically, when the upper limit A / F or the lower limit A / F is outside this ignition region, the ignition timing is set to the MBT side so that the upper limit A / F and the lower limit A / F are within the ignition region. Control to be closer to.

例えば、図1においては、A/F範囲(直線(A))のように上限A/Fが失火領域となる場合、A/F範囲(A)全体が、破線(E)で表される修正A/F範囲となるように、点火時期をMBT側に進角するように補正する。   For example, in Fig. 1, when the upper limit A / F is a misfire area, as in the A / F range (straight line (A)), the entire A / F range (A) is represented by a broken line (E). Correct the ignition timing to advance to the MBT side so that it is within the A / F range.

また、A/F範囲の上限A/F及び下限A/F側の値がいずれも失火領域となる場合も考えられる。この場合、上限A/Fが着火領域内に入る点火時期範囲、下限A/Fが着火領域内に入る点火時期範囲を求め、両点火時期範囲に共通な点火時期範囲(H)を点火時期範囲として設定する。   In addition, the upper limit A / F and lower limit A / F side values of the A / F range may both be in the misfire region. In this case, the ignition timing range where the upper limit A / F falls within the ignition range and the ignition timing range where the lower limit A / F falls within the ignition range are obtained, and the ignition timing range (H) common to both ignition timing ranges is determined as the ignition timing range. Set as.

以上説明したように、実施の形態1によれば、生じ得る空燃比の範囲を推定して、このA/F範囲全体が着火領域内に収まる点火時期に設定することで、空燃比推定のずれによる失火等の発生を抑えることができる。   As described above, according to the first embodiment, the range of possible air-fuel ratios is estimated, and by setting the ignition timing within which the entire A / F range falls within the ignition region, the deviation of the air-fuel ratio estimation can be achieved. The occurrence of misfire due to can be suppressed.

なお、この実施の形態において推定A/Fの算出方法について説明したが、推定A/Fの算出方法は、上記式(1)〜(3)に説明したモデル式によって算出されるものに限るものではない。他の手法により推定A/Fを算出する場合であって、生じ得る誤差を含めたA/F範囲を算出し、このA/F範囲を着火領域内に収めることで、同様に失火の発生を抑制することができる。   Although the calculation method of the estimated A / F has been described in this embodiment, the calculation method of the estimated A / F is limited to that calculated by the model equations described in the above equations (1) to (3). is not. When calculating the estimated A / F by other methods, calculating the A / F range including the error that may occur, and placing this A / F range within the ignition region will similarly prevent misfires. Can be suppressed.

実施の形態2.
図2は、この発明の実施の形態2における筒内空燃比と点火時期との関係を説明するための図である。図1において横軸は筒内空燃比であり、縦軸は点火時期を表している。
Embodiment 2. FIG.
FIG. 2 is a diagram for explaining the relationship between the in-cylinder air-fuel ratio and the ignition timing in the second embodiment of the present invention. In FIG. 1, the horizontal axis represents the in-cylinder air-fuel ratio, and the vertical axis represents the ignition timing.

実施の形態2のシステムは、始動時の制御において実施の形態1のシステムと異なっている。具体的に、内燃機関に使用される燃料性状は様々であり、燃料性状によって、蒸発特性が異なる。このため空燃比センサが活性化するまでは検出される空燃比が燃料性状によって大きくばらつく。従って例えば、重質燃料においても失火等の不完全燃焼を起こさないように制御しようとすると、軽質燃料では排出されるHCが増加する。このため制御が複雑化し、チューニングによる工程数が増大する。   The system according to the second embodiment is different from the system according to the first embodiment in the control at the time of starting. Specifically, the fuel properties used in the internal combustion engine vary, and the evaporation characteristics differ depending on the fuel properties. For this reason, until the air-fuel ratio sensor is activated, the detected air-fuel ratio varies greatly depending on the fuel properties. Therefore, for example, if control is performed so that incomplete combustion such as misfire does not occur even in heavy fuel, HC discharged in light fuel increases. This complicates the control and increases the number of processes by tuning.

また、クランキングから燃焼が始まるまでの間、点火を行なっていないため混合気の組成が不明であり、上記式(1)によるトルクの算出はできない。したがって、着火するまでの間はA/F範囲は予め与えられた最大幅に設定する。即ち、ここでは、上限A/Fとして重質燃料の場合のA/Fを予め測定し、下限A/Fは軽質燃料の場合のA/Fを予め測定して設定しておく。   Further, since ignition is not performed from the cranking to the start of combustion, the composition of the air-fuel mixture is unknown, and the torque cannot be calculated by the above equation (1). Therefore, the A / F range is set to a predetermined maximum width until ignition occurs. That is, here, the upper limit A / F is measured in advance for A / F in the case of heavy fuel, and the lower limit A / F is set in advance by measuring the A / F for light fuel.

始動時には、図2の直線(a)に示されるように、リッチ側の最低値が所定値以上となるように進角側に制御するが、このとき、設定されたA/F上限が着火できる点火時期の範囲のうち最遅角量にまで点火時期を進角する。   At the time of starting, as shown by the straight line (a) in FIG. 2, control is performed on the advance side so that the minimum value on the rich side is not less than a predetermined value. At this time, the set A / F upper limit can be ignited. The ignition timing is advanced to the most retarded amount within the ignition timing range.

その後、着火が開始し、空燃比モニターが利用できたり、定常状態に遷移し、A/Fの範囲が小さくなったことが認められた後は、図2の直線(b)に示されるように、暖機性の良い条件へ制御を切り替える。具体的には、例えば、空燃比目標値をリーン限界値(16〜18)として燃料噴射量を決定し、この範囲に空燃比を制御する。点火時期は上限A/Fが着火する点火範囲の最遅角側(例えばBDTC-10以下程度となる)に遅角する。これにより、HCを低減しながら、暖機性のよい条件に切り替えることができる。   After that, after ignition has started and the air-fuel ratio monitor can be used, or after transition to a steady state and the A / F range has been reduced, as shown in the straight line (b) of FIG. Switch the control to a condition with good warm-up. Specifically, for example, the fuel injection amount is determined with the air-fuel ratio target value as the lean limit value (16 to 18), and the air-fuel ratio is controlled within this range. The ignition timing is retarded to the most retarded side (for example, about BDTC-10 or less) of the ignition range where the upper limit A / F ignites. Thereby, it can switch to the conditions with good warm-up property, reducing HC.

なお、以上の実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、この実施の形態において説明する構造等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。   In the above embodiment, when referring to the number of each element, quantity, quantity, range, etc., the reference is made unless otherwise specified or the number is clearly specified in principle. The invention is not limited to the numbers. Further, the structure and the like described in this embodiment are not necessarily essential to the present invention unless otherwise specified or clearly specified in principle.

Claims (2)

内燃機関の空燃比の取り得る範囲である空燃比範囲を推定する空燃比範囲推定手段と、
前記空燃比範囲内のいかなる空燃比においても、失火を起こさないように点火時期を設定する点火時期設定手段と、
を備えることを特徴とする内燃機関の空燃比制御装置。
An air-fuel ratio range estimating means for estimating an air-fuel ratio range which is a possible range of the air-fuel ratio of the internal combustion engine;
Ignition timing setting means for setting the ignition timing so as not to cause misfire at any air-fuel ratio within the air-fuel ratio range;
An air-fuel ratio control apparatus for an internal combustion engine, comprising:
前記内燃機関の始動時において、燃料が重質燃料である場合に始動時に測定される空燃比を上限値とし、燃料が軽質燃料である場合に始動時に測定される空燃比を下限値とする、始動時空燃比範囲を設定する始動時空燃比範囲設定手段を、更に備え、
前記点火時期設定手段は、
前記内燃機関の始動時に、前記始動時空燃比範囲内のいかなる空燃比においても、失火を起こさない範囲に点火時期を進角させると共に、
各気筒内の着火が開始された後、前記空燃比範囲推定手段において推定される空燃比範囲内のいかなる空燃比においても、失火を起こさない範囲で、点火時期を最大限に遅角させることを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
At the start of the internal combustion engine, when the fuel is heavy fuel, the upper limit is the air-fuel ratio measured at the start, and when the fuel is light fuel, the air-fuel ratio measured at the start is the lower limit. A starting air-fuel ratio range setting means for setting a starting air-fuel ratio range, further comprising:
The ignition timing setting means includes
At the start of the internal combustion engine, at any air-fuel ratio within the starting air-fuel ratio range, the ignition timing is advanced to a range that does not cause misfire,
After ignition in each cylinder is started, the ignition timing is retarded to the maximum within a range in which no misfire occurs at any air-fuel ratio within the air-fuel ratio range estimated by the air-fuel ratio range estimation means. 2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein
JP2009095064A 2009-04-09 2009-04-09 Air-fuel ratio control device of internal combustion engine Pending JP2010242708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009095064A JP2010242708A (en) 2009-04-09 2009-04-09 Air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009095064A JP2010242708A (en) 2009-04-09 2009-04-09 Air-fuel ratio control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010242708A true JP2010242708A (en) 2010-10-28

Family

ID=43095959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009095064A Pending JP2010242708A (en) 2009-04-09 2009-04-09 Air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010242708A (en)

Similar Documents

Publication Publication Date Title
JP2008069713A (en) Combustion control device of internal combustion engine
JP2009174397A (en) Misfire detection device for internal combustion engine
JP2005299511A (en) Engine misfire detection device and engine combustion control device
JP2009293501A (en) Misfire detecting device for multicylinder internal combustion engine
US10273929B2 (en) Ignition timing control apparatus for internal combustion engine
JP4096942B2 (en) Fuel injection control device for internal combustion engine
JP2007127007A (en) Control device for internal combustion engine
JP2006312919A (en) Engine controller
JP2018131948A (en) Control device for internal combustion engine
JP2010156248A (en) Control device for internal combustion engine
JP2011157852A (en) Control device of internal combustion engine
JP2008038732A (en) Fuel control device for internal combustion engine
JP2010242708A (en) Air-fuel ratio control device of internal combustion engine
JP2012219757A (en) Internal combustion engine control device
JP6876503B2 (en) Internal combustion engine control device
JP2009185771A (en) Fuel injection control device of internal combustion engine
JP2006002610A (en) Engine starting performance improving device
JP2014137020A (en) Control device and control method of internal combustion engine
JP4777919B2 (en) Fuel control device for internal combustion engine
JP4803117B2 (en) Start control device for internal combustion engine
JP6077371B2 (en) Control device for internal combustion engine
JP2009250164A (en) Control device of internal combustion engine
JP2007023834A (en) Control device of internal combustion engine
US8903628B2 (en) Diagnostic method and diagnostic system for multicylinder internal combustion engine
JP6973228B2 (en) Internal combustion engine knocking determination device