JP2010242658A - System for raising temperature of exhaust emission control catalyst - Google Patents

System for raising temperature of exhaust emission control catalyst Download PDF

Info

Publication number
JP2010242658A
JP2010242658A JP2009093707A JP2009093707A JP2010242658A JP 2010242658 A JP2010242658 A JP 2010242658A JP 2009093707 A JP2009093707 A JP 2009093707A JP 2009093707 A JP2009093707 A JP 2009093707A JP 2010242658 A JP2010242658 A JP 2010242658A
Authority
JP
Japan
Prior art keywords
fuel
catalyst
exhaust
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009093707A
Other languages
Japanese (ja)
Inventor
Kenichi Tsujimoto
健一 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009093707A priority Critical patent/JP2010242658A/en
Publication of JP2010242658A publication Critical patent/JP2010242658A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature raising system suppressing deterioration of exhaust emission when burning fuel added to exhaust gas flowing in an exhaust passage during a request for raising temperature of an exhaust emission control catalyst. <P>SOLUTION: When the temperature rise of a DPNR (Diesel Particulate NOx Reduction) catalyst 4 is requested, fuel combustion control is performed so that fuel added by a fuel adding valve 5 is burnt by ignition of a glow plug 6. A small-diameter catalyst 7 is so disposed that combustion gas generated in the fuel combustion control and fuel contained in the combustion gas are introduced. Fuel is added by the fuel adding valve 5 so that when the fuel combustion control is performed, an air-fuel ratio of exhaust gas passing through the small-diameter catalyst 7 is made to be rich, and an air-fuel ratio of the whole exhaust gas led to flow into the DPNR catalyst 4 is made to be lean. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気ガスを浄化する排気浄化触媒の昇温システムに関する。   The present invention relates to a temperature raising system for an exhaust purification catalyst that purifies exhaust gas from an internal combustion engine.

内燃機関の排気ガスを浄化する排気浄化触媒を昇温させる技術として、燃焼バーナ装置によって流入する排気ガスの温度を上昇させる技術が知られている。特許文献1には、燃料を噴射するインジェクタ及びこの燃料への着火装置(グロープラグ)を備えたバーナ装置を排気浄化装置の上流側に配置する構成が開示されている。   As a technique for raising the temperature of an exhaust purification catalyst for purifying exhaust gas of an internal combustion engine, a technique for raising the temperature of exhaust gas flowing in by a combustion burner device is known. Patent Document 1 discloses a configuration in which a burner device including an injector that injects fuel and an ignition device (glow plug) for the fuel is arranged on the upstream side of the exhaust purification device.

特公平3−10845号公報Japanese Patent Publication No. 3-10845

ここで、排気浄化触媒より上流側の排気通路に燃料添加弁及び着火装置を配置し、排気浄化触媒の昇温要求時に着火装置による着火によって燃料添加弁が添加した燃料を燃焼させる燃料燃焼制御を実行し、生成された高温の燃焼ガスを排気浄化触媒に供給する昇温システムについて考える。かかる燃料燃焼制御の実行に際して、排気浄化触媒に流入する排気ガス全体の空燃比(以下、「全体空燃比」という)をリッチ空燃比としたリッチ燃焼を行うと、該流入する排気ガスに含まれるHC・COが排気浄化触媒にて浄化されずに下流へとすり抜けてしまい、エミッションが悪化するおそれがある。一方、燃料燃焼制御の実行に際して、全体空燃比をリーン空燃比としたリーン燃焼を行うと、その背反としてNOxが多量に生成されることが予想される。   Here, a fuel addition valve and an ignition device are arranged in the exhaust passage upstream of the exhaust purification catalyst, and fuel combustion control is performed so that the fuel added by the fuel addition valve is combusted by ignition by the ignition device when the temperature increase of the exhaust purification catalyst is requested. Consider a temperature raising system that executes and supplies the generated high-temperature combustion gas to an exhaust purification catalyst. When the fuel combustion control is executed, if rich combustion is performed with the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst as a rich air-fuel ratio (hereinafter referred to as “total air-fuel ratio”), it is included in the inflowing exhaust gas. There is a possibility that the HC / CO is not purified by the exhaust purification catalyst but slips downstream and the emission deteriorates. On the other hand, when performing lean combustion with the entire air-fuel ratio being the lean air-fuel ratio when executing the fuel combustion control, it is expected that a large amount of NOx is generated as a contradiction.

本発明は上記の実情に鑑みてなされたものであり、その目的は、排気浄化触媒の昇温要求時に排気通路を流れる排気ガスに添加した燃料を燃焼させる際に、排気エミッションが悪化することを抑制できる昇温システムを提供することである。   The present invention has been made in view of the above circumstances, and its purpose is to prevent exhaust emission from deteriorating when the fuel added to the exhaust gas flowing through the exhaust passage is combusted when a temperature increase request for the exhaust purification catalyst is required. It is to provide a temperature rising system that can be suppressed.

上記した課題を解決するために、本発明にかかる排気浄化触媒の昇温システムは、以下の手段を採用した。   In order to solve the above-described problems, the temperature raising system for an exhaust purification catalyst according to the present invention employs the following means.

すなわち、内燃機関の排気通路に設けられている排気浄化触媒と、前記排気浄化触媒より上流側の排気通路に設けられており、排気通路を流れる排気ガスに燃料を添加する燃料添加弁と、前記排気浄化触媒より上流側の排気通路に設けられており、前記燃料添加弁から添加された燃料に着火する着火装置と、前記燃料添加弁及び着火装置より下流側であって前記排気浄化触媒より上流側の排気通路に設けられており、該排気通路を流れる排気ガスの一部のみが導かれるNOx還元能を有する前段分流触媒と、前記排気浄化触媒の昇温要求時に、前記着火装置による着火によって前記燃料添加弁が添加した燃料を燃焼させる燃料燃焼制御を実施する制御手段と、を備え、前記前段分流触媒は、前記燃料燃焼制御において生成された燃焼ガス及び該燃焼ガスに含まれる燃料が導入されるように配置されており、前記制御手段は、燃料燃焼制御の実施に際して、前記前段分流触媒を通過する排気ガスの空燃比(以下、「分流ガス空燃比」という)がリッチ空燃比となり、且つ前記排気浄化触媒に流入する排気ガス全体の空燃比(全体空燃比)がリーン空燃比となるように、前記燃料添加弁に燃料を添加させることを特徴とする。   That is, an exhaust purification catalyst provided in an exhaust passage of an internal combustion engine, a fuel addition valve provided in an exhaust passage upstream of the exhaust purification catalyst, for adding fuel to exhaust gas flowing through the exhaust passage, An ignition device provided in an exhaust passage upstream of the exhaust purification catalyst, ignites the fuel added from the fuel addition valve, and downstream of the fuel addition valve and ignition device and upstream of the exhaust purification catalyst And a pre-stage shunt catalyst having NOx reduction ability that leads only part of the exhaust gas flowing through the exhaust passage, and when the temperature of the exhaust purification catalyst is raised by ignition by the ignition device Control means for performing fuel combustion control for combusting the fuel added by the fuel addition valve, and the pre-stage shunt catalyst includes the combustion gas generated in the fuel combustion control and The control means is arranged so that fuel contained in the combustion gas is introduced, and when the fuel combustion control is performed, the control means performs an air-fuel ratio of the exhaust gas that passes through the pre-stage shunt catalyst (hereinafter referred to as “divided gas air-fuel ratio”). Is a rich air-fuel ratio, and fuel is added to the fuel addition valve so that the entire air-fuel ratio (total air-fuel ratio) flowing into the exhaust purification catalyst becomes a lean air-fuel ratio. .

燃料燃焼制御の実施に際し、全体空燃比がリーン空燃比となるリーン燃焼が行われるため、排気ガスに含まれるHC・COが排気浄化触媒において酸化される。よって、排気ガスに含まれるHC・COが浄化されないまま大気中に排出されることを抑制することができる。   When the fuel combustion control is performed, lean combustion is performed in which the overall air-fuel ratio becomes the lean air-fuel ratio, so that HC / CO contained in the exhaust gas is oxidized in the exhaust purification catalyst. Therefore, it is possible to prevent HC / CO contained in the exhaust gas from being discharged into the atmosphere without being purified.

また、前段分流触媒には排気通路を流れる排気ガスの一部のみが導かれるところ、燃料燃焼制御において生成された燃焼ガス及び該燃焼ガスに含まれる燃料が導入されるように配置されている。従って、燃料燃焼制御時に前段分流触媒を通過する排気ガスを、該前段分流触媒を迂回する排気ガスに比べてその空燃比を相対的に低下させることができる。これにより、燃料燃焼制御時にリーン燃焼を行いつつも、分流ガス空燃比がリッチ空燃比となるように燃料添加弁からの燃料を添加させることができる。その結果、燃料燃焼制御時に、前段分流触媒内部を還元雰囲気とすることができる。従って、リーン燃焼によって生成されたNOxを、前段分流触媒において還元し、浄化することができる。   Further, when only a part of the exhaust gas flowing through the exhaust passage is guided to the upstream branching catalyst, it is arranged so that the combustion gas generated in the fuel combustion control and the fuel contained in the combustion gas are introduced. Therefore, the air-fuel ratio of the exhaust gas that passes through the front-stage shunt catalyst during fuel combustion control can be relatively lowered as compared with the exhaust gas that bypasses the front-stage shunt catalyst. As a result, it is possible to add the fuel from the fuel addition valve so that the split gas air-fuel ratio becomes a rich air-fuel ratio while performing lean combustion during fuel combustion control. As a result, during the fuel combustion control, the inside of the upstream branch catalyst can be made a reducing atmosphere. Therefore, the NOx generated by the lean combustion can be reduced and purified by the upstream branch catalyst.

なお、前段分流触媒において浄化されるNOxには、燃料燃焼制御におけるリーン燃焼によって生成されたNOxの他、機関燃焼時に燃焼室で生成されたNOxも含まれる。本発明によれば、内燃機関の燃焼室内で生成されて排気通路に排出されたNOxに関しても、燃料燃焼制御のリーン燃焼によって生成されたNOxと同様、前段分流触媒において浄化することができる。   Note that the NOx to be purified in the front-stage branching catalyst includes NOx generated in the combustion chamber during engine combustion, in addition to NOx generated by lean combustion in fuel combustion control. According to the present invention, NOx generated in the combustion chamber of the internal combustion engine and discharged into the exhaust passage can be purified by the pre-stage shunt catalyst, similarly to NOx generated by lean combustion in the fuel combustion control.

ここで、前段分流触媒におけるNOxの浄化性能は、該前段分流触媒を通過する排気ガスの流速によって影響を受ける。他の条件が同等であれば、内燃機関から排出される排気ガス量が多いほど、前段分流触媒を通過する排気ガスの流速が速くなるため、NOxの浄化性能が低下する傾向がある。そこで、本発明において、前記制御手段は、前記内燃機関から排出される排気ガス量が多い場合には少ない場合に比べて、燃料燃焼制御時における前記前段分流触媒の床温が高くなるように前記燃料添加弁に燃料を添加させると良い。また、制御手段は、内燃機関から排出される排気ガス量が多いほど、燃料燃焼制御時における前段分流触媒の床温が高くなるように燃料添加弁に燃料を添加させても良い。   Here, the NOx purification performance of the upstream branch catalyst is affected by the flow rate of the exhaust gas passing through the upstream branch catalyst. If the other conditions are the same, the greater the amount of exhaust gas discharged from the internal combustion engine, the higher the flow rate of the exhaust gas that passes through the upstream branch catalyst, and thus the NOx purification performance tends to decrease. Therefore, in the present invention, the control means is configured so that the bed temperature of the upstream branch catalyst during fuel combustion control is higher when the amount of exhaust gas discharged from the internal combustion engine is large than when the amount is small. It is preferable to add fuel to the fuel addition valve. Further, the control means may add the fuel to the fuel addition valve such that the larger the amount of exhaust gas discharged from the internal combustion engine, the higher the bed temperature of the upstream branching catalyst at the time of fuel combustion control.

前段分流触媒の床温がより高温となるように燃料添加弁による燃料添加を行えば、前段分流触媒を通過する排気ガスの通過抵抗がより増大する。その結果、前段分流触媒に対して排気ガスが流入しにくくなり、該前段分流触媒を迂回する排気ガスの量が増加するようになる。その結果、前段分流触媒を通過する排気ガスの流速が低下する。これによれば、内燃機関から排出される排気ガス量が多い場合であっても、NOxの浄化性能が低下することが抑制される。つまり、内燃機関からの排気ガス量の増減に関わらず、NOx浄化性能を常に高水準に維持することができる。   If fuel addition is performed by the fuel addition valve so that the bed temperature of the upstream branch catalyst becomes higher, the passage resistance of the exhaust gas passing through the upstream branch catalyst is further increased. As a result, it becomes difficult for the exhaust gas to flow into the upstream branch catalyst, and the amount of exhaust gas that bypasses the upstream branch catalyst increases. As a result, the flow rate of the exhaust gas that passes through the upstream branch catalyst decreases. According to this, even when the amount of exhaust gas discharged from the internal combustion engine is large, it is possible to suppress the NOx purification performance from being lowered. That is, the NOx purification performance can always be maintained at a high level regardless of the increase or decrease in the amount of exhaust gas from the internal combustion engine.

本発明によれば、排気浄化触媒の昇温要求時に排気通路を流れる排気ガスに添加した燃料を燃焼させる際に、排気エミッションが悪化することを抑制できる昇温システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when burning the fuel added to the exhaust gas which flows through an exhaust passage at the time of the temperature increase request | requirement of an exhaust gas purification catalyst, the temperature increase system which can suppress that exhaust emission deteriorates can be provided.

実施例1における排気浄化触媒の昇温システムが適用される内燃機関及びその排気系の概略構成を示した図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which a temperature raising system for an exhaust purification catalyst in Embodiment 1 is applied and its exhaust system. 燃料添加弁、グロープラグ、小径触媒の構成を説明する説明図である。It is explanatory drawing explaining the structure of a fuel addition valve, a glow plug, and a small diameter catalyst. 燃料燃焼制御ルーチンを示したフローチャート図である。It is the flowchart figure which showed the fuel combustion control routine. 燃料燃焼制御時における排気ガス量Gaと小径触媒床温THcとの関係を例示したマップである。It is the map which illustrated the relationship between the exhaust gas amount Ga at the time of fuel combustion control, and the small diameter catalyst bed temperature THc.

以下に図面を参照して、この発明を実施するための形態を例示的に詳しく説明する。尚、本実施の形態に記載されている構成要素の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。   DETAILED DESCRIPTION Exemplary embodiments for carrying out the present invention will be described in detail below with reference to the drawings. It should be noted that the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are intended to limit the technical scope of the invention only to those unless otherwise specified. is not.

<実施例1>
図1は、本実施例における排気浄化触媒の昇温システムが適用される内燃機関及びその排気系の概略構成を示した図である。内燃機関1は車両駆動用のディーゼルエンジンである。内燃機関1には、該内燃機関1の燃焼室からの排気ガスが排出される排気通路3が接続されている。
<Example 1>
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which a temperature raising system for an exhaust purification catalyst in the present embodiment is applied and its exhaust system. The internal combustion engine 1 is a diesel engine for driving a vehicle. An exhaust passage 3 through which exhaust gas from the combustion chamber of the internal combustion engine 1 is discharged is connected to the internal combustion engine 1.

排気通路3は図示しないマフラーに接続されており、排気通路3の途中には、排気ガスに含まれる煤等の粒子状物質(PM)を除去するフィルタに、吸蔵還元型NOx触媒(以下、「NOx触媒」と称呼する)を担持して構成されるDPNR( Diesel Particulate NOx Reduction )触媒が設けられている。DPNR触媒4に担持されたNOx触媒は、流入する排気ガスの空燃比がリーン空燃比のときにNOxを吸蔵する。また、NOx触媒は、流入する排気ガスの空燃比がストイキ或いはリッチ空燃比まで低下すると吸蔵しているNOxを放出し、周囲に還元成分(例えば、燃料等)が存在することでそのNOxを還元する。本実施例においてはNOx触媒4が本発明における排気浄化触媒に対応している。   The exhaust passage 3 is connected to a muffler (not shown), and in the middle of the exhaust passage 3, a NOx storage reduction catalyst (hereinafter referred to as “hereinafter referred to as“ NOx catalyst ”) is attached to a filter that removes particulate matter (PM) such as soot contained in the exhaust gas. A DPNR (Diesel Particulate NOx Reduction) catalyst is provided, which is configured to carry a "NOx catalyst". The NOx catalyst carried on the DPNR catalyst 4 occludes NOx when the air-fuel ratio of the inflowing exhaust gas is a lean air-fuel ratio. Further, the NOx catalyst releases the stored NOx when the air-fuel ratio of the inflowing exhaust gas decreases to a stoichiometric or rich air-fuel ratio, and the NOx is reduced by the presence of reducing components (for example, fuel) around it. To do. In this embodiment, the NOx catalyst 4 corresponds to the exhaust purification catalyst in the present invention.

DPNR触媒4より上流側の排気通路3には、液体の燃料(軽油)を噴射させることで排気ガスに燃料を添加する燃料添加弁5が設置されている。燃料添加弁5による排気ガスへの燃料添加は、DPNR触媒4に吸蔵されたNOxを還元するNOx還元処理やSOx被毒を回復させるSOx被毒回復処理を行う場合の他、DPNR触媒4を昇温させる制御を行う際にも行われる。   A fuel addition valve 5 is provided in the exhaust passage 3 upstream of the DPNR catalyst 4 to add fuel to the exhaust gas by injecting liquid fuel (light oil). The fuel addition to the exhaust gas by the fuel addition valve 5 can be performed by performing NOx reduction processing for reducing NOx occluded in the DPNR catalyst 4 or SOx poisoning recovery processing for recovering SOx poisoning, as well as increasing the DPNR catalyst 4. It is also performed when controlling the temperature.

排気通路3における燃料添加弁5とDPNR触媒4との間には、バッテリ(図示省略)からの電力供給によって発熱部60が発熱し、燃料添加弁5から添加された燃料に着火するグロープラグ6が設けられている。本実施例においてはグロープラグ6が本発明における着火装置に対応している。排気通路3におけるグロープラグ6とDPNR触媒4との間には、排気通路3の内径よりも径の小さな小径触媒7が配置されている。この小径触媒7は、周囲雰囲気が還元雰囲気であるときにNOx還元能を有する触媒である。ここでいう還元雰囲気とは、流入する排気ガスの空燃比がストイキ或いはリッチ空燃比の状態で、周囲に還元成分が存在している雰囲気を意味する。   Between the fuel addition valve 5 and the DPNR catalyst 4 in the exhaust passage 3, the heat generating portion 60 generates heat due to power supply from a battery (not shown), and the glow plug 6 ignites the fuel added from the fuel addition valve 5. Is provided. In this embodiment, the glow plug 6 corresponds to the ignition device according to the present invention. A small-diameter catalyst 7 having a diameter smaller than the inner diameter of the exhaust passage 3 is disposed between the glow plug 6 and the DPNR catalyst 4 in the exhaust passage 3. The small-diameter catalyst 7 is a catalyst having NOx reducing ability when the ambient atmosphere is a reducing atmosphere. The reducing atmosphere here means an atmosphere in which the reducing component exists in the surroundings when the air-fuel ratio of the inflowing exhaust gas is stoichiometric or rich.

図2は、燃料添加弁、グロープラグ、小径触媒の構成を説明する説明図である。排気通路3において、小径触媒7が配置される部分はいわゆる二重管構造となっており、排気通路3の流路断面略中央に小径触媒7が配置されている。小径触媒7の外周には、排気ガスに小径触媒7を迂回させてDPNR触媒4を導くための迂回通路30が形成されている。すなわち、小径触媒7は、排気通路3を流れる排気ガスの全量ではなくその一部のみが通過するように形成された触媒であるといえる。本実施例においては小径触媒7が本発明における前段分流触媒に相当する。   FIG. 2 is an explanatory diagram illustrating the configuration of the fuel addition valve, the glow plug, and the small-diameter catalyst. In the exhaust passage 3, a portion where the small diameter catalyst 7 is disposed has a so-called double pipe structure, and the small diameter catalyst 7 is disposed substantially at the center of the cross section of the exhaust passage 3. On the outer periphery of the small-diameter catalyst 7, a bypass passage 30 is formed for guiding the DPNR catalyst 4 by bypassing the small-diameter catalyst 7 to the exhaust gas. That is, it can be said that the small-diameter catalyst 7 is a catalyst formed so that only a part of the exhaust gas flowing through the exhaust passage 3 passes through a part thereof. In this embodiment, the small-diameter catalyst 7 corresponds to the upstream branching catalyst in the present invention.

内燃機関1には、該内燃機関1の運転条件や運転者の要求に応じて運転状態を制御するための電子制御ユニットであるECU(Electronic Control Unit)10が併設されてい
る。このECU10は、内燃機関1の制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成される。燃料添加弁5及びグロープラグ6は電気配線を介してECU10と接続されており、該
ECU10によって制御される。
The internal combustion engine 1 is provided with an ECU (Electronic Control Unit) 10 which is an electronic control unit for controlling the operation state according to the operation conditions of the internal combustion engine 1 and the driver's request. The ECU 10 includes a CPU that executes various arithmetic processes related to the control of the internal combustion engine 1, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores arithmetic results of the CPU, and the like. An input / output port for inputting / outputting signals is provided. The fuel addition valve 5 and the glow plug 6 are connected to the ECU 10 via electric wiring and are controlled by the ECU 10.

また、排気通路3における小径触媒7とDPNR触媒4との間の部分には、排気ガスの温度に対応する電気信号を出力する温度センサ8が配置されている。この温度センサ8は、電気配線を介してECU10と接続されている。ECU10は、温度センサ8の出力信号に基づいてDPNR触媒4の温度を推定することができる。   Further, a temperature sensor 8 that outputs an electrical signal corresponding to the temperature of the exhaust gas is disposed in a portion of the exhaust passage 3 between the small diameter catalyst 7 and the DPNR catalyst 4. The temperature sensor 8 is connected to the ECU 10 through electric wiring. The ECU 10 can estimate the temperature of the DPNR catalyst 4 based on the output signal of the temperature sensor 8.

以下、DPNR触媒4の昇温させる際にECU10が実行する燃料燃焼制御について説明する。この燃料燃焼制御はDPNR触媒4への昇温要求時に実施される制御であり、具体的には燃料添加弁5から排気ガスへと添加させた燃料をグロープラグ6による着火によって燃焼させ、燃料と共に高温の燃焼ガスをDPNR触媒4に供給することでDPNR触媒4を昇温させる。DPNR触媒4への昇温要求は、例えばDPNR触媒4の温度が規定温度以下であるときに出される。この規定温度は、DPNR触媒4の活性が低いと判断できる閾値としての温度であり、予め実験などの経験則に基づいて設定しておくことができる。   Hereinafter, fuel combustion control executed by the ECU 10 when the temperature of the DPNR catalyst 4 is raised will be described. This fuel combustion control is performed when a temperature increase request to the DPNR catalyst 4 is made. Specifically, the fuel added from the fuel addition valve 5 to the exhaust gas is combusted by ignition by the glow plug 6, and together with the fuel. The DPNR catalyst 4 is heated by supplying high-temperature combustion gas to the DPNR catalyst 4. The temperature increase request to the DPNR catalyst 4 is issued, for example, when the temperature of the DPNR catalyst 4 is not more than a specified temperature. This specified temperature is a temperature as a threshold at which it can be determined that the activity of the DPNR catalyst 4 is low, and can be set in advance based on empirical rules such as experiments.

燃料燃焼制御の実行に際し、DPNR触媒4に流入する排気ガスの全体の空燃比(以下、「全体空燃比」と称呼する)に着目する。この全体空燃比は、燃料添加弁5により燃料が添加された排気ガスの燃焼時における空燃比に略等しい。全体空燃比が理論空燃比よりも低いリッチ空燃比とした燃焼(以下、「リッチ燃焼」という)を行うと、DPNR触媒4に流入する排気ガスの酸素量が不足し、同排気ガスに含まれるHC、COを充分に酸化させることができない。そうすると、排気ガスに含まれるHC、COがDPNR触媒4の下流側にすり抜けてしまい、排気ミッションの悪化を招くおそれがある。   When executing the fuel combustion control, attention is paid to the entire air-fuel ratio of exhaust gas flowing into the DPNR catalyst 4 (hereinafter referred to as “total air-fuel ratio”). This total air-fuel ratio is substantially equal to the air-fuel ratio at the time of combustion of the exhaust gas to which fuel is added by the fuel addition valve 5. When combustion is performed with a rich air / fuel ratio lower than the stoichiometric air / fuel ratio (hereinafter referred to as “rich combustion”), the amount of oxygen in the exhaust gas flowing into the DPNR catalyst 4 becomes insufficient and is included in the exhaust gas. HC and CO cannot be oxidized sufficiently. As a result, HC and CO contained in the exhaust gas pass through to the downstream side of the DPNR catalyst 4, which may cause deterioration of the exhaust mission.

そこで、本実施例の燃料燃焼制御では、全体空燃比が理論空燃比より高いリーン空燃比とした燃焼(以下、「リーン燃焼」という)を行うことで上記不具合を回避する。ここで、リーン燃焼を行うと、その背反としてNOxが生成され易くなる。そこで、本実施例に係る昇温システムでは、リーン燃焼の実施によって生成されたNOxを小径触媒7にて浄化させるようにした。   Therefore, in the fuel combustion control of the present embodiment, the above problem is avoided by performing combustion with a lean air-fuel ratio in which the overall air-fuel ratio is higher than the stoichiometric air-fuel ratio (hereinafter referred to as “lean combustion”). Here, when lean combustion is performed, NOx is easily generated as a contradiction. Therefore, in the temperature raising system according to the present embodiment, NOx produced by the lean combustion is purified by the small diameter catalyst 7.

燃料燃焼制御時に生成されたNOxを小径触媒7において浄化させるには、小径触媒7の周囲雰囲気を還元雰囲気にする必要がある。そこで、ECU10は、全体空燃比をリーン空燃比としつつも小径触媒7を通過する排気ガスの空燃比(以下、「分流ガス空燃比」という)がリッチ空燃比となるように燃料燃焼制御を実施する。   In order to purify the NOx generated during the fuel combustion control in the small diameter catalyst 7, the ambient atmosphere of the small diameter catalyst 7 needs to be a reducing atmosphere. Therefore, the ECU 10 performs fuel combustion control so that the air-fuel ratio of the exhaust gas passing through the small-diameter catalyst 7 (hereinafter referred to as “divided gas air-fuel ratio”) becomes a rich air-fuel ratio while setting the overall air-fuel ratio to be a lean air-fuel ratio. To do.

図2を参照して具体的に説明すると、燃料添加弁5の噴射孔50、グロープラグ6の発熱部60、小径触媒7の上流端面70の中央部は、排気通路3の長手方向に沿って略一直線上に配置されている。ECU10は、DPNR触媒4への昇温要求を検出すると内燃機関1の運転状態を検出する。そして、内燃機関1の運転状態に基づいて燃料燃焼制御に係る目標燃料添加量を算出する。この目標燃料添加量は、全体空燃比がリーン空燃比となるような燃料添加量の目標値である。この目標燃料添加量は、同時に、燃料燃焼制御時の分流ガス空燃比がリッチ空燃比となるような燃料添加量の目標値でもあるが、その点に関しては後述する。   Specifically, referring to FIG. 2, the injection hole 50 of the fuel addition valve 5, the heat generating part 60 of the glow plug 6, and the central part of the upstream end face 70 of the small diameter catalyst 7 are along the longitudinal direction of the exhaust passage 3. It is arranged on a substantially straight line. The ECU 10 detects the operating state of the internal combustion engine 1 when detecting a temperature increase request to the DPNR catalyst 4. Then, the target fuel addition amount related to the fuel combustion control is calculated based on the operating state of the internal combustion engine 1. This target fuel addition amount is a target value of the fuel addition amount so that the total air-fuel ratio becomes the lean air-fuel ratio. This target fuel addition amount is also a target value of the fuel addition amount so that the shunt gas air-fuel ratio at the time of fuel combustion control becomes a rich air-fuel ratio, which will be described later.

ECU10から燃料添加弁5に対して燃料添加の制御指令が出されると、燃料その噴射孔50から燃料が噴射され、略円錐状に広がった噴霧(図2中、格子ハッチングにて表す)が形成される。グロープラグ6の発熱部60は、噴射孔50からの燃料の噴霧の領域内に配置されている。ECU10は、燃料着火制御の実施に際して予めグロープラグ6に通電し、その発熱部60を燃料の着火温度よりも高温(例えば、800℃)に発熱させておく。その結果、燃料着火制御時に燃料添加弁5から添加された燃料がグロープラグ6の発
熱部60へと到達した時点で発熱部60を着火源として燃料が着火し、燃焼する。
When a control command for fuel addition is issued from the ECU 10 to the fuel addition valve 5, the fuel is injected from the injection hole 50 of the fuel, and a spray spread in a substantially conical shape (represented by lattice hatching in FIG. 2) is formed. Is done. The heat generating portion 60 of the glow plug 6 is disposed in the area of fuel spray from the injection hole 50. The ECU 10 energizes the glow plug 6 in advance when performing the fuel ignition control, and heats the heat generating portion 60 to a temperature higher than the ignition temperature of the fuel (for example, 800 ° C.). As a result, when the fuel added from the fuel addition valve 5 at the time of fuel ignition control reaches the heat generating portion 60 of the glow plug 6, the fuel is ignited and burned using the heat generating portion 60 as an ignition source.

燃料添加弁5から添加された燃料の一部は未燃のまま、燃焼ガスとともに下流へと流れる。ここで、グロープラグ6の発熱部60と小径触媒7の上流端面70は対向しているため、燃料燃焼制御において生成された燃焼ガス、及び該燃焼ガスに含まれる燃料の大部分は小径触媒7へと上流端面70から導入される(図中、矢印にて表す)。つまり、燃焼ガス及び燃料から構成される空燃比の低いリッチな排気ガスが専ら小径触媒7を通過し、小径触媒7の外周側に形成された迂回通路30には空燃比の高いリーンな排気ガスが通過するように構成されている。従って、この構成によれば、燃料燃焼制御の実施に際して分流ガス空燃比を全体空燃比に比べて相対的に低下させることができる。   Part of the fuel added from the fuel addition valve 5 flows uncombusted and flows downstream together with the combustion gas. Here, since the heat generating portion 60 of the glow plug 6 and the upstream end surface 70 of the small diameter catalyst 7 are opposed to each other, most of the combustion gas generated in the fuel combustion control and the fuel contained in the combustion gas is the small diameter catalyst 7. It is introduced from the upstream end face 70 (represented by an arrow in the figure). That is, rich exhaust gas having a low air-fuel ratio composed of combustion gas and fuel exclusively passes through the small-diameter catalyst 7, and in the bypass passage 30 formed on the outer peripheral side of the small-diameter catalyst 7, a lean exhaust gas having a high air-fuel ratio is formed. Is configured to pass through. Therefore, according to this configuration, it is possible to relatively reduce the shunt gas air-fuel ratio in comparison with the overall air-fuel ratio when performing the fuel combustion control.

燃料燃焼制御において生成される燃焼ガス(及び燃焼ガスに含まれる燃料)の総量(トータル量)に対する小径触媒7へと導入される量の割合を燃焼ガス導入割合と称呼する。燃料燃焼制御における燃焼ガス導入割合が高いほど全体空燃比とリーン空燃比との差が大きくなり、分流ガス空燃比を全体空燃比に比べて顕著に低下させることができる。燃焼ガス導入割合は、燃料添加弁5、グロープラグ6、小径触媒7等の各種機器における相対的な位置関係、小径触媒7の上流端面70の面積(流路断面積)、及びその他の条件等によって変化する。そのため、全体空燃比がリーン空燃比となる範囲で燃料燃焼制御に係る燃料添加量を制御した際に、確実に分流ガス空燃比がリッチ空燃比となるように、各種機器同士の相対的な位置関係や小径触媒7の流路断面積などのハード構成を決定している。   The ratio of the amount introduced into the small-diameter catalyst 7 with respect to the total amount (total amount) of the combustion gas (and fuel contained in the combustion gas) generated in the fuel combustion control is referred to as a combustion gas introduction ratio. The higher the combustion gas introduction ratio in the fuel combustion control, the greater the difference between the overall air-fuel ratio and the lean air-fuel ratio, and the shunt gas air-fuel ratio can be significantly reduced compared to the overall air-fuel ratio. The combustion gas introduction ratio is the relative positional relationship among various devices such as the fuel addition valve 5, the glow plug 6, the small diameter catalyst 7, the area of the upstream end surface 70 of the small diameter catalyst 7 (flow path cross-sectional area), and other conditions. It depends on. Therefore, when the fuel addition amount related to fuel combustion control is controlled within the range where the overall air-fuel ratio becomes the lean air-fuel ratio, the relative positions of the various devices are ensured so that the shunt gas air-fuel ratio becomes the rich air-fuel ratio. The hardware configuration such as the relationship and the cross-sectional area of the small-diameter catalyst 7 is determined.

図3は、燃料燃焼制御ルーチンを示したフローチャート図である。以下、このフローチャートを参照して、ECU10が実行する燃料燃焼制御の具体的処理内容について説明する。本ルーチンは、予めECU10に記憶されており、所定時間毎に繰り返されるルーチンである。ステップS101において、ECU10は、温度センサ8の出力信号に基づいてDPNR触媒4の温度を推定する。   FIG. 3 is a flowchart showing a fuel combustion control routine. Hereinafter, the specific processing content of the fuel combustion control executed by the ECU 10 will be described with reference to this flowchart. This routine is stored in advance in the ECU 10 and is repeated every predetermined time. In step S <b> 101, the ECU 10 estimates the temperature of the DPNR catalyst 4 based on the output signal of the temperature sensor 8.

ステップS102において、ECU10は、DPNR触媒4の温度が規定温度以下であるか否かが判定される。DPNR触媒4の温度が規定温度以下であると判定された場合にはDPNR触媒4に昇温要求が出されていると判断し、ステップS103に進む。一方、DPNR触媒4の温度が規定温度よりも高いと判定された場合、DPNR触媒4に昇温要求が出されていないと判断し、本ルーチンを一旦抜ける。   In step S102, the ECU 10 determines whether or not the temperature of the DPNR catalyst 4 is equal to or lower than a specified temperature. When it is determined that the temperature of the DPNR catalyst 4 is equal to or lower than the specified temperature, it is determined that a temperature increase request is issued to the DPNR catalyst 4, and the process proceeds to step S103. On the other hand, when it is determined that the temperature of the DPNR catalyst 4 is higher than the specified temperature, it is determined that a temperature increase request has not been issued to the DPNR catalyst 4, and this routine is temporarily exited.

ステップS103において、ECU10は、内燃機関1から排出される排気ガスの空燃比、排気ガス量Gaに基づいて、燃料燃焼制御に係る目標燃料添加量を算出する。上述したように、この目標燃料添加量は、分流ガス空燃比がリッチ空燃比となり、且つ全体空燃比がリーン空燃比となるような量として算出される。ステップS104においてECU10は燃料燃焼制御を実施した後、本ルーチンを一旦終了する。   In step S103, the ECU 10 calculates a target fuel addition amount related to fuel combustion control based on the air-fuel ratio of the exhaust gas discharged from the internal combustion engine 1 and the exhaust gas amount Ga. As described above, the target fuel addition amount is calculated as an amount such that the shunt gas air-fuel ratio becomes the rich air-fuel ratio and the total air-fuel ratio becomes the lean air-fuel ratio. In step S104, the ECU 10 performs fuel combustion control, and then ends this routine.

ステップS104においてECU10は、具体的には、燃料添加弁5から目標燃料添加量の燃料を排気ガスへと添加させ、その燃料にグロープラグ6に着火させる。その結果、リーン燃焼が行われると共に、生成された燃焼ガスや還元成分(燃料添加弁5による添加燃料やリーン燃焼によって生成されたCO、Hなど)の大部分が小径触媒7へと流入する。その結果、分流ガス空燃比がリッチ空燃比まで低下し、小径触媒7に流入したNOxが還元される。尚、小径触媒7はDPNR触媒4に比べて熱容量が小さく、高温の燃焼ガスが導入されることで容易に活性を高めることができる。 In step S104, the ECU 10 specifically adds a target fuel addition amount of fuel from the fuel addition valve 5 to the exhaust gas, and causes the glow plug 6 to ignite the fuel. As a result, lean combustion is performed, and most of the generated combustion gas and reducing components (added fuel by the fuel addition valve 5, CO, H 2 generated by lean combustion, etc.) flow into the small-diameter catalyst 7. . As a result, the shunt gas air-fuel ratio decreases to the rich air-fuel ratio, and NOx flowing into the small diameter catalyst 7 is reduced. The small-diameter catalyst 7 has a smaller heat capacity than the DPNR catalyst 4, and can easily increase its activity by introducing high-temperature combustion gas.

小径触媒7から流出したリッチ空燃比の排気ガスは、迂回通路30を流れるリーン空燃比の排気ガスと合流してからDPNR触媒4に流入し、DPNR触媒4が加熱される。ここで、DPNR触媒4に流入する排気ガス全体としてはリーン空燃比であるため、この排
気ガスに含まれるHC、COをDPNR触媒4において酸化するに十分な酸素量が確保される。よって、DPNR触媒4に流入する排気ガスに含まれるHC、COは確実に酸化され、DPNR触媒4を昇温させる際における排気エミッションの悪化が抑制される。また、HC、COが酸化されるときの反応熱はDPNR触媒4の昇温に寄与するため、DPNR触媒4の早期昇温を実現することができる。
The rich air-fuel ratio exhaust gas flowing out from the small-diameter catalyst 7 merges with the lean air-fuel ratio exhaust gas flowing through the bypass passage 30 and then flows into the DPNR catalyst 4 to heat the DPNR catalyst 4. Here, since the exhaust gas flowing into the DPNR catalyst 4 as a whole has a lean air-fuel ratio, an oxygen amount sufficient to oxidize HC and CO contained in the exhaust gas in the DPNR catalyst 4 is ensured. Therefore, HC and CO contained in the exhaust gas flowing into the DPNR catalyst 4 are surely oxidized, and deterioration of exhaust emission when the temperature of the DPNR catalyst 4 is raised is suppressed. Further, since the heat of reaction when HC and CO are oxidized contributes to the temperature increase of the DPNR catalyst 4, it is possible to realize an early temperature increase of the DPNR catalyst 4.

また、リーン燃焼によって生成された燃焼ガスが小径触媒7を通過する際に、そのガスに含まれる酸素の一部が消費される。また、小径触媒7において、燃焼ガスに含まれる燃料の一部は改質されたり、気化が促進される。その結果、DPNR触媒4における還元成分の燃焼反応が緩慢となり、DPNR触媒4におけるNOxの生成が抑制される。   Moreover, when the combustion gas produced | generated by lean combustion passes the small diameter catalyst 7, some oxygen contained in the gas is consumed. In the small-diameter catalyst 7, part of the fuel contained in the combustion gas is reformed or vaporization is promoted. As a result, the combustion reaction of the reducing component in the DPNR catalyst 4 becomes slow, and the generation of NOx in the DPNR catalyst 4 is suppressed.

以上のように、本実施例における排気浄化触媒の昇温システムによれば、DPNR触媒4(排気浄化触媒)の昇温要求時に排気通路3を流れる排気ガスに添加した燃料を燃焼させる際に、排気エミッションが悪化することが抑制される。本実施例においては、DPNR触媒4(排気浄化触媒)の昇温要求時に燃料燃焼制御を実施するECU10が本発明における制御手段に対応する。   As described above, according to the temperature raising system for the exhaust purification catalyst in the present embodiment, when the fuel added to the exhaust gas flowing through the exhaust passage 3 when the temperature raising request for the DPNR catalyst 4 (exhaust purification catalyst) is combusted, Deterioration of exhaust emission is suppressed. In the present embodiment, the ECU 10 that performs the fuel combustion control when the temperature increase request of the DPNR catalyst 4 (exhaust gas purification catalyst) is required corresponds to the control means in the present invention.

<実施例2>
次に、本発明の実施形態における第2の実施例について説明する。本実施例における昇温システムが適用される内燃機関及びその吸排気系の概略構成は図1、2に示した構成と同様である。以下、本実施例の昇温システムにおける特徴的な部分を中心に説明する。
<Example 2>
Next, a second example of the embodiment of the present invention will be described. The schematic configuration of the internal combustion engine to which the temperature raising system in the present embodiment is applied and its intake and exhaust system are the same as the configurations shown in FIGS. Hereinafter, the characteristic part in the temperature raising system of the present embodiment will be mainly described.

本実施例おける燃料燃焼制御では、内燃機関1から排出される排気ガス量Gaに応じて、燃料燃焼制御時の小径触媒7の温度(以下、「小径触媒床温」と称呼する)THcを制御することを特徴とする。ECU10は、温度センサ8の出力信号に基づきDPNR触媒4への昇温要求を検出すると、排気ガス量Gaを推定する。例えば、ECU10は、吸気通路を流れる空気量を測定するエアフローメータ(図示省略)の出力信号に基づき、排気ガス量Gaを推定することができる。   In the fuel combustion control in this embodiment, the temperature THc of the small-diameter catalyst 7 during fuel combustion control (hereinafter referred to as “small-diameter catalyst bed temperature”) THc is controlled according to the exhaust gas amount Ga discharged from the internal combustion engine 1. It is characterized by doing. When the ECU 10 detects a temperature increase request to the DPNR catalyst 4 based on the output signal of the temperature sensor 8, the ECU 10 estimates the exhaust gas amount Ga. For example, the ECU 10 can estimate the exhaust gas amount Ga based on an output signal of an air flow meter (not shown) that measures the amount of air flowing through the intake passage.

小径触媒7におけるNOxの浄化性能は、小径触媒7を通過する排気ガスの流速Vgに応じて変化する。内燃機関1からの排気ガス量Gaが多いほど、小径触媒7を通過する排気ガスの流速Vgが速くなる。そうすると小径触媒7におけるNOxの還元反応が起こりにくくなり、NOxの浄化性能が低下する。そこで、ECU10は、内燃機関1から排出される排気ガス量Gaが多い場合には少ない場合に比べて、燃料燃焼制御時における小径触媒床温THcがより高温となるように制御することとした。   The NOx purification performance of the small-diameter catalyst 7 varies according to the flow velocity Vg of the exhaust gas passing through the small-diameter catalyst 7. As the exhaust gas amount Ga from the internal combustion engine 1 increases, the flow velocity Vg of the exhaust gas passing through the small-diameter catalyst 7 increases. As a result, the NOx reduction reaction in the small-diameter catalyst 7 hardly occurs, and the NOx purification performance is lowered. Therefore, the ECU 10 controls the small-diameter catalyst bed temperature THc at the time of fuel combustion control to be higher when the exhaust gas amount Ga discharged from the internal combustion engine 1 is large than when it is small.

図4は、燃料燃焼制御時における排気ガス量Gaと小径触媒床温THcとの関係を例示したマップである。この図において、燃料燃焼制御時における小径触媒床温THcは、内燃機関1から排出される排気ガス量Gaが多くなるに従って、対応する温度が高くなっている。ECU10は、排気ガス量Gaの推定値を図4に示したマップに代入し、小径触媒床温THcの目標値(以下、「目標小径触媒床温THct」という)を演算する。そして、ECU10は、小径触媒床温THcが目標小径触媒床温THctとなるように、燃料添加弁5における燃料を添加させる。例えば、燃料添加弁5から間欠的に燃料添加を行うときの1回の燃料添加の期間を添加期間と称し、添加期間と添加期間との間の期間を添加インターバルと称する。この場合、燃料添加弁5から単位時間当たりに添加される燃料添加量、添加インターバル、所定時間当たりの添加回数等の添加パラメータを変更することで、小径触媒床温THcを目標小径触媒床温THctに制御することができる。   FIG. 4 is a map illustrating the relationship between the exhaust gas amount Ga and the small-diameter catalyst bed temperature THc during fuel combustion control. In this figure, the corresponding temperature of the small-diameter catalyst bed temperature THc during fuel combustion control increases as the exhaust gas amount Ga discharged from the internal combustion engine 1 increases. The ECU 10 substitutes the estimated value of the exhaust gas amount Ga into the map shown in FIG. 4 and calculates a target value of the small diameter catalyst bed temperature THc (hereinafter referred to as “target small diameter catalyst bed temperature THct”). Then, the ECU 10 adds the fuel in the fuel addition valve 5 so that the small diameter catalyst bed temperature THc becomes the target small diameter catalyst bed temperature THct. For example, a single fuel addition period when fuel is added intermittently from the fuel addition valve 5 is referred to as an addition period, and a period between the addition periods is referred to as an addition interval. In this case, the small-diameter catalyst bed temperature THc is changed to the target small-diameter catalyst bed temperature THct by changing the addition parameters such as the amount of fuel added from the fuel addition valve 5 per unit time, the addition interval, and the number of additions per predetermined time. Can be controlled.

ここで、小径触媒床温THcが高温となるほど、小径触媒7を通過する排気ガスの通過抵抗が増大する。従って、排気ガス量Gaが多いほど燃料燃焼制御時における小径触媒床
温THcを高く制御することにより、小径触媒7を通過する排気ガスの流速Vgが低下する。その結果、小径触媒7におけるNOxの還元反応を促進させることができ、NOxの浄化性能の低下を抑制することができる。従って、内燃機関1からの排気ガス量Gaの増減に関わらず、燃料燃焼制御時における小径触媒7のNOx浄化性能を常に高水準に維持することができる。
Here, as the small-diameter catalyst bed temperature THc becomes higher, the passage resistance of the exhaust gas passing through the small-diameter catalyst 7 increases. Therefore, as the exhaust gas amount Ga increases, the flow rate Vg of the exhaust gas passing through the small diameter catalyst 7 decreases by controlling the small diameter catalyst bed temperature THc at the time of fuel combustion control higher. As a result, the reduction reaction of NOx in the small-diameter catalyst 7 can be promoted, and the reduction in the NOx purification performance can be suppressed. Therefore, the NOx purification performance of the small-diameter catalyst 7 during fuel combustion control can always be maintained at a high level regardless of the increase or decrease in the exhaust gas amount Ga from the internal combustion engine 1.

1・・・内燃機関
3・・・排気通路
4・・・DPNR触媒
5・・・燃料添加弁
6・・・グロープラグ
7・・・小径触媒
10・・ECU
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 3 ... Exhaust passage 4 ... DPNR catalyst 5 ... Fuel addition valve 6 ... Glow plug 7 ... Small diameter catalyst 10 ... ECU

Claims (2)

内燃機関の排気通路に設けられている排気浄化触媒と、
前記排気浄化触媒より上流側の排気通路に設けられており、排気通路を流れる排気ガスに燃料を添加する燃料添加弁と、
前記排気浄化触媒より上流側の排気通路に設けられており、前記燃料添加弁から添加された燃料に着火する着火装置と、
前記燃料添加弁及び着火装置より下流側であって前記排気浄化触媒より上流側の排気通路に設けられており、該排気通路を流れる排気ガスの一部のみが導かれるNOx還元能を有する前段分流触媒と、
前記排気浄化触媒の昇温要求時に、前記着火装置による着火によって前記燃料添加弁が添加した燃料を燃焼させる燃料燃焼制御を実施する制御手段と、を備え、
前記前段分流触媒は、前記燃料燃焼制御において生成された燃焼ガス及び該燃焼ガスに含まれる燃料が導入されるように配置されており、
前記制御手段は、燃料燃焼制御の実施に際して、前記前段分流触媒を通過する排気ガスの空燃比がリッチ空燃比となり、且つ前記排気浄化触媒に流入する排気ガス全体の空燃比がリーン空燃比となるように、前記燃料添加弁に燃料を添加させることを特徴とする排気浄化触媒の昇温システム。
An exhaust purification catalyst provided in the exhaust passage of the internal combustion engine;
A fuel addition valve that is provided in an exhaust passage upstream of the exhaust purification catalyst and adds fuel to exhaust gas flowing through the exhaust passage;
An ignition device that is provided in an exhaust passage upstream of the exhaust purification catalyst and ignites the fuel added from the fuel addition valve;
A pre-stage shunt having a NOx reduction ability that is provided in an exhaust passage downstream of the fuel addition valve and the ignition device and upstream of the exhaust purification catalyst, and in which only a part of the exhaust gas flowing through the exhaust passage is guided. A catalyst,
Control means for performing fuel combustion control for burning the fuel added by the fuel addition valve by ignition by the ignition device at the time of a temperature increase request of the exhaust purification catalyst,
The pre-stage shunt catalyst is arranged so that the combustion gas generated in the fuel combustion control and the fuel contained in the combustion gas are introduced,
When the fuel combustion control is performed, the control means has a rich air-fuel ratio of the exhaust gas passing through the upstream branching catalyst, and a lean air-fuel ratio of the entire exhaust gas flowing into the exhaust purification catalyst. As described above, a temperature raising system for an exhaust purification catalyst, wherein fuel is added to the fuel addition valve.
前記制御手段は、前記内燃機関から排出される排気ガス量が多い場合には少ない場合に比べて、燃料燃焼制御時における前記前段分流触媒の床温が高くなるように前記燃料添加弁に燃料を添加させることを特徴とする請求項1に記載の排気浄化触媒の昇温システム。   The control means supplies fuel to the fuel addition valve so that the bed temperature of the pre-stage shunt catalyst during fuel combustion control is higher when the amount of exhaust gas discharged from the internal combustion engine is small than when the amount is small. The temperature raising system for an exhaust purification catalyst according to claim 1, wherein the temperature increasing system is added.
JP2009093707A 2009-04-08 2009-04-08 System for raising temperature of exhaust emission control catalyst Withdrawn JP2010242658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009093707A JP2010242658A (en) 2009-04-08 2009-04-08 System for raising temperature of exhaust emission control catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093707A JP2010242658A (en) 2009-04-08 2009-04-08 System for raising temperature of exhaust emission control catalyst

Publications (1)

Publication Number Publication Date
JP2010242658A true JP2010242658A (en) 2010-10-28

Family

ID=43095915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093707A Withdrawn JP2010242658A (en) 2009-04-08 2009-04-08 System for raising temperature of exhaust emission control catalyst

Country Status (1)

Country Link
JP (1) JP2010242658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096347A (en) * 2011-11-04 2013-05-20 Hino Motors Ltd Exhaust emission control device
CN103459789A (en) * 2011-03-28 2013-12-18 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459789A (en) * 2011-03-28 2013-12-18 丰田自动车株式会社 Exhaust gas purification device for internal combustion engine
JP2013096347A (en) * 2011-11-04 2013-05-20 Hino Motors Ltd Exhaust emission control device

Similar Documents

Publication Publication Date Title
KR100674248B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US20100269492A1 (en) Diesel aftertreatment system
JP5218645B2 (en) Temperature raising system for exhaust purification catalyst
US8776507B2 (en) System and method for regenerating gasoline particulate filter
EP2557284B1 (en) Exhaust gas purification system for internal combustion engine
JP2015031166A (en) Exhaust emission control device for internal combustion engine
WO2012164661A1 (en) Exhaust gas purification device for internal combustion engine
US7204082B1 (en) System for combustion of reformate in an engine exhaust stream
JP2008038634A (en) Exhaust emission control device for internal combustion engine
EP2599973B1 (en) An exhaust gas temperature raising apparatus and a method for removal of fuel supply valve clogging
JP2008231926A (en) Exhaust emission control device of internal combustion engine
JP2010242658A (en) System for raising temperature of exhaust emission control catalyst
JP4241784B2 (en) Exhaust gas purification system for internal combustion engine
WO2012137247A1 (en) Internal combustion engine equipped with burner apparatus
JP7298575B2 (en) Exhaust purification system for internal combustion engine
JP2014001682A (en) Exhaust gas purifier of internal combustion engine
JP2005232975A (en) Exhaust emission control device
JP2009002179A (en) Exhaust emission control device for internal combustion engine
JP5652255B2 (en) Exhaust gas purification device for internal combustion engine
JP2006258058A (en) Exhaust emission control device
JP2005201130A (en) Exhaust emission control device of internal combustion engine
JP2009197707A (en) Exhaust emission control device for internal combustion engine
JP2012241624A (en) Internal combustion engine having burner device
JP2007270828A (en) Exhaust emission control device for internal combustion engine
JP2007296442A (en) Exhaust gas purification device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703