JP2010242590A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2010242590A
JP2010242590A JP2009091086A JP2009091086A JP2010242590A JP 2010242590 A JP2010242590 A JP 2010242590A JP 2009091086 A JP2009091086 A JP 2009091086A JP 2009091086 A JP2009091086 A JP 2009091086A JP 2010242590 A JP2010242590 A JP 2010242590A
Authority
JP
Japan
Prior art keywords
compressor
compression element
electric
hermetic
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009091086A
Other languages
Japanese (ja)
Inventor
Kiwamu Watabe
究 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009091086A priority Critical patent/JP2010242590A/en
Publication of JP2010242590A publication Critical patent/JP2010242590A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To limit the maximum rotation rock quantity without increasing vibration during normal operation even if brake torque of an electric compression element during stopping is high. <P>SOLUTION: An outer circumference part 127 of a compressor side snubber 117 is formed by a prescribed curved surface in which outer diameter from a bottom part 140 over a head part 137 become small in at least a part, and is formed so as to keep ratio of outer diameter of the head part 137 to an outer diameter of the bottom part 140 in a range of 90-97%. Spring force of a coil spring 118 is quickly increased in response to rotation direction displacement by the curved surface of an outer circumference part of the compressor side snubber 117 and eventually reduces the maximum rotation rock quantity even if compression load right before stop is heavy and brake torque is high. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷凍冷蔵冷却装置等に用いられる密閉型圧縮機に関するものである。   The present invention relates to a hermetic compressor used in a refrigeration refrigerator / cooler.

従来、この種の密閉型圧縮機としては、振動や騒音を低減する弾性支持装置を密閉容器内に備えたものがある(例えば、特許文献1参照)。   Conventionally, as this type of hermetic compressor, there is one in which an elastic support device that reduces vibration and noise is provided in a hermetic container (see, for example, Patent Document 1).

以下、図面を参照しながら上記従来の密閉型圧縮機を説明する。   Hereinafter, the conventional hermetic compressor will be described with reference to the drawings.

図6は従来の密閉型圧縮機の縦断面図、図7は従来の密閉型圧縮機の上面図、図8は従来の密閉型圧縮機の要部拡大断面図、図9は従来の密閉型圧縮機の動作説明図である。   6 is a longitudinal sectional view of a conventional hermetic compressor, FIG. 7 is a top view of the conventional hermetic compressor, FIG. 8 is an enlarged cross-sectional view of a main part of the conventional hermetic compressor, and FIG. 9 is a conventional hermetic type. It is operation | movement explanatory drawing of a compressor.

図6から図9において、密閉容器1は電動要素2と圧縮要素3とからなる電動圧縮要素4を、複数の弾性支持装置5によって弾性支持し,収容している。電動要素2は固定子6と回転子7とからなり、圧縮要素3を駆動する。   6 to 9, the sealed container 1 elastically supports and accommodates an electric compression element 4 including an electric element 2 and a compression element 3 by a plurality of elastic support devices 5. The electric element 2 includes a stator 6 and a rotor 7 and drives the compression element 3.

次に圧縮要素3の主な構成について説明する。   Next, the main configuration of the compression element 3 will be described.

シリンダブロック8は軸受け部9を備えている。シャフト10は主軸部11と偏心部12とを備え、主軸部11はシリンダブロック8の軸受け部9に軸支されるとともに回転子7が圧入固定され、偏心部12は連結機構13によりピストン14と連結している。   The cylinder block 8 includes a bearing portion 9. The shaft 10 includes a main shaft portion 11 and an eccentric portion 12. The main shaft portion 11 is pivotally supported by the bearing portion 9 of the cylinder block 8 and the rotor 7 is press-fitted and fixed. The eccentric portion 12 is connected to the piston 14 by the coupling mechanism 13. It is connected.

次に弾性支持装置5の構成について説明する。   Next, the configuration of the elastic support device 5 will be described.

弾性支持装置5は、シェル側スナブバ15と圧縮機側スナブバ17とコイルバネ18とから構成されている。シェル側スナブバ15は密閉容器1の底部に固定されている。圧縮機側スナブバ17は、電動圧縮要素4に固定されている。   The elastic support device 5 includes a shell-side snubber 15, a compressor-side snubber 17, and a coil spring 18. The shell side snubber 15 is fixed to the bottom of the sealed container 1. The compressor side snubber bar 17 is fixed to the electric compression element 4.

コイルバネ18はシェル側スナブバ15と圧縮機側スナブバ17に両端が挟持されている。   The coil spring 18 is sandwiched between the shell-side snubber 15 and the compressor-side snubber 17 at both ends.

電動圧縮要素4には、圧縮要素3で圧縮された冷媒(図示せず)を密閉容器1外へ導く吐出配管30が配置され、密閉容器1と接続されている。   The electric compression element 4 is provided with a discharge pipe 30 that guides the refrigerant (not shown) compressed by the compression element 3 to the outside of the sealed container 1, and is connected to the sealed container 1.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

運転時においては、電動要素2に電気が供給されると回転子7が回転し、シャフト10は回転駆動され、シャフト10の回転運動が連結機構13によってピストン14に伝えられ、圧縮動作を行う。   During operation, when electricity is supplied to the electric element 2, the rotor 7 rotates, the shaft 10 is rotationally driven, and the rotational movement of the shaft 10 is transmitted to the piston 14 by the coupling mechanism 13 to perform a compression operation.

このとき、ピストン14で発生する圧縮負荷に応じて電動要素2は回転トルクを発生し、圧縮動作を続ける。   At this time, the electric element 2 generates rotational torque according to the compression load generated by the piston 14 and continues the compression operation.

この際、圧縮動作に伴い電動圧縮要素4は振動するが、弾性支持装置5が密閉容器1への伝達を減衰し、密閉型圧縮機全体の振動を低減する。   At this time, although the electric compression element 4 vibrates with the compression operation, the elastic support device 5 attenuates the transmission to the sealed container 1 and reduces the vibration of the whole hermetic compressor.

また、停止時、電動要素2への電気供給が止まると、電動要素2が発生していた回転ト
ルクがなくなるので、ピストン14で発生する圧縮負荷が連結機構13によって、シャフト10と回転子7にブレーキトルクを与え、回転運動が停止する。その際、ブレーキトルクに応じて、電動圧縮要素4はシャフト10の主軸部11を略中心として回転子7の回転方向へと回動するが、弾性支持装置5がそのエネルギーを吸収し、回転方向と反回転方向の回転揺動運動を繰り返しながら減衰させることで、密閉容器1への伝達を減衰し、停止時の密閉型圧縮機全体の揺動をも低減する。
特開2000−097153号公報
Further, when the electric supply to the electric element 2 is stopped at the time of stopping, the rotational torque generated by the electric element 2 is lost, so that the compression load generated by the piston 14 is applied to the shaft 10 and the rotor 7 by the coupling mechanism 13. Brake torque is applied and rotational motion stops. At this time, the electric compression element 4 rotates in the rotation direction of the rotor 7 about the main shaft portion 11 of the shaft 10 according to the brake torque, but the elastic support device 5 absorbs the energy and rotates in the rotation direction. By repeating the rotational oscillating motion in the counter-rotating direction, the transmission to the hermetic container 1 is attenuated, and the oscillation of the whole hermetic compressor when stopped is also reduced.
JP 2000-097153 A

しかしながら、上記従来の構成では、停止直前の吐出圧力や、吸入圧力が高い場合には圧縮負荷が大きいことから、停止時に回転運動していた回転子7やシャフト10に作用するブレーキトルクも大きくなり、電動圧縮要素4の主軸部11を略中心にした回転揺動量も大きくなる。   However, in the conventional configuration described above, since the compression load is large when the discharge pressure immediately before the stop or the suction pressure is high, the brake torque acting on the rotor 7 or the shaft 10 that has been rotating at the time of the stop increases. Also, the amount of rotational swing about the main shaft portion 11 of the electric compression element 4 is increased.

このとき、停止直前に図8に示すように内部配管などの拘束部に大きな力が発生することになり、吐出配管30などを設計する上で剛性を高くする必要があった。このため運転時に電動圧縮要素4から吐出配管30を通じて伝達する振動が大きくなり密閉型圧縮機全体の振動を高くしてしまう課題があった。   At this time, as shown in FIG. 8, a large force is generated in the restraint portion such as the internal pipe immediately before stopping, and it is necessary to increase the rigidity in designing the discharge pipe 30 and the like. For this reason, there is a problem that vibration transmitted from the electric compression element 4 through the discharge pipe 30 during operation increases and vibration of the whole hermetic compressor increases.

一方、電動圧縮要素4の停止時の回転揺動量を抑えるために弾性支持装置5のコイルバネ18のバネ力を上げるといった手法があるが、バネ力を上げると運転時の振動の減衰力が低下するので、コイルバネ18を通じて伝達する振動が大きくなり密閉型圧縮機全体の振動を上げてしまうことになる。   On the other hand, there is a method of increasing the spring force of the coil spring 18 of the elastic support device 5 in order to suppress the rotational swing amount when the electric compression element 4 is stopped. However, when the spring force is increased, the damping force of vibration during operation decreases. Therefore, the vibration transmitted through the coil spring 18 is increased, and the vibration of the whole hermetic compressor is increased.

本発明は、上記従来の課題を解決するもので、停止時の電動圧縮要素の回転揺動量を低減し、振動が小さく信頼性の高い密閉型圧縮機を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object of the present invention is to provide a hermetic compressor that reduces the amount of rotational oscillation of the electric compression element when stopped and has low vibration and high reliability.

上記従来の課題を解決するために、本発明の密閉型圧縮機は、圧縮機側スナブバの外周部は、少なくとも一部が底部から頭部にかけて外径が小さくなる所定の曲面で形成されるとともに、底部の外径に対する頭部の外径の比率は90から97%の範囲内となるように形成されたもので、停止直前の圧縮負荷が大きく、ブレーキトルクが大きい場合においても、圧縮機側スナブバの外周部の曲面によりコイルバネのバネ力が回転方向の変位に応じて早く大きくなり結果として最大の回転揺動量を低減する作用を有する。   In order to solve the above-described conventional problems, in the hermetic compressor according to the present invention, the outer peripheral portion of the compressor-side snubber is formed with a predetermined curved surface whose outer diameter decreases at least partially from the bottom to the head. The ratio of the outer diameter of the head to the outer diameter of the bottom portion is formed to be in the range of 90 to 97%. Even when the compression load immediately before the stop is large and the brake torque is large, the compressor side Due to the curved surface of the outer peripheral portion of the snubber, the spring force of the coil spring increases rapidly according to the displacement in the rotational direction, and as a result, the maximum amount of rotational swing is reduced.

本発明の密閉型圧縮機は、電動圧縮要素のブレーキトルクが所定の値以上になっても電動圧縮要素の回転揺動量を低減することができるので、運転時の振動を低減し、信頼性の高い密閉型圧縮機を提供することができる。   The hermetic compressor of the present invention can reduce the amount of rotational oscillation of the electric compression element even when the brake torque of the electric compression element exceeds a predetermined value. A high hermetic compressor can be provided.

請求項1に記載の発明は、密閉容器と、前記密閉容器内に収納され圧縮室内を往復運動するピストンを含んだ電動圧縮要素と、前記電動圧縮要素を弾性的に支持する両端に密着巻部を有したコイルバネを備え、前記コイルバネは前記密閉容器側に設けた突起部であるシェル側スナブバと、電動圧縮要素側に設けた圧縮機側スナブバにそれぞれ両端部を挿入され、前記圧縮機側スナブバの外周部は、少なくとも一部が底部から頭部にかけて外径が小さくなる所定の曲面で形成されるとともに、前記底部の外径に対する前記頭部の外径の比率は90から97%の範囲内であることを特徴としたもので、停止直前の圧縮負荷が大きく、ブレーキトルクが大きい場合においても、圧縮機側スナブバの外周部の曲面がコイ
ルバネ内面に接する部分が早く増加し、少しの変位でコイルバネの有効巻き部が減少することにより回転方向のバネ力が大きくなるので、結果として最大の回転揺動量を低減し、振動が小さく、信頼性の高い密閉型圧縮機を提供することができる。
According to the first aspect of the present invention, there is provided an airtight container, an electric compression element that includes a piston that is housed in the airtight container and reciprocates in a compression chamber, and a tightly wound portion at both ends that elastically support the electric compression element. The coil spring is inserted at both ends into a shell side snubber that is a protrusion provided on the sealed container side and a compressor side snubber provided on the electric compression element side, and the compressor side snubber is provided. The outer peripheral portion of the head is formed with a predetermined curved surface whose outer diameter decreases from the bottom to the head, and the ratio of the outer diameter of the head to the outer diameter of the bottom is within a range of 90 to 97%. Even when the compression load just before the stop is large and the brake torque is large, the portion where the curved surface of the outer periphery of the compressor-side snubber is in contact with the inner surface of the coil spring is fast. In addition, the spring force in the rotational direction is increased by reducing the effective winding portion of the coil spring with a slight displacement. As a result, the maximum amount of rotational oscillation is reduced, vibration is small, and a highly reliable hermetic compressor Can be provided.

請求項2に記載の発明は、請求項1に記載の発明において、圧縮機側スナブバの外周部は、縦断面における形状がR形状の曲面であることを特徴としたもので、コイルバネに接触する面が連続的であるのでコイルバネに特異な力を発生させることなく連続的にバネ定数を変化させることができるので、請求項1に記載の発明の効果に加え、さらに信頼性の高い密閉型圧縮機を提供することができる。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, the outer peripheral portion of the compressor side snubber is a curved surface having an R shape in a longitudinal section, and is in contact with a coil spring. Since the surface is continuous, the spring constant can be continuously changed without generating a specific force in the coil spring. Therefore, in addition to the effect of the invention according to claim 1, a more reliable hermetic compression Machine can be provided.

請求項3に記載の発明は、請求項1または2に記載の発明において、コイルバネは、電動圧縮要素を弾性的に支持した状態において、前記電動圧縮要素の回転を拘束するバネ特性を有し、前記電動圧縮要素の回転方向の変位に対するバネ特性のバネ定数は、2から5N/mmの範囲内であることを特徴としたもので、密閉型圧縮機全体の振動を低減するためにコイルバネのバネ力を小さくした場合においても、停止直前の最大回転揺動量を低減することができるので、請求項1または2に記載の発明の効果に加え、さらに振動が小さくすることができる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the coil spring has a spring characteristic that restrains rotation of the electric compression element in a state where the electric compression element is elastically supported. The spring constant of the spring characteristic with respect to the displacement in the rotational direction of the electric compression element is in the range of 2 to 5 N / mm, and the coil spring spring is used to reduce the vibration of the whole hermetic compressor. Even when the force is reduced, the maximum amount of rotational swing immediately before stopping can be reduced, so that the vibration can be further reduced in addition to the effect of the invention described in claim 1 or 2.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、電動要素は商用電源周波数未満の回転数を含む複数の回転数で運転することを特徴としたもので、停止時の最大回転揺動量を低減することでバネ定数の低いコイルバネを使用することができるので、請求項1から3のいずれか一項に記載の発明の効果に加え、さらにより低回転で運転することができるので冷蔵庫としての消費電力量を低減することができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the electric element is operated at a plurality of rotation speeds including a rotation speed less than a commercial power supply frequency. Thus, since the coil spring having a low spring constant can be used by reducing the maximum amount of rocking rotation at the time of stopping, in addition to the effect of the invention according to any one of claims 1 to 3, further lower rotation Since it can drive | operate with, it can reduce the power consumption as a refrigerator.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、圧縮室は、10ccを超える容積であることを特徴としたもので、容積が増えると圧縮負荷が大きくなり停止時に発生するブレーキトルクが大きくなるが、最大の回転揺動量を低減することができるので、請求項1から4のいずれか一項に記載の発明の効果に加え、さらに信頼性の高い密閉型圧縮機を提供することができる。   The invention according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, the compression chamber has a volume exceeding 10 cc, and the compression load increases as the volume increases. Although the brake torque generated at the time of stoppage increases and increases, the maximum amount of rotational swing can be reduced. Therefore, in addition to the effect of the invention according to any one of claims 1 to 4, the reliability is further high. A hermetic compressor can be provided.

請求項6に記載の発明は、請求項1から5のいずれか一項に記載の発明において、圧縮機側スナブバの頭部を、電動圧縮要素を構成する圧縮要素と電動要素とを締結する締結ボルトの頭部と同じ形状としたもので、部品点数を減らすことができるので請求項1から5のいずれか一項に記載の発明の効果に加え、さらに安価な密閉型圧縮機を提供することができる。   The invention according to claim 6 is the fastening according to any one of claims 1 to 5, wherein the head of the compressor-side snubber is fastened to fasten the compression element and the electric element constituting the electric compression element. Since the bolt has the same shape as the head of the bolt and the number of parts can be reduced, in addition to the effect of the invention according to any one of claims 1 to 5, a more inexpensive hermetic compressor is provided. Can do.

請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明において、圧縮機側スナブバの頭部と外周部の接続部は、縦断面における形状がコイルバネの線径の1/2以上のR形状としたもので、コイルバネの線径よりスナブバの頭部と外周部の接続部のRを大きくすることで、停止時の回転揺動時にスナブバの頭部がコイルバネを傷つけることを防止し、請求項1から6のいずれか一項に記載の発明の効果に加え、さらに信頼性の高い密閉型圧縮機を提供することができる。   The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the connecting portion between the head portion and the outer peripheral portion of the compressor-side snubber has a shape in a longitudinal section of the wire diameter of the coil spring. It has a round shape of 1/2 or more, and the snubber head damages the coil spring when rotating and swinging at a stop by increasing the radius of the connecting part between the snubber head and the outer periphery than the wire diameter of the coil spring. In addition to the effects of the invention according to any one of claims 1 to 6, it is possible to provide a highly reliable hermetic compressor.

以下、本発明による密閉型圧縮機の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of a hermetic compressor according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における密閉型圧縮機の縦断面図、図2は同実施の形態における密閉型圧縮機の上面図、図3は同実施の形態における密閉型圧縮機の要部拡大断面図、図4は同実施の形態における密閉型圧縮機の動作説明図、図5は同実施の形態におけ
る密閉型圧縮機のコイルバネのバネ特性図である。
(Embodiment 1)
1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention, FIG. 2 is a top view of the hermetic compressor according to the same embodiment, and FIG. 3 is a schematic diagram of the hermetic compressor according to the same embodiment. FIG. 4 is an operation explanatory view of the hermetic compressor in the same embodiment, and FIG. 5 is a spring characteristic diagram of a coil spring of the hermetic compressor in the same embodiment.

ここで、図5のコイルバネのバネ特性図は、電動圧縮要素の変位に対するバネ特性図を示しており、電動圧縮要素が回転方向してコイルバネが回転方向に変位した際の、コイルバネに蓄えられる元に戻ろうとする力(バネ力)を示している。   Here, the spring characteristic diagram of the coil spring in FIG. 5 is a spring characteristic diagram with respect to the displacement of the electric compression element, and the element stored in the coil spring when the electric compression element rotates and the coil spring is displaced in the rotation direction. The force (spring force) that tries to return to is shown.

図1から図5において、密閉容器101は電動要素102と圧縮要素103とからなる電動圧縮要素104を、複数の弾性支持装置105によって弾性支持し,収容している。電動要素102は固定子106と回転子107とからなり、圧縮要素103を駆動する。   In FIGS. 1 to 5, the sealed container 101 elastically supports and accommodates an electric compression element 104 including an electric element 102 and a compression element 103 by a plurality of elastic support devices 105. The electric element 102 includes a stator 106 and a rotor 107 and drives the compression element 103.

このとき、電動要素102は商用電源周波数未満の回転数を含む複数の回転数で運転する。   At this time, the electric element 102 operates at a plurality of rotation speeds including a rotation speed less than the commercial power supply frequency.

次に圧縮要素103の主な構成について説明する。   Next, the main configuration of the compression element 103 will be described.

シリンダブロック108は軸受け部109を備えている。シャフト110は主軸部111と偏心部112とを備え、主軸部111はシリンダブロック108の軸受け部109に軸支されるとともに回転子107が圧入固定され、偏心部112は連結機構113によりピストン114と連結している。   The cylinder block 108 includes a bearing portion 109. The shaft 110 includes a main shaft portion 111 and an eccentric portion 112. The main shaft portion 111 is pivotally supported by the bearing portion 109 of the cylinder block 108 and the rotor 107 is press-fitted and fixed. The eccentric portion 112 is connected to the piston 114 by the coupling mechanism 113. It is connected.

シリンダブロック108とピストン114で形成される圧縮室148の容量は10ccとなるように設定されている。   The capacity of the compression chamber 148 formed by the cylinder block 108 and the piston 114 is set to be 10 cc.

次に弾性支持装置105の構成について説明する。   Next, the configuration of the elastic support device 105 will be described.

弾性支持装置105は、シェル側スナブバ115と圧縮機側スナブバ117とコイルバネ118とから構成されている。シェル側スナブバ115は密閉容器101の底部に固定されている。圧縮機側スナブバ117は、電動圧縮要素104に固定されている。   The elastic support device 105 includes a shell-side snubber 115, a compressor-side snubber 117, and a coil spring 118. The shell side snubber 115 is fixed to the bottom of the sealed container 101. The compressor side snubber bar 117 is fixed to the electric compression element 104.

圧縮機側スナブバ117は圧縮要素103と電動要素102を締結する締結ボルト157の頭部と一体に形成されている。   The compressor-side snubber 117 is formed integrally with the head of a fastening bolt 157 that fastens the compression element 103 and the electric element 102.

また、圧縮機側スナブバ117の外周部127は、少なくとも一部の縦断面が底部140から頭部137にかけて外径が小さくなるようなR形状の曲面で形成されるとともに、底部140の外径に対する頭部137の外径の比率は90から97%の範囲になるように形成されている。   In addition, the outer peripheral portion 127 of the compressor-side snubber 117 is formed with an R-shaped curved surface such that at least a part of the longitudinal cross section decreases from the bottom portion 140 to the head portion 137, and with respect to the outer diameter of the bottom portion 140. The ratio of the outer diameter of the head 137 is formed to be in the range of 90 to 97%.

また、圧縮機側スナブバ117の頭部137と外周部127の接続部147は、コイルバネ118の線径の1/2以上のR形状となっている。   Further, the head portion 137 of the compressor-side snubber 117 and the connecting portion 147 of the outer peripheral portion 127 have an R shape that is ½ or more of the wire diameter of the coil spring 118.

そして、圧縮機側スナブバ117の頭部137のシェル側スナブバ115側には、頭部137よりも外径の小さい突出部115が設けられている。   A protrusion 115 having an outer diameter smaller than that of the head 137 is provided on the shell-side snubber 115 side of the head 137 of the compressor-side snubber 117.

コイルバネ118は回転方向の変位に対するバネ特性のバネ定数は、2から5N/mmの範囲で設定されておりシェル側スナブバ115と圧縮機側スナブバ117に両端が挟持されている。   The spring constant of the spring characteristic with respect to the displacement in the rotational direction of the coil spring 118 is set in the range of 2 to 5 N / mm, and both ends are sandwiched between the shell side snubber 115 and the compressor side snubber 117.

電動圧縮要素104には、圧縮要素103で圧縮された冷媒(図示せず)をシェル外へ導く吐出配管130が配置され、密閉容器101と接続されている。   The electric compression element 104 is provided with a discharge pipe 130 that guides the refrigerant (not shown) compressed by the compression element 103 to the outside of the shell, and is connected to the sealed container 101.

以上のように構成された密閉型圧縮機について、以下その動作を説明する。   The operation of the hermetic compressor configured as described above will be described below.

運転時においては、電動要素102に電気が供給されると回転子107が回転し、シャフト110は回転駆動され、シャフト110の回転運動が連結機構113によってピストン114に伝えられ、圧縮動作を行う。   During operation, when electricity is supplied to the electric element 102, the rotor 107 rotates, the shaft 110 is driven to rotate, and the rotational motion of the shaft 110 is transmitted to the piston 114 by the coupling mechanism 113 to perform a compression operation.

このとき、ピストン114で発生する圧縮負荷に応じて電動要素102は回転トルクを発生し、圧縮動作を続ける。   At this time, the electric element 102 generates rotational torque according to the compression load generated by the piston 114 and continues the compression operation.

この際、圧縮動作に伴い電動圧縮要素104は振動するが、弾性支持装置105が密閉容器101への伝達を減衰し、密閉型圧縮機全体の振動を低減する。   At this time, although the electric compression element 104 vibrates in accordance with the compression operation, the elastic support device 105 attenuates the transmission to the sealed container 101 and reduces the vibration of the whole hermetic compressor.

また、停止時、電動要素102への電気供給が止まると、電動要素102が発生していた回転トルクがなくなるので、ピストン114で発生する圧縮負荷が連結機構113によって、シャフト110と回転子107にブレーキトルクを与え、回転運動が停止する。その際、ブレーキトルクに応じて、電動圧縮要素104はシャフト110の主軸部111を略中心として回転子107の回転方向へと回動するが、弾性支持装置105がそのエネルギーを吸収し、回転方向と反回転方向の回転揺動運動を繰り返しながら減衰させることで、密閉容器101への伝達を減衰し、停止時の密閉型圧縮機全体の揺動をも低減する。   Further, when the electric supply to the electric element 102 is stopped at the time of stopping, the rotational torque generated by the electric element 102 is lost, so that the compression load generated by the piston 114 is applied to the shaft 110 and the rotor 107 by the coupling mechanism 113. Brake torque is applied and rotational motion stops. At this time, the electric compression element 104 rotates in the rotation direction of the rotor 107 about the main shaft portion 111 of the shaft 110 according to the brake torque, but the elastic support device 105 absorbs the energy and rotates in the rotation direction. By repeating the rotational oscillating motion in the counter-rotating direction, the transmission to the hermetic container 101 is attenuated, and the oscillation of the whole hermetic compressor when stopped is also reduced.

ここで、停止直前の吐出圧力や、吸入圧力が高い場合には、圧縮負荷が大きいことから、停止時に回転運動していた回転子107とシャフト110に作用するブレーキトルクも大きくなり、電動圧縮要素104の主軸部111を略中心にした回転揺動も大きくなる。   Here, when the discharge pressure immediately before the stop or the suction pressure is high, since the compression load is large, the brake torque acting on the rotor 107 and the shaft 110 that have been rotating at the time of the stop also increases, and the electric compression element The rotational swing around the main shaft portion 111 of 104 is also increased.

このとき、回転揺動量が大きくなり、吐出配管130などの拘束部に作用する力が大きくなるが、本実施の形態における圧縮機側スナブバ117の外周部127は、縦断面が底部140から頭部137にかけて小さくなるようなR形状をしており、底部140の外径に対する頭部137の外径の比率が90から97%の範囲となるようにしている。   At this time, the rotational swing amount increases, and the force acting on the restraint portion such as the discharge pipe 130 increases, but the outer peripheral portion 127 of the compressor-side snubber 117 in the present embodiment has a vertical cross section from the bottom portion 140 to the head portion. It has an R shape that decreases toward 137, and the ratio of the outer diameter of the head 137 to the outer diameter of the bottom 140 is in the range of 90 to 97%.

そのため、図5に示したように、電動圧縮要素104の回転方向の変位に対して、コイルバネ118の内面が圧縮機側スナブバ117の外周部127の曲面の軸方向により多く接するため、電動圧縮要素104の少しの回転方向の変位でコイルバネ118の有効巻き部が減少し回転方向のバネ力が大きくなるので、通常運転時は密閉容器101に伝わる振動を低減したままで、運転が停止した時の電動圧縮要素104の最大回転揺動量を低減することができる。その結果、吐出配管130などの拘束部に作用する力も小さくなる。   Therefore, as shown in FIG. 5, the inner surface of the coil spring 118 is more in contact with the axial direction of the curved surface of the outer peripheral portion 127 of the compressor-side snubber 117 with respect to the rotational displacement of the electric compression element 104. Since the effective winding portion of the coil spring 118 decreases and the spring force in the rotational direction increases with a slight displacement in 104 in the rotational direction, the vibration transmitted to the sealed container 101 is reduced during normal operation, and when the operation is stopped. The maximum amount of rotational swing of the electric compression element 104 can be reduced. As a result, the force acting on the restraint portion such as the discharge pipe 130 is also reduced.

したがって、振動が小さく信頼性の高い密閉型圧縮機を提供することができる。   Therefore, it is possible to provide a hermetic compressor with low vibration and high reliability.

特に、圧縮機側スナブバ117の外周部127を、縦断面が底部140から頭部137にかけて小さくなるようなR形状で形成しているため、電動圧縮要素104が停止した際に、電動圧縮要素104の回転に伴ってコイルバネ118が変形しても、コイルバネ118が圧縮機側スナブバ117の外周部のR形状に沿ってリニアに変形し、そのバネ力が電動圧縮要素104の回転揺動を抑制するように作用する。   In particular, since the outer peripheral portion 127 of the compressor-side snubber 117 is formed in an R shape such that the longitudinal cross section becomes smaller from the bottom portion 140 to the head portion 137, when the electric compression element 104 stops, the electric compression element 104 Even if the coil spring 118 is deformed along with the rotation, the coil spring 118 is linearly deformed along the R shape of the outer peripheral portion of the compressor-side snubber 117, and the spring force suppresses the rotational oscillation of the electric compression element 104. Acts as follows.

そのため、コイルバネ118がリニアに変形し、局所的に応力が集中することがないため、圧縮要素104の回転揺動をスムーズに抑制することができ、コイルバネ118の信頼性が高まるとともに、圧縮機側スナブバ117とコイルバネ118の摺動が抑制され、摺動に伴う騒音を低減することができる。   Therefore, since the coil spring 118 is linearly deformed and stress is not concentrated locally, the rotational swing of the compression element 104 can be smoothly suppressed, and the reliability of the coil spring 118 is improved and the compressor side is increased. Sliding between the snubber 117 and the coil spring 118 is suppressed, and noise accompanying the sliding can be reduced.

さらに、底部140の外径に対する頭部137の外径の比率が90から97%の範囲と
なるようにしているが、この比率が90%未満と頭部がかなり先細形状とした場合、電動圧縮要素104が停止した際に、電動圧縮要素104の回転に伴ってコイルバネ118が大きく変形しないと電動圧縮要素104の回転方向のバネ力が得られず、その結果、電動圧縮要素104の回転揺動を抑制する効果が小さくなる。
Furthermore, the ratio of the outer diameter of the head 137 to the outer diameter of the bottom 140 is in the range of 90 to 97%. If this ratio is less than 90% and the head has a fairly tapered shape, electric compression is performed. When the element 104 is stopped, if the coil spring 118 is not greatly deformed along with the rotation of the electric compression element 104, the spring force in the rotation direction of the electric compression element 104 cannot be obtained. The effect of suppressing is reduced.

そのため、電動圧縮要素104が大きく回転揺動し、吐出配管130などの拘束部に作用する力も大きく、吐出配管130の破損といった信頼性の低下要因となる。   For this reason, the electric compression element 104 rotates and swings greatly, and the force acting on the restraint portion such as the discharge pipe 130 is large, which causes a reduction in reliability such as breakage of the discharge pipe 130.

電動圧縮要素104の回転揺動を抑制する効果が低下することを補うために、コイルバネ118のバネ力を上げると、コイルバネ118による振動の減衰力が低下するので、コイルバネ118を通じて伝達する振動が大きくなり、密閉型圧縮機全体の振動を上げてしまうことになる。   When the spring force of the coil spring 118 is increased in order to compensate for a reduction in the effect of suppressing the rotational swing of the electric compression element 104, the vibration damping force by the coil spring 118 is reduced, so that the vibration transmitted through the coil spring 118 is large. As a result, the vibration of the whole hermetic compressor is increased.

一方、底部140の外径に対する頭部137の外径の比率が97%を超えると、圧縮機側スナブバ117は軸方向にほぼ円筒形状となり、通常運転時においても圧縮機側スナブバ117の外周部127とコイルバネ118の内周部が軸方向に長く摺動するため、摺動に伴う騒音が発生したり、コイルバネ118による密閉容器101に伝わる振動の低減効果が大幅に損なわれてしまう。   On the other hand, when the ratio of the outer diameter of the head portion 137 to the outer diameter of the bottom portion 140 exceeds 97%, the compressor-side snubber 117 becomes substantially cylindrical in the axial direction, and the outer peripheral portion of the compressor-side snubber 117 is also in normal operation. Since 127 and the inner peripheral part of the coil spring 118 slide in the axial direction for a long time, noise accompanying the sliding is generated, and the effect of reducing the vibration transmitted to the sealed container 101 by the coil spring 118 is greatly impaired.

以上のように、底部140の外径に対する頭部137の外径の比率を90から97%の範囲となるように形成することで、電動圧縮要素104が停止した際に、電動圧縮要素104の回転揺動を抑制し吐出配管130などの拘束部に作用する力も低減する効果と、圧縮機側スナブバ117の外周部127とコイルバネ118の内周部の摺動に伴う騒音を抑制する効果と、通常運転時のコイルバネ118による密閉容器101に伝わる振動の低減効果をバランス良く得ることができる。   As described above, when the ratio of the outer diameter of the head 137 to the outer diameter of the bottom 140 is in the range of 90 to 97%, when the electric compression element 104 is stopped, the electric compression element 104 An effect of suppressing rotational swing and reducing a force acting on a restraint portion such as the discharge pipe 130, an effect of suppressing noise caused by sliding between the outer peripheral portion 127 of the compressor-side snubber 117 and the inner peripheral portion of the coil spring 118; The effect of reducing vibration transmitted to the sealed container 101 by the coil spring 118 during normal operation can be obtained in a well-balanced manner.

また、圧縮機側スナブバ117の外周部127の底部140の外径に対する頭部137の外径の比率は90から97%の範囲内としたが、その中でも92から95%の範囲とすることで、上述した効果を最もバランス良く得ることができる。   In addition, the ratio of the outer diameter of the head 137 to the outer diameter of the bottom 140 of the outer peripheral portion 127 of the compressor-side snubber 117 is in the range of 90 to 97%. The effects described above can be obtained with the best balance.

また、圧縮機側スナブバ117の突出部115は、コイルバネ118と当接したり摺動したりすることがないように形成されるとともに、密閉型圧縮機に対して上下方向の衝撃が作用した際には、シェル側スナブバ115に当接するように形成されており、この上下方向の衝撃により電動圧縮要素104などが破損したり、コイルバネ118がシェル側スナブバ115や圧縮機側スナブバ117からはずれたりすることを防止することができる。   The protrusion 115 of the compressor-side snubber 117 is formed so as not to come into contact with or slide with the coil spring 118, and when a vertical impact is applied to the hermetic compressor. Is formed so as to abut against the shell-side snubber 115, and the electric compression element 104 or the like is damaged by this vertical impact, or the coil spring 118 is displaced from the shell-side snubber 115 or the compressor-side snubber 117. Can be prevented.

なお、本発明の実施の形態1においては、圧縮機側スナブバ117の外周部127の底部140の外径に対する頭部137の外径の比率を上記設計とすることに加えて、底部140から頭部137までの軸方向高さ寸法(H)を、底部140の外径寸法の50から70%の範囲とし、具体的に軸方向高さ寸法(H)を11から13mmの範囲内で設計し、また突出部150の軸方向高さを、底部140から頭部137までの軸方向高さ寸法(H)の約60%で設計している。   In the first embodiment of the present invention, the ratio of the outer diameter of the head 137 to the outer diameter of the bottom 140 of the outer peripheral portion 127 of the compressor-side snubber 117 is the above design, and the The axial height dimension (H) to the portion 137 is set to be in the range of 50 to 70% of the outer diameter dimension of the bottom portion 140, and specifically, the axial height dimension (H) is designed in the range of 11 to 13 mm. The axial height of the protrusion 150 is designed to be about 60% of the axial height dimension (H) from the bottom 140 to the head 137.

上記設計により、弾性支持装置105を軸方向に大型化することなく、電動圧縮要素104の回転揺動の抑制効果、圧縮機側スナブバ117とコイルバネ118の摺動に伴う騒音の抑制効果と、通常運転時のコイルバネ118による振動の低減効果をバランス良く且つ十分に得ることができる。   With the above design, the elastic support device 105 is not increased in size in the axial direction, the effect of suppressing the rotational swing of the electric compression element 104, the effect of suppressing the noise associated with the sliding of the compressor side snubber 117 and the coil spring 118, and The effect of reducing vibration by the coil spring 118 during operation can be obtained with sufficient balance.

また、コイルバネ118の回転方向の変位に対するバネ特性のバネ定数は、2から5N
/mmの範囲で設定されているので、通常運転時のバネ定数としては比較的柔らかいが、停止時においては、バネ定数が硬くすることができるので最大回転揺動量を低減することができる。これによりさらに低回転で密閉型圧縮機を運転できることになる。
The spring constant of the spring characteristic with respect to the displacement in the rotational direction of the coil spring 118 is 2 to 5N.
Since the spring constant is set within the range of / mm, the spring constant during normal operation is relatively soft, but the spring constant can be hardened at the time of stop so that the maximum amount of rotation swing can be reduced. As a result, the hermetic compressor can be operated at a lower speed.

したがって、さらに低回転で密閉型圧縮機を運転できるので冷蔵庫としての消費電力量を低減することができる。   Therefore, since the hermetic compressor can be operated at a lower rotation, the power consumption as the refrigerator can be reduced.

また、圧縮室148が10ccを超える大きな容積であるので、停止直前の圧縮負荷が大きいことから、ブレーキトルクも大きくなるが、停止時におけるコイルバネ118のバネ定数は大きくなるため最大回転揺動量は減少する。   In addition, since the compression chamber 148 has a large volume exceeding 10 cc, the compression load immediately before the stop is large, so the brake torque also increases. However, the spring constant of the coil spring 118 at the stop increases, so the maximum rotational swing amount decreases. To do.

したがって、振動の低い信頼性の高い密閉型圧縮機を提供できる。   Therefore, a highly reliable hermetic compressor with low vibration can be provided.

また、圧縮機側スナブバ117を圧縮要素103と電動要素102を締結する締結ボルト157の頭部で形成することで、部品点数を減らすことができる。   Moreover, the number of parts can be reduced by forming the compressor side snubber 117 with the head of the fastening bolt 157 which fastens the compression element 103 and the electric element 102.

したがって、安価な密閉型圧縮機を提供することができる。   Therefore, an inexpensive hermetic compressor can be provided.

また、圧縮機側スナブバ117の頭部137と外周部127の接続部147の縦断面における形状がコイルバネ118の線径の1/2以上のR形状としたので、コイルバネ118の線径より圧縮機側スナブバ117の頭部137と外周部127の接続部147のRが大きくなり、停止時の回転揺動時に圧縮機側スナブバ117の頭部137がコイルバネ118を傷つけることを防止することができる。   Further, since the shape in the longitudinal section of the head portion 137 of the compressor-side snubber 117 and the connecting portion 147 of the outer peripheral portion 127 is an R shape that is ½ or more of the wire diameter of the coil spring 118, the compressor is more effective than the wire diameter of the coil spring 118. R of the connecting portion 147 of the head portion 137 of the side snubber 117 and the outer peripheral portion 127 is increased, and the head portion 137 of the compressor side snubber 117 can be prevented from being damaged by the rotation and oscillation at the time of stopping.

したがって、信頼性の高い密閉型圧縮機を提供することができる。   Therefore, a highly reliable hermetic compressor can be provided.

以上のように、本発明に係わる密閉型圧縮機は、負荷が高い場合に停止しても、内部配管に発生する力を低減し、停止時の回転揺動量を低減した密閉型圧縮機を提供することができるので、負荷の高い業務用や空調用の用途にも適用できる。   As described above, the hermetic compressor according to the present invention provides a hermetic compressor in which the force generated in the internal piping is reduced even when the load is high, and the amount of rotational oscillation during the stop is reduced. Therefore, it can also be applied to high-load business use and air-conditioning applications.

本発明の実施の形態1における密閉型圧縮機の縦断面図1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention. 同実施の形態における密閉型圧縮機の上面図Top view of hermetic compressor in the same embodiment 同実施の形態における密閉型圧縮機の要部拡大断面図The principal part expanded sectional view of the hermetic compressor in the embodiment 同実施の形態における密閉型圧縮機の動作説明図Operation explanatory diagram of hermetic compressor in the same embodiment 同実施の形態における密閉型圧縮機のコイルバネのバネ特性図Spring characteristic diagram of coil spring of hermetic compressor in the same embodiment 従来の密閉型圧縮機の縦断面図Vertical section of a conventional hermetic compressor 従来の密閉型圧縮機の上面図Top view of a conventional hermetic compressor 従来の密閉型圧縮機の要部拡大断面図Main section enlarged sectional view of a conventional hermetic compressor 従来の密閉型圧縮機の動作説明図Operation explanatory diagram of a conventional hermetic compressor

101 密閉容器
102 電動要素
103 圧縮要素
104 電動圧縮要素
114 ピストン
115 シェル側スナブバ
117 圧縮機側スナブバ
118 コイルバネ
127 外周
137 頭部
140 底部
148 圧縮室
157 締結ボルト
DESCRIPTION OF SYMBOLS 101 Airtight container 102 Electric element 103 Compression element 104 Electric compression element 114 Piston 115 Shell side snubber 117 Compressor side snubber 118 Coil spring 127 Outer periphery 137 Head 140 Bottom part 148 Compression chamber 157 Fastening bolt

Claims (7)

密閉容器と、前記密閉容器内に収納され圧縮室内を往復運動するピストンを含んだ電動圧縮要素と、前記電動圧縮要素を弾性的に支持する両端に密着巻部を有したコイルバネを備え、前記コイルバネは前記密閉容器側に設けた突起部であるシェル側スナブバと、前記電動圧縮要素側に設けた圧縮機側スナブバにそれぞれ両端部を挿入され、前記圧縮機側スナブバの外周部は、少なくとも一部が底部から頭部にかけて外径が小さくなる所定の曲面で形成されるとともに、前記底部の外径に対する前記頭部の外径の比率は90から97%の範囲内であることを特徴とした密閉型圧縮機。 An electric compression element including a hermetic container, a piston that is housed in the hermetic container and reciprocates in a compression chamber, and a coil spring having tightly wound portions at both ends that elastically support the electric compression element; Are inserted at both ends into a shell-side snubber that is a protrusion provided on the closed container side and a compressor-side snubber provided on the electric compression element side, and the outer peripheral portion of the compressor-side snubber is at least partially Is formed with a predetermined curved surface whose outer diameter decreases from the bottom to the head, and the ratio of the outer diameter of the head to the outer diameter of the bottom is in the range of 90 to 97%. Mold compressor. 圧縮機側スナブバの外周部は、縦断面における形状がR形状の曲面であることを特徴とした請求項1に記載の密閉型圧縮機。 The hermetic compressor according to claim 1, wherein the outer peripheral portion of the compressor-side snubber is a curved surface having an R shape in a longitudinal section. コイルバネは、電動圧縮要素を弾性的に支持した状態において、前記電動圧縮要素の回転を拘束するバネ特性を有し、前記電動圧縮要素の回転方向の変位に対するバネ特性のバネ定数は、2から5N/mmの範囲内であることを特徴とした請求項1または2に記載の密閉型圧縮機。 The coil spring has a spring characteristic that restrains the rotation of the electric compression element in a state where the electric compression element is elastically supported, and the spring constant of the spring characteristic with respect to the displacement in the rotation direction of the electric compression element is 2 to 5N. 3. The hermetic compressor according to claim 1, wherein the hermetic compressor is within a range of / mm. 電動圧縮要素は、商用電源周波数未満の回転数を含む複数の回転数で運転することを特徴とした請求項1から3のいずれか一項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 3, wherein the electric compression element is operated at a plurality of rotation speeds including a rotation speed less than a commercial power supply frequency. 圧縮室は、10ccを超える容積であることを特徴とした請求項1から4のいずれか一項に記載の密閉型圧縮機。 The hermetic compressor according to any one of claims 1 to 4, wherein the compression chamber has a volume exceeding 10 cc. 圧縮機側スナブバの頭部を、電動圧縮要素を構成する圧縮要素と電動要素とを締結する締結ボルトの頭部と同じ形状とした請求項1から5のいずれか一項に記載の密閉型圧縮機。 The hermetic compression according to any one of claims 1 to 5, wherein the compressor-side snubber head has the same shape as a head of a fastening bolt that fastens the compression element and the electric element constituting the electric compression element. Machine. 圧縮機側スナブバの頭部と外周部の接続部は、縦断面における形状がコイルバネの線径の1/2以上のR形状とした請求項1から6のいずれか一項に記載の密閉型圧縮機。 The hermetic compression according to any one of claims 1 to 6, wherein a connecting portion between the head portion and the outer peripheral portion of the compressor-side snubber has an R shape in which a shape in a longitudinal section is ½ or more of a wire diameter of a coil spring. Machine.
JP2009091086A 2009-04-03 2009-04-03 Hermetic compressor Pending JP2010242590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009091086A JP2010242590A (en) 2009-04-03 2009-04-03 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009091086A JP2010242590A (en) 2009-04-03 2009-04-03 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2010242590A true JP2010242590A (en) 2010-10-28

Family

ID=43095855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009091086A Pending JP2010242590A (en) 2009-04-03 2009-04-03 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2010242590A (en)

Similar Documents

Publication Publication Date Title
JP2005226651A (en) Vibration reducing structure for reciprocating compressor
KR20040066120A (en) Linear compressor
JP2007092541A (en) Compressor
JP2009041393A (en) Sealed electric compressor
JP2010242590A (en) Hermetic compressor
RU2507456C2 (en) Refrigerating compressor
JP2007292021A (en) Support device for compressor
JP2013194537A (en) Sealed compressor
JP5500558B2 (en) Screw compressor
JP2010101278A (en) Sealed compressor
JP2009275566A (en) Hermetic compressor
JP2006316795A (en) Hermetic electric compressor and refrigerator using it
JP5945683B2 (en) Hermetic compressor and refrigeration apparatus provided with the same
JP5183773B2 (en) Rotary compressor
JP2008031882A (en) Support apparatus for compressor
JP2020148109A (en) Compressor and apparatus with compressor
JP2009085191A (en) Sealed compressor
JP2011208514A (en) Hermetic compressor
JP2008121553A (en) Compressor
JP2007092527A (en) Rotary compressor
US10544782B2 (en) Hermetic compressor and refrigeration device
KR101366566B1 (en) A hermetic type compressor
JP2009085194A (en) Hermetic compressor
JP2009191670A (en) Hermetic compressor
JP5274361B2 (en) Rotary hermetic compressor