JP2010242227A - Member for loom and method for producing the same - Google Patents

Member for loom and method for producing the same Download PDF

Info

Publication number
JP2010242227A
JP2010242227A JP2009088747A JP2009088747A JP2010242227A JP 2010242227 A JP2010242227 A JP 2010242227A JP 2009088747 A JP2009088747 A JP 2009088747A JP 2009088747 A JP2009088747 A JP 2009088747A JP 2010242227 A JP2010242227 A JP 2010242227A
Authority
JP
Japan
Prior art keywords
thin film
steel
substrate
film
dlc thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009088747A
Other languages
Japanese (ja)
Other versions
JP5070629B2 (en
Inventor
Yoshio Harada
良夫 原田
Takema Teratani
武馬 寺谷
Nariyoshi Miyajima
生欣 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP2009088747A priority Critical patent/JP5070629B2/en
Publication of JP2010242227A publication Critical patent/JP2010242227A/en
Application granted granted Critical
Publication of JP5070629B2 publication Critical patent/JP5070629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Looms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the long life of guide components of fiber (yarn) arranged as a subsidiary member of various looms and to reduce a cost of operation of these components. <P>SOLUTION: A stainless steel product having a component composition of [amount of (Cr+Mo) in steel-amount of (Ni+Cu) in steel]≥7 mass% is used as a steel base material. The stainless steel product is treated by plasma etching and activated. A hydrocarbon-based gas is introduced in the atmosphere of the treatment, an amorphous hydrocarbon solid fine particle composed of carbon and hydrogen as main components is vapor-deposited under condition in which the steel base material is set in a negative potential to form a DLC thin film having the thickness of 1.5-10 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種繊維を織るための織機などにおいて用いられている筬やヘルド、ソード、バックリートなど、糸を案内するために用いられる部材およびそれの製造方法に関するものである。   The present invention relates to a member used for guiding a yarn, such as a kite, heald, sword, buckleet, and the like used in a loom for weaving various fibers, and a method for manufacturing the member.

綿や毛などの天然繊維、ポリエステルやナイロンなどの合成繊維、炭素繊維や高機能繊維のような新素材繊維などを織るための繊維機械、例えば織機や整形機などには、例えば筬(以下、「“おさ”」で示す)という部材が使われている。   Textile machines for weaving natural fibers such as cotton and wool, synthetic fibers such as polyester and nylon, new material fibers such as carbon fibers and high-performance fibers, such as looms and shaping machines, A member called “Osa” is used.

織機用部材の1つである前記“おさ”とは、織物の経糸を揃えたり、緯糸を押しつけたりして織り目を整えるために用いられる部品である。この“おさ”は、多数の金属薄板を0.5〜1mm程度の間隔にて平行に配列させるとともに、そのまわりを縁金と呼ばれる枠体で支持して構成したものである。こうした“おさ”については、一般に、ステンレス鋼製のものが用いられてきた。しかし、近年の“おさ”については、フィラメントと呼ばれる1〜2μm径の原糸を糊付けして糸にしたような新素材繊維が誕生するに至って、しかも、このような繊維を高速で走行させることから、次のような性能が求められている。   The “osa” which is one of the members for the loom is a part used for adjusting the texture by aligning the warp of the woven fabric or pressing the weft. This “osa” is constituted by arranging a large number of metal thin plates in parallel at intervals of about 0.5 to 1 mm and supporting the periphery thereof by a frame body called a rim. As for such “osa”, stainless steel has generally been used. However, with regard to “Osa” in recent years, a new material fiber that is made by gluing raw yarns with a diameter of 1 to 2 μm, called filaments, is born, and such fibers run at high speed. Therefore, the following performance is required.

(1)“おさ”の表面は、平滑で、高速走行する原糸との接触抵抗が少なく、耐摩耗性に優れていること、
(2)使用する原糸が、遠赤外線を利用して保温性を向上させたり、紫外線を利用して殺菌性を発揮させるためにCuOやTiOなどの超微粒子などを含むものである場合、これらの原糸に対しても、良好な耐摩耗性を有すること、
(3)原糸に含浸されている糊が付着しにくく、その糊が付着したとしても簡単に除去できるものであること、
(4)“おさ”の表面に付着した糊を除去するために実施する水洗、酸、アルカリ水溶液による洗浄などが行われても、常に健全な状態を維持できるものであること、
(1) The surface of “osa” is smooth, has little contact resistance with the yarn running at high speed, and has excellent wear resistance.
(2) When the raw yarn to be used is one containing ultrafine particles such as CuO or TiO 2 in order to improve heat retention using far infrared rays or to exhibit bactericidal properties using ultraviolet rays, It has good wear resistance against the raw yarn,
(3) The paste impregnated in the raw yarn is difficult to adhere and can be easily removed even if the paste adheres;
(4) Even if washing with water, acid, or alkaline aqueous solution performed to remove glue attached to the surface of “OSA” is performed, a healthy state can always be maintained.

従来、上記(1)〜(4)の性能を有する“おさ”の基材として、各種のステンレス鋼が採用されるとともに、その表面に各種の表面処理を施す提案がなされている。   Conventionally, various stainless steels have been adopted as “osa” base materials having the performances (1) to (4) above, and various surface treatments have been proposed on the surface thereof.

例えば、従来の代表的な“おさ”は、基材の表面に硬質クロムのめっきを施したものが一般的であったが、その後は、特許文献1、2に見られるように、基材の表面に、硬質で平滑なCr薄膜を形成したものも提案されている。さらに、近年では、基材表面に炭素と水素を主成分とする非晶質な「DLC」薄膜を被覆した“おさ”が開発され、平滑かつ硬質で原糸との摩擦抵抗が小さい上、酸やアルカリ水溶液にも腐食されない部材として、重用されている。 For example, the typical representative “osa” is generally one in which the surface of the substrate is plated with hard chrome, but thereafter, as seen in Patent Documents 1 and 2, Have been proposed in which a hard and smooth Cr 2 O 3 thin film is formed on the surface. Furthermore, in recent years, “osa” in which an amorphous “DLC” thin film mainly composed of carbon and hydrogen is coated on the surface of the base material has been developed, and it is smooth and hard and has low frictional resistance with the yarn. It is used as a member that is not corroded by acid or alkaline aqueous solution.

ただし、このDLC薄膜は、密着性が悪いため、これをステンレス鋼製基材の表面に直接形成することはなかった。即ち、該ステンレス鋼基材の表面には、まず、CrやTi、Si、SiCなどからなる金属の膜(アンダーコート)をPVD法などによって形成することが一般的であった(特許文献3〜5)。   However, since this DLC thin film had poor adhesion, it was not directly formed on the surface of the stainless steel substrate. That is, generally, a metal film (undercoat) made of Cr, Ti, Si, SiC or the like is first formed on the surface of the stainless steel substrate by a PVD method or the like (Patent Documents 3 to 3). 5).

特開昭61−245346号公報JP-A 61-245346 特開平11−029876号公報Japanese Patent Laid-Open No. 11-029876 特開平6−060404号公報JP-A-6-060404 特開平9−105051号公報JP-A-9-105051 特開平10−037043号公報Japanese Patent Laid-Open No. 10-037043

織機用部品の1つである“おさ”の製造に関する前記の各従来技術は、次のような解決すべき課題が残されている。それは、
(1)長期にわたって優れた密着性と耐摩耗性とを示すDLC薄膜を、低コストで提供することができない。
(2)“おさ”基材表面に、電気めっき法やPVD法によって各種の金属や炭化物のアンダーコートを形成した上に、DLC薄膜を間接的に形成しているため、作業性や生産性が悪い。
(3)DLC薄膜自体の耐食性や耐久性が劣り、品質に不安が残る。
Each of the above-described conventional techniques relating to the production of “OSA”, which is one of the parts for a loom, has the following problems to be solved. that is,
(1) A DLC thin film that exhibits excellent adhesion and wear resistance over a long period of time cannot be provided at low cost.
(2) Workability and productivity because the DLC thin film is indirectly formed on the surface of “Osa” substrate by forming various metal and carbide undercoats by electroplating and PVD methods. Is bad.
(3) Corrosion resistance and durability of the DLC thin film itself are inferior, and the quality remains uneasy.

しかも、前記アンダーコート薄膜の施工には、長い処理時間が必要で、Cr膜を電気めっき法で被覆するには、有害な6価クロムを多量に含むめっき液(通常、CrO250g/L、HSO2.5g/L)を使用することになるため、環境汚染の原因ともなっており、好ましい方法ではない。 In addition, the undercoat thin film requires a long processing time, and in order to coat the Cr film by electroplating, a plating solution containing a large amount of harmful hexavalent chromium (usually, CrO 3 250 g / L, H 2 SO 4 2.5 g / L) is used, which causes environmental pollution and is not a preferred method.

従来技術が抱えている上述した課題を解決するための研究を行ったところ、発明者らは、有効な解決手段に結びつく次のような知見を得た。
(1)金属製“おさ”基材の表面に、もし、密着性に優れたDLC薄膜を直接形成することにした場合、従来技術では必須とされていたアンダーコートの施工を省略することができるようになり、生産コストの大幅な低減を図ることができる。
(2)“おさ”用基材の表面に対し、DLC薄膜を直接施工するには、基材の種類、即ち、鋼種の選定と、それの化学成分とその組成を所定の範囲にすることが不可欠である。
(3)選定された鋼種からなる“おさ”用基材の表面に対し、DLC薄膜を直接形成するには、前処理を行うことが有効である。この前処理とは、真空容器中において前記基材に負の電位を与えると共に、Ar、Heなどの不活性ガスをプラズマ状態にしてイオン化させ、このイオンを該基材表面に衝突させることにより、該基材表面の酸化膜を除去する処理を行うことが有効である。
(4)上記処理と共に、衝突面に原子論的規模の小さな凹みを付加して結晶面のみならず、結晶粒界を活性化させ、その後、同じ真空容器内に炭化水素系ガスを導入することによって、DLC薄膜を生成させるようにすることが好ましい。
As a result of researches to solve the above-described problems of the prior art, the inventors have obtained the following knowledge that is linked to effective solutions.
(1) If it is decided to directly form a DLC thin film with excellent adhesion on the surface of a metal “osa” base material, it is possible to omit the undercoat, which was essential in the prior art. As a result, production costs can be greatly reduced.
(2) In order to directly apply the DLC thin film to the surface of the base material for “OSA”, select the type of base material, that is, the steel type, and set its chemical composition and composition within a predetermined range. Is essential.
(3) In order to directly form the DLC thin film on the surface of the “osa” base material made of the selected steel type, it is effective to perform a pretreatment. In this pretreatment, a negative potential is applied to the base material in a vacuum vessel, and an inert gas such as Ar and He is ionized in a plasma state, and the ions collide with the surface of the base material. It is effective to perform a treatment for removing the oxide film on the surface of the substrate.
(4) Along with the above treatment, a small atomistic dent is added to the collision surface to activate not only the crystal plane but also the crystal grain boundary, and then introduce hydrocarbon gas into the same vacuum vessel. It is preferable to generate a DLC thin film.

即ち、本発明は、研磨し、活性化処理した鋼製基材の表面に、直に、アモルファス状の炭素水素固形物の堆積膜を被覆形成してなることを特徴とする織機用部材を、上記の課題解決手段とする。   That is, the present invention provides a member for a loom, characterized in that a surface of a steel substrate that has been polished and activated is directly coated with a deposited film of an amorphous carbon hydrogen solid, Let it be said problem-solving means.

また、本発明では、鋼製基材の表面を研磨して平滑面に仕上げ、次いで、その鋼製基材をArやHeなどの不活性ガス中において、該基材を負の電位に設定してプラズマエッチング処理を行うことにより、該基材表面を活性化させ、その後、同じ雰囲気中において該基材を負の電位に設定した上で炭化水素系ガスを供給し、かつ高周波の高電圧パルルをかけることにより、該基材表面に直接、炭素と水素とを主成分とするアモルファス状の炭素水素固形物微粒子を気相析出させることにより、これら微粒子の堆積層からなる皮膜(以下、この皮膜を単に「DLC薄膜」という)を形成することを特徴とする織機用部材の製造方法を、上記課題解決手段とする。   In the present invention, the surface of the steel substrate is polished to a smooth surface, and then the steel substrate is set to a negative potential in an inert gas such as Ar or He. The substrate surface is activated by performing plasma etching treatment, and then the substrate is set to a negative potential in the same atmosphere, then a hydrocarbon gas is supplied, and a high-frequency high-voltage pulse is applied. Is applied to deposit a layer of amorphous carbon hydrogen solid particles mainly composed of carbon and hydrogen on the surface of the base material in a vapor phase (hereinafter referred to as this film). Is simply referred to as a “DLC thin film”).

本発明において、
(1)前記鋼製基材は、CrとMoの質量含有量の和が、同じ基材中に含まれるNiとCuの質量含有量の和よりも7質量%以上多く含まれているステンレス鋼を用いること、
(2)前記鋼製基材は、研磨面の表面粗さが、Ra≦0.5μm、Rz≦1.5μmで、圧力:0.1〜1.0Paの不活性ガス中でプラズマエッチングして活性化させた表面を有すること、
(3)前記炭素水素固形物堆積膜は、厚さが1.5〜10μmの範囲にあること、
(4)前記炭素水素固形物堆積膜は、この皮膜中に含まれる水素量が13〜22原子%で、残部が炭素からなり、硬さがHv:1000〜2700の範囲にあること、
がより好ましい解決手段である。
In the present invention,
(1) The steel base material is a stainless steel in which the sum of the mass contents of Cr and Mo is 7 mass% or more than the sum of the mass contents of Ni and Cu contained in the same base material. Using
(2) The steel substrate is subjected to plasma etching in an inert gas having a polished surface with Ra ≦ 0.5 μm, Rz ≦ 1.5 μm, and pressure: 0.1 to 1.0 Pa. Having an activated surface,
(3) The carbon hydrogen solid deposit film has a thickness in the range of 1.5 to 10 μm,
(4) The carbon hydrogen solid deposit film has a hydrogen content of 13 to 22 atomic% in the film, the balance is made of carbon, and the hardness is in the range of Hv: 1000 to 2700,
Is a more preferable solution.

本発明によれば、次のような効果が期待できる。
(1)“おさ”などとなる基材の表面に直接、DLC薄膜が被覆形成されているため、CrやTi、Si、WC、SiCなどからなるアンダーコートの施工が不要となる。そのため、アンダーコートの施工に必要な各種の装置、処理時間、経費、材料などが不要で、処理時間が短縮される。しかも、生産性が大幅に向上し、生産コストの低減効果に加え、省資源対策にもなる。
(2)アンダーコートの施工が省略できるため、従来、この処理のために行われてきた電気めっき、特にクロムめっきの施工(環境汚染成分として厳しく制限されている六価クロム水溶液(CrO)が使用されている)がなくなり、作業全体の安全性の向上、作業環境の向上をもたらすことができる。
(3)本発明において用いられるDLC薄膜は、Hvが1000〜2700と高く、かつ繊維との接触抵抗値が小さく、耐摩耗性に優れ、しかも密着性がよいため、強い曲げ変形などに対して十分な耐久性を示す。
(4)本発明において用いられるDLC薄膜は、水素含有が13〜22原子%で残部が炭素からなる気相析出微粒子からなるので、柔軟性を有し、使用中の“おさ”が変形した場合でも十分追随でき、また、酸、アルカリ水溶液に浸食されず、初期性能を長期間にわたって維持できるため、織機製品の生産コストの低減のみならず、織機製品の品質の向上に効果がある。
According to the present invention, the following effects can be expected.
(1) Since the DLC thin film is directly coated on the surface of the base material to be “osa” or the like, an undercoat made of Cr, Ti, Si, WC, SiC, or the like is not required. This eliminates the need for various devices, processing time, costs, materials, and the like necessary for undercoat construction, and reduces processing time. In addition, productivity is greatly improved, and in addition to the effect of reducing production costs, it also becomes a resource saving measure.
(2) Since the undercoat can be omitted, the electroplating that has been conventionally performed for this treatment, especially chromium plating (a hexavalent chromium aqueous solution (CrO 3 ) that is severely restricted as an environmental pollution component) Used), the safety of the entire work can be improved, and the work environment can be improved.
(3) The DLC thin film used in the present invention has a high Hv of 1000 to 2700, a small contact resistance value with a fiber, excellent wear resistance, and good adhesion, so that it is resistant to strong bending deformation. Shows sufficient durability.
(4) The DLC thin film used in the present invention is composed of vapor-deposited fine particles having a hydrogen content of 13 to 22 atomic% and the balance being carbon, so that the DLC thin film has flexibility and the “osa” in use is deformed. Even in this case, it can be followed sufficiently, and it is not eroded by an acid or alkaline aqueous solution, and the initial performance can be maintained for a long period of time.

“おさ”の表面にDLC薄膜を被覆形成する処理工程図である。FIG. 5 is a process diagram for coating a DLC thin film on the surface of “osa”. “おさ”用基材の表面粗さと、その上に形成したDLC薄膜の断面模式図であり、(a)はRzより薄い膜厚のDLC薄膜が形成された場合、(b)はRzより厚い膜厚のDLC薄膜が形成された場合である。It is the cross-sectional schematic diagram of the surface roughness of the base material for "osa", and the DLC thin film formed on it, When (a) is a DLC thin film with a film thickness thinner than Rz, (b) is from Rz This is a case where a thick DLC thin film is formed. 基材の表面にDLC薄膜を被覆形成するためのプラズマCVD装置の模式図である。It is a schematic diagram of the plasma CVD apparatus for coating-forming a DLC thin film on the surface of a base material. DLC薄膜の密着性を評価するためのスクラッチ疵と薄膜の剥離状態の異なる代表的な評価見本写真である。評価1が最も密着性のよいDLC薄膜、評価4が最も密着性の悪い薄膜の例である。It is the typical evaluation sample photograph from which the peeling state of a scratch flaw and thin film for evaluating the adhesiveness of a DLC thin film differs. Evaluation 1 is an example of a DLC thin film with the best adhesion, and Evaluation 4 is an example of a thin film with the lowest adhesion. “おさ”用基材の耐摩耗性試験装置の概略図である。FIG. 3 is a schematic view of an “osa” base material wear resistance test apparatus.

以下の説明は、織機用部材として、専ら筬(おさ)の例で述べるが、本発明はその“おさ”にのみ限られるものではない。
図1は、そのおさ“おさ”の基本となる基材の表面に直接、DLC薄膜を形成するという本発明方法の工程図である。以下、この図に従って本発明の構成を説明する。
The following description will be given exclusively with the example of a loom as a member for a loom, but the present invention is not limited only to that "was".
FIG. 1 is a process diagram of the method of the present invention in which a DLC thin film is formed directly on the surface of a base material which is the basis of the thickness “osa”. The configuration of the present invention will be described below with reference to this figure.

(1)“おさ”用基材の材質の選定;
本発明においてはまず、“おさ”本体とすべき基材の表面に、いわゆるアンダーコートなどの中間層を介在させることなく、DLC薄膜を直接形成するのに適した基材を選定することが重要である。即ち、金属製基材の表面に、直に、炭素と水素を主成分とするアモルファス状のDLC薄膜を、高い密着力をもって被覆形成するには、その金属製基材の化学成分や組成、特性などを検討することが重要である。
(1) Selection of material for “Osa” base material;
In the present invention, first, it is possible to select a base material suitable for directly forming a DLC thin film without interposing an intermediate layer such as a so-called undercoat on the surface of the base material to be the “OSA” body. is important. That is, in order to directly coat and form an amorphous DLC thin film mainly composed of carbon and hydrogen on the surface of a metal substrate with high adhesion, the chemical components, composition, and characteristics of the metal substrate. It is important to consider such things.

本発明では、織機の付属部材としての前記“おさ”の使用環境を勘案したとき、基材としては、鉄鋼材料が有効であると考えた。そこで、多くの鋼種についてDLC薄膜を直に被覆して、その薄膜の密着性について調べた。その結果、鋼(基材)の化学成分とDLC薄膜の密着性との間には、次に示すような関係が成立することがわかった。   In the present invention, when considering the use environment of the “osa” as an accessory of a loom, it was considered that a steel material is effective as a base material. Therefore, a DLC thin film was directly coated on many steel types, and the adhesion of the thin film was examined. As a result, it was found that the following relationship was established between the chemical composition of the steel (base material) and the adhesion of the DLC thin film.

(a)良好の密着性を示す金属成分:Cr、Mo、Nb、Ta、Si、W(C、C23
(b)密着性を阻害する金属成分:Ni、Cu
(c)含有量が少なく影響力の小さい金属および非金属成分:Mn、P、S
なお、(a)良好な密着性を示す金属成分として表示したC、C23は、金属成分ではないが、鋼中に含まれることが多い非金属成分であるので便宜上(a)に含めた。
(A) Metal component exhibiting good adhesion: Cr, Mo, Nb, Ta, Si, W (C, C 23 C 6 )
(B) Metal components that inhibit adhesion: Ni, Cu
(C) Metal and non-metallic components with low content and low impact: Mn, P, S
Note that (a) C and C 23 C 6 indicated as metal components exhibiting good adhesion are not metal components, but are included in (a) for convenience because they are often non-metallic components contained in steel. It was.

したがって、炭素鋼であっても、一般構造用鋼材(SS400)は、Cr、Moなどの成分を含んでいないため、この鋼材表面に直接被覆したDLC薄膜は密着性が悪い。一方、高炭素鋼材(SC480、SK140)などは、前者のSS400鋼に比較すると、密着力の大きいDLC薄膜の形成は可能であるものの、“おさ”のような薄板に加工することが困難であり、適材とは言えなかった。   Therefore, even if it is carbon steel, since the general structural steel (SS400) does not contain components such as Cr and Mo, the DLC thin film directly coated on the surface of this steel has poor adhesion. On the other hand, high carbon steel (SC480, SK140), etc. can form a DLC thin film with high adhesion compared to the former SS400 steel, but it is difficult to process into a thin plate like “Osa”. Yes, it was not the right material.

以上の結果から、“おさ”用の基材としては、鋼鉄製であることが望ましく、機械的性質、加工性、経済性、入手の難易度などを総合的に考慮すると、ステンレス鋼の使用が最も妥当であると考えられる。しかし、ステンレス鋼は、密着性向上成分としてのCrとMoを含む一方で、密着性を阻害するNiやCuも含むことが多いので、何らかの成分調整が必要になることがわかった。そこで、本発明では、基材鋼種、成分組成の決定に当っては、実施例1に示した実験結果などからも明らかになった次のような成分組成のものを使うことにした。   From the above results, it is desirable that the base material for “osa” be made of steel. Considering mechanical properties, workability, economy, difficulty of acquisition, etc., the use of stainless steel is desirable. Is considered the most appropriate. However, since stainless steel contains Cr and Mo as adhesion improving components, and often contains Ni and Cu that inhibit adhesion, it has been found that some component adjustment is necessary. Therefore, in the present invention, in determining the base steel type and the component composition, the following component composition that has been clarified from the experimental results shown in Example 1 and the like is used.

即ち、本発明では、CrやMoなどのDLC薄膜の密着性向上させる成分の総和が、密着性阻害成分であるNiとCuとの和よりも、7mass%以上の割合で余分に含まれているステンレス鋼を、好適鋼種として使う。つまり、皮膜密着性向上のための有効性分量が7mass%以上ということである。なお、以下に述べる計算は、日本工業規格に記載されている化学成分を基準としたものであり、一定の成分範囲が示されている場合には、その中間値を用いた。   That is, in this invention, the sum total of the component which improves the adhesiveness of DLC thin films, such as Cr and Mo, is contained extra by the ratio of 7 mass% or more rather than the sum of Ni and Cu which are adhesiveness inhibiting components. Stainless steel is used as the preferred steel grade. That is, the effective amount for improving the film adhesion is 7 mass% or more. In addition, the calculation described below is based on chemical components described in Japanese Industrial Standard, and when a certain component range is shown, an intermediate value thereof is used.

(2)適合鋼種選定のための算出式;
有効成分量=鋼中の(Cr+Mo)量−鋼中の(Ni+Cu)量≧7mass%
上記有効成分量算出式を用いて、各種のステンレス鋼の化学成分量について、その有効成分量を求めた結果を、表1に示す。この結果から明らかなように、多量のCrを含むSUS310鋼であっても、Ni量が多い場合は不適合鋼種となり、また、Niを含まないSUS410鋼では、適合鋼種となるなど、ステンレス鋼の全てが一律に適合鋼種となる訳ではないことがわかった。
(2) Calculation formula for selecting compatible steel types;
Active ingredient amount = (Cr + Mo) amount in steel− (Ni + Cu) amount in steel ≧ 7 mass%
Table 1 shows the results of determining the effective component amounts of various stainless steel chemical component amounts using the above-described effective component amount calculation formula. As is clear from this result, even if it is SUS310 steel containing a large amount of Cr, it becomes a non-conforming steel type when the amount of Ni is large, and SUS410 steel not containing Ni becomes a conforming steel type. It has been found that is not a consistent steel grade.

Figure 2010242227
Figure 2010242227

なお、上記ステンレス鋼について、“おさ”用基材へのDLC薄膜の密着性に与える影響成分として、Cr、MoおよびNi、Cuにのみ着目しているが、その密着性についてはさらに、Nb、Ta、Si、Wなどの金属元素をはじめ各種金属炭化物の影響も考えられるが、これらの成分は含まれていないか、また含まれていてもその含有量が少ないため、これらの成分(金属元素と炭化物)は計算から除外した。   As for the above stainless steel, attention is focused only on Cr, Mo, Ni, and Cu as influence components affecting the adhesion of the DLC thin film to the “osa” base material. The effects of various metal carbides including metal elements such as Ta, Si, and W are also conceivable, but these components are not included or even if included, these components (metal) Elements and carbides) were excluded from the calculation.

(3)“おさ”の作製とその表面研磨;
選択したステンレス鋼基材から切り出しされた“おさ”は、次に、その表面を研磨する。“おさ”の寸法は、目的によって多少の違いはあるものの、幅:3〜10mm、長さ:80〜120mm、厚さ:0.1〜0.7mm程度の薄い板状のものである。この薄い鋼板をバレル研磨、自動バフ研磨などによって、鋼板の表面(両面)はもとより端部も研磨し、鋭角的な部分をなくすことが大切である。また、必要に応じて化学研磨や電解研磨を用いて鏡面に仕上げてもよい。
(3) Production of “OSA” and its surface polishing;
The “osa” cut from the selected stainless steel substrate is then polished on its surface. The “osa” dimension is a thin plate having a width of 3 to 10 mm, a length of 80 to 120 mm, and a thickness of about 0.1 to 0.7 mm, although there are some differences depending on the purpose. It is important to polish the thin steel plate by barrel polishing, automatic buffing, etc. to polish not only the surface (both sides) of the steel plate but also the edges to eliminate sharp edges. Moreover, you may finish to a mirror surface using chemical polishing or electrolytic polishing as needed.

本発明では、“おさ”用基材の表面を下記の粗さになるように研磨して仕上げることが好ましい。
算術平均粗さRa:0.5μm以下
十点平均粗さRz:1.5μm以下
In the present invention, it is preferable that the surface of the “osa” substrate is polished and finished to have the following roughness.
Arithmetic average roughness Ra: 0.5 μm or less Ten-point average roughness Rz: 1.5 μm or less

前記基材の表面粗さ値(Ra、Rz)を上記のように規制する理由は下記のとおりである。即ち、前記基材の研磨面を、触針式表面粗さ計で測定すると、Ra値、Rz値、Ry値などが容易に測定できるが、発明者らの実験によると、“おさ”用基材の表面の研磨面は、Ra値は常に小さく、Rz値は大きく出た。とくに、本発明が推奨する表面粗さ範囲内では、Rz値はRa値の4〜7倍以上に達するものが多かった。   The reason why the surface roughness values (Ra, Rz) of the substrate are regulated as described above is as follows. That is, when the polished surface of the base material is measured with a stylus type surface roughness meter, Ra value, Rz value, Ry value, etc. can be easily measured. The polished surface on the surface of the substrate always had a small Ra value and a large Rz value. In particular, within the surface roughness range recommended by the present invention, the Rz value often reached 4 to 7 times the Ra value.

このようなRz値の高い研磨面を有する基材の表面に対し、DLC薄膜を被覆形成すると、図2に示すような状態となる。すなわち、“おさ”基材表面に形成されるDLC膜は、非常に薄い膜である。従って、研磨面上に実質的にRz値を決定づける凸部23をもつDLC膜24は、凸部25が露出したり、たとえ露出しない場合であっても、実質的な有効膜厚が得られないこととなる。このためDLC膜から露出した凸部は、原糸を切断したり、繊維を傷付けたりする原因になる他、有効膜厚の小さいDLC膜では、稼動中にDLC膜が僅かに摩耗しただけでも、凸部のみが露出して、原糸や繊維の損傷原因となる。なお、図2における21は基材、22はRaで示される粗さである。   When a DLC thin film is formed on the surface of a substrate having a polished surface with a high Rz value, a state as shown in FIG. 2 is obtained. That is, the DLC film formed on the surface of the “Osa” substrate is a very thin film. Therefore, the DLC film 24 having the convex portion 23 that substantially determines the Rz value on the polished surface cannot obtain a substantial effective film thickness even if the convex portion 25 is exposed or not exposed. It will be. For this reason, the convex part exposed from the DLC film may cause the raw yarn to be cut or the fibers to be damaged.In addition, in the DLC film having a small effective film thickness, even if the DLC film is slightly worn during operation, Only the convex portions are exposed, which causes damage to the yarn and the fibers. In FIG. 2, 21 is a base material, and 22 is a roughness indicated by Ra.

(4)基材表面の活性化(プラズマエッチング処理);
本発明では、研磨仕上げした“おさ”用基材の表面に対し、DLC薄膜を直に、被覆形成できるようにするために、活性化のための前処理としてプラズマエッチング処理を行う。“おさ”用基材に対してプラズマエッチング処理を行う方法としては、多くの技術があるが、本発明では、プラズマエッチング処理とDLC薄膜とを同一の装置を用いて行い得る、高周波−高電圧パルス重畳型のプラズマCVD法(以下、単に「プラズマCVD法」と呼ぶ)の利用が好適である。
(4) Activation of the substrate surface (plasma etching treatment);
In the present invention, a plasma etching process is performed as a pretreatment for activation so that the DLC thin film can be directly coated on the surface of the polished “osa” substrate. There are many techniques for performing a plasma etching process on a substrate for “sa”, but in the present invention, the plasma etching process and the DLC thin film can be performed using the same apparatus. Use of a voltage pulse superposition type plasma CVD method (hereinafter simply referred to as “plasma CVD method”) is preferable.

図3は、プラズマエッチング処理とDLC薄膜の形成が可能なプラズマCVD装置の略線図を示したものである。このプラズマCVD装置は、接地された反応容器31と、この反応容器内に高電圧パルスを印加するための高電圧パルス発生用電源34、被処理体(“おさ”用基材)32の周囲にArガスプラズマおよび炭化水素系ガスプラズマなどを発生させるためのプラズマ発生用電源35が配設されている他、導体33および被処理体に高電圧パルスおよび高周波電圧の両者を同時に印加するための重畳装置36が、高電圧パルス発生用電源34とプラズマ発生用電源35との間に介装配置されている。なお、導体および被処理体は、高電圧導入部39を介して重畳装置に接続されている。   FIG. 3 is a schematic diagram of a plasma CVD apparatus capable of performing plasma etching and forming a DLC thin film. The plasma CVD apparatus includes a grounded reaction vessel 31, a high-voltage pulse generating power source 34 for applying a high-voltage pulse in the reaction vessel, and a periphery of an object to be processed (“Osa” substrate) 32. Is provided with a plasma generating power source 35 for generating Ar gas plasma, hydrocarbon gas plasma, and the like, and for applying both a high voltage pulse and a high frequency voltage to the conductor 33 and the object to be processed simultaneously. A superimposing device 36 is interposed between the high voltage pulse generating power source 34 and the plasma generating power source 35. The conductor and the object to be processed are connected to the superimposing device via the high voltage introduction unit 39.

このプラズマCVD装置は、反応容器内にプラズマエッチング用のArやHeなどの不活性ガスおよびDLC薄膜形成用の各種炭化水素系ガスを導入するためのガス供給装置(図示せず)および反応容器を真空引きするための真空ポンプ(図示せず)が、それぞれバルブ37aおよび37bを介して反応容器に接続される。   This plasma CVD apparatus includes a gas supply device (not shown) and a reaction vessel for introducing an inert gas such as Ar or He for plasma etching and various hydrocarbon gases for forming a DLC thin film into the reaction vessel. A vacuum pump (not shown) for evacuation is connected to the reaction vessel via valves 37a and 37b, respectively.

次に、このプラズマCVD装置を用いて、被処理体の表面をプラズマエッチング処理して活性化する方法と、その作用機構について説明する。先ず、被処理体を反応容器内の所定位置に設置し、真空装置を稼動させて該反応容器内の空気を排出して脱気した後、ガス供給装置によってArガスを該反応容器内に導入し、その圧力を0.1〜1.0Paに調整する。   Next, a method for activating the surface of the object to be processed by plasma etching using this plasma CVD apparatus and its mechanism of operation will be described. First, an object to be treated is placed at a predetermined position in a reaction vessel, a vacuum apparatus is operated, air in the reaction vessel is discharged and deaerated, and then Ar gas is introduced into the reaction vessel by a gas supply device. The pressure is adjusted to 0.1 to 1.0 Pa.

次いで、プラズマ発生用電源35から高周波電力を被処理体に印加すると、Arガス分子は電子を放出してArイオンを多量に発生する。なお、反応容器は、アース線38によって電気的に中性状態にあるため、被処理体は相対的に負の電位となり、正に帯電したArイオンは、負電位の被処理体の表面に衝撃的に衝突することとなる。この現象は、イオンボンバードメントと呼ばれ、発明者らの知見によれば、被処理体の表面のイオン衝突部では、DLC膜の密着性低下原因となる金属酸化膜(主としてCrの酸化膜)を原子論的規模で完全に除去され、活性化状態の被処理金属面が露出する。さらに詳しく説明すれば、プラズマエッチングに用いるAr分子の直径は約3.8×10−10mであり、電子の放出した状態のArイオンでは、さらに直径が小さくなる。しかも、これらのイオンが集団となって衝突する被処理体の表面は、原子論的規模で、酸化膜はもちろんのこと露出した金属面も限りなくミクロ的エッチング作用を継続的に受けることとなるので、“おさ”用基材の表面は完全に強い活性化状態となる。特に、本発明においては、DLC薄膜基材表面に直接、形成するために、“おさ”用基材中に比較的多くのCrが含有させているが、このCrは酸素との化学的親和力が極めて強く、空気に触れただけでも容易にCr酸化膜を生成し、DLC薄膜の密着性を阻害する作用があるため、前記プラズマエッチング処理の実施は、非常に重要なプロセスとなっている。 Next, when high frequency power is applied from the plasma generating power source 35 to the object to be processed, the Ar gas molecules emit electrons and generate a large amount of Ar + ions. Since the reaction vessel is in an electrically neutral state by the ground wire 38, the object to be processed has a relatively negative potential, and positively charged Ar + ions are applied to the surface of the object to be processed having a negative potential. It will impact. This phenomenon is called ion bombardment. According to the knowledge of the inventors, a metal oxide film (mainly Cr oxide film) that causes a decrease in adhesion of the DLC film at the ion collision portion on the surface of the object to be processed. Are completely removed on an atomic scale to expose the activated metal surface. More specifically, the diameter of Ar molecules used for plasma etching is about 3.8 × 10 −10 m, and the diameter is further reduced with Ar + ions in a state where electrons are emitted. In addition, the surface of the workpiece to which these ions collide as a group has an atomic scale, and the exposed metal surface as well as the oxide film is continuously subjected to a microscopic etching action. Therefore, the surface of the “osa” substrate is completely activated. In particular, in the present invention, in order to form directly on the surface of the DLC thin film substrate, a relatively large amount of Cr is contained in the “osa” substrate. This Cr has a chemical affinity with oxygen. The plasma etching process is an extremely important process because it has a function of easily forming a Cr oxide film even when exposed to air and hindering the adhesion of the DLC thin film.

とくに、このプラズマエッチングによる基材表面の活性処理では、該基材表面に存在する凸起部、具体的にはRzまたはRyで表示される粗さの先端部ほど強くエッチングされる傾向がある。この意味で基材表面の凸起部を消滅させたり、また、消滅させないまでも低くするのは効果がある。発明者らが、SUS410鋼製基材を用いて行った実験では、プラズマエッチング処理前後における基材表面の粗さは、次に示すようになっており、基材表面の活性化とともに、その平滑性についても効果が認められている。なお、この実験におけるエッチング時間は20分である。
プラズマエッチング処理前 Ra:0.09μm、Rz:0.28μm
プラズマエッチング処理後 Ra:0.09μm、Rz:0.16μm
In particular, in the activation treatment of the substrate surface by this plasma etching, the protruding portion existing on the substrate surface, specifically, the tip portion having a roughness indicated by Rz or Ry tends to be etched strongly. In this sense, it is effective to eliminate the protrusions on the surface of the base material or to reduce the protrusions so that they do not disappear. In experiments conducted by the inventors using a SUS410 steel base material, the surface roughness of the base material before and after the plasma etching treatment is as shown below. The effect is recognized also about sex. The etching time in this experiment is 20 minutes.
Before plasma etching treatment Ra: 0.09 μm, Rz: 0.28 μm
After plasma etching treatment Ra: 0.09 μm, Rz: 0.16 μm

なお、ここではプラズマエッチング用ガスとしてArを用いた例について説明したが、HeやNガスをはじめ質量の小さい炭化水素系ガス、例えば、CH、Cなどの適用が可能である。特に、炭化水素系ガスを用いた場合には、“おさ”用基材の表面に、炭素成分が注入されることになるで、これがアンダーコートと同様の働きを示して、DLC薄膜の密着性向上に効果を示すのである。 Here, an example in which Ar is used as the plasma etching gas has been described, but it is possible to apply He or N 2 gas or other low-mass hydrocarbon gas such as CH 4 or C 2 H 4. . In particular, when a hydrocarbon-based gas is used, a carbon component is injected into the surface of the “osa” base material, which shows the same function as the undercoat, and adheres to the DLC thin film. It is effective for improving the performance.

(5)DLC薄膜の被覆形成;
次に、プラズマエッチング処理を終了した後、被処理体を反応容器中に設置したままの状態で炭化水素ガスを容器中へ導入する。次いで、高電圧パルス発生装置からの高電圧パルス(負の高電圧パルス)を被処理体に印加すると、導入された炭化水素ガスの一部がプラズマ化し、その中のプラスイオンに帯電したものが、負の電位の被処理体の表面に誘引吸着され、その結果、最終的には炭素と水素を主成分とするアモルファス状の固形物からなるDLC薄膜が、被処理体の表面に気相析出することとなる。
(5) DLC thin film coating formation;
Next, after the plasma etching process is completed, a hydrocarbon gas is introduced into the container while the object to be processed is still installed in the reaction container. Next, when a high voltage pulse (negative high voltage pulse) from the high voltage pulse generator is applied to the object to be processed, a part of the introduced hydrocarbon gas is turned into plasma, and the positive ions therein are charged. As a result, the DLC thin film consisting of an amorphous solid mainly composed of carbon and hydrogen is vapor-deposited on the surface of the object to be treated. Will be.

発明者らは、前記高電圧パルス発生装置を用いて被処理体表面に形成されたアモルファス状のDLC薄膜は、以下の(a)〜(d)のプロセスを経て形成されるものと考えている。
(a)導入された炭化水素ガスのイオン化(ラジカルと呼ばれる中性な粒子も存在する)がおこり、
(b)炭化水素系ガスから変化したイオンおよびラジカルは、負の電圧が印加されたキャリア本体42の表面に衝撃的に衝突し、
(c)衝突時のエネルギーによって、結合エネルギーの小さいC−H間が切断され、その後、活性化されたCとHが重合反応を繰り返して高分子化し、炭素と水素を主成分とするアモルファス状の炭素水素固形物を気相析出し、
(d)そして、上記(c)の反応が起こると、被処理体の表面には、アモルファス状炭素水素固形物微粒子の堆積層からなるDLC薄膜が形成されることになる。
The inventors believe that the amorphous DLC thin film formed on the surface of the object to be processed using the high-voltage pulse generator is formed through the following processes (a) to (d). .
(A) ionization of the introduced hydrocarbon gas (neutral particles called radicals also exist),
(B) Ions and radicals changed from the hydrocarbon-based gas collide impactively with the surface of the carrier body 42 to which a negative voltage is applied,
(C) C—H having a low binding energy is cut by the energy at the time of collision, and then activated C and H are polymerized by repeating the polymerization reaction to form an amorphous state mainly composed of carbon and hydrogen. Vapor deposition of carbon hydrogen solids of
(D) When the reaction (c) occurs, a DLC thin film composed of a deposited layer of amorphous carbon hydrogen solid particles is formed on the surface of the object to be processed.

なお、本発明で用いる上記装置では、高電圧パルス発生用電源の出力を変化させることによって、活性化のためのプラズマエッチング処理やDLC薄膜形成処理のいずれかの処理を行うことができる。例えば、次のような出力とする。
(a)DLC薄膜のみを形成する処理の場合:数百V〜数KV
(b)プラズマエッチング処理を重点的に行う場合:数百V〜数十KV
また、高電圧パルスの発生は、次の条件とする。
(c)パルス幅:1μsec〜10msec
(d)パルス数:1〜複数回の繰返し可能
なお、プラズマ発生用電源における高周波電力の出力周波数は、数十KHz〜数GHzの範囲で変化させることができる。
In the apparatus used in the present invention, either the plasma etching process for activation or the DLC thin film forming process can be performed by changing the output of the high voltage pulse generating power source. For example, the output is as follows.
(A) In the case of processing for forming only a DLC thin film: several hundred V to several KV
(B) When performing plasma etching treatment intensively: several hundred V to several tens KV
In addition, the generation of the high voltage pulse is performed under the following conditions.
(C) Pulse width: 1 μsec to 10 msec
(D) Number of pulses: 1 to a plurality of repetitions In addition, the output frequency of the high frequency power in the plasma generation power source can be changed in the range of several tens KHz to several GHz.

さらにDLC薄膜を被覆形成するために使用する成膜用の有機ガスの種類としては、炭素と水素を主成分とする次に示すような炭化水素系化合物からなるガスが好適に用いられる。
(イ)常温(18℃)で気相状態のもの
CH、CHCH、C、CHCHCH、CHCHCHCH
(ロ)常温で液相状態のもの
CH、CCHCH、C(CH、CH(CHCH、C12
Cl
Further, as a kind of organic gas for film formation used for coating the DLC thin film, a gas composed of the following hydrocarbon compounds mainly containing carbon and hydrogen is preferably used.
(I) Gas phase state at room temperature (18 ° C.) CH 4 , CH 2 CH 2 , C 2 H 2 , CH 3 CH 2 CH 3 , CH 3 CH 2 CH 2 CH 3
(B) Liquid phase at normal temperature C 6 H 5 CH 3 , C 6 H 5 CH 2 CH, C 6 H 4 (CH 3 ) 2 , CH 3 (CH 2 ) 4 CH 3 , C 6 H 12 ,
C 6 H 4 Cl

常温で気相状態の上記化合物は、そのままの状態で反応容器内へ導入し、液相状態のものは、これを加熱してガス化させ、そのガス(蒸気)を反応容器内に供給することによって、DLC薄膜を形成する。   The above-mentioned compound in the vapor phase at normal temperature is introduced into the reaction vessel as it is, and in the liquid phase, it is gasified by heating, and the gas (vapor) is supplied into the reaction vessel. To form a DLC thin film.

本発明で用いられるDLC薄膜の特性としては、適度の柔軟性と耐摩耗性とを兼ね備えることが必要である。これに関し、発明者らは、該薄膜の構成成分である炭素と水素の割合に注目して、種々の実験を行った。その結果、望ましいDLC薄膜は、水素含有量が13〜22原子%で、残部が炭素成分からなる成分組成にすることが有効であることがわかった。なお、水素と炭素の割合をこのように制御するには、前記炭化水素系ガス成分の炭素と水素含有量比を調整することによって果すことができる。   As a characteristic of the DLC thin film used in the present invention, it is necessary to combine moderate flexibility and wear resistance. In this regard, the inventors conducted various experiments paying attention to the ratio of carbon and hydrogen, which are constituents of the thin film. As a result, it was found that a desirable DLC thin film is effective when the hydrogen content is 13 to 22 atomic% and the balance is composed of a carbon component. In addition, in order to control the ratio of hydrogen and carbon in this way, it can be accomplished by adjusting the carbon and hydrogen content ratio of the hydrocarbon-based gas component.

(6)本発明で用いるDLC薄膜の特徴;
前記装置および処理方法によって、基材表面に形成する本発明に特有のDLC薄膜は、次のような特徴がある。
(a)本発明に特有な前記DLC薄膜によれば、Crを含む“おさ”用基材表面に対して直に、この薄膜を被覆形成するので、耐摩耗性と密着性に優れた“おさ”を製造することができる。
(b)本発明に特有のものであるDLC薄膜は、撥水性が良好である。そのため、繊維や原糸に付着している水溶性の糊が付着し難い上に、たとえその糊が付着したとしても容易に水洗して除去することができるので、環境汚染源となるアルカリ水溶液による洗浄が不要となる。
(c)本発明に特有のものであるDLC薄膜は、基材表面(エッチングされた金属面)に対し直に、形成されているため、DLC薄膜の気孔発生原因となる酸化膜が存在せず、薄膜の状態でも気孔がなく、酸、アルカリ性溶液中に浸漬しても、基材が腐食されたり、赤錆が発生するようなことがない。
(d)本発明に特有のものであるDLC薄膜は、柔軟性に加え、Hvが1000〜2700程度の硬さを有しているため、繊維や原糸と長期間にわたって接触しても摩耗することが少ない。なお、このような特徴を備えた本発明に特有のものであるDLC薄膜は、“おさ”基材の表面に、1.5〜10μmの厚さに被覆形成するのがよい。その理由は、1.5μm未満の厚さでは、“おさ”としての耐用期間が十分に得られないし、一方で、10μm以上厚くしても、上記の性能が格段に向上するものでないので経済的に得策でない。
(6) Features of the DLC thin film used in the present invention;
The DLC thin film unique to the present invention formed on the surface of the substrate by the apparatus and the processing method has the following characteristics.
(A) According to the DLC thin film peculiar to the present invention, since this thin film is coated directly on the surface of the “sa” substrate containing Cr, it is excellent in wear resistance and adhesion. Can be manufactured.
(B) The DLC thin film unique to the present invention has good water repellency. Therefore, water-soluble glue that adheres to fibers and raw yarns is difficult to adhere, and even if the glue adheres, it can be easily washed away with water, so washing with an alkaline aqueous solution that is a source of environmental pollution Is no longer necessary.
(C) Since the DLC thin film peculiar to the present invention is formed directly on the substrate surface (etched metal surface), there is no oxide film that causes pores in the DLC thin film. There are no pores even in the state of a thin film, and even when immersed in an acid or alkaline solution, the substrate is not corroded or red rust is not generated.
(D) Since the DLC thin film that is unique to the present invention has a hardness of about 1000 to 2700 in addition to flexibility, the DLC thin film is worn even if it is in contact with fibers or raw yarns over a long period of time. There are few things. In addition, the DLC thin film unique to the present invention having such characteristics is preferably formed by coating the surface of the “Osa” substrate to a thickness of 1.5 to 10 μm. The reason for this is that if the thickness is less than 1.5 μm, the lifetime as “osa” cannot be sufficiently obtained. On the other hand, even if the thickness is increased to 10 μm or more, the above-mentioned performance is not significantly improved. Is not a good idea.

(実施例1)
この実施例では、好適な基材の条件を探るため、化学成分の異なる鋼、非鉄金属およびその他の金属皮膜を供試体として、それぞれの表面に被覆形成したDLC薄膜の密着性をスクラッチ試験によって評価した。
Example 1
In this example, in order to find suitable base material conditions, the adhesion of DLC thin films formed on the surfaces of steel, non-ferrous metal and other metal films having different chemical components was evaluated by a scratch test. did.

(1)供試試験片
供試基材として、下記の金属材料および金属表面処理膜を用いた。
(a)鋼基材:SS400鋼、STBA24鋼、STBA26鋼、SUS304鋼、SUS316鋼、SUS310鋼、SUS329JI鋼、SUS405鋼、SUS430鋼
(b)非鉄金属基材:NCF600、NW2200、C1200
(c)電気めっき基材:SS400鋼上にCrめっき膜100μm厚に施工
(d)PVD被覆基材:SUS304鋼上にMo、Nb、Ta、Si、Wを2μm厚に形成
なお、基材の寸法は、幅15mm×長さ30mm×厚さ1mmであり、上記鋼鉄および非金属材料の記号は、すべてJIS規定のものである。
(1) Test specimens The following metal materials and metal surface treatment films were used as test specimens.
(A) Steel base material: SS400 steel, STBA24 steel, STBA26 steel, SUS304 steel, SUS316 steel, SUS310 steel, SUS329JI steel, SUS405 steel, SUS430 steel (b) Nonferrous metal base material: NCF600, NW2200, C1200
(C) Electroplating substrate: Cr plating film on SS400 steel with a thickness of 100 μm (d) PVD coated substrate: Mo, Nb, Ta, Si, W formed on SUS304 steel with a thickness of 2 μm The dimensions are 15 mm width × 30 mm length × 1 mm thickness, and the symbols for the steel and non-metallic materials are all JIS standards.

(2)DLC薄膜の形成方法
前記供試基材の表面には、プラズマエッチング処理後、プラズマCVD法によって、その表面に2μm厚さのDLC薄膜を被覆形成した。
(2) Formation method of DLC thin film The surface of the test substrate was coated with a 2 μm-thick DLC thin film by plasma CVD after plasma etching.

(3)スクラッチ試験方法
スクラッチ試験はISO20502に規定されているセラミック薄膜の密着性を評価するための試験方法に準じて行った。
(3) Scratch test method The scratch test was performed according to the test method for evaluating the adhesiveness of the ceramic thin film prescribed | regulated to ISO20502.

(4)評価方法
試験後、ダイヤモンド針によって、疵をつけられたDLC薄膜の表面は、拡大鏡で観察した結果から、代表的なスクラッチ疵の発生状況を図4に示す写真で記録し、1から4までの評価基準を作成して、DLC薄膜の密着性を判定した。
(4) Evaluation method After the test, the surface of the DLC thin film that has been wrinkled with a diamond needle is recorded with a photograph shown in FIG. To 4 were prepared to determine the adhesion of the DLC thin film.

(5)試験結果
試験結果を表2に要約した。この表には、供試基材の化学成分量から計算した有効成分(Cr含量)とともに、スクラッチ試験の評価値を一括してまとめた。
この結果から明らかなように、Cr、Mo、Nb、Ta、Si、Wなどの金属薄膜上に形成したDLC薄膜(No.13〜18)の密着性は極めて良好であり、微小な剥離も観察されなかった。一方、Ni、Cuを多量に含む非鉄合金基材上に形成したDLC薄膜(No.10〜12)の密着性評価は4に属し、スクラッチ疵の周辺において大きな剥離が発生した。また、鋼基材であっても、SS400鋼(No.1)、STBA24鋼(No.2)ではDLC薄膜の密着性は比較的低い(評価3)。これに対して、有効成分量が7mass%以上である鋼種(No.3〜5、7〜9)では、スクラッチ疵の周囲に微小な剥離が認められる程度であり、実用上十分な強度の密着強さを有することが認められた(評価2)。ただSUS310鋼基材(No.6)表面のDLC薄膜の密着性は、前者に比較するとやや低く評価3と判断された。
(5) Test results The test results are summarized in Table 2. In this table, together with the effective component (Cr content) calculated from the amount of chemical component of the test substrate, the evaluation values of the scratch test are collectively shown.
As is clear from this result, the adhesion of the DLC thin film (Nos. 13 to 18) formed on the metal thin film such as Cr, Mo, Nb, Ta, Si, W is very good, and minute peeling is observed. Was not. On the other hand, the adhesion evaluation of the DLC thin film (Nos. 10 to 12) formed on the non-ferrous alloy substrate containing a large amount of Ni and Cu belonged to 4, and large peeling occurred around the scratches. Moreover, even if it is a steel base material, SS400 steel (No. 1) and STBA24 steel (No. 2) have relatively low adhesion of the DLC thin film (Evaluation 3). On the other hand, in the steel types (Nos. 3-5, 7-9) having an active ingredient amount of 7 mass% or more, minute peeling is recognized around the scratches, and adhesion with practically sufficient strength. It was found to have strength (Evaluation 2). However, the adhesion of the DLC thin film on the surface of the SUS310 steel substrate (No. 6) was judged to be evaluation 3 slightly lower than the former.

以上の結果から、本発明ではDLC薄膜を直接被覆形成するための基材質を鉄鋼系材料に限定した場合、その基材の化学成分含有量から下記の式によって算出される有効成分量が7mass%以上の鋼種が適合材になることがわかった。
有効成分量=鋼中の(Cr+Mo)量−鋼中の(Ni+Cu)量=7mass%
From the above results, in the present invention, when the base material for directly forming the DLC thin film is limited to steel materials, the effective component amount calculated by the following formula from the chemical component content of the base material is 7 mass%. The above steel types were found to be compatible materials.
Active ingredient amount = (Cr + Mo) amount in steel− (Ni + Cu) amount in steel = 7 mass%

Figure 2010242227
Figure 2010242227

(実施例2)
この実施例では、前記有効成分量が7mass%以上であるステンレス鋼(SUS304鋼)基材の表面に、水素含有量の異なるDLC薄膜を形成し、その水素含有量と基材の曲げ変形に対する抵抗および耐食性の変化について調査し、DLC薄膜の好適水素含有量を解明する。
(Example 2)
In this example, a DLC thin film having a different hydrogen content is formed on the surface of a stainless steel (SUS304 steel) base material having an active ingredient amount of 7 mass% or more, and the hydrogen content and resistance to bending deformation of the base material are formed. And investigate the change of corrosion resistance and elucidate the preferred hydrogen content of DLC thin film.

(1)供試基材およびDLC薄膜の性状
供試試験片は、ステンレス鋼(SUS304鋼)とし、この基材から寸法:幅15mm×長さ70mm×厚さ1.8mmの試験片を作製した。その後、この試験片の全面をRa:0.08μm、Rz:0.09μmに研磨し、この研磨面に対し、プラズマエッチング処理後、水素含有量が5〜32原子%で、残部が炭素成分であるDLC薄膜を、3.0μm厚さに被覆形成した。
(1) Properties of the test substrate and DLC thin film The test test piece was stainless steel (SUS304 steel), and a test piece of dimensions: width 15 mm × length 70 mm × thickness 1.8 mm was prepared from this base material. . Thereafter, the entire surface of the test piece was polished to Ra: 0.08 μm, Rz: 0.09 μm, and after this plasma etching treatment, the hydrogen content was 5 to 32 atomic% and the balance was a carbon component. A DLC thin film was coated to a thickness of 3.0 μm.

(2)試験方法およびその条件
DLC薄膜を形成した試験片の中心から180°に曲げ変形を与え(Uベンド形状)、曲げ部のDLC薄膜の外観状況を20倍の拡大鏡で観察した。また、その観察後の曲げ試験後の試験片をpH(水素イオン濃度)12に調節したNaOH水溶液に20℃の温度で96時間浸漬して、DLC薄膜と基材の耐アルカリ性を調べた。また、耐酸性試験として、曲げ試験片を5%HCl水溶液中に20℃の条件で96時間浸漬し、薄膜と酸水溶液の変化を観察した。
(2) Test method and its conditions Bending deformation was applied 180 ° from the center of the test piece on which the DLC thin film was formed (U-bend shape), and the appearance of the DLC thin film at the bent portion was observed with a 20-fold magnifier. Moreover, the test piece after the bending test after the observation was immersed in an aqueous NaOH solution adjusted to pH (hydrogen ion concentration) 12 at a temperature of 20 ° C. for 96 hours to examine the alkali resistance of the DLC thin film and the substrate. Further, as an acid resistance test, the bending test piece was immersed in a 5% HCl aqueous solution at 20 ° C. for 96 hours, and changes in the thin film and the acid aqueous solution were observed.

(3)試験結果
表3に試験結果を要約した。この試験結果から明らかなように、水素含有量の少ないDLC薄膜は(No.1、2、3)は、180°の変形を与えるとクラックを発生したり、微小な面積であるが、局所的に薄膜の剥離らしき個所が観察された。これらのDLC薄膜は柔軟性に乏しいことがうかがえる。一方、曲げ試験後の試験片をPH12のアルカリ水溶液に浸漬しても、全くの供試試験片は変化することなく、浸漬前の状態を維持しており、耐アルカリ性については、十分な抵抗力を有していることが確認された。また、5%HCl中に浸漬した試験片では、水素含有量13原子%以下(No.3)のDLC薄膜のみ、浸漬した5%HCl水溶液が無色から淡い黄色に変化した。この変色は、曲げ変形時に発生したDLC薄膜の欠陥部から、HCl水溶液が内部へ浸入し、SUS304鋼を浸食した結果であると推定される。水素含有量15原子%〜32原子%のDLC薄膜(No.4〜7)には、全く異常は認められず、耐酸性にも優れた性能を発揮した。しかし、水素含有量の多いDLC薄膜(No.7)ほど軟質化するとともに、品質管理が困難となり、耐摩耗性の低下を危惧されるので、本発明では、水素含有量13〜22原子%の範囲にすることが有効であることが確められた。
(3) Test results Table 3 summarizes the test results. As is clear from this test result, the DLC thin film with a low hydrogen content (No. 1, 2, 3) generates cracks or a small area when deformed by 180 °. The thin film was observed to peel off. It can be seen that these DLC thin films have poor flexibility. On the other hand, even if the test specimen after the bending test is immersed in an alkaline aqueous solution of PH12, the test specimen is not changed at all, and the state before immersion is maintained, and the resistance to alkali resistance is sufficient. It was confirmed that In the test piece immersed in 5% HCl, the 5% HCl aqueous solution immersed in only the DLC thin film having a hydrogen content of 13 atomic% or less (No. 3) changed from colorless to pale yellow. This discoloration is presumed to be a result of the aqueous HCl solution penetrating into the interior from the defective portion of the DLC thin film that was generated during bending deformation and eroding SUS304 steel. No abnormality was observed in the DLC thin film (Nos. 4 to 7) having a hydrogen content of 15 to 32 atom%, and performance excellent in acid resistance was exhibited. However, as the DLC thin film (No. 7) with a higher hydrogen content becomes softer, quality control becomes difficult and there is a risk of a decrease in wear resistance. Therefore, in the present invention, the hydrogen content is in the range of 13 to 22 atomic%. It was confirmed that it was effective.

Figure 2010242227
Figure 2010242227

(実施例3)
この実施例では、SUS410鋼(Cr:11.50〜13.50mass%、有効成分量≦7mass%)基材の表面粗さと、その表面に被覆形成したDLC薄膜の耐食性について調査した。
Example 3
In this example, the surface roughness of a SUS410 steel (Cr: 11.50-13.50 mass%, effective component amount ≦ 7 mass%) base material and the corrosion resistance of the DLC thin film formed on the surface were investigated.

(1)供試基材
供試基材として、幅15mm×長さ30mm×厚さ2μmのSUS410鋼試験片を作製した後、その表面を下記の粗さに研磨したものを準備した。
Ra:0.05〜1.1μm Ra:0.09〜4.8μm
(1) Test base material As a test base material, a SUS410 steel test piece having a width of 15 mm, a length of 30 mm, and a thickness of 2 μm was prepared, and then the surface thereof was polished to the following roughness.
Ra: 0.05-1.1 μm Ra: 0.09-4.8 μm

(2)DLC薄膜の形成方法と膜厚
DLC薄膜の形成には、前記プラズマCVD法を用い、0.2〜10μm厚のDLC薄膜を被覆形成したが、成膜に際する前処理としてのプラズマエッチング処理の有無の影響についても評価できるようにした。
(2) DLC thin film formation method and film thickness The DLC thin film was formed by coating the DLC thin film with a thickness of 0.2 to 10 μm using the plasma CVD method. The influence of the presence or absence of the etching process can also be evaluated.

(3)耐食性試験方法
DLC薄膜を被覆形成した試験片を18℃の3%HCl水溶液中に100時間浸漬させた後、これを軽く水洗し、その後、さらにこの試験片を20℃の室温で24時間放置した。この操作によって試験片の表面に発生する赤錆の有無によって、耐食性を評価した。本試験において、酸浸漬後水洗し、さらに室内に放置したのは、酸浸漬のみの場合に比較すると、DLC薄膜に欠陥が存在すると、赤錆の発生が明瞭にみとめられるからである。
(3) Corrosion resistance test method A test piece coated with a DLC thin film was immersed in a 3% HCl aqueous solution at 18 ° C. for 100 hours, then lightly washed with water, and then the test piece was further washed at room temperature of 20 ° C. for 24 hours. Left for hours. Corrosion resistance was evaluated by the presence or absence of red rust generated on the surface of the test piece by this operation. In this test, it was washed with water after acid immersion and then left in the room because the presence of defects in the DLC thin film clearly reveals the occurrence of red rust as compared with the case of acid immersion alone.

(4)試験結果
試験結果を表4に要約した。DLC薄膜の耐食性を基材表面の粗さと、プラズマエッチング処理の有無の組合せから評価すると、下記のとおりである。
(a)一般に、プラズマエッチング処理を施した基材表面に形成したDLC薄膜は、プラズマエッチング処理をしない場合に比較して、耐食性に優れた皮膜を形成する。
(b)表面粗さの小さい基材表面に形成したDLC薄膜は、表面粗さの大きい基材表面に形成した皮膜に比較して耐食性に優れている。即ち、欠陥の少ないDLC薄膜が形成され易いといえる。
(c)同一厚さのDLC薄膜の耐食性は、表面粗さが小さく、かつプラズマエッチング処理を施した条件のものが最も良好である。
(d)以上の試験結果から、基材表面の粗さをRa:0.05〜0.5μm、Rz:0.09〜1.5μmの範囲にすれば、プラズマエッチング処理施工条件下のもとで、DLC薄膜の厚さが0.5〜10μmの範囲内において、耐食性に優れたDLC薄膜を選択することが可能であることがわかった。
(4) Test results The test results are summarized in Table 4. When the corrosion resistance of the DLC thin film is evaluated from the combination of the roughness of the substrate surface and the presence or absence of the plasma etching treatment, it is as follows.
(A) In general, the DLC thin film formed on the surface of the base material subjected to the plasma etching process forms a film having excellent corrosion resistance as compared with the case where the plasma etching process is not performed.
(B) The DLC thin film formed on the surface of the base material having a small surface roughness is superior in corrosion resistance as compared to the film formed on the surface of the base material having a large surface roughness. That is, it can be said that a DLC thin film with few defects is easily formed.
(C) The corrosion resistance of the DLC thin film having the same thickness is the best when the surface roughness is small and the plasma etching treatment is performed.
(D) From the above test results, if the roughness of the substrate surface is in the range of Ra: 0.05 to 0.5 μm and Rz: 0.09 to 1.5 μm, the plasma etching treatment is performed under the conditions. Thus, it was found that it is possible to select a DLC thin film having excellent corrosion resistance when the thickness of the DLC thin film is within a range of 0.5 to 10 μm.

Figure 2010242227
Figure 2010242227

(実施例4)
この実施例では、SUS410鋼基材の表面に被覆形成するDLC薄膜の密着性と、前処理としてのプラズマエッチング処理の効果について調査した。
Example 4
In this example, the adhesion of the DLC thin film formed on the surface of the SUS410 steel substrate and the effect of the plasma etching treatment as a pretreatment were investigated.

(1)供試基材
供試基材として実施例1記載のSUS410鋼と同じものを供試した。
(2)DLC薄膜の形成方法と膜厚
実施例1と同じ方法で薄膜を形成し、膜厚に2μmとした。
(3)DLC薄膜の密着性試験方法
実施例1で実施したISO20502に規定されているスクラッチ試験によってDLC薄膜の密着性を評価した。
(4)試験結果
試験結果を表5に示した。この結果から明らかなよう、供試したDLC薄膜の密着性は、図4に示したスクラッチ疵とその周辺で発生する局部的なDLC薄膜の剥離状況からの判定によると、評価2と評価4に分類することができる。しかし、プラズマエッチングの前処理を施した試験片表面に形成した薄膜の密着性評価は、膜厚が大きくなっても評価2を維持しているのに対して、前処理をしない場合の密着性の評価は、膜厚が大きくなると、評価3および4となり、密着性が低下する傾向が認められる。この原因は、DLC薄膜が厚くなるほど、皮膜に発生する残留応力が大きくなるため、僅かなスクラッチ疵の発生によっても薄膜の残留応力が開放され、これにともなって、微小な剥離が誘発されたものと考えられる。
(1) Test base material The same base material as the SUS410 steel described in Example 1 was used as a test base material.
(2) Formation method and film thickness of DLC thin film The thin film was formed by the same method as Example 1, and it was set as 2 micrometers in film thickness.
(3) Adhesion test method of DLC thin film The adhesion of the DLC thin film was evaluated by a scratch test defined in ISO 20502 performed in Example 1.
(4) Test results Table 5 shows the test results. As is apparent from this result, the adhesion of the DLC thin film tested was evaluated as 2 and 4 according to the determination from the scratch state of the local DLC thin film generated in and around the scratches shown in FIG. Can be classified. However, the adhesion evaluation of the thin film formed on the surface of the test piece subjected to plasma etching pretreatment maintained evaluation 2 even when the film thickness increased, whereas the adhesion when no pretreatment was performed. When the film thickness is increased, the evaluation becomes Evaluations 3 and 4, and the tendency for the adhesion to decrease is recognized. The reason for this is that as the DLC thin film becomes thicker, the residual stress generated in the film increases, so that the residual stress of the thin film is released even by the occurrence of a slight scratch flaw, and this causes a minute peeling. it is conceivable that.

Figure 2010242227
Figure 2010242227

(実施例5)
この実施例では、本発明に係るDLC薄膜を含む3種類の表面処理膜を形成した“おさ”の表面に対して、合金繊維の糸を接触させながら、高速度で走らせ皮膜の耐久性を調査した。
(Example 5)
In this embodiment, the durability of the coating is improved by running at high speed while contacting the yarn of the alloy fiber against the surface of “osa” on which three types of surface treatment films including the DLC thin film according to the present invention are formed. investigated.

(1)供試試験片および表面処理皮膜
SUS410鋼製の“おさ”(寸法:幅6mm×長さ90mm×厚さ0.5mm)の表面に、本発明に適合するDLC薄膜を2.0μmの厚さに被覆したものを準備した。このDLC薄膜の水素含有量は14原子%で残部が炭素であり、また、その硬さはHv=2050であった。
なお、比較用の表面処理皮膜として、下記の皮膜を“おさ”の全面に被覆形成した。
(a)電気Crめっき膜(厚さ5μm)
(b)化学緻密化法によるCr膜(厚さ3μm)
(1) Test specimen and surface treatment coating A DLC thin film suitable for the present invention is 2.0 μm on the surface of “SUS” (dimensions: width 6 mm × length 90 mm × thickness 0.5 mm) made of SUS410 steel. The thing coated to the thickness of was prepared. The hydrogen content of this DLC thin film was 14 atomic%, the balance was carbon, and the hardness was Hv = 2050.
As a comparative surface treatment film, the following film was formed on the entire surface of “OSA”.
(A) Electric Cr plating film (thickness 5 μm)
(B) Cr 2 O 3 film by chemical densification method (thickness 3 μm)

図5に試験方法の概要を示した。表面処理膜を形成した“おさ”51が表面に糸52が接触するように、糸巻53から他方の駆動用糸巻54の設置点を少し下方に設け、糸巻54を高速度で回転させることによって、皮膜の耐摩耗性を評価した。なお、糸の走行速度は毎分100mm、糸の材質はポリエステル系(テトロン)であり、3時間試験を行った。   FIG. 5 shows an outline of the test method. The installation point of the other driving bobbin 54 is provided slightly below from the bobbin 53 so that the “osa” 51 on which the surface treatment film is formed contacts the surface, and the bobbin 54 is rotated at a high speed. The abrasion resistance of the film was evaluated. The running speed of the yarn was 100 mm per minute, the yarn material was polyester (tetron), and the test was conducted for 3 hours.

(3)試験結果
試験終了後の“おさ”の表面状態を20倍の拡大鏡を用いて観察した結果、比較例の電気めっきCr膜の表面では、糸と接触した皮膜では、すでに窪みが明瞭に確認され、また、Cr膜においても、凹部の形成跡が観察された。しかし、本発明に係るDLC薄膜の表面では異常は認められず、健全な状態を維持していた。
(3) Test results As a result of observing the surface state of “OSA” using a 20 × magnifier after the test was completed, the surface of the electroplated Cr film of the comparative example already had a dent in the film in contact with the yarn. Clearly confirmed, and also in the Cr 2 O 3 film, formation marks of the recesses were observed. However, no abnormality was observed on the surface of the DLC thin film according to the present invention, and the sound state was maintained.

本発明に係る織機用部材およびその製造方法の技術は、綿、絹などの天然糸をはじめ、羊毛、合成繊維などの織機部品に限定されず、釣糸、麻、ジュートなどの繊維、網などを製造するときにおいても有効である。さらに、軟質の銅、アルミニウムなどの金属線を含む新素材繊維の織物用としても使用することができる。   The loom member and the manufacturing method thereof according to the present invention are not limited to loom parts such as natural yarn such as cotton and silk, wool and synthetic fiber, but include fibers such as fishing line, hemp and jute, nets and the like. It is also effective when manufacturing. Furthermore, it can also be used for fabrics of new material fibers including metal wires such as soft copper and aluminum.

21 “おさ”基材
22 Raで表示される粗さ
23 Rzで表示される粗さ
24 DLC薄膜
25 DLC薄膜で被覆できなったRzで表示される粗さの凸部
31 反応容器
32 被処理体(“おさ”基材)
33 導体
34 高電圧パルス発生用電源
35 プラズマ発生用電源
36 重畳装置
37a、37b バルブ
38 アース線
39 高電圧導入端子
51 試験用の“おさ”
52 試験用の糸
53 糸巻
54 駆動用の糸巻
21 “Osa” base material 22 Roughness indicated by Ra 23 Roughness indicated by Rz 24 DLC thin film 25 Roughness convexity indicated by Rz that could not be covered with DLC thin film 31 Reaction vessel 32 Processed Body ("Osa" base material)
33 Conductor 34 High-voltage pulse generating power source 35 Plasma generating power source 36 Superimposing devices 37a and 37b Valve 38 Ground wire 39 High voltage introduction terminal 51 "Osas" for testing
52 Thread for test 53 Thread spool 54 Thread spool for driving

Claims (10)

研磨し、活性化処理した鋼製基材の表面に、直に、アモルファス状の炭素水素固形物の堆積膜を被覆形成してなることを特徴とする織機用部材。 A member for a loom, comprising a surface of a polished and activated steel base material directly coated with an amorphous carbon hydrogen solid deposition film. 前記鋼製基材は、CrとMoの質量含有量の和が、同じ基材中に含まれるNiとCuの質量含有量の和よりも7質量%以上多く含まれているステンレス鋼を用いることを特徴とする請求項1に記載の織機用部材。 The steel substrate is made of stainless steel in which the sum of the mass contents of Cr and Mo is 7 mass% or more than the sum of the mass contents of Ni and Cu contained in the same substrate. The member for a loom according to claim 1. 前記鋼製基材は、研磨面の表面粗さが、Ra≦0.5μm、Rz≦1.5μmで、圧力:0.1〜1.0Paの不活性ガス中でプラズマエッチングして活性化させた表面を有することを特徴とする請求項1または2に記載の織機用部材。   The steel substrate is activated by plasma etching in an inert gas having a polished surface with Ra ≦ 0.5 μm, Rz ≦ 1.5 μm, and pressure: 0.1 to 1.0 Pa. The loom member according to claim 1 or 2, wherein the loom member has an open surface. 前記炭素水素固形物堆積膜は、厚さが1.5〜10μmの範囲にあることを特徴とする請求項1〜3のいずれか1に記載の織機用部材。 The member for a loom according to any one of claims 1 to 3, wherein the carbon hydrogen solid deposit film has a thickness in a range of 1.5 to 10 µm. 前記炭素水素固形物堆積膜は、この皮膜中に含まれる水素量が13〜22原子%で、残部が炭素からなり、硬さがHv:1000〜2700の範囲にあることを特徴とする請求項1〜4のいずれか1に記載の織機用部材。 The carbon hydrogen solid deposit film is characterized in that the amount of hydrogen contained in the film is 13 to 22 atomic%, the balance is carbon, and the hardness is in the range of Hv: 1000 to 2700. The member for looms of any one of 1-4. 鋼製基材の表面を研磨して平滑面に仕上げ、次いで、その鋼製基材を不活性ガス中において、該基材を負の電位に設定してプラズマエッチング処理を行うことにより、該基材表面を活性化させ、その後、同じ雰囲気中において該基材を負の電位に設定した上で炭化水素系ガスを供給し、かつ高周波の高電圧パルルをかけることにより、該基材表面に直接、炭素と水素とを主成分とするアモルファス状の炭素水素固形物微粒子を気相析出させることにより、これら微粒子の堆積層からなる皮膜を形成することを特徴とする織機用部材の製造方法。 The surface of the steel substrate is polished and finished to a smooth surface, and then the steel substrate is set to a negative potential in an inert gas and plasma etching is performed to perform the plasma etching treatment. The material surface is activated, and then the substrate is set to a negative potential in the same atmosphere, then a hydrocarbon gas is supplied, and a high-frequency high voltage pulse is applied to the substrate surface directly. A method for producing a member for a loom characterized by forming a film composed of a deposited layer of fine particles by vapor-depositing amorphous carbon-hydrogen solid fine particles containing carbon and hydrogen as main components. 前記鋼製基材は、CrとMoの質量含有量の和が、同じ基材中に含まれるNiとCuの質量含有量の和よりも7質量%以上多く含まれているステンレス鋼を用いることを特徴とする請求項6に記載の織機用部材の製造方法。 The steel substrate is made of stainless steel in which the sum of the mass contents of Cr and Mo is 7 mass% or more than the sum of the mass contents of Ni and Cu contained in the same substrate. The manufacturing method of the member for looms of Claim 6 characterized by these. 前記炭素水素固形物堆積膜は、厚さが1.5〜10μmの範囲にあることを特徴とする請求項6または7に記載の織機用部材の製造方法。 The method of manufacturing a member for a loom according to claim 6 or 7, wherein the carbon hydrogen solid deposit film has a thickness in a range of 1.5 to 10 µm. 前記炭素水素固形物堆積膜は、この皮膜中に含まれる水素量が13〜22原子%で、残部が炭素からなり、硬さがHv:1000〜2700の範囲にあることを特徴とする請求項6〜8のいずれか1に記載の織機用部材の製造方法。 The carbon hydrogen solid deposit film is characterized in that the amount of hydrogen contained in the film is 13 to 22 atomic%, the balance is carbon, and the hardness is in the range of Hv: 1000 to 2700. The manufacturing method of the member for looms of any one of 6-8. 前記鋼製基材は、研磨面の表面粗さが、Ra≦0.5μm、Rz≦1.5μmで、圧力:0.1〜1.0Paの不活性ガス中でプラズマエッチングして活性化させた表面を有することを特徴とする請求項6〜9のいずれか1に記載の織機用部材。   The steel substrate is activated by plasma etching in an inert gas having a polished surface with Ra ≦ 0.5 μm, Rz ≦ 1.5 μm, and pressure: 0.1 to 1.0 Pa. The loom member according to any one of claims 6 to 9, wherein the loom member has a curved surface.
JP2009088747A 2009-04-01 2009-04-01 Loom member and manufacturing method thereof Active JP5070629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088747A JP5070629B2 (en) 2009-04-01 2009-04-01 Loom member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088747A JP5070629B2 (en) 2009-04-01 2009-04-01 Loom member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010242227A true JP2010242227A (en) 2010-10-28
JP5070629B2 JP5070629B2 (en) 2012-11-14

Family

ID=43095549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088747A Active JP5070629B2 (en) 2009-04-01 2009-04-01 Loom member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5070629B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013021028A1 (en) * 2013-12-17 2015-06-18 Waldemar Hoening Ohg Heald and procedures
JP2019005951A (en) * 2017-06-22 2019-01-17 セイコーエプソン株式会社 Nozzle plate, liquid jetting head and liquid jetting device
CN114086161A (en) * 2021-10-11 2022-02-25 浙江巨光新材料有限公司 Novel steel harness wire coating process and device thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272379A (en) * 1985-05-27 1986-12-02 Fujitsu Ltd Cvd method for aluminum
JPH03219079A (en) * 1990-01-24 1991-09-26 Mitsubishi Materials Corp Production of diamond-coated cutting tool made of tungsten-carbide-based sintered hard alloy
JPH0525636A (en) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd Manufacture of dry tin plated stainless steel for decoration
JPH0525635A (en) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd Manufacture of dry ti series plated stainless steel
WO1995017541A1 (en) * 1993-12-22 1995-06-29 Citizen Watch Co., Ltd. Dents for reed in high-speed weaving machine, and method of manufacturing same
JPH07197352A (en) * 1993-12-29 1995-08-01 Daido Hoxan Inc Corrosion-resistant dent for loom
JP2005015845A (en) * 2003-06-25 2005-01-20 Kanai Hiroaki Reed material for loom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61272379A (en) * 1985-05-27 1986-12-02 Fujitsu Ltd Cvd method for aluminum
JPH03219079A (en) * 1990-01-24 1991-09-26 Mitsubishi Materials Corp Production of diamond-coated cutting tool made of tungsten-carbide-based sintered hard alloy
JPH0525636A (en) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd Manufacture of dry tin plated stainless steel for decoration
JPH0525635A (en) * 1991-04-23 1993-02-02 Sumitomo Metal Ind Ltd Manufacture of dry ti series plated stainless steel
WO1995017541A1 (en) * 1993-12-22 1995-06-29 Citizen Watch Co., Ltd. Dents for reed in high-speed weaving machine, and method of manufacturing same
JPH07197352A (en) * 1993-12-29 1995-08-01 Daido Hoxan Inc Corrosion-resistant dent for loom
JP2005015845A (en) * 2003-06-25 2005-01-20 Kanai Hiroaki Reed material for loom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013021028A1 (en) * 2013-12-17 2015-06-18 Waldemar Hoening Ohg Heald and procedures
JP2019005951A (en) * 2017-06-22 2019-01-17 セイコーエプソン株式会社 Nozzle plate, liquid jetting head and liquid jetting device
CN114086161A (en) * 2021-10-11 2022-02-25 浙江巨光新材料有限公司 Novel steel harness wire coating process and device thereof
CN114086161B (en) * 2021-10-11 2023-09-26 浙江巨光新材料有限公司 Steel heald wire coating process and device thereof

Also Published As

Publication number Publication date
JP5070629B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5403816B2 (en) DLC film coated member and method for manufacturing the same
CN105839127A (en) Deplating method for carbon-based thin film on surface of metal workpiece
JP5070629B2 (en) Loom member and manufacturing method thereof
TW201422438A (en) Mesh structure and method of manufacturing the same
Khanchaiyaphum et al. Wear behaviours of filtered cathodic arc deposited TiN, TiAlSiN and TiCrAlSiN coatings on AISI 316 stainless steel fishing net-weaving machine components under dry soft-sliding against nylon fibres
WO1994020660A1 (en) Knitting parts of knitting machine
JP5082113B2 (en) Carrier for holding object to be polished and method for manufacturing the same
JP5727569B2 (en) Method for manufacturing DLC film-coated member and DLC film-coated member
JP2003082458A (en) Apparatus and method for forming amorphous carbon film
WO1995016809A1 (en) Knitting parts for knitting machine and surface coating method therefor
JP5082116B2 (en) Method for manufacturing non-metallic carrier for holding object to be polished
Akbarov et al. Development of electroconductive polyacrylonitrile fibers through chemical metallization and galvanisation
JP5082114B2 (en) Manufacturing method of carrier for holding object to be polished
JP2002302793A (en) Conductor roller and producing method thereof
JP2012176483A (en) Method for manufacturing abrasive grain-fixed wire
US20220040769A1 (en) Coated cutting tool
JP2005036377A (en) Yarn guide material for fiber-making, method for producing the same, and method for fiber-making of synthetic fiber using the same
JP4858507B2 (en) Carrier for holding an object to be polished
JP5205606B2 (en) DLC film coated member and method for manufacturing the same
JP5082115B2 (en) Carrier for holding object to be polished and method for manufacturing the same
JP2017202610A (en) Printing stencil with screen mesh conjugated
US20230138199A1 (en) Rods and pipes including surface coatings
JPH0445287A (en) Material coated with hard carbon film and production thereof
WO2008023561A1 (en) Nickel-plated stainless-steel wire
JP5796861B2 (en) DLC film-coated member having excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Ref document number: 5070629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250