JP2010242022A - Thermally conductive silicone grease composition - Google Patents

Thermally conductive silicone grease composition Download PDF

Info

Publication number
JP2010242022A
JP2010242022A JP2009094831A JP2009094831A JP2010242022A JP 2010242022 A JP2010242022 A JP 2010242022A JP 2009094831 A JP2009094831 A JP 2009094831A JP 2009094831 A JP2009094831 A JP 2009094831A JP 2010242022 A JP2010242022 A JP 2010242022A
Authority
JP
Japan
Prior art keywords
component
organopolysiloxane
thermally conductive
group
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009094831A
Other languages
Japanese (ja)
Other versions
JP5283553B2 (en
Inventor
Kazutoshi Ito
和敏 伊藤
Koji Aoki
孝司 青木
Kazuo Kato
和生 加藤
Kunihiro Yamada
邦弘 山田
Hiroaki Kizaki
弘明 木崎
Osamu Uchida
内田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Denso Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Denso Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009094831A priority Critical patent/JP5283553B2/en
Publication of JP2010242022A publication Critical patent/JP2010242022A/en
Application granted granted Critical
Publication of JP5283553B2 publication Critical patent/JP5283553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermally conductive silicone grease composition excellent in both thermal conductivity and shear resistance. <P>SOLUTION: The thermally conductive silicone grease composition includes at least components (A)-(C). The aggregate amount of the component (B) and (C) accounts for 500-2,000 pts.mass based on 100 pts.mass of the component (A). Component (C)/(component (B)+component (C)) representing a mixed ratio of the component (B) and the component (C) is 0.05-0.5 by mass. Component (A): Organopolysiloxane having a thixotropy index α as defined by η<SB>1</SB>/η<SB>2</SB>of 1.03-1.70, a viscosity at 25°C of 10-1,000,000 mPa s, wherein η<SB>1</SB>is a viscosity as determined at 25°C using a B-type rotational viscometer with a rotor rotation of 6 rpm, and η<SB>2</SB>is a viscosity as determined at 25°C using a B-type rotational viscometer with a rotor rotation of 12 rpm. Component (B): a thermally conductive inorganic filler having a Mohs hardness of ≥6 and an average particle size of 5-20 μm. Component (C): a thermally conductive inorganic filler having a Mohs hardness of ≤5 and an average particle size of 0.5-5 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は熱伝導性シリコーングリース組成物に関し、特に、耐ズレ性に優れた熱伝導性シリコーングリース組成物に関する。   The present invention relates to a heat conductive silicone grease composition, and more particularly to a heat conductive silicone grease composition having excellent misalignment resistance.

一般に、電気・電子部品は使用中に熱が発生するので、これらの部品を適切に動作させるためには除熱が必要であり、従来、その除熱用に使用する種々の熱伝導性材料が提案されている。この場合の熱伝導性材料としては、(1)取り扱いが容易なシート状のものと、(2)放熱用グリースと称されるペースト状のものという2種類の形態のものがある。   Generally, since heat is generated during use of electric / electronic parts, heat removal is necessary to operate these parts properly. Conventionally, various heat conductive materials used for heat removal have been used. Proposed. In this case, there are two types of thermally conductive materials: (1) a sheet-like material that is easy to handle, and (2) a paste-like material called heat radiation grease.

これらの内、(1)のシート状のものは取り扱いが容易であるだけでなく安定性にも優れるという利点がある一方、接触熱抵抗が必然的に大きくなるため、放熱性能は放熱用グリースの場合より劣ることになる。またシート状を保つためにある程度の強度及び硬さが必要となるので、素子と筐体の間に生じる公差を吸収することができず、それらの応力によって素子が破壊されることもある。   Of these, the sheet-like material (1) has the advantage of being easy to handle and excellent in stability, while the contact thermal resistance is inevitably increased. It will be inferior to the case. In addition, since a certain degree of strength and hardness is required to maintain the sheet shape, tolerances generated between the element and the housing cannot be absorbed, and the element may be destroyed by the stress.

これに対し、(2)の放熱用グリースの場合には、塗布装置などを用いることによって電気・電子製品の大量生産にも適応できるだけでなく、接触熱抵抗が低いので放熱性能にも優れるという利点がある。しかしながら、スクリーン印刷などによって大量に使用するために放熱用グリースの粘度を低くした場合には、素子の冷熱衝撃などによって放熱グリースがずれる結果(ポンプアウト現象)、徐熱が十分でなくなり、その結果素子が誤作動を起こすことがあった。   On the other hand, in the case of the heat radiation grease (2), not only can it be applied to mass production of electrical and electronic products by using a coating device, etc., but also has the advantage of excellent heat radiation performance due to low contact thermal resistance. There is. However, when the viscosity of the heat dissipation grease is lowered to use it in large quantities by screen printing, etc., the result is that the heat dissipation grease shifts due to the thermal shock of the element (pump-out phenomenon), resulting in insufficient heating. The device sometimes malfunctioned.

そこで、特定のオルガノポリシロキサンと、酸化亜鉛、アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素等の増稠剤、及び、1分子中にケイ素原子に直結した水酸基を少なくとも1個有するオルガノポリシロキサン、並びにアルコキシシランとを組み合わせてベースオイルのブリードを抑えた、グリース状シリコーン組成物(特許文献1);液状シリコーンと、一定の熱伝導率を有しモース硬度が6以上の熱伝導性無機充填剤、及び、一定の熱伝導率を有しモース硬度が5以下の熱伝導性無機充填剤を組み合わせてなる、熱伝導性及びディスペンス性に優れた熱伝導性シリコーン組成物(特許文献2);特定の基油と平均粒径が0.5〜50μmの金属アルミニウム粉体とを組み合わせてなる熱伝導性グリース組成物(特許文献3);平均粒径の異なる2種の窒化アルミニウム粉末を混合して使用することにより、シリコーングリース中の窒化アルミニウムの充填率を高めたシリコーングリース組成物(特許文献4);及び、オイルの粘性を高めてブリードアウトを抑制したシリコーングリース組成物(特許文献5)等の、更に高性能な熱伝導性シリコーングリース組成物が提案されてきたが、使用される電子・電気部品の高性能化に十分対応することのできるものは未だ得られていない。   Therefore, a specific organopolysiloxane, a thickener such as zinc oxide, alumina, aluminum nitride, boron nitride, and silicon carbide, an organopolysiloxane having at least one hydroxyl group directly bonded to a silicon atom in one molecule, and Grease-like silicone composition in which base oil bleed is suppressed by combining alkoxysilane (Patent Document 1); liquid silicone, thermally conductive inorganic filler having a constant thermal conductivity and a Mohs hardness of 6 or more, and , A thermally conductive silicone composition excellent in thermal conductivity and dispensing properties, comprising a combination of thermally conductive inorganic fillers having a constant thermal conductivity and a Mohs hardness of 5 or less (Patent Document 2); A thermally conductive grease composition comprising a combination of oil and metallic aluminum powder having an average particle size of 0.5 to 50 μm (Patent Document 3); Silicone grease composition in which the filling rate of aluminum nitride in silicone grease is increased by using a mixture of two types of aluminum nitride powders having different average particle diameters (Patent Document 4); and the viscosity of oil is increased. Higher-performance thermal conductive silicone grease compositions such as silicone grease compositions that suppress bleed-out (Patent Document 5) have been proposed, but they are fully compatible with higher performance of electronic and electrical components used. We still haven't got what we can do.

特開平11−49958JP 11-49958 A 特開平11−246884JP-A-11-246884 特開2000−63873JP 2000-63873 A 特開2000−169873JP 2000-169873 A 特開2003−301184JP2003-301184A

したがって本発明の目的は、熱伝導性と共に耐ズレ性にも優れた熱伝導性シリコーングリース組成物を提供することにある。   Accordingly, an object of the present invention is to provide a heat conductive silicone grease composition having excellent thermal conductivity and resistance to misalignment.

本発明者等は上記の目的を達成するために鋭意検討した結果、特定のオルガのポリシロキサンに、モース硬度と粒径範囲がそれぞれ異なる2種類の熱伝導性充填剤を、特定の比率で一定の量を組み合わせることによって良好な結果を得ることができることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above object, the present inventors have determined that two kinds of thermally conductive fillers having different Mohs hardness and particle size range are fixed at a specific ratio in a specific Olga polysiloxane. The present inventors have found that good results can be obtained by combining the amounts of the present invention.

即ち本発明は、少なくとも下記成分(A)〜(C)を含有する熱伝導性シリコーングリース組成物であって、前記成分(B)と成分(C)の合計配合量が成分(A)100質量部に対して500〜2000質量部であると共に、成分(B)と成分(C)の混合割合を意味する(C)成分/((B)成分+(C)成分)が、質量比で0.05〜0.5であることを特徴とする熱伝導性シリコーングリース組成物である。
成分(A):η12で定義されるチキソ度αが1.03〜1.70であり、25℃における粘度が10〜1,000,000mPa・sのオルガノポリシロキサンである。但し、ηは、B型回転粘度計によりローターの回転数を6rpmとして25℃で測定したときの粘度であり、ηは、ローターの回転数を12rpmとして25℃で測定したときの粘度である。
成分(B):モース硬度が6以上で平均粒径が5〜20μmの熱伝導性無機充填剤。
成分(C):モース硬度が5以下で平均粒径が0.5〜5μmの熱伝導性無機充填剤。
That is, the present invention is a thermally conductive silicone grease composition containing at least the following components (A) to (C), and the total amount of the component (B) and the component (C) is 100 masses of the component (A). (C) component / ((B) component + (C) component), which means a mixing ratio of component (B) and component (C), is 0 to 500 parts by mass. It is a heat conductive silicone grease composition characterized by being 0.05 to 0.5.
Component (A): An organopolysiloxane having a thixotropy α defined by η 1 / η 2 of 1.03 to 1.70 and a viscosity at 25 ° C. of 10 to 1,000,000 mPa · s. However, η 1 is the viscosity when measured at 25 ° C. using a B-type rotational viscometer with a rotor speed of 6 rpm, and η 2 is the viscosity when measured at 25 ° C. with a rotor speed of 12 rpm. is there.
Component (B): a thermally conductive inorganic filler having a Mohs hardness of 6 or more and an average particle size of 5 to 20 μm.
Component (C): a thermally conductive inorganic filler having a Mohs hardness of 5 or less and an average particle size of 0.5 to 5 μm.

前記成分(A)のオルガノポリシロキサンは、下記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサンを、1〜60質量%含有することが必要である。

Figure 2010242022

一般式(1)中のR3は、メチル基、エチル基、プロピル基などの炭素数1〜6のアルキル基、Rは、炭素数1〜20の飽和又は不飽和の一価炭化水素基からなる群の中から選択される基であり、これらは同一であっても異なっていても良い。又、bは5〜120の整数である。 The organopolysiloxane of the component (A) needs to contain 1 to 60% by mass of a one-terminal trifunctional hydrolyzable organopolysiloxane represented by the following general formula (1).
Figure 2010242022

R 3 in the general formula (1) is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group or a propyl group, and R 4 is a saturated or unsaturated monovalent hydrocarbon group having 1 to 20 carbon atoms. Are groups selected from the group consisting of, and these may be the same or different. B is an integer of 5 to 120.

本発明においては、前記成分(A)の、前記一般式(2)で表される片末端3官能の加水分解性オルガノポリシロキサン以外のオルガノポリシロキサンが、1分子中に少なくとも1個のアルケニル基を有するオルガノポリシロキサンと下記一般式(2)で表されるオルガノハイドロジェンポリシロキサンとを、白金系触媒を用いて付加反応させてなるオルガノポリシロキサンであることが好ましい。

Figure 2010242022

但し、上式中のRは、水素原子、又は、炭素数が1〜20の、飽和又は不飽和の一価炭化水素基の群から選択される少なくとも1種の基であり、n及びmはそれぞれ1≦n≦1,000、0≦m≦1,000である。 In the present invention, the organopolysiloxane other than the one-terminal trifunctional hydrolyzable organopolysiloxane represented by the general formula (2) of the component (A) has at least one alkenyl group in one molecule. It is preferable that it is an organopolysiloxane obtained by addition-reacting an organopolysiloxane represented by the following general formula (2) with a platinum-based catalyst.
Figure 2010242022

However, R 1 in the above formula is a hydrogen atom or at least one group selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 20 carbon atoms, and n and m Are 1 ≦ n ≦ 1,000 and 0 ≦ m ≦ 1,000, respectively.

また、成分(B)は、アルミナ粉末、窒化アルミニウム粉末の中から選択される少なくとも1種であることが好ましく、成分(C)は、酸化亜鉛粉末、水酸化アルミニム粉末の中から選択される少なくとも1種であることが好ましい。   The component (B) is preferably at least one selected from alumina powder and aluminum nitride powder, and the component (C) is at least selected from zinc oxide powder and aluminum hydroxide powder. One type is preferable.

本発明の放熱用シリコーングリース組成物は、熱伝導性に優れるだけでなく、耐ズレ性が良好であるので、使用中に熱が発生する電気・電子部品からの除熱に好適である。   The heat-dissipating silicone grease composition of the present invention is not only excellent in thermal conductivity, but also has good misalignment resistance, and is therefore suitable for heat removal from electrical / electronic components that generate heat during use.

本発明の放熱用シリコーングリース組成物を構成する成分(A)のオルガノポリシリキサンは、η/ηで定義されるチキソ度αが1.03〜1.70であると共に、25℃における粘度が10〜1,000,000mPa・sの液状シリコーンである。
ここで、ηはB型回転粘度計により、ローターの回転数を6rpmとして25℃において測定したときの粘度であり、ηは、ローターの回転数を12rpmとして25℃において測定したときの粘度である。
The organopolysiloxane of component (A) constituting the heat-dissipating silicone grease composition of the present invention has a thixotropy α defined by η 1 / η 2 of 1.03 to 1.70, and at 25 ° C. It is a liquid silicone having a viscosity of 10 to 1,000,000 mPa · s.
Here, η 1 is the viscosity when measured at 25 ° C. with a B-type rotational viscometer at a rotor speed of 6 rpm, and η 2 is the viscosity when measured at 25 ° C. with a rotor speed of 12 rpm. It is.

上記のように、成分(A)のチキソ性はチキソ度αによって表されるが、このチキソ度αが大きいほどオイルの粘性が強くなる。本発明においては、特に、(A)のオルガノポリシリキサンのチキソ度αが1.03〜1.70であることが必要であり特に1.05〜1.60であることが好ましい。チキソ度αが1.03より小さいと、オイルの粘性が小さく、このオルガノポリシロキサンと熱伝導性充填剤との親和性が弱いので、シリコーングリース組成物からオイルがブリードアウトしやすくなる。一方、チキソ度αが1.70より大きいと、成分(A)と成分(B)、(C)との混合が困難となる。   As described above, the thixotropy of the component (A) is represented by the thixotropy α, and the greater the thixotropy α, the stronger the oil viscosity. In the present invention, the organopolysiloxane (A) is required to have a thixotropy α of 1.03 to 1.70, particularly preferably 1.05 to 1.60. When the thixotropy α is less than 1.03, the viscosity of the oil is small and the affinity between the organopolysiloxane and the heat conductive filler is weak, so that the oil tends to bleed out from the silicone grease composition. On the other hand, when the thixotropy α is greater than 1.70, mixing of the component (A) with the components (B) and (C) becomes difficult.

また本発明においては、成分(A)のオルガノポリシリキサンのB型回転粘度計による25℃における粘度は、前記したように10〜1,000,000mPa・sの範囲であることが必要であるが、特に100〜100,000mPa・sであることが好ましい。25℃における粘度が10mPa・sより小さいと、得られるシリコーングリース組成物の安定性が乏しくなり、1,000,000mPa・sより大きいと、成分(B)、(C)との混合が困難となる。   In the present invention, the viscosity of the organopolysiloxane of component (A) at 25 ° C. by a B-type rotational viscometer needs to be in the range of 10 to 1,000,000 mPa · s as described above. Is particularly preferably 100 to 100,000 mPa · s. If the viscosity at 25 ° C. is less than 10 mPa · s, the resulting silicone grease composition will have poor stability, and if it is greater than 1,000,000 mPa · s, it is difficult to mix with components (B) and (C). Become.

成分(A)のオルガノポリシロキサンは、少なくとも、下記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサンを、1〜60質量%含有することが必要である。

Figure 2010242022

上記一般式(1)中のR3は、メチル基、エチル基、プロピル基などの炭素数1〜6のアルキル基であり、Rは、炭素数1〜20の飽和又は不飽和の一価炭化水素基からなる群の中から選択される基である。これらは同一であっても異なっていても良い。又、bは5〜120の整数である。 The organopolysiloxane of component (A) needs to contain at least 1 to 60% by mass of a one-terminal trifunctional hydrolyzable organopolysiloxane represented by the following general formula (1).
Figure 2010242022

R 3 in general formula (1) include a methyl group, an ethyl group, an alkyl group having 1 to 6 carbon atoms such as a propyl group, R 4 is a monovalent saturated or unsaturated having 1 to 20 carbon atoms It is a group selected from the group consisting of hydrocarbon groups. These may be the same or different. B is an integer of 5 to 120.

この一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサン以外のオルガノポリシロキサンは特に限定されるものではないが、特に、1分子中に少なくとも1個のアルケニル基を有するオルガノポリシロキサンと下記一般式(2)で表される少なくとも2個のSiH基を有するハイドロジェンオルガノポリシロキサンとを、白金単体、塩化白金酸、白金−オレフィン錯体、白金−アルコール錯体等の白金系触媒を用いて付加反応させて得られるオルガノポリシロキサンであることが好ましい。

Figure 2010242022


上式中のRは、水素原子、及び炭素数が1〜20の飽和又は不飽和の一価炭化水素基の群から選択される少なくとも1種の基であり、n及びmはそれぞれ1≦n≦1,000、0≦m≦1,000である。 Organopolysiloxanes other than the one-terminal trifunctional hydrolyzable organopolysiloxane represented by the general formula (1) are not particularly limited, but particularly have at least one alkenyl group in one molecule. Platinum series such as platinum simple substance, chloroplatinic acid, platinum-olefin complex, platinum-alcohol complex, etc. containing organopolysiloxane and hydrogen organopolysiloxane having at least two SiH groups represented by the following general formula (2) An organopolysiloxane obtained by addition reaction using a catalyst is preferred.
Figure 2010242022


R 1 in the above formula is a hydrogen atom and at least one group selected from the group of saturated or unsaturated monovalent hydrocarbon groups having 1 to 20 carbon atoms, and n and m are each 1 ≦ n ≦ 1,000 and 0 ≦ m ≦ 1,000.

前記アルケニル基を有するオルガノポリシロキサンは、ケイ素原子に直結したアルケニル基を1分子中に少なくとも1個有するものであれば、直鎖状でも分岐状でも良い。また2種以上の異なる粘度の混合物でも良い。上記アルケニル基としては、ビニル基、アリル基、1−ブテニル基、1−ヘキセニル基などが例示されるが、合成のし易さ及びコストの面からビニル基であることが好ましい。   The organopolysiloxane having an alkenyl group may be linear or branched as long as it has at least one alkenyl group directly bonded to a silicon atom in one molecule. Also, a mixture of two or more different viscosities may be used. Examples of the alkenyl group include a vinyl group, an allyl group, a 1-butenyl group, and a 1-hexenyl group, and a vinyl group is preferable from the viewpoint of ease of synthesis and cost.

ケイ素原子に結合する他の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2−フェニルエチル基、2−フェニルプロピル基等のアラルキル基が例示される他、クロロメチル基、3,3,3,−トリフルオロプロピル基等の置換炭化水素基も例として挙げられる。これらのうち、合成のし易さ及びコストの面から、90%以上の有機基がメチル基であることが好ましい。   Other organic groups bonded to the silicon atom include methyl groups, ethyl groups, propyl groups, butyl groups, hexyl groups, alkyl groups such as dodecyl groups, aryl groups such as phenyl groups, 2-phenylethyl groups, 2-phenylpropoxy groups. In addition to aralkyl groups such as thiol groups, substituted hydrocarbon groups such as chloromethyl groups and 3,3,3, -trifluoropropyl groups are also exemplified. Of these, 90% or more of the organic groups are preferably methyl groups from the viewpoint of ease of synthesis and cost.

ケイ素原子に結合するアルケニル基は、オルガノポリシロキサンの分子鎖末端又は途中の何れに存在しても良い。柔軟性の面からは、両末端にのみ存在することが好ましいが、部分的に片末端のみに存在するものがあっても良い。   The alkenyl group bonded to the silicon atom may be present at the molecular chain terminal or in the middle of the organopolysiloxane. From the viewpoint of flexibility, it is preferable to exist only at both ends, but some may exist only at one end.

前記した、一般式(2)で表される少なくとも2個のSi−H基を有するハイドロジェンオルガノポリシロキサン中のRとしては、例えばメチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3,3,3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基等が挙げられる。合成のし易さ及びコストの面から、Rの90%以上がメチル基であることが好ましい。 As R 1 in the hydrogenorganopolysiloxane having at least two Si—H groups represented by the general formula (2), for example, a methyl group, an ethyl group, a propyl group, a hexyl group, an octyl group, Alkyl groups such as decyl group, dodecyl group, tetradecyl group, hexadecyl group and octadecyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group and allyl group; aryl groups such as phenyl group and tolyl group; Aralkyl groups such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; 3,3,3-trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group And halogenated hydrocarbon groups such as p-chlorophenyl group. From the viewpoint of ease of synthesis and cost, 90% or more of R 1 is preferably a methyl group.

本発明における(A)成分中の、前記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサン以外のオルガノポリシロキサンとして好ましい、付加反応によって得られるオルガノポリシロキサンを得る場合には、アルケニル基を有するオルガノポリシロキサン及びSi−H基を有するオルガノポリシロキサンをそれぞれ2種類以上使用しても良い。更に、反応基を持たないジメチルポリシロキサン等を混合することもできる。   When obtaining an organopolysiloxane obtained by an addition reaction, which is preferable as an organopolysiloxane other than the one-terminal trifunctional hydrolyzable organopolysiloxane represented by the general formula (1) in the component (A) in the present invention. Two or more types of organopolysiloxanes having alkenyl groups and Si-H groups may be used. Furthermore, dimethylpolysiloxane having no reactive group can be mixed.

又、別の方法として、一般的な線状オルガノポリシロキサンの構造単位である〔R SiO1/2〕単位及び〔R SiO〕単位に加えて、〔RSiO3/2〕単位あるいは〔SiO4/2〕単位を導入することによって得ることもできる。ここで、Rは前記一般式(2)におけるRと同じである。
これらのオルガノポリシロキサンの製造方法は特に限定されるものではないが、例えば、(i)(CHSiCl、(CHSiCl、(CH)SiCl、などを加水分解・縮合するか、(ii)この縮合物と環状低分子シロキサンとを、アルカリ金属水酸化物、アルカリ金属シラノレートあるいはテトラアルキルホスホニウムヒドロキシド、テトラアルキルアンモニウムヒドロキシドなどの水酸化物、あるいは、硫酸、有機スルホン酸などの強酸などから選ばれる触媒の存在下に、室温又は加熱下で平衡化反応させるか、(iii)水酸基を有すると共に、(CHSiO1/2単位とSiO単位とからなるオルガノポリシロキサンとシラノール基を有するポリジオルガノシロキサン等を、アミン触媒、錫触媒などの縮合触媒の存在下で、室温又は加熱下で反応させる方法等が挙げられる。
As another method, in addition to [R 2 3 SiO 1/2 ] unit and [R 2 2 SiO] unit, which are structural units of general linear organopolysiloxane, [R 2 SiO 3/2 ] It can also be obtained by introducing units or [SiO 4/2 ] units. Wherein, R 2 is the same as R 1 in the general formula (2).
The method for producing these organopolysiloxanes is not particularly limited. For example, (i) hydrolysis of (CH 3 ) 3 SiCl, (CH 3 ) 2 SiCl 2 , (CH 3 ) SiCl 3 , etc. Or (ii) this condensate and cyclic low-molecular-weight siloxane are mixed with alkali metal hydroxide, alkali metal silanolate, hydroxide such as tetraalkylphosphonium hydroxide, tetraalkylammonium hydroxide, sulfuric acid, organic In the presence of a catalyst selected from strong acids such as sulfonic acid, the reaction is allowed to equilibrate at room temperature or under heating, or (iii) has a hydroxyl group and comprises (CH 3 ) 3 SiO 1/2 units and SiO 2 units. Organopolysiloxane and polydiorganosiloxane having silanol group can be condensed with amine catalyst or tin catalyst. In the presence of a catalyst, and the like method of reacting at room temperature or under heating.

前記一般式(1)中のR3は、メチル基、エチル基、プロピル基などの炭素数1〜6のアルキル基であるが、合成のし易さ及び経済面から特にメチル基であることが好ましい。Rは炭素数1〜20の飽和又は不飽和の一価炭化水素基からなる群の中から選択される少なくとも1種の基である。このような基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2−フェニルエチル基、2−メチル−2−フェニルエチル基等のアラルキル基;3,3,3−トリフロロプロピル基、2−(パーフロロブチル)エチル基、2−(パーフロロオクチル)エチル基、p−クロロフェニル基等のハロゲン化炭化水素基等が挙げられる。合成のし易さ及びコストの面から、R4の90%以上がメチル基であることが好ましい。また、bは5〜120の整数である。 R 3 in the general formula (1) is an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group, and is particularly preferably a methyl group from the viewpoint of ease of synthesis and economy. preferable. R 4 is at least one group selected from the group consisting of saturated or unsaturated monovalent hydrocarbon groups having 1 to 20 carbon atoms. Examples of such groups include methyl groups, ethyl groups, propyl groups, hexyl groups, octyl groups, decyl groups, alkyl groups such as dodecyl groups, tetradecyl groups, hexadecyl groups, octadecyl groups; cyclopentyl groups, cyclohexyl groups, etc. Cycloalkyl group; alkenyl group such as vinyl group and allyl group; aryl group such as phenyl group and tolyl group; aralkyl group such as 2-phenylethyl group and 2-methyl-2-phenylethyl group; Examples thereof include halogenated hydrocarbon groups such as trifluoropropyl group, 2- (perfluorobutyl) ethyl group, 2- (perfluorooctyl) ethyl group, and p-chlorophenyl group. From the viewpoint of ease of synthesis and cost, 90% or more of R 4 is preferably a methyl group. B is an integer of 5 to 120.

成分(A)のオルガノポリシリキサン中における前記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサンの含有量は、1〜60質量%であることが必要である。上記含有量が1質量%より少ないと成分(B)、(C)と成分(A)とのなじみが悪くなり、60質量%より多いと耐ズレ性が悪くなる。本発明においては、上記含有量は特に5〜50質量%であることが好ましい。   The content of the one-terminal trifunctional hydrolyzable organopolysiloxane represented by the general formula (1) in the component (A) organopolysiloxane needs to be 1 to 60% by mass. When the content is less than 1% by mass, the compatibility between the components (B) and (C) and the component (A) is deteriorated, and when the content is more than 60% by mass, the shift resistance is deteriorated. In the present invention, the content is particularly preferably 5 to 50% by mass.

成分(B)及び(C)は、本発明の熱伝導性シリコーングリース組成物に熱伝導性を付与する充填材であるが、本発明においては、それらのモース硬度及び平均粒径を特定の範囲とすることによって耐ズレ性を向上させる点に特徴がある。尚、ここで言うモース硬度は、旧モース硬度と標記されることもあるが、最も硬いダイヤモンドの硬さを10として、10段階で物質の硬さを表す指標である。   Ingredients (B) and (C) are fillers that impart thermal conductivity to the thermally conductive silicone grease composition of the present invention. In the present invention, the Mohs hardness and average particle size are within a specific range. This is characterized in that the resistance to misalignment is improved. The Mohs hardness referred to here is sometimes referred to as the old Mohs hardness, but is an index representing the hardness of a substance in 10 levels, where the hardness of the hardest diamond is 10.

本発明で使用する成分(B)は、モース硬度が6以上で平均粒径は5〜20μmであることが必要である。モース硬度が5以下の熱伝導性充填材を使用すると成分(C)との相性が悪くなり高充填化できなくなるので、十分な熱伝導率を付与することができない。また、平均粒径は、5μmより小さくても20μmより大きくても、グリースが不均一になり耐ズレ性が悪くなるので、特に7〜15μmであることが好ましい。   The component (B) used in the present invention needs to have a Mohs hardness of 6 or more and an average particle size of 5 to 20 μm. When a heat conductive filler having a Mohs hardness of 5 or less is used, compatibility with the component (C) is deteriorated and high filling cannot be achieved, so that sufficient heat conductivity cannot be imparted. Further, even if the average particle size is smaller than 5 μm or larger than 20 μm, the grease becomes non-uniform and the resistance to misalignment is deteriorated, so that it is particularly preferably 7 to 15 μm.

成分(B)の熱伝導性充填材としては、アルミナ粉末、窒化アルミニウム粉末、炭化珪素粉末などを挙げることができるが、特に、アルミナ粉末及び/又は窒化アルミニウム粉末を使用することが好ましい。   Examples of the thermally conductive filler of component (B) include alumina powder, aluminum nitride powder, silicon carbide powder, and the like, and it is particularly preferable to use alumina powder and / or aluminum nitride powder.

一方、成分(C)は、モース硬度が5以下で平均粒径は0.5〜5μmであることが必要であるが、好ましくは0.5〜3μmである。モース硬度が6以上だと耐ズレ性が悪くなる。また、平均粒径が0.5より小さくても5μmより大きくても高充填化することができないので十分な熱伝導率が得られないだけでなく、グリースが不均一になって耐ズレ性も悪くなる。   On the other hand, the component (C) is required to have a Mohs hardness of 5 or less and an average particle size of 0.5 to 5 μm, preferably 0.5 to 3 μm. When the Mohs hardness is 6 or more, misalignment resistance deteriorates. Further, even if the average particle size is smaller than 0.5 or larger than 5 μm, high filling cannot be achieved, so that not only sufficient thermal conductivity cannot be obtained, but also grease becomes non-uniform and misalignment resistance is also obtained. Deteriorate.

成分(C)の熱伝導性充填材としては、酸化亜鉛粉末、水酸化アルミニウム粉末、アルミニウム粉末などが挙げられるが、本発明においては特に酸化亜鉛粉末及び/又は水酸化アルミニウム粉末を使用することが好ましい。   Examples of the thermally conductive filler of component (C) include zinc oxide powder, aluminum hydroxide powder, aluminum powder, etc. In the present invention, it is particularly possible to use zinc oxide powder and / or aluminum hydroxide powder. preferable.

成分(B)と成分(C)との混合割合を意味する、成分(C)/(成分(B)+成分(C))は、質量比で0.05〜0.5の範囲であることが必要であるが、好ましくは0.1〜0.3である。0.05より小さくても0.5より大きくてもグリースが不均一になるので耐ズレ性が悪くなる。   Component (C) / (Component (B) + Component (C)), which means the mixing ratio of component (B) and component (C), is in the range of 0.05 to 0.5 by mass ratio. However, it is preferably 0.1 to 0.3. Even if it is smaller than 0.05 or larger than 0.5, the grease becomes non-uniform so that the displacement resistance is deteriorated.

一方、成分(B)と成分(C)との合計配合量は、成分(A)のオルガノポリシリキサン100質量部に対して500〜2000質量部の範囲であることが必要であり、好ましくは700〜1500質量部の範囲である。500質量部より小さいと十分な熱伝導率が得られないだけでなく、グリースとしての強度が保てないためズレやすくなる。また、2000質量部より大きいとグリース状を保つことができない。   On the other hand, the total blending amount of the component (B) and the component (C) needs to be in the range of 500 to 2000 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A), preferably It is the range of 700-1500 mass parts. If it is less than 500 parts by mass, not only a sufficient thermal conductivity cannot be obtained, but also the strength as a grease cannot be maintained, so that it becomes easy to shift. On the other hand, if it is larger than 2000 parts by mass, the grease cannot be maintained.

本発明の熱伝導性シリコーングリースを製造する場合には、成分(A)〜(C)を加えて、トリミックス、ツウィンミックス、プラネタリミキサー(何れも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機を用いて混合する。必要であれば50〜150℃に加熱しても良い   In the case of producing the heat conductive silicone grease of the present invention, components (A) to (C) are added, trimix, twin mix, planetary mixer (all are registered trademarks of a mixer manufactured by Inoue Seisakusho Co., Ltd.) Mixing is performed using a mixer such as Ultramixer (registered trademark of mixer manufactured by Mizuho Industry Co., Ltd.), Hibis Disper Mix (registered trademark of mixer manufactured by Special Machine Industries Co., Ltd.), or the like. If necessary, it may be heated to 50-150 ° C.

以下、本発明を実施例によって更に詳述するが、本発明はこれによって限定されるものではない。本発明の優位性をより明確にするために行った実施例及び比較例に係る試験は、次の様にして行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in full detail, this invention is not limited by this. Tests according to Examples and Comparative Examples conducted for clarifying the superiority of the present invention were performed as follows.

〔グリース粘度〕
熱伝導性シリコーングリース組成物の粘度の測定は、株式会社マルコム社製の型番PC−1TL(回転数10rpm)を用いて行った。
[Grease viscosity]
The viscosity of the thermally conductive silicone grease composition was measured using Model No. PC-1TL (rotation speed: 10 rpm) manufactured by Malcolm Corporation.

〔熱伝導率〕
熱伝導率は、京都電子工業株式会社製のTPA−501を用いて、25℃において測定した。
〔Thermal conductivity〕
The thermal conductivity was measured at 25 ° C. using TPA-501 manufactured by Kyoto Electronics Industry Co., Ltd.

〔粒径〕
粒径は、日機装株式会社製の粒度分析計であるマイクロトラックMT3300EXにより測定した、体積基準の累積平均径である。
〔Particle size〕
The particle diameter is a volume-based cumulative average diameter measured by Microtrac MT3300EX, which is a particle size analyzer manufactured by Nikkiso Co., Ltd.

〔チキソ度〕
チキソ度α=η12として定義した。ここでη1は、B型回転粘度計によりローターの回転数を6rpmとして25℃において測定した粘度であり、ηは、ローターの回転数を12rpmとして25℃において測定した粘度である。
[Thixotropy]
The thixotropy was defined as α = η 1 / η 2 . Here, η 1 is a viscosity measured at 25 ° C. using a B-type rotational viscometer with a rotor speed of 6 rpm, and η 2 is a viscosity measured at 25 ° C. with a rotor speed of 12 rpm.

〔ズレ性〕
熱伝導性シリコーングリース組成物のズレ性は、次の工程に従って測定した数値で評価した。
(1)0.5mmのスペーサーを設け、アルミニウム板とスライドガラスの間に、直径1.5cmの円状になるように熱伝導性シリコーングリース組成物を挟みこむ。
(2)次に、この試験片を地面に対して鉛直にセットし、-45℃と150℃(各30分)を交互に繰り返すヒートサイクル試験を行うように、エスペック株式会社製の熱衝撃試験機(型番:TSE−11−A)の中に配置し、1000サイクル試験を行う。
(3)1000サイクル試験の後、熱伝導性シリコーングリース組成物が元の場所からどのくらいズレたかを測定する。
[Displacement]
The deviation of the thermally conductive silicone grease composition was evaluated by numerical values measured according to the following steps.
(1) A 0.5 mm spacer is provided, and a thermally conductive silicone grease composition is sandwiched between an aluminum plate and a glass slide so as to form a circle having a diameter of 1.5 cm.
(2) Next, this test piece is set vertically with respect to the ground, and a thermal shock test manufactured by Espec Co., Ltd. is performed so as to perform a heat cycle test in which -45 ° C. and 150 ° C. (30 minutes each) are alternately repeated. Place in the machine (model number: TSE-11-A) and perform 1000 cycle test.
(3) After the 1000 cycle test, measure how much the thermally conductive silicone grease composition has deviated from its original location.

[合成例1:成分(A)のオルガノポリシロキサンA−1の合成]
攪拌機、温度計、冷却管及び窒素ガス導入管を設けた内容積2000mlのフラスコに、両末端がジメチルビニルシリル基で封鎖され、主鎖の5モル%がフェニル基で残りの95モル%がメチル基である、25℃における粘度が700mPa・sのオリガノポリシロキサン550gと、下記[化1]のハイドロジェンオルガノポリシロキサン6.0g及び[化2]の加水分解性オルガノポリシロキサン450gとを入れた。更に、白金−ジビニルテトラメチルジシロキサン錯体のジメチルビニルシリル末端封鎖のジメチルポリシロキサン溶液(白金原子を1質量%含有する白金触媒)を0.25g投入した後、120℃で1時間混合撹拌してオルガノポリシロキサンA−1を得た。



Figure 2010242022

Figure 2010242022
得られたオルガノポリシロキサンA−1中に含有される、加水分解性オルガノポリシロキサンは44.7質量%に相当する量であった。また、オルガノポリシロキサンA−1の25℃における粘度は下記の通りであり、チキソ度αは1.12と計算された。
粘度測定結果:
ロータNo.4/6rpm:9,500mPa・s、
ロータNo.4/12rpm:8,500mPa・s [Synthesis Example 1: Synthesis of organopolysiloxane A-1 as component (A)]
A flask with an internal volume of 2000 ml provided with a stirrer, a thermometer, a cooling pipe and a nitrogen gas introduction pipe was sealed at both ends with dimethylvinylsilyl groups, 5 mol% of the main chain was phenyl groups, and the remaining 95 mol% was methyl. 550 g of origanopolysiloxane having a viscosity of 700 mPa · s at 25 ° C., 6.0 g of hydrogen organopolysiloxane of the following [Chemical Formula 1] and 450 g of hydrolyzable organopolysiloxane of [Chemical Formula 2] It was. Furthermore, after adding 0.25 g of a dimethylpolysilyl end-capped dimethylpolysiloxane solution of platinum-divinyltetramethyldisiloxane complex (platinum catalyst containing 1% by mass of platinum atom), the mixture was stirred at 120 ° C. for 1 hour. Organopolysiloxane A-1 was obtained.



Figure 2010242022

Figure 2010242022
The hydrolyzable organopolysiloxane contained in the obtained organopolysiloxane A-1 was an amount corresponding to 44.7% by mass. Moreover, the viscosity at 25 degrees C of organopolysiloxane A-1 was as follows, and thixotropy (alpha) was calculated with 1.12.
Viscosity measurement results:
Rotor No. 4/6 rpm: 9,500 mPa · s,
Rotor No. 4/12 rpm: 8,500 mPa · s

[合成例2:成分(A)のオルガノポリシロキサンA−2の合成]
合成例1で使用した[化2]の加水分解性オルガノポリシロキサンの仕込み量を60gとしたこと以外は、全て合成例1と同様にしてオルガノポリシロキサンA−2を得た。得られたオルガノポリシロキサンA−2中に含有される加水分解性オルガノポリシロキサンの量は9.7質量%に相当する量であった。また、オルガノポリシロキサンA−2の25℃における粘度は下記の通りであり、チキソ度αは1.55と計算された。
粘度測定結果:
ロータNo.4/6rpm:72,000mPa・s、
ロータNo.4/12rpm:6,500mPa・s
[Synthesis Example 2: Synthesis of Organopolysiloxane A-2 as Component (A)]
Organopolysiloxane A-2 was obtained in the same manner as in Synthesis Example 1 except that the amount of hydrolyzable organopolysiloxane of [Chemical Formula 2] used in Synthesis Example 1 was changed to 60 g. The amount of hydrolyzable organopolysiloxane contained in the obtained organopolysiloxane A-2 was an amount corresponding to 9.7% by mass. Moreover, the viscosity at 25 degrees C of organopolysiloxane A-2 was as follows, and the thixotropy (alpha) was calculated with 1.55.
Viscosity measurement results:
Rotor No. 4/6 rpm: 72,000 mPa · s,
Rotor No. 4/12 rpm: 6,500 mPa · s

[ベースオイルXの合成]
攪拌機、温度計、冷却管及び滴下装置を備えた内容積5リットルのフラスコに水3,000gを入れ、撹拌しながらこの中にトリメチルクロロシラン490g、ジメチルジクロロシラン560g及びメチルトリクロロシラン650gの混合物を、反応物の温度が50℃以下になるように冷却しながら3時間かけて滴下した。次いで、30℃で更に2時間撹拌し、水層(塩酸及び水)を分離した後、有機層に3%炭酸ナトリウム水溶液1700gを加え、室温で2時間撹拌した。水層を分離して除き、残った有機層に無水硫酸ナトリウム70gを加えて室温で3時間撹拌した後、これを濾過して、粘度が14mPa・sで無色透明なベースオイルXを得た。
[Synthesis of base oil X]
3,000 g of water was placed in a 5 liter flask equipped with a stirrer, a thermometer, a condenser and a dropping device, and a mixture of 490 g of trimethylchlorosilane, 560 g of dimethyldichlorosilane and 650 g of methyltrichlorosilane was added thereto while stirring. The reaction mixture was added dropwise over 3 hours while cooling so that the temperature of the reaction product was 50 ° C. or lower. Next, the mixture was further stirred at 30 ° C. for 2 hours, and the aqueous layer (hydrochloric acid and water) was separated. Then, 1700 g of 3% aqueous sodium carbonate solution was added to the organic layer, and the mixture was stirred at room temperature for 2 hours. The aqueous layer was separated and removed, and 70 g of anhydrous sodium sulfate was added to the remaining organic layer and stirred at room temperature for 3 hours, followed by filtration to obtain a colorless and transparent base oil X having a viscosity of 14 mPa · s.

[合成例3:成分(A)のオルガノポリシロキサンA−3の合成]
攪拌機、温度計、冷却管及び窒素ガス導入管を設けた内容積500mlのフラスコに、得られたベースオイルXを10g、粘度が10mPa・sのトリメチルシリル末端封鎖ポリジメチルシロキサンを22g、及びオクタメチルシクロテトラシロキサン300gを入れ、窒素ガスを通気しながら120℃まで加熱した。次いで、水酸化カリウム0.3gを加え、更に150℃まで昇温させて4時間撹拌した後100℃まで冷却し、エチレンクロロヒドリン2gを添加した後、未反応の低分子シロキサンを除去して、オルガノポリシロキサンを得た。
得られたオルガンポリシロキサンに、含有率が10質量%になるように[化2]の加水分解性オルガノポリシロキサンを混合してオルガノポリシロキサンA−3を得た。
得られたオルガノポリシロキサンA−3の25℃における粘度は下記の通りであり、チキソ度αは1.33と計算された。
粘度測定結果:
ロータNo.4/6rpm:35,000mPa・s、
ロータNo.4/12rpm:26,300mPa・s
[Synthesis Example 3: Synthesis of organopolysiloxane A-3 as component (A)]
Into a 500 ml flask equipped with a stirrer, thermometer, cooling pipe and nitrogen gas introduction pipe, 10 g of the obtained base oil X, 22 g of tridimethylsilyl end-capped polydimethylsiloxane having a viscosity of 10 mPa · s, and octamethylcyclotetra 300 g of siloxane was added and heated to 120 ° C. with nitrogen gas being passed. Next, 0.3 g of potassium hydroxide was added, the temperature was further raised to 150 ° C., stirred for 4 hours, cooled to 100 ° C., 2 g of ethylene chlorohydrin was added, and unreacted low molecular siloxane was removed. An organopolysiloxane was obtained.
A hydrolyzable organopolysiloxane of [Chemical Formula 2] was mixed with the obtained organ polysiloxane so that the content was 10% by mass to obtain organopolysiloxane A-3.
The obtained organopolysiloxane A-3 had the following viscosity at 25 ° C., and the thixotropy α was calculated to be 1.33.
Viscosity measurement results:
Rotor No. 4/6 rpm: 35,000 mPa · s,
Rotor No. 4/12 rpm: 26,300 mPa · s

[合成例4:成分(A)のオルガノポリシロキサンA−4の合成]
合成例3において原料として使用した、ベースオイルXの使用量を25g、オクタメチルシクロテトラシロキサンの使用量を308gとしたこと以外は、合成例3と同じ条件で合成したオルガノポリシロキサンに、含有率が5質量%となるように前記[化2]の加水分解性オルガノポリシロキサンを混合し、オルガノポリシロキサンA−4を得た。
得られたオルガノポリシロキサンA−4の25℃における粘度は下記の通りであり、チキソ度αは1.05と計算された。
粘度測定結果:
ロータNo.4/6rpm:22,000mPa・s、
ロータNo.4/12rpm:2,100mPa・s
[Synthesis Example 4: Synthesis of Organopolysiloxane A-4 as Component (A)]
The organopolysiloxane synthesized under the same conditions as in Synthesis Example 3 except that the amount of base oil X used as a raw material in Synthesis Example 3 was 25 g and the amount of octamethylcyclotetrasiloxane used was 308 g. The hydrolyzable organopolysiloxane of the above [Chemical Formula 2] was mixed so as to be 5% by mass to obtain organopolysiloxane A-4.
The viscosity of the obtained organopolysiloxane A-4 at 25 ° C. was as follows, and the thixotropy α was calculated to be 1.05.
Viscosity measurement results:
Rotor No. 4/6 rpm: 22,000 mPa · s,
Rotor No. 4/12 rpm: 2,100 mPa · s

[合成例5:成分(A)のオルガノポリシロキサンA−5の合成]
合成例1で使用した、両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が600mPa・sのジメチルポリシロキサン500gと、[化3]に示されたハイドロジェンオルガノポリシロキサン33g、[化4]で示されたハイドロジェンオルガノポリシロキサン23g、及び前記[化2]で示された加水分解性オルガノポリシロキサン50gとを仕込んだこと以外は、全て合成例1と同様にしてオルガノポリシロキサンA−5を得た。

Figure 2010242022
Figure 2010242022
得られたオルガノポリシロキサンA−5の25℃における粘度は下記の通りであり、チキソ度αは1.96と計算された。
粘度測定結果:
ロータNo.4/6rpm:92,000mPa・s、
ロータNo.4/12rpm:47,000mPa・s [Synthesis Example 5: Synthesis of Organopolysiloxane A-5 as Component (A)]
500 g of dimethylpolysiloxane having both ends blocked with dimethylvinylsilyl groups and having a viscosity of 600 mPa · s at 25 ° C. and 33 g of hydrogenorganopolysiloxane shown in [Chemical Formula 3] used in Synthesis Example 1 4] and organohydrosiloxane A in the same manner as in Synthesis Example 1 except that 23 g of the hydrogenated organopolysiloxane shown in [4] and 50 g of the hydrolyzable organopolysiloxane shown in [Chemical Formula 2] were charged. -5 was obtained.
Figure 2010242022
Figure 2010242022
The viscosity of the obtained organopolysiloxane A-5 at 25 ° C. was as follows, and the thixotropy α was calculated to be 1.96.
Viscosity measurement results:
Rotor No. 4/6 rpm: 92,000 mPa · s,
Rotor No. 4/12 rpm: 47,000 mPa · s

[合成例6:成分(A)のオルガノポリシロキサンA−6の合成]
合成例3において原料として使用したベースオイルXを100g、オクタメチルシクロテトラシロキサンを200g用いたこと以外は、合成例3と同じ条件でオルガノポリシロキサンを得た。得られたオルガノポリシロキサンに、含有率が5質量%になるように[化2]で示された加水分解性オルガノポリシロキサンを混合し、オルガノポリシロキサンA−6を得た。
得られたオルガノポリシロキサンA−6の25℃における粘度は下記の通りであり、チキソ度αは1.02と計算された。
粘度測定結果:
ロータNo.4/6rpm:440mPa・s、
ロータNo.4/12rpm:430mPa・s
Synthesis Example 6 Synthesis of Component (A) Organopolysiloxane A-6
Organopolysiloxane was obtained under the same conditions as in Synthesis Example 3 except that 100 g of base oil X used as a raw material in Synthesis Example 3 and 200 g of octamethylcyclotetrasiloxane were used. The resulting organopolysiloxane was mixed with the hydrolyzable organopolysiloxane represented by [Chemical Formula 2] so that the content was 5% by mass to obtain organopolysiloxane A-6.
The viscosity of the resulting organopolysiloxane A-6 at 25 ° C. was as follows, and the thixotropy α was calculated to be 1.02.
Viscosity measurement results:
Rotor No. 4/6 rpm: 440 mPa · s,
Rotor No. 4/12 rpm: 430 mPa · s

[放熱用シリコーングリース組成物の製造]
合成例1〜6で得られたオルガノポリシロキサンA1〜A6、及び、下記の粘度を有しチキソ度αが1.01である下記[化5]で示されるジメチルポリシロキサンA−7の6種類のオルガノポリシロキサンを用いた。[表1]及び[表2]に示した成分組成で配合し、プラネタリミキサー(井上製作所(株)製)を用いて120℃で1時間混合し、実施例1〜9及び比較例1〜12の放熱用シリコーン組成物を得た。
ジメチリポリシロキサンA−7の粘度測定結果:
ロータNo.4/6rpm:9,800mPa・s、
ロータNo.4/12rpm:9,700mPa・s

Figure 2010242022
[Manufacture of silicone grease composition for heat dissipation]
Six types of organopolysiloxanes A1 to A6 obtained in Synthesis Examples 1 to 6 and dimethylpolysiloxane A-7 represented by the following [Chemical Formula 5] having the following viscosity and a thixotropy α of 1.01 The organopolysiloxane was used. It mix | blends with the component composition shown in [Table 1] and [Table 2], it mixes for 1 hour at 120 degreeC using a planetary mixer (Inoue Seisakusho Co., Ltd. product), Examples 1-9 and Comparative Examples 1-12 A silicone composition for heat dissipation was obtained.
Viscosity measurement result of dimethylpolysiloxane A-7:
Rotor No. 4/6 rpm: 9,800 mPa · s,
Rotor No. 4/12 rpm: 9,700 mPa · s

Figure 2010242022

尚、表中の成分(B)及び成分(C)は下記の通りである。
成分(B):
B−1:アルミナ粉末(平均粒径10.3μm)
B−2:アルミナ粉末(平均粒径14.5μm)
B−3:窒化アルミニウム粉末(平均粒径10.1μm)
B−4:アルミナ粉末(平均粒径1.1μm)
B−5:アルミナ粉末(平均粒径30μm)
成分(C)
C−1:酸化亜鉛粉末(平均粒径1.1μm)
C−2:水酸化アルミニウム粉末(平均粒径2.1μm)
C−3:水酸化アルミニウム粉末(平均粒径0.4μm)
C−4:水酸化アルミニウム粉末(平均粒径10μm)
In addition, the component (B) and component (C) in a table | surface are as follows.
Ingredient (B):
B-1: Alumina powder (average particle size 10.3 μm)
B-2: Alumina powder (average particle size 14.5 μm)
B-3: Aluminum nitride powder (average particle size 10.1 μm)
B-4: Alumina powder (average particle size 1.1 μm)
B-5: Alumina powder (average particle size 30 μm)
Ingredient (C)
C-1: Zinc oxide powder (average particle size 1.1 μm)
C-2: Aluminum hydroxide powder (average particle size 2.1 μm)
C-3: Aluminum hydroxide powder (average particle size 0.4 μm)
C-4: Aluminum hydroxide powder (average particle size 10 μm)

表1及び2の結果は、本発明の放熱用シリコーングリース組成物が、熱伝導性に優れるだけでなく耐ズレ性にも優れていることを実証するものである。
The results in Tables 1 and 2 demonstrate that the heat-dissipating silicone grease composition of the present invention is excellent not only in heat conductivity but also in resistance to misalignment.

Figure 2010242022
Figure 2010242022

Figure 2010242022
Figure 2010242022

本発明の放熱用シリコーングリース組成物は、熱伝導性に優れるだけでなく、耐ズレ性が良好であるので、使用中に熱が発生する電気・電子部品からの除熱に好適である。   The heat-dissipating silicone grease composition of the present invention is not only excellent in thermal conductivity, but also has good misalignment resistance, and is therefore suitable for heat removal from electrical / electronic components that generate heat during use.

Claims (5)

少なくとも下記成分(A)〜(C)を含有する熱伝導性シリコーングリース組成物であって、前記成分(B)と成分(C)の合計配合量が成分(A)100質量部に対して500〜2000質量部であると共に、成分(B)と成分(C)の混合割合を意味する(C)成分/((B)成分+(C)成分)が、質量比で0.05〜0.5であることを特徴とする熱伝導性シリコーングリース組成物;
成分(A):η12で定義されるチキソ度αが1.03〜1.70であり、25℃における粘度が10〜1,000,000mPa・sのオルガノポリシロキサンである。但し、η1はB型回転粘度計により、ローターの回転数を6rpmとして25℃で測定したときの粘度であり、η2は、ローターの回転数を12rpmとして25℃で測定したときの粘度である。
成分(B):モース硬度が6以上で平均粒径が5〜20μmの熱伝導性無機充填剤。
成分(C):モース硬度が5以下で平均粒径が0.5〜5μmの熱伝導性無機充填剤。
A thermally conductive silicone grease composition containing at least the following components (A) to (C), wherein the total amount of the component (B) and the component (C) is 500 parts per 100 parts by mass of the component (A): And (C) component / ((B) component + (C) component), which means a mixing ratio of the component (B) and the component (C), is 0.05 to 0. A thermally conductive silicone grease composition characterized in that it is 5;
Component (A): An organopolysiloxane having a thixotropy α defined by η 1 / η 2 of 1.03 to 1.70 and a viscosity at 25 ° C. of 10 to 1,000,000 mPa · s. However, η 1 is the viscosity when measured at 25 ° C. with a B-type rotational viscometer at a rotor speed of 6 rpm, and η 2 is the viscosity when measured at 25 ° C. with a rotor speed of 12 rpm. is there.
Component (B): a thermally conductive inorganic filler having a Mohs hardness of 6 or more and an average particle size of 5 to 20 μm.
Component (C): a thermally conductive inorganic filler having a Mohs hardness of 5 or less and an average particle size of 0.5 to 5 μm.
前記成分(A)のオルガノポリシロキサンが、下記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサンである成分を、1〜60質量%含有する、請求項1に記載された熱伝導性シリコーングリース組成物;
Figure 2010242022

但し、一般式(1)中のR3は炭素数1〜6のアルキル基、Rは、炭素数1〜20の飽和又は不飽和の一価炭化水素基からなる群の中から選択される基であり、これらは同一であっても異なっていても良い。又、bは5〜120の整数である。
The organopolysiloxane of the said component (A) contains 1-60 mass% of components which are the hydrofunctional organopolysiloxane of the one terminal trifunctional represented by following General formula (1). Thermally conductive silicone grease composition;
Figure 2010242022

However, R 3 in the general formula (1) is an alkyl group having 1 to 6 carbon atoms, R 4 is selected from the group consisting of monovalent saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms Groups, which may be the same or different. B is an integer of 5 to 120.
前記成分(A)の、前記一般式(1)で表される片末端3官能の加水分解性オルガノポリシロキサン以外のオルガノポリシロキサンが、1分子中に少なくとも1個のアルケニル基を有するオルガノポリシロキサンと下記一般式(2)で表されるオルガノハイドロジェンポリシロキサンとを、白金系触媒を用いて付加反応させてなるオルガノポリシロキサンである、請求項1又は2に記載された熱伝導性シリコーングリース組成物;
Figure 2010242022

但し、上式中のRは、水素原子、又は、炭素数が1〜20の、飽和又は不飽和の一価炭化水素基の群から選択される少なくとも1種の基であり、n及びmはそれぞれ1≦n≦1,000、及び0≦m≦1,000である。
Organopolysiloxane other than the one-terminal trifunctional hydrolyzable organopolysiloxane represented by the general formula (1) in the component (A) has at least one alkenyl group in one molecule. The thermally conductive silicone grease according to claim 1 or 2, which is an organopolysiloxane obtained by addition reaction of an organohydrogenpolysiloxane represented by the following general formula (2) with a platinum-based catalyst: Composition;
Figure 2010242022

However, R 1 in the formula is a hydrogen atom or at least one group having a carbon number of 1 to 20, selected from the group of monovalent saturated or unsaturated hydrocarbon group, n and m Are 1 ≦ n ≦ 1,000 and 0 ≦ m ≦ 1,000, respectively.
成分(B)が、アルミナ粉末、窒化アルミニウム粉末の中から選択される少なくとも1種である請求項1=3の何れかに記載された熱伝導性シリコーン組成物。   The thermally conductive silicone composition according to any one of claims 1 to 3, wherein the component (B) is at least one selected from alumina powder and aluminum nitride powder. 成分(C)が、酸化亜鉛粉末、水酸化アルミニウム粉末の中から選択される少なくとも1種である請求項1〜4の何れかに記載された熱伝導性シリコーン組成物。   The thermally conductive silicone composition according to any one of claims 1 to 4, wherein the component (C) is at least one selected from zinc oxide powder and aluminum hydroxide powder.
JP2009094831A 2009-04-09 2009-04-09 Thermally conductive silicone grease composition Active JP5283553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094831A JP5283553B2 (en) 2009-04-09 2009-04-09 Thermally conductive silicone grease composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094831A JP5283553B2 (en) 2009-04-09 2009-04-09 Thermally conductive silicone grease composition

Publications (2)

Publication Number Publication Date
JP2010242022A true JP2010242022A (en) 2010-10-28
JP5283553B2 JP5283553B2 (en) 2013-09-04

Family

ID=43095396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094831A Active JP5283553B2 (en) 2009-04-09 2009-04-09 Thermally conductive silicone grease composition

Country Status (1)

Country Link
JP (1) JP5283553B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100174A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Thermally conductive resin composition
JP2016079204A (en) * 2014-10-10 2016-05-16 信越化学工業株式会社 Thermal conductive silicone grease composition
JP2017002179A (en) * 2015-06-10 2017-01-05 信越化学工業株式会社 Thermal conductive silicone putty composition
WO2017203924A1 (en) * 2016-05-24 2017-11-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
JP2017226724A (en) * 2016-06-20 2017-12-28 信越化学工業株式会社 Thermally conductive silicone putty composition
WO2018221719A1 (en) 2017-06-02 2018-12-06 北川工業株式会社 Composition for thermally conductive material and thermally conductive material
WO2020095858A1 (en) 2018-11-05 2020-05-14 北川工業株式会社 Thermally conductive material
JP2020147474A (en) * 2019-03-15 2020-09-17 株式会社トクヤマ Composite filler and resin composition
US10851236B2 (en) 2017-06-02 2020-12-01 Kitagawa Industries Co., Ltd. Composition for thermally conductive material and thermally conductive material
JP2021514421A (en) * 2018-02-09 2021-06-10 ポリテック・ペーテー・ゲー・エム・ベー・ハーPolytec Pt Gmbh Thermal contact filler and storage battery assembly with thermal contact filler
CN115135709A (en) * 2020-03-05 2022-09-30 陶氏环球技术有限责任公司 Shear thinning thermally conductive silicone composition
CN116731689A (en) * 2023-08-14 2023-09-12 南方电网调峰调频(广东)储能科技有限公司 Silicon oil-based immersion type cooling liquid for electronic components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001071B2 (en) 2019-01-10 2022-01-19 信越化学工業株式会社 Thermally conductive silicone composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325457A (en) * 1995-05-29 1996-12-10 Toray Dow Corning Silicone Co Ltd Thermally conductive silicone rubber composition
JPH11246884A (en) * 1998-02-27 1999-09-14 Shin Etsu Chem Co Ltd Heat-conductive silicone composition
JP2001503471A (en) * 1997-02-07 2001-03-13 ロックタイト コーポレーション Conductive resin composition
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325457A (en) * 1995-05-29 1996-12-10 Toray Dow Corning Silicone Co Ltd Thermally conductive silicone rubber composition
JP2001503471A (en) * 1997-02-07 2001-03-13 ロックタイト コーポレーション Conductive resin composition
JPH11246884A (en) * 1998-02-27 1999-09-14 Shin Etsu Chem Co Ltd Heat-conductive silicone composition
JP2008038137A (en) * 2006-07-12 2008-02-21 Shin Etsu Chem Co Ltd Heat conductive silicone grease composition and cured product thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013100174A1 (en) * 2011-12-27 2015-05-11 パナソニックIpマネジメント株式会社 Thermally conductive resin composition
WO2013100174A1 (en) * 2011-12-27 2013-07-04 パナソニック株式会社 Thermally conductive resin composition
JP2016079204A (en) * 2014-10-10 2016-05-16 信越化学工業株式会社 Thermal conductive silicone grease composition
JP2017002179A (en) * 2015-06-10 2017-01-05 信越化学工業株式会社 Thermal conductive silicone putty composition
WO2017203924A1 (en) * 2016-05-24 2017-11-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
US10647830B2 (en) 2016-05-24 2020-05-12 Shin-Etsu Chemical Co., Ltd. Thermally conductive silicone composition and cured product thereof
JP2017226724A (en) * 2016-06-20 2017-12-28 信越化学工業株式会社 Thermally conductive silicone putty composition
WO2018221719A1 (en) 2017-06-02 2018-12-06 北川工業株式会社 Composition for thermally conductive material and thermally conductive material
US10851236B2 (en) 2017-06-02 2020-12-01 Kitagawa Industries Co., Ltd. Composition for thermally conductive material and thermally conductive material
JP2021514421A (en) * 2018-02-09 2021-06-10 ポリテック・ペーテー・ゲー・エム・ベー・ハーPolytec Pt Gmbh Thermal contact filler and storage battery assembly with thermal contact filler
JP7307099B2 (en) 2018-02-09 2023-07-11 ポリテック・ペーテー・ゲー・エム・ベー・ハー Thermal contact filler and battery assembly with thermal contact filler
WO2020095858A1 (en) 2018-11-05 2020-05-14 北川工業株式会社 Thermally conductive material
US11958968B2 (en) 2018-11-05 2024-04-16 Kitagawa Industries Co., Ltd. Thermally conductive material technical field
JP7233264B2 (en) 2019-03-15 2023-03-06 株式会社トクヤマ Composite filler and resin composition
JP2020147474A (en) * 2019-03-15 2020-09-17 株式会社トクヤマ Composite filler and resin composition
CN115135709A (en) * 2020-03-05 2022-09-30 陶氏环球技术有限责任公司 Shear thinning thermally conductive silicone composition
CN115135709B (en) * 2020-03-05 2024-03-08 陶氏环球技术有限责任公司 Shear thinning thermally conductive silicone composition
CN116731689A (en) * 2023-08-14 2023-09-12 南方电网调峰调频(广东)储能科技有限公司 Silicon oil-based immersion type cooling liquid for electronic components
CN116731689B (en) * 2023-08-14 2023-10-27 南方电网调峰调频(广东)储能科技有限公司 Silicon oil-based immersion type cooling liquid for electronic components

Also Published As

Publication number Publication date
JP5283553B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5283553B2 (en) Thermally conductive silicone grease composition
JP4130091B2 (en) Silicone grease composition for heat dissipation
JP5388329B2 (en) Silicone grease composition for heat dissipation
CN102533214B (en) Thermally conductive silicone grease composition
JP5783128B2 (en) Heat curing type heat conductive silicone grease composition
JP5372388B2 (en) Thermally conductive silicone grease composition
JP5434795B2 (en) Thermally conductive silicone grease composition
JP2010013521A (en) Heat conductive silicone composition
JP6524879B2 (en) Addition one-part curing type heat conductive silicone grease composition
JP5843364B2 (en) Thermally conductive composition
JP6933198B2 (en) Thermally conductive silicone composition and its manufacturing method
TWI824104B (en) High thermal conductivity polysiloxane composition and manufacturing method thereof
TWI822790B (en) Thermal conductive polysiloxane composition and manufacturing method thereof
JP6372293B2 (en) Thermally conductive silicone grease composition
WO2017064976A1 (en) Thermally conductive silicone grease composition
TW201906934A (en) Thermally conductive siloxane composition
JP2010013563A (en) Thermally conductive silicone grease
WO2021206064A1 (en) Resin composition, heat-radiating member, and electronic apparatus
JP6187349B2 (en) Room temperature moisture thickening type thermally conductive silicone grease composition
JP2007211070A (en) Tacky grease composition
JP7088123B2 (en) Method for Producing Thermally Conductive Silicone Composition
JP2024080943A (en) Resin composition
JP2023114394A (en) Thermally conductive silicone resin sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130410

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5283553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250