JP2010241666A - コアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法 - Google Patents

コアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法 Download PDF

Info

Publication number
JP2010241666A
JP2010241666A JP2009103419A JP2009103419A JP2010241666A JP 2010241666 A JP2010241666 A JP 2010241666A JP 2009103419 A JP2009103419 A JP 2009103419A JP 2009103419 A JP2009103419 A JP 2009103419A JP 2010241666 A JP2010241666 A JP 2010241666A
Authority
JP
Japan
Prior art keywords
core
silicon carbide
nanowire
shell
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009103419A
Other languages
English (en)
Inventor
Toyohiko Yano
豊彦 矢野
Katsumi Yoshida
克己 吉田
Khongwong Wasana
コンヴォン ワサナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2009103419A priority Critical patent/JP2010241666A/ja
Publication of JP2010241666A publication Critical patent/JP2010241666A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】簡易な合成方法・装置で、安全な物質を原料とし、且つ大量生産が可能な方法により、優れた特性を有する炭化ケイ素ナノワイヤーを提供する。
【解決手段】原料粉末の構成物質に少なくともSiまたはOを含み、原料粉末を不活性ガス及び少なくともCまたはHを含むガス気流中で熱処理を行うことを特徴とし、コア部の構成物質が炭化ケイ素であり、コア部を被覆するシェル部の構成物質が少なくともSiまたはOを含むことを特徴とするコアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法
【効果】本発明により、簡易な合成方法・装置で、安全な物質を原料とし、且つ大量生産が可能な方法で、耐酸化性の向上あるいは新たな機能の付与が可能なコアシェル構造型炭化ケイ素ナノワイヤーを提供することができる。
【選択図】図4

Description

本発明は、コアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法に関するものである。
炭化ケイ素は、耐熱性、耐摩耗性、耐食性、高熱伝導性、高硬度、高強度、耐放射線性等の特性を有することから、耐火物、研磨材、熱交換器部材、触媒担体、半導体支持部材等として広く用いられている。また,宇宙航空分野や原子力分野でも有望な耐熱構造材料として注目されている。
上記炭化ケイ素は、バルク状あるいは薄膜状で利用されるが、近年、ナノサイズの炭化ケイ素が注目されている。
ナノサイズの炭化ケイ素は、バルクあるいは薄膜では達成することのできない極めて優れた機能的・機械的・熱的特性が発現するため、半導体デバイス、フォトニック材料、フィールドエミッション材料、触媒材料、電子デバイス、コンポジットの強化材等への応用が期待されている。
ナノワイヤーに関しては、最初に1991年に飯島によってカーボンナノチューブに関する報告がなされ(非特許文献1参照)、その後ナノワイヤーに代表される一次元ナノ構造体に関する研究が世界で盛んに行われるようになった。
炭化ケイ素ナノワイヤーに関しては、1995年にDaiらによって報告されている(非特許文献2参照)。この炭化ケイ素ナノワイヤーは、カーボンナノチューブを基材として合成されている。これ以降、炭化ケイ素ナノワイヤーの合成に関する研究が世界的に進められ、多くの技術が開発されている。
例えば、原料としてカーボンナノチューブとケイ素を用いて、カーボンナノチューブ構造が維持でき、かつケイ素が溶融しない温度で反応させることにより、炭化ケイ素ナノチューブを合成する方法や(特許文献1)、クロロシラン系ガスを加熱分解することにより基板上に炭化ケイ素ナノワイヤーを合成する方法が行われている(特許文献2)。
S.Iijima、Helical Microtubules of Graphitic Carbon、Nature、 354、56−58(1991). H.Dai、E.W.Wong、Y.Z.Lu、S.Fan and M.Lieber、Synthesis and Characterization of Carbide Nanorods、Nature、375、769−772(1995). 特開2004−307299号公報 特開2004−292222号公報
しかしながら、カーボンナノチューブを用いた合成方法では、カーボンナノチューブ構造をテンプレートとして用いるため、ナノチューブ構造を維持した炭化ケイ素ナノワイヤーの合成に有効であるが、原料のカーボンナノチューブが高コストであることや、カーボンナノチューブをすべてケイ化するためには、合成時間が長いことや、反応制御が難しいという課題があった。また、クロロシラン系ガスを用いた合成方法では、これらのガスは非常に危険であるため、取り扱いが難しく、それに由来して設備・装置が大型化・複雑となり、また高コストのため、工業的には有利な合成方法とはいえない。さらに、従来の気相反応を利用したナノワイヤーの合成では、一般的には成長させるための金属触媒が必要であり、反応、生成量及びナノワイヤーの形態制御が困難であった。
本発明の目的は、できるだけ簡易な合成方法・装置で、安全な物質を原料として使用し、大量生産の可能な合成方法により、優れた特性を有する炭化ケイ素ナノワイヤーを提供することである。
このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記従来技術における諸問題を抜本的に解決することを可能とする、簡易な合成方法・装置で、安全な物質を原料とし、且つ大量生産が可能な方法で、優れた特性を有する炭化ケイ素ナノワイヤーを合成することを目的として鋭意研究を積み重ねた結果、管状炉内で、安価で安全な原料粉末及びガスを用いて、これらのガス気流中で熱処理することにより、金属触媒を添加することなく、コアシェル構造型炭化ケイ素ナノワイヤーが合成可能であることを見出した。コアシェル構造を有することにより、耐酸化性の向上だけではなく、炭化ケイ素ナノワイヤーに新たな機能の付与が期待できる。
本発明は、以下の技術的手段から構成される。
(1)コア部と、前記コア部を被覆するシェル部とを有するコアシェル構造型ナノワイヤーであって、前記コア部の構成物質が炭化ケイ素であり、前記シェル部の構成物質が少なくともSiまたはOを含むことを特徴とするコアシェル構造型炭化ケイ素ナノワイヤー。
(2)前記、シェル部が二酸化ケイ素あるいはシリコンオキシカーバイドであることを特徴とするコアシェル構造型炭化ケイ素ナノワイヤー。
(3)前記、コアシェル構造型ナノワイヤーのコア部の径が5−60nmであり、シェル部の厚さが1−15nmであることを特徴とするコアシェル構造型炭化ケイ素ナノワイヤー。
(4)前記、コアシェル構造型ナノワイヤーの長さが10μm−2mmであることを特徴とするコアシェル構造型炭化ケイ素ナノワイヤー。
(5)コアシェル構造型ナノワイヤーを製造するための方法であって、原料粉末の構成物質に少なくともSiまたはOを含み、原料粉末を不活性ガス及び少なくともCまたはHを含むガス気流中で熱処理を行うことを特徴とするコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
(6)前記、原料粉末がケイ素であることを特徴とするコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
(7)前記、原料粉末の酸素含有量が4mass%以上であることを特徴とするコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
(8)前記、熱処理温度が1200℃−1400℃の範囲であることを特徴とするコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
(9)前記、CまたはHを含むガスが、メタンあるいはプロピレンガスのいずれかであることを特徴とするコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
次に、本発明について詳細に説明する。
本発明で対象となる炭化ケイ素ナノワイヤーの形態は、コアシェル構造型を有し、コア部の構成物質は炭化ケイ素であり、コア部を被覆しているシェル部の構成物質は、少なくともSiあるいはOを含むことを特徴とするものであり、例えば二酸化ケイ素あるいはシリコンオキシカーバイドである。
また、本発明のコアシェル構造型炭化ケイ素ナノワイヤーは、コア部の径が5−60nmであり、シェル部の厚さが1−15nmであり、長さが10μm−2mmであることを特徴とする。
本発明のコアシェル構造型炭化ケイ素ナノワイヤーは、以下の手順で製造することができる。まず、少なくともSiまたはOを含む粉末を原料とし、これを管状炉等のガス導入が可能な加熱炉内の容器中に置く。本発明において、原料粉末として、ケイ素を用いることを特徴とする。原料粉末として二酸化ケイ素を用いた場合には、本発明のコアシェル構造型炭化ケイ素ナノワイヤーの生成は困難である。また、容器は1200℃−1400℃の温度に耐えうるものであれば制限はないが、好ましくはボートあるいはるつぼである。これらの容器は、合成時に原料と反応しない材質のものであればよく、好ましくは窒化ホウ素あるいはムライト製である。
本発明において使用することができる原料粉末の粒径には特に制限はないが、これらの原料粉末には4mass%以上の酸素を含むことが望ましい。原料粉末中の酸素量が4mass%未満の場合には、炭化ケイ素ナノワイヤーの収率が極めて低くなり、ナノワイヤーの回収も困難となる。
電気炉等の加熱炉をロータリーポンプで真空にした後、不活性ガスを導入する。不活性ガスは、その他のガスのキャリアーとして用いるため、これらのガスと不活性であればよく、アルゴンガス、ヘリウムガスが例示される。これらの不活性ガスを導入し、炉内を不活性雰囲気とした後、不活性ガスフロー中で1200℃−1400℃の温度に加熱し、最大温度に到達後、少なくともCまたはHを含むガスを導入する。少なくともCまたはHを含むガスは、炭化ケイ素ナノワイヤーの炭素源であり、本発明において、これらのガスとしてメタンあるいはプロピレンガスが好ましい。また、本発明において、水素ガスを導入しなくてもコアシェル構造型炭化ケイ素ナノワイヤーの合成は可能であるが、同時に水素ガスを導入すると炭化ケイ素ナノワイヤーの収率が向上するため、水素ガスを導入することが好ましい。不活性ガス、水素ガス及びCまたはHを含むガスを導入し、所定の時間を経過後、水素ガス及びCまたはHを含むガスの導入を停止し、不活性ガスの導入のみで最大温度での加熱を行う。保持温度を変えることにより、本発明のコアシェル構造型炭化ケイ素ナノワイヤーのコア部分及びシェル部分の径を制御することが可能である。
上記、不活性ガスの流量は、水素ガス及びCまたはHを含むガスの流量よりも十分に多いことが望ましい。それぞれのガスの流量には制限はないが、水素ガスを用いる場合には安全上、ナノワイヤーの合成に必要な最小量を導入すればよい。また、CまたはHを含むガスは、本発明において炭化ケイ素ナノワイヤーの炭素源であり、ガスの流量が多くなると炭化ケイ素ナノワイヤーの生成に寄与しないガスが加熱により炭素として析出するため、水素ガスと同様、ナノワイヤーの合成に必要な最小量を導入すればよい。
上記手法により合成した炭化ケイ素ナノワイヤーは、コアシェル構造を有することにより、酸化雰囲気で使用した場合、シェル部が酸化を阻害するため、コア部の酸化を抑制するのに好適であり、炭化ケイ素ナノワイヤーへの耐酸化性の付与が期待できる。また,特殊な構造を有することにより、従来の炭化ケイ素ナノワイヤーには発現しない、優れた熱的・機械的特性、電気的特性等の新たな機能の付与及び耐酸化性の向上が期待でき、例えばコンポジットの強化材、フィールドエミッションデバイス、ナノセンサー、ナノ光学材料等への応用が期待できる。
本発明により、簡易な合成方法・装置で、安全な物質を原料とし、且つ大量生産が可能な方法で、耐酸化性の向上あるいは新たな機能の付与が可能なコアシェル構造型炭化ケイ素ナノワイヤーを提供することができる。
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
図1に、本発明のコアシェル構造型ナノワイヤーの製造方法を実施するのに使用できる装置の一例を示す。平均粒径50nmのケイ素粉末(酸素含有量23.4mass%)を原料粉末とした。ムライトボートに原料のケイ素粉末をのせ、横型管状炉の中央に置いた。ムライトボートの上には、アルミナ繊維織布をのせた。ロータリーポンプで真空にした後、アルゴンガスを導入し、炉内を不活性雰囲気とした。アルゴンフロー中で1200℃まで10℃/分で昇温し、その後、昇温速度を5℃/分として1350℃まで加熱した。1350℃に到達後、水素ガスを20mL/分の流量で2分間導入し、その後、水素ガスを流しながらメタンガスを10mL/分の流量で30分間導入した。その後、水素ガス及びメタンガスを止めて、アルゴンガスのみを流しながらさらに30分間、1350℃で保持した。1350℃で保持した後、アルゴンフロー中で室温まで冷却した。ムライトボートを取り出したところ、ケイ素粉末表面にナノワイヤーが生成した。
図2に得られたナノワイヤーのX線回折パターンを示す。得られたナノワイヤーの結晶相はβ型炭化ケイ素であった。図3に得られたナノワイヤーの走査型電子顕微鏡(SEM)写真を示す。SEM写真から、ナノサイズの直径を持つ長いワイヤー状に成長していることがわかる。図4に得られたナノワイヤーの透過型電子顕微鏡写真(TEM)及び電子線回折パターンを示す。TEM写真より、数十本のナノワイヤーを評価したところ、内部は平均20−30nm程度の径を有するβ型炭化ケイ素であり、その外側が平均4−5nm程度の二酸化ケイ素層で覆われたコアシェル構造を有するナノワイヤーであることがわかった。また、電子線回折の結果から、コア部分のβ型炭化ケイ素は[111]方向に成長した単結晶であり、シェル部分の二酸化ケイ素は低結晶質であることがわかった。
市販のサブミクロンサイズのβ型炭化ケイ素粉末(平均粒径0.3μm)、ナノサイズのβ型炭化ケイ素粉末(平均粒径30nm)を比較試料とし、得られた炭化ケイ素ナノワイヤーの1000℃、1時間、大気中での耐酸化性を調べた。その結果、市販粉末は酸化により2倍以上の重量増加を示したのに対し、本発明のコアシェル構造型炭化ケイ素ナノワイヤーの重量増加は1.7倍程度にとどまり、本発明のナノワイヤーは市販炭化ケイ素粉末と比較して耐酸化性に優れることがわかった。
実施例1において、保持温度を1300℃あるいは1400℃として同様にナノワイヤーの合成を行ったところ,同様なコアシェル構造型を有するナノワイヤーの合成が可能であり、保持温度1300℃で合成したナノワイヤーのコア部分の平均径は12nm、シェル部分は4nmであり、保持温度1400℃で合成したナノワイヤーのコア部分は36nm、シェル部分は9nmであった。保持温度を変えることにより、ナノワイヤーのコア部分及びシェル部分の径を制御することが可能である。
実施例1において、平均粒径5μmのケイ素粉末(酸素含有量0.3mass%)を原料粉末として用いた。また、この粉末を600℃及び800℃で大気炉内にて酸化処理し、ケイ素粉末の酸素含有量をそれぞれ0.9mass%及び4.5mass%とした。酸素含有量の異なる3種類のケイ素粉末を原料粉末として、実施例1と同様の条件でナノワイヤーの合成を行ったところ、どの酸素含有量においてもナノワイヤーが生成していたが、酸素含有量が0.3mass%及び0.9mass%では、生成量が微量であり、ケイ素粉末に付着しており、ナノワイヤーとして取り出すことは困難であった。酸素含有量が4.5mass%の場合には、酸素含有量が0.3mass%及び0.9mass%の場合と比較して、生成量も著しく増加した。このナノワイヤーについてTEM観察を行ったところ、コア部の径が平均20nm程度のβ型炭化ケイ素であり、その外側が平均10nmの低結晶質二酸化ケイ素層で覆われたコアシェル構造を有するナノワイヤーであった。
本発明のコアシェル構造型ナノワイヤーの製造方法を実施するのに使用できる装置の一例を示す。 得られたナノワイヤーのX線回折パターンを示す。 得られたコアシェル構造型ナノワイヤーの走査型電子顕微鏡写真を示す。 得られたコアシェル構造型ナノワイヤーの透過型電子顕微鏡写真(TEM)及び電子線回折パターンを示す。
1 電気炉
2 発熱体
3 反応管
4 ボート
5 試料カバー
6 ケイ素粉末
7 熱電対
8 冷却ファン
9 真空ポンプ
10 アルゴンガス
11 水素ガス
12 メタンガス
13 ガス流量計

Claims (9)

  1. コア部と、前記コア部を被覆するシェル部とを有するコアシェル構造型ナノワイヤーであって、前記コア部の構成物質が炭化ケイ素であり、前記シェル部の構成物質が少なくともSiまたはOを含むことを特徴とするコアシェル構造型炭化ケイ素ナノワイヤー。
  2. 前記、シェル部が二酸化ケイ素あるいはシリコンオキシカーバイドであることを特徴とする請求項1に記載のコアシェル構造型炭化ケイ素ナノワイヤー。
  3. 前記、コアシェル構造型ナノワイヤーのコア部の径が5−60nmであり、シェル部の厚さが1−15nmであることを特徴とする請求項1、2に記載のコアシェル構造型炭化ケイ素ナノワイヤー。
  4. 前記、コアシェル構造型ナノワイヤーの長さが10μm−2mmであることを特徴とする請求項1−3に記載のコアシェル構造型炭化ケイ素ナノワイヤー。
  5. コアシェル構造型ナノワイヤーを製造するための方法であって、原料粉末の構成物質に少なくともSiまたはOを含み、原料粉末を不活性ガス及び少なくともCまたはHを含むガス気流中で熱処理を行うことを特徴とするコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
  6. 前記、原料粉末がケイ素であることを特徴とする請求項5に記載のコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
  7. 前記、原料粉末の酸素含有量が4mass%以上であることを特徴とする請求項5に記載のコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
  8. 前記、熱処理温度が1200℃−1400℃の範囲であることを特徴とする請求項5に記載のコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
  9. 前記、CまたはHを含むガスが、メタンあるいはプロピレンガスのいずれかであることを特徴とする請求項5に記載のコアシェル構造型炭化ケイ素ナノワイヤーの製造方法。
JP2009103419A 2009-03-31 2009-03-31 コアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法 Pending JP2010241666A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009103419A JP2010241666A (ja) 2009-03-31 2009-03-31 コアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009103419A JP2010241666A (ja) 2009-03-31 2009-03-31 コアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法

Publications (1)

Publication Number Publication Date
JP2010241666A true JP2010241666A (ja) 2010-10-28

Family

ID=43095125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009103419A Pending JP2010241666A (ja) 2009-03-31 2009-03-31 コアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法

Country Status (1)

Country Link
JP (1) JP2010241666A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716759A (zh) * 2022-10-26 2023-02-28 南京工业大学 一种具有高柔韧性的多孔SiC纳米线薄膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207953A (ja) * 1999-01-19 2000-07-28 Nec Corp ナノケ―ブルとその製造方法
JP2003002800A (ja) * 2001-06-25 2003-01-08 Japan Science & Technology Corp 3C−SiCナノウィスカーの合成方法及び3C−SiCナノウィスカー
JP2004161569A (ja) * 2002-11-14 2004-06-10 National Institute For Materials Science ナノウイスカーとその製造方法
JP2004210562A (ja) * 2002-12-27 2004-07-29 National Institute For Materials Science 窒化ホウ素で被覆された炭化珪素ナノワイヤーおよび窒化珪素ナノワイヤー並びにそれらの製造方法
JP2004292222A (ja) * 2003-03-26 2004-10-21 National Institute For Materials Science 炭化ケイ素ナノワイヤーの製造方法
JP2004307299A (ja) * 2003-04-10 2004-11-04 Japan Atom Energy Res Inst ナノサイズ炭化ケイ素チューブとその製造方法
JP2005262346A (ja) * 2004-03-16 2005-09-29 National Institute For Materials Science 炭化ケイ素−二酸化ケイ素−炭素共軸ナノケーブルとその製造方法ならびに炭化ケイ素ナノロッドとカーボンナノチューブが接合したナノチェーンとその製造方法
JP2007223853A (ja) * 2006-02-24 2007-09-06 National Institute For Materials Science 炭化珪素ナノワイヤーの製造方法
JP2008100863A (ja) * 2006-10-18 2008-05-01 National Institute For Materials Science 炭化ケイ素ナノ構造物とその製造方法
JP2008543721A (ja) * 2006-08-10 2008-12-04 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティ コーオペレーション ファウンデーション ハンヤン ユニバーシティ) 単結晶炭化ケイ素ナノワイヤー、その製造方法及びそれを含むフィルター
JP2010143771A (ja) * 2008-12-16 2010-07-01 Shin-Etsu Chemical Co Ltd α型炭化ケイ素粒子の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000207953A (ja) * 1999-01-19 2000-07-28 Nec Corp ナノケ―ブルとその製造方法
JP2003002800A (ja) * 2001-06-25 2003-01-08 Japan Science & Technology Corp 3C−SiCナノウィスカーの合成方法及び3C−SiCナノウィスカー
JP2004161569A (ja) * 2002-11-14 2004-06-10 National Institute For Materials Science ナノウイスカーとその製造方法
JP2004210562A (ja) * 2002-12-27 2004-07-29 National Institute For Materials Science 窒化ホウ素で被覆された炭化珪素ナノワイヤーおよび窒化珪素ナノワイヤー並びにそれらの製造方法
JP2004292222A (ja) * 2003-03-26 2004-10-21 National Institute For Materials Science 炭化ケイ素ナノワイヤーの製造方法
JP2004307299A (ja) * 2003-04-10 2004-11-04 Japan Atom Energy Res Inst ナノサイズ炭化ケイ素チューブとその製造方法
JP2005262346A (ja) * 2004-03-16 2005-09-29 National Institute For Materials Science 炭化ケイ素−二酸化ケイ素−炭素共軸ナノケーブルとその製造方法ならびに炭化ケイ素ナノロッドとカーボンナノチューブが接合したナノチェーンとその製造方法
JP2007223853A (ja) * 2006-02-24 2007-09-06 National Institute For Materials Science 炭化珪素ナノワイヤーの製造方法
JP2008543721A (ja) * 2006-08-10 2008-12-04 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティ コーオペレーション ファウンデーション ハンヤン ユニバーシティ) 単結晶炭化ケイ素ナノワイヤー、その製造方法及びそれを含むフィルター
JP2008100863A (ja) * 2006-10-18 2008-05-01 National Institute For Materials Science 炭化ケイ素ナノ構造物とその製造方法
JP2010143771A (ja) * 2008-12-16 2010-07-01 Shin-Etsu Chemical Co Ltd α型炭化ケイ素粒子の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6013028998; Wasana KHONGWONG et al.: 'A simplified method for synthesis of SiC/SiO2 core-shell nanowires' 日本セラミックス協会2009年年会講演予稿集 第167ページ上段, 20090316 *
JPN6013028999; Wasana KHONGWONG et al.: 'Synthesis of beta-SiC/SiO2 core-shell nanowires by simple thermal evaporation' Journal of the Ceramic Society of Japan Vol.117, No.2, 20090201, pp.194-197 *
JPN6013029000; Baosheng LI et al.: 'Simultaneous growth of SiC nanowires, SiC nanotubes, and SiC/SiO2 core-shell nanocables' Journal of Alloys and Compounds Available online 4 September 2007, Vol.462, pp.446-451 *
JPN6013029003; Alan MENG et al.: 'Synthesis and Raman scattering of beta-SiC/SiO2 core-shell nanowires' Journal of Crystal Growth Available online 31 August 2007, Vol.308, pp.263-268 *
JPN6013029004; Hai-Feng ZHANG et al.: 'Helical crystalline SiC/SiO2 core-shell nanowires' Nano Letters 2002, Vol.2, No.9, pp.941-944 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115716759A (zh) * 2022-10-26 2023-02-28 南京工业大学 一种具有高柔韧性的多孔SiC纳米线薄膜及其制备方法

Similar Documents

Publication Publication Date Title
Dai et al. Synthesis of high crystalline beta SiC nanowires on a large scale without catalyst
Zhang et al. Molten salt assisted synthesis of 3C–SiC nanowire and its photoluminescence properties
US9676627B2 (en) Growth of silicon and boron nitride nanomaterials on carbon fibers by chemical vapor deposition
Chandrasekar et al. Role of SiOx on the photoluminescence properties of β-SiC
JP2010143771A (ja) α型炭化ケイ素粒子の製造方法
Kar et al. Catalytic and non-catalytic growth of amorphous silica nanowires and their photoluminescence properties
Qi et al. Preparation and characterization of SiC@ CNT coaxial nanocables using CNTs as a template
Cheung et al. Conversion of bamboo to biomorphic composites containing silica and silicon carbide nanowires
Liu et al. Synthesis of β-SiC nanowires via a facile CVD method and their photoluminescence properties
Gundiah et al. Carbothermal synthesis of the nanostructures of Al 2 O 3 and ZnO
Zhang et al. Preparation of SiC/SiO2 core–shell nanowires via molten salt mediated carbothermal reduction route
WO2003010114A1 (fr) Procede de preparation d'une materiau de carbure de silicium nanometrique
Huang et al. Synthesis and formation mechanism of twinned SiC nanowires made by a catalyst-free thermal chemical vapour deposition method
Xie et al. Synthesis and growth mechanism of SiC/SiO2 nanochains by catalyst-free thermal evaporation method in Ar/CO atmosphere
Pang et al. Synthesis and photoluminescence of ultralong amorphous SiO 2 nanowires catalysed by germanium
Cheng et al. Synthesis of SiC nanonecklaces via chemical vapor deposition in the presence of a catalyst
Yang et al. Oxidizing agent impacting on growth of ZnO tetrapod nanostructures and its characterization
JP3985044B2 (ja) 単結晶珪素ナノチューブとその製造方法
JP2010241666A (ja) コアシェル構造型炭化ケイ素ナノワイヤー及びその製造方法
JP2007084369A (ja) TiC超微粒子又はTiO2超微粒子担持カーボンナノチューブ、及びTiCナノチューブとこれらの製造方法
Voon et al. Silicon carbide nanomaterials
JP2007223896A (ja) 硫化亜鉛・珪素コア・シェルナノワイヤーとその製造方法
JP2008100863A (ja) 炭化ケイ素ナノ構造物とその製造方法
Khongwong et al. Influence of raw powder size, reaction temperature, and soaking time on synthesis of SiC/SiO2 coaxial nanowires via thermal evaporation
Liu et al. Ultra-violet emission from one dimensional and micro-sized SiC obtained via microwave heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015