JP2010241401A - Shock absorber in combination with active control capable of coping with vertical impact and control method used for the same - Google Patents

Shock absorber in combination with active control capable of coping with vertical impact and control method used for the same Download PDF

Info

Publication number
JP2010241401A
JP2010241401A JP2009104506A JP2009104506A JP2010241401A JP 2010241401 A JP2010241401 A JP 2010241401A JP 2009104506 A JP2009104506 A JP 2009104506A JP 2009104506 A JP2009104506 A JP 2009104506A JP 2010241401 A JP2010241401 A JP 2010241401A
Authority
JP
Japan
Prior art keywords
actuator
response
shock absorber
active control
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009104506A
Other languages
Japanese (ja)
Inventor
Tetsutoshi Maeda
哲利 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009104506A priority Critical patent/JP2010241401A/en
Publication of JP2010241401A publication Critical patent/JP2010241401A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a dilemma that a part of characteristics (for example, shock relieving characteristic) are improved and the other characteristics (for example, dynamic load bearing or statistic load bearing) are lost which is caused by changing natural frequency and damping coefficient ratio that are most important characteristic parameters in a shock absorber configured of passive elements. <P>SOLUTION: Active control by an actuator 9 is combined with a passive system shock absorber and by a method for directly applying action of an inverse phase to response after impact before reaching limit acceleration, the sacrifice of the other characteristics are suppressed as much as possible so that the shock relieving characteristics are improved at a pin point. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ばねやダンパーなどにより構成された陸上輸送車両における緩衝装置に関するものである。また、電動アクチュエータなどのアクティブ制御要素を併用し、垂直方向の衝撃緩和特性の向上を目的とした制御に関するものである。なお、衝撃緩和特性を定量的に評価するための指標として最大応答加速度を適用するものである。  The present invention relates to a shock absorber in a land transportation vehicle constituted by a spring, a damper, or the like. The present invention also relates to control for improving the impact relaxation characteristics in the vertical direction by using an active control element such as an electric actuator together. Note that the maximum response acceleration is applied as an index for quantitatively evaluating the impact relaxation characteristics.

従来の陸上輸送用車両の中でエアサスペンションを装備したトラックや列車による輸送環境の評価は高い(非特許文献1)。エアサスペンションが優れている理由として、固有振動数が低いこと(数Hz)、また、エアサスペンションシステムは圧力可変のため荷物の重量に拘らず平衡高さを保持することなどが挙げられる。前者は外部振動や衝撃を遮蔽する上で必要な基本的な特性であり、後者は段差やレールの継ぎ目を通過する際に生じる大きな衝撃に対して制動距離を確保するという意味で必要な特性の1つである。  Among conventional land transportation vehicles, the evaluation of the transportation environment by a truck or train equipped with an air suspension is high (Non-patent Document 1). The reason why the air suspension is superior is that the natural frequency is low (several Hz), and that the air suspension system maintains the equilibrium height regardless of the weight of the load because the pressure is variable. The former is a basic characteristic that is necessary for shielding external vibrations and shocks, and the latter is a characteristic that is necessary for securing a braking distance against a large shock that occurs when passing through a step or rail joint. One.

「緩衝装置の特性をアクティブに制御する」という概念は、上述のエアサスペンションシステムにおいても存在する。ただし、それは、走行中リアルタイムに振動環境をモニターし、共振発生の可能性があればフィードバックして、空気圧調節により固有振動数を最適制御するものである(定常的な振動に対する固有振動数制御)。したがって、非定常的、瞬間的な衝撃を想定するものではない。衝撃を問題にする場合は、エアサスペンションといえども固有振動数不制御のパッシブ要素の1つとして取り扱う必要がある。  The concept of “actively controlling the characteristics of the shock absorber” also exists in the above-described air suspension system. However, it monitors the vibration environment in real time while driving and feeds back if there is a possibility of resonance, and optimally controls the natural frequency by adjusting the air pressure (natural frequency control for steady vibration). . Therefore, non-stationary and instantaneous impacts are not assumed. When impact is a problem, even an air suspension needs to be handled as one of passive elements whose natural frequency is not controlled.

「最大応答加速度」という指標は、JIS規格(非特許文献1)において「衝撃応答スペクトル」に適用されており、衝撃緩和特性を定量的に評価する上で適当な指標と言える。また、衝撃の作用(数ms〜10msのオーダー)に対して緩衝装置の固有周期(数100msのオーダー)が十分長ければ、最大応答加速度は下記の数式で表すことができる。  The index “maximum response acceleration” is applied to the “impact response spectrum” in the JIS standard (Non-patent Document 1), and can be said to be an appropriate index for quantitatively evaluating the impact relaxation characteristics. If the natural period (order of several hundred ms) of the shock absorber is sufficiently long with respect to the impact action (order of several ms to 10 ms), the maximum response acceleration can be expressed by the following mathematical formula.

数式1Formula 1

最大応答加速度=tc・ωo・R(ζ)    Maximum response acceleration = tc ・ ωo ・ R (ζ)

上記の数式において、tcは緩衝装置の特性とは関係がなく衝撃の波形などによって決まる時定数である。ωoは固有角振動数(=固有振動数×2π)である。R(ζ)は、減衰係数比率ζの関数で、下記の図に示すようなζ依存性をもつ。  In the above formula, tc is a time constant determined by the shock waveform and the like, regardless of the characteristics of the shock absorber. ωo is the natural angular frequency (= natural frequency × 2π). R (ζ) is a function of the damping coefficient ratio ζ and has ζ dependence as shown in the following figure.

図表1Chart 1

Figure 2010241401
Figure 2010241401

上記の図表において、横軸は減衰係数比率ζ、縦軸はζ依存性を表すRである。  In the above chart, the horizontal axis represents the damping coefficient ratio ζ, and the vertical axis represents R representing ζ dependency.

JIS規格 JIS C 60721−3−2「環境条件の分類 環境パラメータとその厳しさの分類−輸送条件」JIS Standard JIS C 60721-3-2 “Classification of Environmental Conditions and Classification of Environmental Parameters and Severity-Transportation Conditions”

固有振動数と減衰係数比は、パッシブ要素で構成する緩衝装置において最も重要な特性パラメータであり、パラメータ値を変更すると一部の特性(例:衝撃緩和特性)は向上するが、他の特性(例:動的または静的耐荷重)は減退するというジレンマが生じる場合がある。  The natural frequency and damping coefficient ratio are the most important characteristic parameters in a shock absorber composed of passive elements. Changing the parameter value improves some characteristics (eg, impact relaxation characteristics), but other characteristics ( (Example: dynamic or static load bearing) may diminish.

パッシブ要素で構成する緩衝装置にアクチュエータによるアクティブ制御を併用し、他の特性の減退を極力抑え、衝撃緩和特性の向上を図るものとする。当該アクティブ制御の制御の流れを下記の(イ)〜(二)に示す。なお、( )内の数字は、図面内の番号と対応する。
(イ)衝撃の入力がない状態では、入力側の加速度センサ(12)と出力側の加速度スイッチ(13)も規定値以上の加速度を検知しないため、アクチュエータ(9)作用は待機状態をとる。
(ロ)外部から規定以上の衝撃が入力した場合、まず入力側の加速度センサ(12)がデータを制御部(コンピュータ)に送る。送られたデータに基づき制御部が所要のアクチュエータ(9)の作用力や作用開始時間T2を計算する。
(ハ)加速度センサ(12)が検知した後、ばね(1)などを介して衝撃が伝達し、加速度スイッチ(13)も規定の加速度を検知する。このとき、アクチュエータ(9)のスイッチも入り、アクチュエータ作用が開始する。また、作用開始時の応答加速度(規定値)を最大応答加速度にするようにアクチュエータ(9)の作用量は制御される。
(二)応答加速度のピークを過ぎ、跳ね上げや残留振動などの応答が極力残らないようなタイミング(応答速度ゼロ、応答変位ゼロ近傍等)アクチュエータ作用を停止する。当該タイミングによる停止で不十分の場合は衝撃緩和特性との適合性が高い非線形ダンパーも合わせて適用する。
It is assumed that active control by an actuator is used in combination with a shock absorber composed of passive elements to suppress the deterioration of other characteristics as much as possible and to improve impact mitigation characteristics. The control flow of the active control is shown in the following (a) to (2). The numbers in parentheses correspond to the numbers in the drawing.
(A) In a state where there is no impact input, since the acceleration sensor (12) on the input side and the acceleration switch (13) on the output side do not detect acceleration exceeding the specified value, the action of the actuator (9) is in a standby state.
(B) When an impact exceeding a specified level is input from the outside, first, the input-side acceleration sensor (12) sends data to the control unit (computer). Based on the sent data, the control unit calculates the required action force and action start time T2 of the actuator (9).
(C) After the acceleration sensor (12) detects, an impact is transmitted via the spring (1) or the like, and the acceleration switch (13) also detects the specified acceleration. At this time, the actuator (9) is also switched on and the actuator action starts. In addition, the amount of action of the actuator (9) is controlled so that the response acceleration (specified value) at the start of action becomes the maximum response acceleration.
(2) Stop the actuator action at a timing (response speed zero, near response displacement zero, etc.) that passes the peak of the response acceleration and does not leave as much response as possible, such as jumping or residual vibration If stopping at this timing is insufficient, a nonlinear damper with high compatibility with the impact relaxation characteristics is also applied.

当該発明の効果として、当該アクティブ制御を併用の場合と併用しない場合の衝撃応答の比較を下記に示す。  As an effect of the invention, a comparison of impact response when the active control is used together and when the active control is not used is shown below.

図表2Chart 2

Figure 2010241401
Figure 2010241401

上記の図表の▲1▼は、アクチュエータ出力(作用加速度)の時間スケジュールの1つの例である。上記の図表の▲2▼、▲3▼、▲4▼における実線は、当該アクティブ制御を適用した加速度応答、速度応答、変位応答である。また、▲2▼、▲3▼、▲4▼の破線は当該アクティブ制御を適用していないパッシブ緩衝装置固有の応答(ζ=0.15の減衰振動)を示す。▲2▼において示す矢印は最大応答加速度を示し、アクチュエータ作用によって応答加速度が増減するもアクチュエータ作用開始時の応答加速度のあたりで上げ止まりが起こっていることが分かる。また、▲2▼、▲3▼、▲4▼において、実線と破線を比較すると、実線の方が、減衰が速くなっていることが分かる。これはアクチュエータ作用停止のタイミング制御に起因する。  (1) in the above chart is an example of a time schedule of actuator output (action acceleration). The solid lines in (2), (3), and (4) in the above chart are the acceleration response, speed response, and displacement response to which the active control is applied. The broken lines (2), (3), and (4) indicate the response (a damped oscillation of ζ = 0.15) unique to the passive shock absorber that does not apply the active control. The arrow shown in (2) indicates the maximum response acceleration, and it can be seen that although the response acceleration increases or decreases due to the actuator action, it stops rising around the response acceleration at the start of the actuator action. Further, in (2), (3), and (4), when the solid line and the broken line are compared, it can be seen that the solid line has faster attenuation. This is due to timing control for stopping the actuator operation.

当該発明の効果として、当該アクティブ制御と非線形ダンパーを適用の場合と適用しない場合の衝撃応答の比較を下記に示す。  As an effect of the present invention, a comparison of impact response when the active control and the nonlinear damper are applied and when not applied is shown below.

図表3Chart 3

Figure 2010241401
Figure 2010241401

上記の図表の▲1▼は、アクチュエータ出力(作用加速度)の時間スケジュールの1つの例である。上記の図表の▲2▼、▲3▼、▲4▼における実線は、当該アクティブ制御および非線形ダンパー(応答速度が負の場合はζ=0.15、正の場合はζ=0.5)を適用した加速度応答、速度応答、変位応答である。また、▲2▼、▲3▼、▲4▼の破線は当該アクティブ制御を適用していないパッシブ緩衝装置固有の応答(ζ=0.15の減衰振動)を示す。▲2▼において示す矢印は最大応答加速度を示し、アクチュエータ作用開始時から応答加速度がしばらく一定値をとり、増加しないことが分かる。また、▲2▼、▲3▼、▲4▼において、実線と破線を比較すると、実線の方が、減衰が速くなっていることが分かる。これは非線形ダンパーの効果に起因する。  (1) in the above chart is an example of a time schedule of actuator output (action acceleration). The solid lines in (2), (3), and (4) in the above chart indicate the active control and nonlinear damper (ζ = 0.15 when the response speed is negative, ζ = 0.5 when the response speed is positive). Applied acceleration response, velocity response, displacement response. The broken lines (2), (3), and (4) indicate the response (a damped oscillation of ζ = 0.15) unique to the passive shock absorber that does not apply the active control. The arrow shown in (2) indicates the maximum response acceleration, and it can be seen that the response acceleration takes a certain value for a while from the start of the actuator operation and does not increase. Further, in (2), (3), and (4), when the solid line and the broken line are compared, it can be seen that the solid line has faster attenuation. This is due to the effect of the nonlinear damper.

当該発明の効果のまとめとして、当該アクティブ制御併用による最大応答加速度の低減化効果を減衰係数比依存性と共に示すと下記の図のようになる。  As a summary of the effects of the present invention, the effect of reducing the maximum response acceleration by using the active control together with the dependence on the damping coefficient ratio is shown in the following figure.

図表4Chart 4

Figure 2010241401
Figure 2010241401

上記の図において、実線はパッシブ緩衝装置固有の最大応答加速度のζ依存性を示す(図表1)。□、○、△は、当該アクティブ制御においてアクチュエータ作用の開始時間T2を、それぞれ1/10固有周期、1/20固有周期、1/30固有周期に設定したものである。なお、破線はアクティブ制御を併用しても絶対に不可能な領域との境界線(理論曲線)である。本図から、当該アクティブ制御併用によりζが小さい領域において最大応答加速度の大幅な低減効果の可能であることが分かる。  In the above figure, the solid line shows the ζ dependence of the maximum response acceleration inherent in the passive shock absorber (Chart 1). □, ◯, and Δ are obtained by setting the actuator action start time T2 to 1/10 natural period, 1/20 natural period, and 1/30 natural period, respectively, in the active control. The broken line is a boundary line (theoretical curve) with a region that is absolutely impossible even when active control is used together. From this figure, it can be seen that the combined use of the active control can significantly reduce the maximum response acceleration in a region where ζ is small.

従来のばねやダンパーなどパッシブ要素で構成する緩衝装置にアクチュエータ、加速度センサーなどのアクティブ制御を併用する概念図である(実施例1)。(Example 1) which is a conceptual diagram which uses together active control, such as an actuator and an acceleration sensor, with the buffer device comprised by passive elements, such as the conventional spring and a damper. アクティブ制御併用型の緩衝装置の1つの実施例として一輪車タイプの被牽引車両に関する説明図である。緩衝ばねとして圧縮ばねを適用し、電磁モータを緩衝ばねの上に配置したものを例示(実施例2)。It is explanatory drawing regarding the towed vehicle of a unicycle type as one Example of the buffer device of an active control combined use type. The example which applied the compression spring as a buffer spring and has arrange | positioned the electromagnetic motor on the buffer spring (Example 2). アクティブ制御併用型の緩衝装置の1つの実施例として二輪車タイプの被牽引車両に関する説明図である。緩衝ばねとして圧縮ばねを適用し、電磁モータを緩衝ばねの下に配置したものを例示(実施例3)。It is explanatory drawing regarding the towed vehicle of a two-wheeled vehicle type as one Example of the buffer device of an active control combined use type. The example which applied the compression spring as a buffer spring and arrange | positioned the electromagnetic motor under the buffer spring is illustrated (Example 3). アクティブ制御併用型の緩衝装置の1つの実施例として二輪車タイプの被牽引車両に関する説明図である。緩衝ばねとして引張ばねを適用し、電磁モータを緩衝ばねの下に配置したものを例示(実施例3)。It is explanatory drawing regarding the towed vehicle of a two-wheeled vehicle type as one Example of the buffer device of an active control combined use type. An example in which a tension spring is applied as a buffer spring and an electromagnetic motor is disposed under the buffer spring (Example 3). アクティブ制御併用型の緩衝装置の1つの実施例として二輪車タイプの被牽引車両に関する説明図である。緩衝ばねとして空気ばねを適用し、電磁モータを緩衝ばねの下に配置したものを例示(実施例3)。It is explanatory drawing regarding the towed vehicle of a two-wheeled vehicle type as one Example of the buffer device of an active control combined use type. An example in which an air spring is applied as a buffer spring and an electromagnetic motor is disposed under the buffer spring (Example 3). アクティブ制御併用型の緩衝装置の1つの実施例として二輪車タイプの被牽引車両に関する説明図である。緩衝ばねとして補助タンク付空気ばねを適用し、電磁モータを緩衝ばねの下に配置したものを例示(実施例3)。It is explanatory drawing regarding the towed vehicle of a two-wheeled vehicle type as one Example of the buffer device of an active control combined use type. The example which applied the air spring with an auxiliary tank as a buffer spring, and has arrange | positioned the electromagnetic motor under the buffer spring (Example 3). アクティブ制御併用型の緩衝装置の1つの実施例として二輪車タイプの被牽引車両に関する説明図である。緩衝ばねとして圧縮ばねを適用し、電磁モータを緩衝ばねの上に配置したものを例示(実施例3)。It is explanatory drawing regarding the towed vehicle of a two-wheeled vehicle type as one Example of the buffer device of an active control combined use type. The example which applied the compression spring as a buffer spring and has arrange | positioned the electromagnetic motor on the buffer spring (Example 3). アクティブ制御併用型の緩衝装置の1つの実施例として二輪車タイプの被牽引車両に関する説明図である。緩衝ばねとして空気ばねを適用し、電磁モータを緩衝ばねの上に配置したものを例示(実施例3)。It is explanatory drawing regarding the towed vehicle of a two-wheeled vehicle type as one Example of the buffer device of an active control combined use type. An example in which an air spring is applied as a buffer spring and an electromagnetic motor is disposed on the buffer spring (Example 3). アクティブ制御併用型の緩衝装置の1つの実施例として二輪車タイプの被牽引車両に関する説明図である。緩衝ばねとして補助タンク付空気ばねを適用し、電磁モータを緩衝ばねの上に配置したものを例示(実施例3)。It is explanatory drawing regarding the towed vehicle of a two-wheeled vehicle type as one Example of the buffer device of an active control combined use type. The example which applied the air spring with an auxiliary tank as a buffer spring, and has arrange | positioned the electromagnetic motor on the buffer spring (Example 3). 非線形オイルダンパーの構造を示す説明図である(実施例4)。(Example 4) which is explanatory drawing which shows the structure of a nonlinear oil damper. 非線形オイルダンパーに関する付図である(実施例4)。(Example 4) which is an additional drawing regarding a nonlinear oil damper. 非線形オイルダンパーに関する付図である(実施例4)。(Example 4) which is an additional drawing regarding a nonlinear oil damper. 非線形空気ダンパーの構造を示す説明図である(実施例5)。(Example 5) which is explanatory drawing which shows the structure of a nonlinear air damper. 非線形空気ダンパーに関する付図である(実施例5)。(Example 5) which is an additional drawing regarding a non-linear air damper. 非線形空気ダンパーに関する付図である(実施例5)。(Example 5) which is an additional drawing regarding a non-linear air damper. 非線形電磁ダンパーに関する図である(実施例6)。(Example 6) which is a figure regarding a non-linear electromagnetic damper.

図1は、本発明による緩衝装置の概念図であって、1〜3、9、12〜14は図2と同様である。  FIG. 1 is a conceptual diagram of a shock absorber according to the present invention, and 1-3, 9, 12-14 are the same as FIG.

図2は、本発明による緩衝装置を適用した被牽引車両の1実施例の平面図、側面図、断面図である。本実施例は一輪車タイプであり、1〜4、6〜14は図3〜図9と同様である。
また、5は一輪車タイプの牽引構造である。
FIG. 2 is a plan view, a side view, and a sectional view of one embodiment of a towed vehicle to which the shock absorber according to the present invention is applied. A present Example is a unicycle type, 1-4, 6-14 are the same as that of FIGS.
Reference numeral 5 denotes a unicycle towing structure.

図3〜図9は、本発明による制御方法および緩衝方式を適用した被牽引車両の1実施例の平面図、側面図、断面図である。本実施例は二輪車タイプであり、2〜4、6〜13、15は図3〜図9において共通である。図3、図7において、1は圧縮ばね、14はオイルダンパーである。図4において、14はオイルダンパー、16は引張ばねとその支持構造である。図5、図8において、14はオイルダンパー、17は空気ばね(大)である。図6、図9において、18は空気ばね(小)、19は空気ダンパー、20は補助タンクである。また、基本的な緩衝制御機構については前出の一輪車タイプ(実施例2)と同様である  3 to 9 are a plan view, a side view, and a sectional view of one embodiment of a towed vehicle to which a control method and a buffer system according to the present invention are applied. A present Example is a two-wheeled vehicle type, and 2-4, 6-13, and 15 are common in FIGS. 3 and 7, 1 is a compression spring, and 14 is an oil damper. In FIG. 4, 14 is an oil damper, 16 is a tension spring and its supporting structure. 5 and 8, 14 is an oil damper, and 17 is an air spring (large). 6 and 9, 18 is an air spring (small), 19 is an air damper, and 20 is an auxiliary tank. The basic buffer control mechanism is the same as that of the above-described unicycle type (Example 2).

図10、図11、図12は、本発明による非線形オイルダンパーの構造を示す断面図等である。21はピストンロッド、22はシリンダ、23は非対称オリフィス、24は可動はねである。  10, 11 and 12 are cross-sectional views showing the structure of the nonlinear oil damper according to the present invention. 21 is a piston rod, 22 is a cylinder, 23 is an asymmetric orifice, and 24 is a movable spring.

図13、図14、図15は、本発明による非線形空気ダンパーの構造を示す断面図等である。23は非対称オリフィス、24は可動はね、25は補助タンクに通ずる配管である。  FIGS. 13, 14, and 15 are cross-sectional views showing the structure of a nonlinear air damper according to the present invention. Reference numeral 23 denotes an asymmetric orifice, reference numeral 24 denotes a movable spring, and reference numeral 25 denotes a pipe leading to an auxiliary tank.

図16は、電磁ダンパーの外観図である。機能としてワイヤ10のたるみを防止するトルクレギュレーション機能があり、電磁誘導によりシャフト26の回転速度に比例した逆方向のトルクを発生させる電磁制動機能を有す。なお、本発明においては、電磁モーターとして兼用可能な場合も含む。  FIG. 16 is an external view of an electromagnetic damper. As a function, there is a torque regulation function for preventing the wire 10 from sagging, and an electromagnetic braking function for generating a reverse torque proportional to the rotational speed of the shaft 26 by electromagnetic induction. In addition, in this invention, the case where it can be used as an electromagnetic motor is also included.

従来の陸上輸送車両または被牽引軽車両の緩衝装置の特性改善用。  For improving the characteristics of shock absorbers for conventional land transport vehicles or towed light vehicles.

将来的に太陽電池パネルなどを搭載する車両または被牽引軽車両の緩衝装置用。  For shock absorbers for vehicles that will be equipped with solar panels in the future or towed light vehicles.

1 圧縮ばね
2 荷台構造
3 ばね台構造
4 車輪
5 牽引構造
6 荷台と牽引車間の結合部フック(または軸受)
7 牽引構造(またはトーションバー)と牽引車間の結合部フック(または軸受)
8 バランスウェイト
9 電磁モーター(アクチュエータ)
10 ワイヤーとターンバックル
11 滑車
12 加速度センサー(速度変化センサー)
13 加速度スイッチ
14 オイルダンパー
15 トーションバー
16 引張ばねおよび支持構造
17 空気ばね(大)
18 空気ばね(小)
19 空気ダンパー
20 補助タンク
21 ピストンロッド
22 シリンダ
23 非対称オリフィス
24 可動はね
25 配管
26 シャフト
DESCRIPTION OF SYMBOLS 1 Compression spring 2 Loading platform structure 3 Spring loading table structure 4 Wheel 5 Traction structure 6 Joint part hook (or bearing) between a loading platform and a towing vehicle
7 Joint hook (or bearing) between tow structure (or torsion bar) and tow truck
8 Balance weight 9 Electromagnetic motor (actuator)
10 Wire and turnbuckle 11 Pulley 12 Accelerometer (speed change sensor)
13 Acceleration switch 14 Oil damper 15 Torsion bar 16 Tension spring and support structure 17 Air spring (large)
18 Air spring (small)
19 Air Damper 20 Auxiliary Tank 21 Piston Rod 22 Cylinder 23 Asymmetric Orifice 24 Movable Spring 25 Piping 26 Shaft

Claims (5)

陸上輸送車両における垂直方向の衝撃の緩和のために電動アクチュエータや加速度センサなどで構成するアクティブ制御を併用する緩衝装置。  A shock absorber that is also used in conjunction with active control consisting of an electric actuator, an acceleration sensor, etc., to mitigate vertical impacts in land transport vehicles. 請求項1に示すアクティブ制御を併用する緩衝装置に関する制御方法。外部環境に近い側のセンサーの検出量からアクチュエータ出力などを決定する方式。ばねの上下に配備した両センサーなどからの入力をANDゲートにかけてアクチュエータ出力する機構等。  A control method relating to a shock absorber using the active control according to claim 1 together. A method to determine actuator output, etc., from the detected amount of the sensor on the side close to the external environment. A mechanism that outputs an actuator by applying inputs from both sensors above and below the spring to an AND gate. 請求項2に示す制御方法において適用するアクチュエータ出力波形の以下の3条件。
(イ)応答加速度が規定値到達でアクチュエータ出力開始
(ロ)アクチュエータ出力開始時の応答加速度(すなわち規定値)が最大応答加速度となるように応答加速度を制御するアクチュエータ出力
(ハ)跳ね上げや残留振動が極力残らないタイミング(応答速度ゼロ、応答変位ゼロ近傍)でアクチュエータ出力停止。
The following three conditions of the actuator output waveform applied in the control method according to claim 2.
(B) Actuator output starts when response acceleration reaches specified value (b) Actuator output that controls response acceleration so that response acceleration at start of actuator output (ie specified value) becomes maximum response acceleration (c) Bounce or residual Actuator output stops at the timing when vibration does not remain as much as possible (response speed zero, response displacement near zero)
請求項3のアクチュエータ出力波形(一方向作用)と適合するワイヤーケーブルによる張力伝達機構および非線形ダンパー機構。  A tension transmission mechanism and a nonlinear damper mechanism using a wire cable compatible with the actuator output waveform (one-way action) of claim 3. 請求項1〜4を適用した電動モータ搭載被牽引車両の様式。および電動モータの搭載有無にかかわらずばね付き被牽引車両の様式。  A style of a towed vehicle equipped with an electric motor to which claims 1 to 4 are applied. And the style of a towed vehicle with a spring regardless of whether an electric motor is installed.
JP2009104506A 2009-04-02 2009-04-02 Shock absorber in combination with active control capable of coping with vertical impact and control method used for the same Pending JP2010241401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104506A JP2010241401A (en) 2009-04-02 2009-04-02 Shock absorber in combination with active control capable of coping with vertical impact and control method used for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104506A JP2010241401A (en) 2009-04-02 2009-04-02 Shock absorber in combination with active control capable of coping with vertical impact and control method used for the same

Publications (1)

Publication Number Publication Date
JP2010241401A true JP2010241401A (en) 2010-10-28

Family

ID=43094923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104506A Pending JP2010241401A (en) 2009-04-02 2009-04-02 Shock absorber in combination with active control capable of coping with vertical impact and control method used for the same

Country Status (1)

Country Link
JP (1) JP2010241401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108180225A (en) * 2017-12-21 2018-06-19 重庆市丰蕙达金属锻造有限公司 For the way to play for time of bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298007A (en) * 2005-04-15 2006-11-02 Toyota Motor Corp Damping force generating system and vehicle suspension system including it
JP2008273356A (en) * 2007-04-27 2008-11-13 Toyota Motor Corp Suspension system for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298007A (en) * 2005-04-15 2006-11-02 Toyota Motor Corp Damping force generating system and vehicle suspension system including it
JP2008273356A (en) * 2007-04-27 2008-11-13 Toyota Motor Corp Suspension system for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108180225A (en) * 2017-12-21 2018-06-19 重庆市丰蕙达金属锻造有限公司 For the way to play for time of bearing
CN108180225B (en) * 2017-12-21 2019-06-04 重庆市丰蕙达金属锻造有限公司 Way to play for time for bearing

Similar Documents

Publication Publication Date Title
CN111336210B (en) Hybrid vibration control device and method based on negative stiffness and variable damping and application
US5732370A (en) Method for controlling motion using a two-stage adjustable damper
Jin et al. Theoretical and experimental investigation of a stiffness-controllable suspension for railway vehicles to avoid resonance
JP2010241422A5 (en)
KR20120085686A (en) Method for the oscillation damping of drive train in a wind turbine, wind turbine and use of a braking device
CN101427050A (en) Method and apparatus for an adaptive suspension support system
JP5057034B2 (en) Anti-vibration structure for truck bed
JP4845426B2 (en) Car body vibration control device and car body vibration control method
RU174096U1 (en) FRICTIONAL OSCILLATOR
CN104631322A (en) Passive spring-damping negative stiffness damper for inhaul cable vibration mitigation
KR20060040577A (en) Balancing apparatus for elevator
KR100970541B1 (en) Vibration reducing device for elevator
RU2529066C2 (en) Friction damper
Gu et al. Performance-oriented controls of a novel rocker-pushrod electromagnetic active vehicle suspension
JP4191013B2 (en) Damping device and vehicle with damping function
JP2010241401A (en) Shock absorber in combination with active control capable of coping with vertical impact and control method used for the same
WO2016066094A1 (en) Buffering apparatus for landing gear buffering strut
CN103386869A (en) Suspension damping structure for engineering vehicles
WO2020241896A1 (en) Damper and seat suspension mechanism
RU2586435C1 (en) Friction shock absorber
JP2014044076A (en) Vibration testing machine
WO2016093733A1 (en) Two-stage shock absorber
JP5316842B2 (en) Seismic isolation mechanism
Lee et al. Roller rig tests of a semi-active suspension system for a railway vehicle
Collette Importance of the wheel vertical dynamics in the squeal noise mechanism on a scaled test bench

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Effective date: 20130524

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20131029

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408