JP2010240628A - Vibration type conveyor - Google Patents

Vibration type conveyor Download PDF

Info

Publication number
JP2010240628A
JP2010240628A JP2009095643A JP2009095643A JP2010240628A JP 2010240628 A JP2010240628 A JP 2010240628A JP 2009095643 A JP2009095643 A JP 2009095643A JP 2009095643 A JP2009095643 A JP 2009095643A JP 2010240628 A JP2010240628 A JP 2010240628A
Authority
JP
Japan
Prior art keywords
piezoelectric
electrode
ceramic layer
metal spring
spring plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009095643A
Other languages
Japanese (ja)
Other versions
JP4673418B2 (en
Inventor
Taro Mimura
太郎 三村
Masatomi Takabayashi
政富 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishin Inc
Original Assignee
Daishin Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishin Inc filed Critical Daishin Inc
Priority to JP2009095643A priority Critical patent/JP4673418B2/en
Publication of JP2010240628A publication Critical patent/JP2010240628A/en
Application granted granted Critical
Publication of JP4673418B2 publication Critical patent/JP4673418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric driving body capable of preventing peeling between a piezoelectric driving element and a metal spring plate, improving the durability of the piezoelectric driving element, and reducing the loss of driving force, and to provide a vibration type conveyor using the same. <P>SOLUTION: The piezoelectric driving body 10 includes: the metal spring plate 11; the piezoelectric driving element 12 arranged so as to be piled up on the metal spring plate 11 and formed by integrally sintering a piezoelectric ceramic layer 12a, first electrodes 12b and 12b' and a second electrode 12c disposed on the front and back of the piezoelectric ceramic layer 12a, and an insulating ceramic layer 12d exposed on the back surface to cover the first electrodes 12b and 12b' or the second electrode 12c; and an adhesive layer 13 for bonding the insulating ceramic layer 12d and the metal spring plate 11. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は振動式搬送装置に係り、特に、金属ばね板に圧電駆動素子を接着した構造を有する圧電駆動体の構造に関する。 The present invention relates to a vibration Doshiki conveying device, in particular, to a structure of a piezoelectric driving body having an adhesive structure of the piezoelectric drive elements in the metal spring plate.

従来、各種の製造ラインでは、部品を一定姿勢で組立装置に供給するために振動式搬送装置が広く用いられている。この振動式搬送装置では、一般に、搬送路(トラック)を備えた搬送体を弾性バネで支持するとともに、搬送体を振動させるための加振機を設けている。加振機としては、旧来の電磁駆動式の構成から近年は上記弾性バネに接続された圧電駆動体を用いる圧電駆動式の構成を有するものが多くなってきている。圧電駆動式の加振機は、電磁駆動式に比べて、スムーズな搬送性が得られる、消費電力が少ない、搬送部品を着磁させる虞がないなどの有利な点を有している。   2. Description of the Related Art Conventionally, in various production lines, a vibratory transfer device is widely used to supply parts to an assembly device in a fixed posture. In this vibration type conveying apparatus, generally, a conveying body provided with a conveying path (track) is supported by an elastic spring, and a vibration exciter for vibrating the conveying body is provided. In recent years, a large number of vibrators have a piezoelectric drive type configuration using a piezoelectric drive body connected to the elastic spring from the conventional electromagnetic drive type configuration. The piezoelectric drive type exciter has advantages over the electromagnetic drive type in that smooth transferability is obtained, power consumption is low, and there is no possibility of magnetizing the transfer parts.

上記の圧電駆動体としては、図7に示すように、シム板などの金属ばね板11′の表面に圧電駆動素子12′を接着したものが用いられる。圧電駆動素子12′の表裏両面にはそれぞれ電極が形成され、両電極間に電圧を印加することで圧電駆動素子12′を伸縮させて金属ばね板11′に撓み振動を生じさせる。ところが、金属ばね板11′の表裏にそれぞれ圧電駆動素子12′を接着してなる圧電駆動体10′を板ばね状の振動ばね3と直列に接続したものを、基台1に対しては取付部2を介して固定し、搬送体5に対しては取付部4を介して固定する図示の振動式搬送装置においては、圧電駆動素子12′の裏面側の電極が金属ばね板11′と導電接続されるため、装置の絶縁耐圧をチェックするときの測定電圧が高いと圧電駆動素子12′を劣化させてしまう虞があり、また、電気的安全を図るために絶縁トランスを設ける必要があるなどの問題点があった。   As the above-described piezoelectric driving body, as shown in FIG. 7, a piezoelectric driving element 12 'bonded to the surface of a metal spring plate 11' such as a shim plate is used. Electrodes are formed on both the front and back surfaces of the piezoelectric drive element 12 '. By applying a voltage between both electrodes, the piezoelectric drive element 12' expands and contracts to cause bending vibration in the metal spring plate 11 '. However, a piezoelectric drive body 10 ′ in which a piezoelectric drive element 12 ′ is bonded to the front and back of the metal spring plate 11 ′ and connected in series with a plate spring-like vibration spring 3 is attached to the base 1. In the illustrated vibration type conveying apparatus which is fixed via the part 2 and fixed to the conveying body 5 via the attachment part 4, the electrode on the back side of the piezoelectric drive element 12 'is electrically connected to the metal spring plate 11'. Therefore, if the measurement voltage when checking the withstand voltage of the device is high, the piezoelectric drive element 12 'may be deteriorated, and it is necessary to provide an insulation transformer for electrical safety. There was a problem.

そこで、十分な絶縁耐圧が得られて電気的安全性を確保するために、圧電駆動素子12′と金属ばね板11′との間を絶縁する技術、例えば、以下の特許文献1及び2に記載された構造が提案されている。特許文献1には圧電駆動素子と金属ばね板との間に絶縁フィルムを介在させた構造が記載されている。また、特許文献2には圧電駆動素子と金属ばね板の間に絶縁セラミック板を介在させた構造が記載されている。   Therefore, in order to obtain a sufficient withstand voltage and ensure electrical safety, a technique for insulating between the piezoelectric drive element 12 'and the metal spring plate 11', for example, described in Patent Documents 1 and 2 below. A proposed structure has been proposed. Patent Document 1 describes a structure in which an insulating film is interposed between a piezoelectric drive element and a metal spring plate. Patent Document 2 describes a structure in which an insulating ceramic plate is interposed between a piezoelectric drive element and a metal spring plate.

特開平11−31855号公報JP 11-31855 A 特開2003−134852号公報JP 2003-134852 A

しかしながら、本願発明者らが検討した結果、前述の絶縁フィルムを用いる方法では、圧電駆動素子と金属ばね板の間の接着面に軟質の絶縁フィルムが存在することで、圧電駆動素子と金属ばね板との間のエネルギー伝達にロスが生じることにより、撓み振動を効率的に生起させることができないという問題点がある。また、振動式搬送装置は圧電駆動体による振動に起因して弾性支持された搬送体が共振する状態で動作するので圧電駆動素子と金属ばね板との間に大きな応力が加わるが、上記の構造では圧電駆動素子と金属ばね板との接着強度が低いため、接着面に剥離部分が生じ、当該剥離部分に応力が集中することにより、圧電駆動素子が変形過多により破壊されるという問題点もある。   However, as a result of examination by the inventors of the present application, in the method using the above-described insulating film, a soft insulating film is present on the bonding surface between the piezoelectric driving element and the metal spring plate, so that the piezoelectric driving element and the metal spring plate are separated from each other. There is a problem that bending vibration cannot be efficiently generated due to loss of energy transmission between the two. In addition, since the vibration-type transfer device operates in a state where the elastically supported transfer body resonates due to vibration by the piezoelectric drive body, a large stress is applied between the piezoelectric drive element and the metal spring plate. However, since the adhesive strength between the piezoelectric drive element and the metal spring plate is low, there is a problem that a peeling portion is generated on the bonding surface, and stress concentrates on the peeling portion, so that the piezoelectric driving element is destroyed due to excessive deformation. .

一方、前述の絶縁セラミック板を用いる方法では、絶縁セラミック板と金属ばね板との間の接着力を高くすることができる。しかしながら、絶縁セラミック板を圧電駆動素子と金属ばね板の双方に接着させることで駆動力の伝達ロスが生ずるとともに製造コストが増大するという問題点がある。また、一般に絶縁セラミック板は硬度が高いので、絶縁セラミック板を介在させることで撓み変形量が制限され、その結果、駆動力のロスが発生して効率的に振動を発生させることができないという問題点もある。さらに、圧電駆動素子と絶縁セラミック基板の硬度が整合しないと、圧電駆動素子と絶縁セラミック基板との接着面に剥離部分が生じ、当該剥離部分に応力が集中して圧電駆動素子が破壊されるという問題点もある。   On the other hand, in the method using the above-described insulating ceramic plate, the adhesive force between the insulating ceramic plate and the metal spring plate can be increased. However, bonding the insulating ceramic plate to both the piezoelectric drive element and the metal spring plate causes a problem of transmission loss of driving force and an increase in manufacturing cost. In general, since the insulating ceramic plate has a high hardness, the amount of bending deformation is limited by interposing the insulating ceramic plate, and as a result, a loss of driving force occurs and vibration cannot be generated efficiently. There is also a point. Furthermore, if the hardnesses of the piezoelectric drive element and the insulating ceramic substrate do not match, a peeled portion is generated on the bonding surface between the piezoelectric drive element and the insulating ceramic substrate, and stress is concentrated on the peeled portion, thereby destroying the piezoelectric drive element. There are also problems.

そこで、本発明は上記問題点を解決するものであり、その課題は、圧電駆動素子と金属ばね板との間の剥離を防止して圧電駆動素子の耐久性を向上できるとともに駆動力のロスを低減することのできる圧電駆動体を用いた振動式搬送装置を実現することにある。 Therefore, the present invention solves the above-mentioned problems, and the problem is that it is possible to improve the durability of the piezoelectric drive element by preventing the peeling between the piezoelectric drive element and the metal spring plate, and to reduce the driving force loss. It is to realize a vibratory conveying apparatus using a piezoelectric driving body that can be reduced.

斯かる実情に鑑み、本発明の振動式搬送装置は、基台と、該基台の上方に配置された搬送体と、前記基台と前記搬送体との間に接続された圧電駆動体とを具備し、前記圧電駆動体は、金属ばね板と、該金属ばね板に重なるように配置され、圧電セラミック層、該圧電セラミック層の表面上に配置される第1の電極、前記圧電セラミック層の裏面上に配置される第2の電極、並びに、素子裏面上に露出し前記第2の電極を被覆する、前記圧電セラミック層と同材質で前記圧電セラミック層より薄い絶縁セラミック層を一体に焼結させることにより形成され、前記第2の電極が形成されない平面範囲において前記絶縁セラミック層が前記圧電セラミック層と直接密着して一体化された圧電駆動素子と、該絶縁セラミック層と前記金属ばね板を接着する接着層と、を有することを特徴とする。 In view of such a situation, the vibratory transfer device of the present invention includes a base, a transport body disposed above the base, and a piezoelectric driving body connected between the base and the transport body. comprising a said piezoelectric driving body is a metal spring plate, is arranged so as to overlap in the metal spring plate, the piezoelectric ceramic layer, a first electrode disposed on the front surface of the piezoelectric ceramic layer, wherein the piezoelectric ceramic a second electrode disposed on the back surface of the layer, as well as to cover the second electrode before Symbol exposed on the element rear surface, said piezoelectric ceramic layers and the piezoelectric ceramic layer thinner than the insulating ceramic layer of the same material, the A piezoelectric driving element formed by sintering integrally and in which the insulating ceramic layer is integrated in direct contact with the piezoelectric ceramic layer in a plane range where the second electrode is not formed , the insulating ceramic layer and the Connect metal spring plate And having an adhesive layer, a.

本発明によれば、一体に焼結させることにより形成された絶縁セラミック層が電極を覆った状態で圧電駆動素子の裏面上に露出し、この絶縁セラミック層を接着層により金属ばね板と接着することにより、圧電駆動素子と金属ばね板の接着強度を高めることができるとともに、絶縁セラミック層を圧電駆動素子に強固に一体化することができ、接着剤も一層のみで足りることから、駆動力のロスや製造コストを低減することができる。   According to the present invention, the insulating ceramic layer formed by sintering integrally is exposed on the back surface of the piezoelectric drive element in a state of covering the electrode, and this insulating ceramic layer is bonded to the metal spring plate by the adhesive layer. As a result, the adhesive strength between the piezoelectric drive element and the metal spring plate can be increased, the insulating ceramic layer can be firmly integrated with the piezoelectric drive element, and only one layer of adhesive is required. Loss and manufacturing costs can be reduced.

本発明においては、前記絶縁セラミック層が前記圧電セラミック層と同材質で構成される。これによれば、絶縁セラミック層が圧電セラミック層と同材質となることで、圧電駆動素子の製造が容易になり製造コストも低減できるとともに、圧電セラミック層と絶縁セラミック層の弾性特性を同じにすることができるため、駆動力の伝達効率をさらに高めることができる。 Oite this onset Ming, the insulating ceramic layer is Ru is composed of the same material as the piezoelectric ceramic layer. According to this, since the insulating ceramic layer is made of the same material as the piezoelectric ceramic layer, the piezoelectric driving element can be easily manufactured and the manufacturing cost can be reduced, and the piezoelectric ceramic layer and the insulating ceramic layer have the same elastic characteristics. Therefore, the transmission efficiency of the driving force can be further increased.

本発明においては、前記絶縁セラミック層は前記圧電セラミック層より薄い。これによれば、表裏両面が表面側電極と裏面側電極に挟まれて電界が印加される圧電セラミック層とは異なり、絶縁セラミック層は上記電界が印加されないので、圧電駆動素子の駆動抵抗として作用するが、この絶縁セラミック層が圧電セラミック層より薄いことにより、駆動力のロスをさらに低減できる。特に、絶縁セラミック層の厚みを圧電セラミック層の厚みの合計の半分以下とすることが駆動力のロスを低減する上でさらに望ましい。 Oite this onset Ming, the insulating ceramic layer is thinner than the piezoelectric ceramic layer. According to this, unlike the piezoelectric ceramic layer to which an electric field is applied with both the front and back electrodes sandwiched between the front surface side electrode and the back surface side electrode, the insulating ceramic layer acts as a driving resistance of the piezoelectric driving element because the electric field is not applied. However, since this insulating ceramic layer is thinner than the piezoelectric ceramic layer, loss of driving force can be further reduced. In particular, it is more desirable to reduce the loss of driving force by setting the thickness of the insulating ceramic layer to be equal to or less than half of the total thickness of the piezoelectric ceramic layer.

上記絶縁セラミック層の最適な厚み範囲は材質によって異なるが、通常、0.02〜2.0mmの範囲内であることが好ましく、0.05〜0.45mmの範囲内であることがさらに望ましい。また、絶縁セラミック層の材質は、いわゆるソフト系のセラミックスであることが好ましい。セラミックスとしては、BaTiO、Pb(Zr・Ti)O、Fe、Al、AlN、Si、SiCなどのファインセラミックスが挙げられるが、特に、BaTiO、PbTiO、Pb(Zr・Ti)O、PbNbなどの圧電性を有する圧電材料であることが好ましい。 The optimum thickness range of the insulating ceramic layer varies depending on the material, but is usually preferably in the range of 0.02 to 2.0 mm, and more preferably in the range of 0.05 to 0.45 mm. The material of the insulating ceramic layer is preferably so-called soft ceramics. The ceramic, BaTiO 3, Pb (Zr · Ti) O 3, Fe 2 O 3, Al 2 O 3, AlN, Si 3 N 4, but fine ceramics such as SiC and the like, in particular, BaTiO 3, PbTiO 3 Pb (Zr · Ti) O 3 , PbNb 2 O 6 and other piezoelectric materials having piezoelectricity are preferable.

本発明のの態様においては、前記圧電駆動素子の上面には、前記第1の電極と、該第1の電極と離間し、前記第2の電極に導電接続された張出電極部とが設けられる。これによれば、圧電駆動素子の第2の電極に導電接続された張出電極部を圧電セラミック層の形成範囲の外側に引き出す必要がないので、コンパクトに構成できるとともに、駆動配線との接続も容易になるため、製造コストをさらに低減することができる。このとき、張出電極部は圧電駆動素子の側面上に設けられた外面接続部を介して第2の電極に導電接続されることが好ましい。 In one aspect of the present invention, the upper surface of the piezoelectric driving element includes the first electrode and an overhang electrode portion that is spaced apart from the first electrode and is conductively connected to the second electrode. Provided. According to this, since it is not necessary to draw the overhanging electrode portion conductively connected to the second electrode of the piezoelectric drive element to the outside of the formation range of the piezoelectric ceramic layer, it can be configured compactly and can be connected to the drive wiring. Since it becomes easy, manufacturing cost can further be reduced. At this time, the overhang electrode portion is preferably conductively connected to the second electrode via an outer surface connection portion provided on the side surface of the piezoelectric drive element.

この場合に、前記張出電極部は前記第1の電極と同層に形成され、前記第1の電極より小さな面積を有することが好ましい。このようにすると、張出電極部を第1の電極と同層に形成することで圧電駆動素子の製造コストをさらに低減できる。その反面、張出電極部が形成される範囲では第1の電極による電界を圧電セラミック層に印加できないが、当該張出電極部は第1の電極より面積が小さいため、張出電極部の形成範囲において圧電セラミック層に電界が印加されないことによる機能低下を抑制することができる。   In this case, it is preferable that the overhang electrode portion is formed in the same layer as the first electrode and has a smaller area than the first electrode. If it does in this way, the manufacturing cost of a piezoelectric drive element can further be reduced by forming an overhang | projection electrode part in the same layer as a 1st electrode. On the other hand, the electric field generated by the first electrode cannot be applied to the piezoelectric ceramic layer in the range where the overhang electrode portion is formed. However, since the overhang electrode portion has a smaller area than the first electrode, the overhang electrode portion is formed. In the range, it is possible to suppress functional deterioration due to no electric field being applied to the piezoelectric ceramic layer.

本発明の別の態様においては、前記圧電駆動素子では、複数の前記圧電セラミック層が前記第1の電極又は前記第2の電極を介して積層される。これによれば、積層型圧電駆動素子を構成することで駆動電圧の低減や駆動力の増大を図ることができる。   In another aspect of the present invention, in the piezoelectric driving element, a plurality of the piezoelectric ceramic layers are laminated via the first electrode or the second electrode. According to this, it is possible to reduce the driving voltage and increase the driving force by configuring the multilayer piezoelectric driving element.

なお、本発明の振動式搬送装置において、前記基台と前記搬送体との間には前記圧電駆動体に接続される振動ばねが設けられる場合がある。 Incidentally, in the vibratory conveying apparatus of the present invention, between the front Kimotodai and the carrier there is a case where vibration spring connected to said piezoelectric driving body is provided.

本発明によれば、圧電駆動素子と金属ばね板との間の剥離を防止して耐久性を向上させることができるとともに駆動力のロスを低減することのできる圧電駆動体及びこれを用いた振動式搬送装置を実現できるという優れた効果を奏し得る。   According to the present invention, a piezoelectric driving body capable of preventing the peeling between the piezoelectric driving element and the metal spring plate to improve durability and reducing the loss of driving force, and vibration using the same. The outstanding effect that a type | formula conveying apparatus is realizable can be show | played.

本発明の圧電駆動体の実施形態の組み立て前の状態を示す分解部分断面図。The exploded partial sectional view showing the state before the assembly of the embodiment of the piezoelectric actuator of the present invention. 同実施形態の組み立て前の部分平面図。The partial top view before the assembly of the same embodiment. 同実施形態の組み立て後の部分断面図。The fragmentary sectional view after the assembly of the same embodiment. 同実施形態の組み立て後の全体構成を示す平面図(a)及び側面図(b)。The top view (a) and side view (b) which show the whole structure after the assembly of the embodiment. 異なる実施形態の詳細構造を示す平面図(a)、右側面図(b)及び左側面図(c)。The top view (a), the right view (b), and the left view (c) which show the detailed structure of different embodiment. 実施形態の圧電駆動体を用いた振動式搬送装置の構成を模式的に示す概略構成図。The schematic block diagram which shows typically the structure of the vibration type conveying apparatus using the piezoelectric drive body of embodiment. 従来の振動式搬送装置の構成を模式的に示す概略構成図。The schematic block diagram which shows typically the structure of the conventional vibration type conveying apparatus.

次に、添付図面を参照して本発明に係る圧電駆動体及び振動式搬送装置用の実施形態について詳細に説明する。図1は本実施形態の組み立て前の圧電駆動体の構成を示す分解部分断面図、図2は組み立て前の部分平面図、図3は組み立て後の圧電駆動体の構成を示す部分断面図、図4は組み立て後の全体構成を示す平面図(a)及び側面図(b)である。   Next, an embodiment for a piezoelectric driving body and a vibration transfer device according to the present invention will be described in detail with reference to the accompanying drawings. 1 is an exploded partial cross-sectional view showing the configuration of the piezoelectric drive body before assembly according to the present embodiment, FIG. 2 is a partial plan view before assembly, and FIG. 3 is a partial cross-sectional view showing the configuration of the piezoelectric drive body after assembly. 4 is a plan view (a) and a side view (b) showing the overall configuration after assembly.

図1に示すように、本実施形態の圧電駆動体10は、1〜10mm程度の厚みを有する金属ばね板11と、0.3〜1.0mm程度の厚みを有する圧電駆動素子12と、金属ばね板11と圧電駆動素子12とを接着する接着剤13とを有する。金属ばね板11は金属製のばね性を有するものであれば特に限定されないが、例えば、バネ材として用いられるSK鋼を焼き入れ処理したもの等が使用できる。一般的には厚みは2.5〜8.0mm程度のものが用いられる。   As shown in FIG. 1, the piezoelectric driving body 10 of this embodiment includes a metal spring plate 11 having a thickness of about 1 to 10 mm, a piezoelectric driving element 12 having a thickness of about 0.3 to 1.0 mm, and a metal. An adhesive 13 for bonding the spring plate 11 and the piezoelectric drive element 12 is provided. The metal spring plate 11 is not particularly limited as long as it has a metal spring property. For example, a material obtained by quenching SK steel used as a spring material can be used. Generally, a thickness of about 2.5 to 8.0 mm is used.

圧電駆動素子12は、圧電セラミック層12aと、該圧電セラミック層12aの表裏のいずれか一方の面上に形成された第1の電極12b、12b′と、該圧電セラミック層12aの表裏のいずれか他方の面上に形成された第2の電極12cと、を有する。より具体的には、複数(図示例では5層)の圧電セラミック層12aが積層方向に配置され、各圧電セラミック層12aの積層方向の前後に第1の電極12b、12b′と第2の電極12cのいずれかが配置され、全体としては第1の電極12b、12b′と第2の電極12cとが積層方向に交互に配置されている。各圧電セラミック層12aは第1の電極12b、12b′と第2の電極12cとの間に挟まれ、両電極間に印加される駆動電圧により厚み方向に電界を受ける。   The piezoelectric driving element 12 includes a piezoelectric ceramic layer 12a, first electrodes 12b and 12b 'formed on either one of the front and back surfaces of the piezoelectric ceramic layer 12a, and any one of the front and back surfaces of the piezoelectric ceramic layer 12a. And a second electrode 12c formed on the other surface. More specifically, a plurality (five layers in the illustrated example) of piezoelectric ceramic layers 12a are arranged in the stacking direction, and the first electrodes 12b and 12b ′ and the second electrodes are disposed before and after the piezoelectric ceramic layers 12a in the stacking direction. 12c is arranged, and as a whole, the first electrodes 12b and 12b 'and the second electrode 12c are alternately arranged in the stacking direction. Each piezoelectric ceramic layer 12a is sandwiched between the first electrodes 12b and 12b 'and the second electrode 12c, and receives an electric field in the thickness direction by a driving voltage applied between the two electrodes.

圧電セラミック層12aはBaTiO、PbTiO、Pb(Zr・Ti)O、PbNbなどの圧電性を有する圧電セラミック材料であれば特に限定されないが、特に、Pb(Zr・Ti)O(以下、単に「PZT」という。)で構成されることが好ましい。圧電セラミック層は、好ましくは、圧電粉末を適宜の樹脂バインダや溶剤等と混練して乾燥させることでセラミック生シート(いわゆるセラミックグリーンシート)とし、これを焼成することによって形成される。 The piezoelectric ceramic layer 12a is not particularly limited as long as it is a piezoelectric ceramic material having piezoelectricity such as BaTiO 3 , PbTiO 3 , Pb (Zr · Ti) O 3 , PbNb 2 O 6 , and in particular, Pb (Zr · Ti) O. 3 (hereinafter simply referred to as “PZT”). The piezoelectric ceramic layer is preferably formed by kneading a piezoelectric powder with an appropriate resin binder, a solvent, and the like to dry a ceramic raw sheet (so-called ceramic green sheet) and firing it.

また、上記第1の電極12b、12b′及び第2の電極12cとしては、銀、銀・パラジウムなどの導電性ペースト(スラリー)を焼成して得られる銀電極が用いられる。ただし、本発明では特に電極材料は限定されず、金や銅などの他の導体を用いることも可能である。   Further, as the first electrodes 12b, 12b 'and the second electrode 12c, silver electrodes obtained by firing a conductive paste (slurry) such as silver, silver / palladium are used. However, the electrode material is not particularly limited in the present invention, and other conductors such as gold and copper can be used.

本実施形態では、上記のように圧電セラミック層12a、第1の電極12b、12b′及び第2の電極12cの積層構造を有するが、これは、通常、以下のようにして形成される。上述のセラミック生シート上に導電性ペーストをスクリーン印刷等により形成し、このように形成された電極パターン付きのセラミック生シートを積層してセラミック生シートと電極とが交互に積層されてなる積層体を形成する。その後、必要に応じて当該積層体を平面的に適宜に切断した後に、焼成を行うことによって上記積層構造が形成される。ただし、本実施形態の圧電駆動素子12の製造方法は特に限定されるものではなく、例えば、圧電セラミック層12aを、バインダを含むセラミック粉体を型に入れて圧縮して成形することで形成し、その後、表面に銀ペースト等を塗布して焼き付けることで圧電駆動素子を製造しても構わない。   In the present embodiment, as described above, the piezoelectric ceramic layer 12a, the first electrodes 12b, 12b ', and the second electrode 12c have a laminated structure, which is usually formed as follows. A laminate in which a conductive paste is formed on the above-mentioned ceramic raw sheet by screen printing or the like, and the ceramic raw sheet with the electrode pattern thus formed is laminated, and the ceramic raw sheet and the electrode are alternately laminated. Form. Thereafter, the laminate is appropriately cut in a plane as necessary, and then fired to form the laminate structure. However, the manufacturing method of the piezoelectric driving element 12 of the present embodiment is not particularly limited. For example, the piezoelectric ceramic layer 12a is formed by compressing and molding a ceramic powder containing a binder in a mold. Thereafter, the piezoelectric drive element may be manufactured by applying and baking a silver paste or the like on the surface.

本実施形態では、一体に焼結されて形成されてなる圧電駆動素子12の裏面側に設けられる第2の電極12cが絶縁セラミック層12dによって被覆されている。これによって、圧電駆動素子12の裏面を接着剤13を介して接着した場合に、圧電駆動素子12と金属ばね板11との間が確実に絶縁される。本実施形態では、絶縁セラミック層12dは上記圧電セラミック層12aと同じ素材で構成されている。図示例の場合、絶縁セラミック層12dは圧電セラミック層12aの約半分の厚みを有する。例えば、圧電セラミック層12aの厚みを50〜150μmとした場合、絶縁セラミック層12dの厚みは25〜75μmとなる。第1の電極12b及び第2の電極12cの厚みはいずれも5〜10μm程度である。   In the present embodiment, the second electrode 12c provided on the back surface side of the piezoelectric driving element 12 formed by sintering integrally is covered with the insulating ceramic layer 12d. Thereby, when the back surface of the piezoelectric driving element 12 is bonded via the adhesive 13, the piezoelectric driving element 12 and the metal spring plate 11 are reliably insulated. In the present embodiment, the insulating ceramic layer 12d is made of the same material as the piezoelectric ceramic layer 12a. In the illustrated example, the insulating ceramic layer 12d has a thickness approximately half that of the piezoelectric ceramic layer 12a. For example, when the thickness of the piezoelectric ceramic layer 12a is 50 to 150 μm, the thickness of the insulating ceramic layer 12d is 25 to 75 μm. The thicknesses of the first electrode 12b and the second electrode 12c are both about 5 to 10 μm.

図示例の場合、圧電セラミック層12aの厚みは、駆動電圧との関係で最適な駆動力及び耐久性が得られる値に設定される。一般に、圧電セラミック層12aの厚みは、所定の駆動電圧を用いる場合に駆動力及び耐久性の観点から最適な値の範囲があり、当該値の範囲より厚くなると駆動力が低下し、当該値の範囲より薄くなると耐圧特性により圧電セラミック層が劣化を起こしやすくなる。   In the case of the illustrated example, the thickness of the piezoelectric ceramic layer 12a is set to a value at which optimum driving force and durability can be obtained in relation to the driving voltage. In general, the thickness of the piezoelectric ceramic layer 12a has an optimum value range from the viewpoint of driving force and durability when a predetermined driving voltage is used. When the thickness is larger than the value range, the driving force decreases, If the thickness is smaller than the range, the piezoelectric ceramic layer is likely to be deteriorated due to the pressure resistance.

後述する実施例では、駆動電圧を50Vに設定することで、PZT製の圧電セラミック層12aとしては110μmの厚みを選定し、一方、絶縁セラミック層12dについては、それよりも薄い55μmの厚みを選定した。これは、絶縁セラミック層12dを圧電セラミック層12aよりも薄くすることで絶縁セラミック層12dの可撓性を高めることにより、圧電セラミック層12aと絶縁セラミック層12dの間に生ずる応力を低減して圧電駆動素子12の破損を回避するとともに、圧電駆動素子12から金属ばね板11への駆動力の伝達時のロスを低減するためである。また、製造プロセス上では、圧電セラミック層12aを2枚のセラミック生シートを重ねることで形成し、絶縁セラミック層12dを1枚のセラミック生シートで形成することで、異なる厚みのセラミック生シートを用いる必要がなくなるので、製造コストを低減することができるという利点が得られる。すなわち、一般的には、同じ厚みのセラミック生シートの重ね枚数を圧電セラミック層と絶縁セラミック層で変えることにより、製造コストを低減しつつ、圧電セラミック層と絶縁セラミック層のそれぞれの厚みを最適化することが可能になる。   In the examples described later, by setting the driving voltage to 50 V, a thickness of 110 μm is selected as the piezoelectric ceramic layer 12a made of PZT, while a thickness of 55 μm is selected as the insulating ceramic layer 12d. did. This is because the insulating ceramic layer 12d is made thinner than the piezoelectric ceramic layer 12a to increase the flexibility of the insulating ceramic layer 12d, thereby reducing the stress generated between the piezoelectric ceramic layer 12a and the insulating ceramic layer 12d. This is for avoiding damage to the drive element 12 and reducing loss during transmission of the drive force from the piezoelectric drive element 12 to the metal spring plate 11. Also, in the manufacturing process, the piezoelectric ceramic layer 12a is formed by stacking two ceramic raw sheets, and the insulating ceramic layer 12d is formed by one ceramic raw sheet, so that ceramic raw sheets having different thicknesses are used. Since it is not necessary, there is an advantage that the manufacturing cost can be reduced. That is, in general, by changing the number of stacked raw ceramic sheets of the same thickness between the piezoelectric ceramic layer and the insulating ceramic layer, the thickness of the piezoelectric ceramic layer and the insulating ceramic layer is optimized while reducing the manufacturing cost. It becomes possible to do.

図示例では、圧電駆動素子12においては、上記積層方向(厚み方向)に複数の第1の電極12b、12b′及び第2の電極12cが設けられ、これらの電極12b、12b′と12cが複数の圧電セラミック層12aの表裏を挟んだ構造となっている。素子の一方の外側面上には上記複数の第1の電極12b、12b′同士を導電接続する外面接続部12eが設けられ、また、他方の外側面上には上記複数の第2の電極12c同士を導電接続する外面接続部12fが設けられる。これらの外面接続部12e及び12fは、上記電極12cと同様の銀ペースト等の導電ペーストを焼結することによって形成されるか、或いは、半田等の他の導電材によって形成される。   In the illustrated example, in the piezoelectric driving element 12, a plurality of first electrodes 12b, 12b 'and a second electrode 12c are provided in the stacking direction (thickness direction), and a plurality of these electrodes 12b, 12b' and 12c are provided. The piezoelectric ceramic layer 12a is sandwiched between both sides. An outer surface connection portion 12e for conductively connecting the plurality of first electrodes 12b and 12b 'is provided on one outer surface of the element, and the plurality of second electrodes 12c on the other outer surface. An outer surface connection portion 12f for conductively connecting each other is provided. These outer surface connection portions 12e and 12f are formed by sintering a conductive paste such as a silver paste similar to the electrode 12c, or are formed of other conductive materials such as solder.

圧電駆動素子12において、第2の電極12cと絶縁セラミック層12dの間の密着性は、圧電セラミック層12aと第1の電極12b及び第2の電極12cとの密着性と同様に高いが、特に、第2の電極12cが形成されない平面範囲、例えば、圧電セラミック層12aの外周部などにおいて圧電セラミック層12aと絶縁セラミック層12dとが直接密着した状態とされることによってさらに高い密着性(一体性)が得られる。なお、図1及び図3においては圧電セラミック層12aを破線で示すように2層構造で描いてあるが、これは、後述するように2層のセラミック生シートを重ねて1層の圧電セラミック層12aを形成していることを示すものに過ぎず、結果的には一体の圧電セラミック層12aが形成されている。また、このように複数のセラミック生シートを重ねて圧電セラミック層12aを形成する場合に限らず、単層のセラミック生シートで圧電セラミック層12aを形成してもよいことは当然である。さらに、絶縁セラミック層12dとこれに隣接する圧電セラミック層12aとは図示例のように電極層を介在させた部分と直接接続された部分を有し、焼結処理が施されることにより両層は一体化される。また、複数の圧電セラミック層12aの間も同様に一体化される。   In the piezoelectric driving element 12, the adhesion between the second electrode 12c and the insulating ceramic layer 12d is as high as the adhesion between the piezoelectric ceramic layer 12a, the first electrode 12b, and the second electrode 12c. Further, when the piezoelectric ceramic layer 12a and the insulating ceramic layer 12d are in direct contact with each other in a plane range where the second electrode 12c is not formed, for example, in the outer peripheral portion of the piezoelectric ceramic layer 12a, higher adhesion (integration) ) Is obtained. In FIG. 1 and FIG. 3, the piezoelectric ceramic layer 12a is drawn in a two-layer structure as indicated by a broken line. This is because one piezoelectric ceramic layer is formed by stacking two ceramic raw sheets as will be described later. It only shows that 12a is formed, and as a result, the integral piezoelectric ceramic layer 12a is formed. In addition, the piezoelectric ceramic layer 12a may be formed of a single layer of ceramic raw sheet, not limited to the case where the piezoelectric ceramic layer 12a is formed by stacking a plurality of ceramic raw sheets in this way. Further, the insulating ceramic layer 12d and the piezoelectric ceramic layer 12a adjacent to the insulating ceramic layer 12d have a portion directly connected to the portion where the electrode layer is interposed as shown in the illustrated example. Are integrated. The plurality of piezoelectric ceramic layers 12a are similarly integrated.

圧電駆動素子12には、図示例のように構成された後に、第1の電極12b、12b′と第2の電極12cとの間に高電圧を印加することで、圧電セラミック層12aの分極処理が施される。当該分極処理は、本実施形態では上記絶縁セラミック層12dには施されない。ただし、分極処理時において上記電極12b、12b′、12c以外の補助電極(図示せず)を用いるなどして、絶縁セラミック層12dにも分極処理が施されるようにしてもよい。この場合、駆動方式や電極構造によっても異なるが、駆動時において絶縁セラミック層12dに印加される電界方向との関係で、他の圧電セラミック層12aの変形と同じ向きに絶縁セラミック層12dも変形するよう(向き)に分極処理が施されることが好ましい。図示例では、例えば、第2の電極12cと図示しない補助電極との間に厚み方向に上記のような向きの所定の電界を印加しながら実施する。   After the piezoelectric drive element 12 is configured as shown in the drawing, a high voltage is applied between the first electrodes 12b and 12b 'and the second electrode 12c, so that the piezoelectric ceramic layer 12a is polarized. Is given. The polarization process is not performed on the insulating ceramic layer 12d in the present embodiment. However, the polarization treatment may be performed on the insulating ceramic layer 12d by using an auxiliary electrode (not shown) other than the electrodes 12b, 12b 'and 12c. In this case, although depending on the driving method and the electrode structure, the insulating ceramic layer 12d is also deformed in the same direction as the deformation of the other piezoelectric ceramic layers 12a in relation to the direction of the electric field applied to the insulating ceramic layer 12d during driving. It is preferable that the polarization treatment is performed in such a manner (direction). In the example of illustration, it implements, for example, applying the predetermined electric field of the above directions in the thickness direction between the 2nd electrode 12c and the auxiliary electrode which is not shown in figure.

圧電駆動素子12の上面には、圧電セラミック層12aの上面を覆う第1の電極12b′が配置されるとともに、当該第1の電極12b′と離間して、これと同層に、第2の電極12cに導電接続された張出電極部12c′も配置される。図示例では圧電セラミック層12a上に第1の電極12b′と張出電極部12c′が共に配置され、これによって圧電駆動素子12をコンパクトに構成できると同時に第1の電極12b′と張出電極部12c′の双方に対する電気的接続が容易になる。図示例では、図3及び図4に示すように、圧電駆動素子12の上面にそれぞれ露出する上記の第1の電極12b′と張出電極部12c′の表面上に接続端子片12g、12hが導電接続された状態で配置され、これらの接続端子片12g、12hに対して駆動配線14,15がそれぞれ導電接続される。   A first electrode 12b ′ covering the upper surface of the piezoelectric ceramic layer 12a is disposed on the upper surface of the piezoelectric driving element 12, and is spaced apart from the first electrode 12b ′ and is formed in the same layer as the second electrode 12b ′. An overhanging electrode portion 12c ′ electrically connected to the electrode 12c is also disposed. In the illustrated example, both the first electrode 12b 'and the overhanging electrode portion 12c' are disposed on the piezoelectric ceramic layer 12a, whereby the piezoelectric driving element 12 can be made compact and at the same time the first electrode 12b 'and the overhanging electrode. Electrical connection to both of the portions 12c ′ is facilitated. In the illustrated example, as shown in FIGS. 3 and 4, connection terminal pieces 12 g and 12 h are provided on the surfaces of the first electrode 12 b ′ and the overhang electrode portion 12 c ′ exposed on the upper surface of the piezoelectric driving element 12, respectively. The drive wirings 14 and 15 are conductively connected to the connection terminal pieces 12g and 12h, respectively.

なお、上記のように第1の電極12b′と張出電極部12c′とが同層に配置されるように構成した図示例とは異なる態様ではあるが、圧電駆動素子12の上面に、第1の電極12b′を他の第1の電極12bと同様の平面範囲に形成し、或いは、図示の張出電極部12c′と平面的に重なる範囲まで広げて形成し、当該張出電極部12c′を図示しない絶縁層を介して第1の電極12b′の一部上に平面的に重ねて配置してもよい。この場合でも第1の電極12b′と張出電極部12c′とは上記絶縁層を挟んで離間して配置される。この場合においても、接続端子片12g又は駆動配線14を第1の電極12b′の表面のうち上記張出電極部12c′及び上記絶縁層に被覆されていない部分において導電接続することができ、接続端子片12h又は駆動配線15を当該張出電極部12c′に導電接続することができるので、製造工数が増加するものの、上記と同様の効果が得られる。
また、この場合には、上述のように最上層の圧電セラミック層12aにおいて駆動電圧が印加されない領域をさらに低減でき、或いは、無くすことができるので、圧電性能の低下を防止できる。
The first electrode 12b ′ and the overhanging electrode portion 12c ′ are different from the illustrated example in which the first electrode 12b ′ and the overhanging electrode portion 12c ′ are arranged in the same layer as described above. One electrode 12b 'is formed in the same plane area as the other first electrode 12b, or is formed so as to extend in a plane overlapping the illustrated extension electrode part 12c', and the extension electrode part 12c 'May be arranged in a planar manner on a part of the first electrode 12b' through an insulating layer (not shown). Even in this case, the first electrode 12b 'and the overhanging electrode portion 12c' are spaced apart with the insulating layer interposed therebetween. Even in this case, the connection terminal piece 12g or the drive wiring 14 can be conductively connected at the portion of the surface of the first electrode 12b 'that is not covered with the overhanging electrode portion 12c' and the insulating layer. Since the terminal piece 12h or the drive wiring 15 can be conductively connected to the overhanging electrode portion 12c ′, the same effects as described above can be obtained although the number of manufacturing steps increases.
In this case, as described above, the region where the drive voltage is not applied in the uppermost piezoelectric ceramic layer 12a can be further reduced or eliminated, so that the deterioration of the piezoelectric performance can be prevented.

張出電極部12c′の形成面積は第1の電極12b′の形成面積よりも小さいことが好ましく、特に、半分以下であることが好ましく、図示例のように1/3以下であることがさらに望ましい。これは、最上層の圧電セラミック層12aに対する第1の電極12b′による電圧印加範囲を大きくするためである。この場合に、張出電極部12c′は図示例のように第2の電極12cに対して外面接続部12fを介して導電接続される。   The formation area of the overhanging electrode portion 12c ′ is preferably smaller than the formation area of the first electrode 12b ′, in particular, preferably half or less, and more preferably 1/3 or less as in the illustrated example. desirable. This is to increase the voltage application range by the first electrode 12b 'for the uppermost piezoelectric ceramic layer 12a. In this case, the overhang electrode portion 12c ′ is conductively connected to the second electrode 12c through the outer surface connection portion 12f as shown in the example of the drawing.

また、圧電セラミック層12aの伸縮動作に伴う歪を抑制するために第1の電極12b′と張出電極部12c′とは長さ方向(図示左右方向)に配列されていることが好ましい。これは、圧電駆動体10の撓み方向が長さ方向となるので、当該撓み方向と異なる方向に電界印加領域と、電界無印加領域とが配置されないようにして両領域間に生ずる歪による影響を低減するためである。   Moreover, in order to suppress the distortion accompanying the expansion / contraction operation of the piezoelectric ceramic layer 12a, it is preferable that the first electrode 12b ′ and the overhanging electrode portion 12c ′ are arranged in the length direction (left-right direction in the drawing). This is because the bending direction of the piezoelectric driving body 10 is the length direction, so that the electric field application region and the non-electric field application region are not arranged in a direction different from the bending direction, and this is affected by the distortion generated between the two regions. This is to reduce.

なお、上記構成は一例であり、たとえば、圧電駆動素子12の上面に圧電セラミック層12aを覆う第1の電極12b′のみを配置し、圧電駆動素子12の側面(例えば、長さ方向の一方の側面上に形成された上記外面接続部12f)上で第2の電極12cが駆動配線15と導電接続されるように構成してもよい。もちろん、第1の電極12b、12b′についても、側面(例えば、長さ方向の他方の側面上に形成された上記外面接続部12e)上で駆動配線14と導電接続されるように構成してもよい。   The above configuration is an example. For example, only the first electrode 12b ′ covering the piezoelectric ceramic layer 12a is disposed on the upper surface of the piezoelectric driving element 12, and the side surface of the piezoelectric driving element 12 (for example, one of the longitudinal directions) The second electrode 12c may be conductively connected to the drive wiring 15 on the outer surface connection portion 12f) formed on the side surface. Of course, the first electrodes 12b and 12b ′ are also configured to be conductively connected to the drive wiring 14 on the side surface (for example, the outer surface connection portion 12e formed on the other side surface in the length direction). Also good.

接着剤13は特に限定されないが、圧電駆動素子12と金属ばね板11とを強固に固定できるものが好ましく、圧電駆動素子12の駆動力によって剥がれが生じないものが選定される。このような接着剤13は特に限定されないが、絶縁セラミック層12dと金属ばね11に対する接着性が良好であるものが好ましい。なお、ウレタン系接着剤やシリコーン系接着剤を用いると接着剤の硬度が不足して剥離の危険性が高まる場合があるので、高い硬度を得ることができる接着剤、例えば、エポキシ系接着剤を用いることが望ましい。   The adhesive 13 is not particularly limited, but an adhesive that can firmly fix the piezoelectric driving element 12 and the metal spring plate 11 is preferable, and an adhesive that does not peel off due to the driving force of the piezoelectric driving element 12 is selected. Such an adhesive 13 is not particularly limited, but an adhesive having good adhesion to the insulating ceramic layer 12d and the metal spring 11 is preferable. In addition, since the adhesive hardness may be insufficient if the urethane adhesive or silicone adhesive is used, the risk of peeling may increase, so an adhesive capable of obtaining high hardness, for example, an epoxy adhesive may be used. It is desirable to use it.

本実施形態では、図1及び図2に示す状態で圧電駆動素子12を接着剤13を介して金属ばね板11に接着することで、図3及び図4に示すように構成される。また、本実施形態では、一対の圧電駆動素子12を金属ばね板11の表裏にそれぞれ接着し、バイモルフ型の圧電駆動体を構成しているが、これに限らず、金属ばね板11の片面上にのみ圧電駆動素子12を接着したユニモルフ型の圧電駆動体を構成してもよい。図示例の場合、接続端子片12g、12hはそれぞれ帯状の導電フィルムで構成される。   In the present embodiment, the piezoelectric drive element 12 is bonded to the metal spring plate 11 via the adhesive 13 in the state shown in FIGS. 1 and 2, thereby being configured as shown in FIGS. 3 and 4. In the present embodiment, a pair of piezoelectric drive elements 12 are bonded to the front and back surfaces of the metal spring plate 11 to form a bimorph type piezoelectric drive body. Alternatively, a unimorph type piezoelectric driving body in which the piezoelectric driving element 12 is bonded may be configured. In the case of the illustrated example, the connection terminal pieces 12g and 12h are each composed of a strip-shaped conductive film.

接続端子片12gは、一方の圧電駆動素子12の上記第1の電極12b′に導電接続され、ここから当該圧電駆動素子12及び金属ばね板11の幅方向の側面上を通過し、もう一つの圧電駆動素子12の幅方向の側面上をさらに通過して当該もう一方の圧電駆動素子12の第1の電極12b′の上面上に延在して導電接続される。また、接続端子片12hは、一方の圧電駆動素子12の上記張出電極部12c′に導電接続され、ここから当該圧電駆動素子12及び金属ばね板11の幅方向の側面上を通過し、もう一つの圧電駆動素子12の幅方向の側面上をさらに通過して当該もう一方の圧電駆動素子12の張出電極部12c′の上面上に延在して導電接続される。   The connection terminal piece 12g is conductively connected to the first electrode 12b 'of one piezoelectric driving element 12, and passes from the side in the width direction of the piezoelectric driving element 12 and the metal spring plate 11 from there. The piezoelectric drive element 12 further passes on the side surface in the width direction and extends on the upper surface of the first electrode 12b ′ of the other piezoelectric drive element 12 to be conductively connected. The connection terminal piece 12h is conductively connected to the overhanging electrode portion 12c 'of one piezoelectric drive element 12, and passes from the side in the width direction of the piezoelectric drive element 12 and the metal spring plate 11 from here. One piezoelectric drive element 12 further passes on the side surface in the width direction and extends onto the upper surface of the overhanging electrode portion 12c ′ of the other piezoelectric drive element 12 to be conductively connected.

図4は実際の圧電駆動体10の寸法に近い全体形状を示す平面図(a)及び側面図(b)である。図4に示すように、金属ばね板11は、長さ方向(図示左右方向)の両端部に、それぞれ固定孔11aが設けられてなる取付部11b、11bを有し、また、金属ばね板11の当該取付部11b、11bの間には上述の圧電駆動素子12が接着される接着領域11cが設けられる。この圧電駆動素子12の上面には、上記第1の電極12b′と張出電極部12c′が長さ方向に配列された状態で形成されている。   FIG. 4 is a plan view (a) and a side view (b) showing an overall shape close to the dimensions of the actual piezoelectric driving body 10. As shown in FIG. 4, the metal spring plate 11 has mounting portions 11 b and 11 b each provided with a fixing hole 11 a at both ends in the length direction (the left-right direction in the drawing), and the metal spring plate 11. Between the attachment portions 11b and 11b, an adhesion region 11c to which the above-described piezoelectric driving element 12 is adhered is provided. On the upper surface of the piezoelectric driving element 12, the first electrode 12b 'and the overhanging electrode portion 12c' are formed in a state of being arranged in the length direction.

図5は、異なる実施形態の圧電駆動体10の構造を示す平面図(a)、一部を断面で示す右側面図(b)及び左側面図(c)である。なお、図5(b)及び(c)において、圧電駆動素子12については厚み方向に拡大して示してあり、実際の厚み方向の寸法は図4(b)に示す態様に近いものである。また、図5において先の実施形態と同様の部分には同一符号を付し、それらの説明は省略する。   FIG. 5 is a plan view (a) showing the structure of the piezoelectric driving body 10 of a different embodiment, a right side view (b) and a left side view (c) partially showing a cross section. 5 (b) and 5 (c), the piezoelectric drive element 12 is shown enlarged in the thickness direction, and the actual dimension in the thickness direction is close to the mode shown in FIG. 4 (b). In FIG. 5, the same reference numerals are given to the same parts as those in the previous embodiment, and the description thereof is omitted.

本実施形態では、先の実施形態における接続端子片12g、12hに相当するものをフレキシブル配線基板(FPC)等で構成される配線部材16で構成している。配線部材16は、ポリイミド樹脂などの合成樹脂等で構成される基体16aの表面(図示例では外面)上に銅箔やアルミニウム層等で構成される配線パターン16b、16cが形成されたものである。配線パターン16b、16cの先端には導電接続部16b′、16c′が設けられ、これらの導電接続部16b′、16c′は導電接着剤16d等を介して上記第1の電極12b′、張出電極部12c′に導電接続されている。   In this embodiment, what is equivalent to the connection terminal pieces 12g and 12h in the previous embodiment is constituted by the wiring member 16 constituted by a flexible wiring board (FPC) or the like. The wiring member 16 is formed by forming wiring patterns 16b and 16c made of a copper foil, an aluminum layer, etc. on the surface (outer surface in the illustrated example) made of a synthetic resin such as a polyimide resin. . Conductive connection portions 16b 'and 16c' are provided at the tips of the wiring patterns 16b and 16c, and these conductive connection portions 16b 'and 16c' are connected to the first electrode 12b 'and the overhang through the conductive adhesive 16d and the like. The electrode portion 12c 'is conductively connected.

導電接続部16b′、16c′は基体16aの表面上に形成された配線パターン16b、16cに接続されているともに基体16aの表裏を貫通するようにして基体16aの裏面上に露出し、上記導電接着剤16d等を介して上記第1の電極12b′、張出電極部12c′に導電接続される。また、配線パターン16b、16cは金属ばね板11の表裏にそれぞれ接着された一対の圧電駆動素子12、12に導電接続される。配線パターン16b、16cは、好ましくは金属ばね板11の側方位置で駆動配線14、15に対し半田等の接続箇所14a、15aにおいてそれぞれ導電接続される。したがって、本実施形態の配線部材16は、先の実施形態の接続端子片12gと12hを一体に構成するものとなっている。   The conductive connection portions 16b 'and 16c' are connected to the wiring patterns 16b and 16c formed on the surface of the base body 16a and are exposed on the back surface of the base body 16a so as to penetrate the front and back surfaces of the base body 16a. Conductive connection is made to the first electrode 12b 'and the overhanging electrode portion 12c' via an adhesive 16d or the like. The wiring patterns 16 b and 16 c are conductively connected to a pair of piezoelectric drive elements 12 and 12 bonded to the front and back of the metal spring plate 11, respectively. The wiring patterns 16b and 16c are preferably conductively connected to the drive wirings 14 and 15 at the connection positions 14a and 15a such as solder at the side positions of the metal spring plate 11, respectively. Therefore, the wiring member 16 of the present embodiment integrally constitutes the connection terminal pieces 12g and 12h of the previous embodiment.

本実施形態では、先の実施形態と同様に圧電駆動素子12の上面に第1の電極12b′と張出電極部12c′が共に配置されていることで、一体の配線部材16に設けられた配線パターン16bと16cをそれぞれ圧電駆動素子12に接続することができ、配線接続構造を簡易なものとすることができる。   In the present embodiment, the first electrode 12b ′ and the overhanging electrode portion 12c ′ are disposed on the upper surface of the piezoelectric driving element 12 as in the previous embodiment, so that the first wiring member 16 is provided on the integrated wiring member 16. The wiring patterns 16b and 16c can be connected to the piezoelectric drive element 12, respectively, and the wiring connection structure can be simplified.

本実施形態では、図6に示すように、基台1上に取付部2を介して上述の圧電駆動体10、10を接続し、これらの圧電駆動体10、10にさらに板ばね状の振動ばね3,3を接続して取付部4を介して搬送体5に接続することで、部品搬送装置20を構成することができる。ここで、複数の圧電駆動体10、10は搬送方向Fに離間した位置において振動ばね3を介して搬送体5に接続される。この部品搬送装置20では、圧電駆動体10に正負の駆動電圧を交互に印加することにより搬送体5を搬送方向Fに往復振動させることができる。搬送体5には搬送方向Fに伸びる直線状の搬送トラック(図示せず)が形成され、図示しない部品は当該搬送トラック上を搬送方向Fに沿って移動する。図示例では図示左右方向に搬送体5を振動させるリニア型パーツフィーダを構成するための直線振動機を構成しているが、本実施形態の圧電駆動体10により、例えば、螺旋状の搬送トラックを備えた搬送体を回転方向に振動させる回転振動機を構成することも可能である。この場合、上記搬送方向Fは軸線回りの回転方向となる。   In the present embodiment, as shown in FIG. 6, the above-described piezoelectric driving bodies 10 and 10 are connected to the base 1 via the mounting portion 2, and the plate-like vibration is further added to these piezoelectric driving bodies 10 and 10. By connecting the springs 3 and 3 and connecting to the transport body 5 via the attachment portion 4, the component transport device 20 can be configured. Here, the plurality of piezoelectric driving bodies 10 and 10 are connected to the conveying body 5 via the vibration spring 3 at positions separated in the conveying direction F. In the component conveying device 20, the conveying body 5 can be reciprocated in the conveying direction F by alternately applying positive and negative driving voltages to the piezoelectric driving body 10. A linear transport track (not shown) extending in the transport direction F is formed on the transport body 5, and components not shown move along the transport direction F on the transport track. In the illustrated example, a linear vibrator for configuring a linear part feeder that vibrates the transport body 5 in the left-right direction in the figure is configured. However, for example, a spiral transport track is formed by the piezoelectric drive body 10 of the present embodiment. It is also possible to constitute a rotary vibrator that vibrates the provided transport body in the rotational direction. In this case, the transport direction F is a rotational direction around the axis.

図示例では、駆動端子T1とT2の間に正負の駆動電圧を交互に印加することで圧電駆動体10が長さ方向に撓み振動し、この振動は振動ばね3,3を介して搬送体5を振動させる。このとき、振動機の共振周波数は、圧電駆動体10の振動特性、振動ばね3の弾性定数、搬送体5を主とした慣性重量によって決定される。このような部品搬送装置20では、圧電駆動体10によって振動が誘起されるものの、振動態様そのものは、振動系の弾性定数や慣性重量によって決定されるので、圧電駆動体10には大きな負荷が加わり、その結果、圧電駆動素子12と金属ばね板11の間にも応力が働く。通常、金属ばね板11は十分な靭性を備えているが、圧電セラミック層12aは靭性が一般に低く、過度の負荷が加わると破断を生ずる。特に、圧電駆動素子12と金属ばね板12の接着面の一部に剥離が生ずると、応力負荷は当該剥離部分に集中するので、当該部分において圧電セラミック層12aが割れることが多い。   In the illustrated example, by alternately applying positive and negative drive voltages between the drive terminals T1 and T2, the piezoelectric drive body 10 bends and vibrates in the length direction, and this vibration is transmitted through the vibration springs 3 and 3 through the conveying body 5. Vibrate. At this time, the resonance frequency of the vibrator is determined by the vibration characteristics of the piezoelectric drive body 10, the elastic constant of the vibration spring 3, and the inertia weight mainly of the transport body 5. In such a component conveying device 20, although vibration is induced by the piezoelectric driving body 10, the vibration mode itself is determined by the elastic constant and inertia weight of the vibration system, and thus a large load is applied to the piezoelectric driving body 10. As a result, stress also acts between the piezoelectric drive element 12 and the metal spring plate 11. Normally, the metal spring plate 11 has sufficient toughness, but the piezoelectric ceramic layer 12a generally has low toughness, and breaks when an excessive load is applied. In particular, when peeling occurs on a part of the bonding surface between the piezoelectric drive element 12 and the metal spring plate 12, the stress load is concentrated on the peeling portion, and the piezoelectric ceramic layer 12a is often cracked at the portion.

次に、上記構成を有する圧電駆動素子12として、PZT製の厚み110μmの圧電セラミック層12aを5層積層し、PZT製の厚み55μmの絶縁セラミック層12dを用いたものを使用し、金属ばね板11としてJISのSUP10(クロムバナジウム鋼)の幅24mm、長さ43mm、厚み3mmのものを用いて、バイモルフ構造の圧電駆動体10を実施例として製作した。この実施例の圧電駆動体10を図5に示す部品搬送装置に組み込み、周波数240Hz、正負の駆動電圧50Vを交互に印加して駆動した。水平振幅は0.94mmであった。この条件で1か月連続して稼働させたところ、周波数の変化、振幅の変化などもなく、耐久性にも問題がないことが確認された。   Next, as the piezoelectric drive element 12 having the above-described configuration, a PZT-made piezoelectric ceramic layer 12a having a thickness of 110 μm is stacked, and a PZT-made insulating ceramic layer 12d having a thickness of 55 μm is used. A JIS SUP10 (chrome vanadium steel) having a width of 24 mm, a length of 43 mm, and a thickness of 3 mm was used as an example, and a piezoelectric driving body 10 having a bimorph structure was manufactured as an example. The piezoelectric driving body 10 of this example was incorporated in the component conveying apparatus shown in FIG. 5, and was driven by alternately applying a frequency of 240 Hz and a positive / negative driving voltage of 50V. The horizontal amplitude was 0.94 mm. When operated continuously for one month under these conditions, it was confirmed that there was no change in frequency, no change in amplitude, and there was no problem in durability.

[比較例1]
一方、上記の圧電駆動素子12と同じ圧電セラミック層12aの積層構造を有するが絶縁セラミック層12dを設けない圧電駆動素子を、上記と同様の金属ばね板11に接着してバイモルフ構造の圧電駆動体を形成した。このとき、上記圧電駆動素子と金属ばね板11との間にガラスエポキシ製で表面に銅箔による配線パターンを備えた厚み0.2mmの絶縁基板を介在させ、当該絶縁基板と圧電駆動素子、当該絶縁基板と金属ばね板11との間をエポキシ系の接着剤で接着したものを比較例1として製作した。なお、上記配線パターンは裏面側の電極と導電接続され、上記駆動配線に接続される。この比較例1を図5に示す部品搬送装置に組み込み、周波数246.1Hz、正負の駆動電圧50Vを交互に印加して駆動した。水平振幅は0.94mmであった。この条件で駆動を開始して5分後に水平振幅が0.52mmに低下した直後に圧電駆動素子が破断した。この圧電駆動体を調べたところ、上記絶縁基板と金属ばね板との間に幅方向に延在した剥離部分が観察され、当該剥離部分に対応する位置で圧電駆動素子が割れていた。これは、絶縁基板と金属ばね板との接着性が不十分であるとともに、絶縁基板の剛性が低いために剥離が生じ、当該剥離部分に応力が集中した結果、圧電駆動素子が破損したものと考えられる。
[Comparative Example 1]
On the other hand, a piezoelectric driving element having the same piezoelectric ceramic layer 12a as that of the piezoelectric driving element 12 but not provided with the insulating ceramic layer 12d is bonded to the metal spring plate 11 similar to the above to form a bimorph piezoelectric driving body. Formed. At this time, an insulating substrate made of glass epoxy and having a wiring pattern made of copper foil on the surface is interposed between the piezoelectric driving element and the metal spring plate 11, and the insulating substrate, the piezoelectric driving element, A comparative example 1 was manufactured by bonding an insulating substrate and a metal spring plate 11 with an epoxy adhesive. The wiring pattern is conductively connected to the electrode on the back surface side and is connected to the driving wiring. The comparative example 1 was incorporated in the component conveying apparatus shown in FIG. 5 and driven by alternately applying a frequency of 246.1 Hz and a positive / negative drive voltage of 50V. The horizontal amplitude was 0.94 mm. The piezoelectric driving element was broken immediately after the horizontal amplitude dropped to 0.52 mm 5 minutes after starting driving under these conditions. When this piezoelectric driving body was examined, a peeling portion extending in the width direction was observed between the insulating substrate and the metal spring plate, and the piezoelectric driving element was cracked at a position corresponding to the peeling portion. This is because the adhesion between the insulating substrate and the metal spring plate is inadequate, and the insulating substrate has low rigidity, so that peeling occurs and stress concentrates on the peeling portion, resulting in damage to the piezoelectric drive element. Conceivable.

[比較例2]
また、上記の圧電駆動素子12と同じ圧電セラミック層12aの積層構造を有するが絶縁セラミック層12dを設けない圧電駆動素子(裏面上に第2の電極12cが露出した構造を有するもの)を、上記と同様の金属ばね板11に接着してバイモルフ構造の圧電駆動体を形成した。このとき、上記圧電駆動素子と金属ばね板11との間にアルミナ(Al)製の厚み0.625mmと0.5mmの絶縁セラミック基板をそれぞれ介在させ、当該絶縁セラミック基板と圧電駆動素子、当該絶縁セラミック基板と金属ばね板11との間をエポキシ系の接着剤で接着したものを2種の比較例2として製作した。これらの比較例2を図5に示す部品搬送装置に組み込み、周波数240〜250Hz、正負の駆動電圧50Vを交互に印加して駆動した。水平振幅はいずれも0.60mm以下であった。これは、上記の実施例及び比較例1に比べて駆動力が大幅に低下していることを示している。また、この条件で駆動を開始してしばらくして圧電駆動素子が破断した。この圧電駆動体を調べたところ、上記絶縁セラミック基板と圧電駆動素子との間に幅方向に延在した剥離部分が観察され、当該剥離部分に対応する位置で圧電駆動素子が割れていた。破断時点は上記比較例1より時間が経過した後であった。これは、絶縁セラミック基板と金属ばね板11との間の接着力は強固であるが、絶縁セラミック基板が変形しにくいため、駆動力のロスが生ずるとともに圧電駆動素子と絶縁セラミック基板との間の接着層に応力が加わって剥離が生じ、当該剥離部分に応力が集中した結果、圧電駆動素子が破損したものと考えられる。
[Comparative Example 2]
Further, a piezoelectric driving element having a laminated structure of the same piezoelectric ceramic layer 12a as the above-described piezoelectric driving element 12 but not provided with an insulating ceramic layer 12d (having a structure in which the second electrode 12c is exposed on the back surface) is described above. A piezoelectric drive body having a bimorph structure was formed by adhering to the same metal spring plate 11. In this case, alumina (Al 2 O 3) made in the thickness 0.625mm and 0.5mm of insulating ceramic substrate were respectively interposed between the piezoelectric drive element and the metal spring plate 11, the insulating ceramic substrate and the piezoelectric drive element Two types of comparative examples 2 were produced by bonding the insulating ceramic substrate and the metal spring plate 11 with an epoxy adhesive. These Comparative Examples 2 were incorporated in the component conveying apparatus shown in FIG. 5, and were driven by alternately applying a frequency of 240 to 250 Hz and a positive / negative drive voltage of 50V. The horizontal amplitudes were all 0.60 mm or less. This indicates that the driving force is greatly reduced as compared with the above-described example and comparative example 1. Further, the piezoelectric driving element broke after a while after starting driving under these conditions. When this piezoelectric driving body was examined, a peeling portion extending in the width direction was observed between the insulating ceramic substrate and the piezoelectric driving element, and the piezoelectric driving element was cracked at a position corresponding to the peeling portion. The time of break was after a lapse of time from Comparative Example 1 above. This is because the adhesive force between the insulating ceramic substrate and the metal spring plate 11 is strong, but since the insulating ceramic substrate is difficult to deform, a loss of driving force occurs and the piezoelectric driving element and the insulating ceramic substrate are not deformed. It is considered that the piezoelectric drive element was damaged as a result of the stress being applied to the adhesive layer to cause peeling and the stress being concentrated on the peeled portion.

以上のように、本実施形態では、絶縁セラミック層12dを予め圧電駆動素子12に一体化して形成することで、金属ばね板11との接着強度も高くなり、剥離による圧電駆動素子12の破損が生じなくなるとともに、駆動力のロスも少なくなることが判明した。すなわち、本実施形態の圧電駆動体10は耐久性に優れるとともに駆動効率も高いものとなった。特に、絶縁セラミック層12dとして圧電セラミック層12aよりも薄いものを用いることで、駆動力のロスが低減されることが判明した。また、絶縁セラミック層12dを圧電セラミック層12aと同じ材質を用いることで、機械的特性の相違がなくなるため、剥離もしにくくなるのではないかと思われる。   As described above, in the present embodiment, the insulating ceramic layer 12d is previously formed integrally with the piezoelectric driving element 12, so that the adhesive strength with the metal spring plate 11 is increased, and the piezoelectric driving element 12 is damaged due to peeling. It was found that the loss of driving force and the loss of driving force were reduced. That is, the piezoelectric driving body 10 of the present embodiment has excellent durability and high driving efficiency. In particular, it has been found that the loss of driving force is reduced by using a thinner insulating ceramic layer 12d than the piezoelectric ceramic layer 12a. Moreover, since the difference in mechanical characteristics is eliminated by using the same material for the insulating ceramic layer 12d as that of the piezoelectric ceramic layer 12a, it may be difficult to peel off.

尚、本発明の振動式搬送装置用圧電駆動体及び振動式搬送装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では複数の圧電セラミック層を積層した積層型圧電駆動素子を用いたが、単層の圧電セラミック層を備えた圧電駆動素子であっても構わない In addition, the piezoelectric drive body and the vibration type conveying device for the vibration type conveying device of the present invention are not limited to the above illustrated examples, and various modifications can be made without departing from the gist of the present invention. Of course. For example, in the above embodiment using the laminated piezoelectric driving element formed by stacking a plurality of piezoelectric ceramic layers, but it may be a piezoelectric drive device having a piezoelectric ceramic layer of a single layer.

10…圧電駆動体、11…金属ばね板、12…圧電駆動素子、12a…圧電セラミック層、12b、12b′…第1の電極、12c…第2の電極、12c′…張出接続部、12d…絶縁セラミック層、12e、12f…外面接続部、12g、12h…接続端子、13…接着剤(接着層)、14、15…駆動配線、16…配線部材、16a…基体、16b、16c…配線パターン、16b′、16c′…導電接続部、1…基台、2…取付部、3…振動ばね、4…取付部、5…搬送体、20…振動式搬送装置 DESCRIPTION OF SYMBOLS 10 ... Piezoelectric drive body, 11 ... Metal spring board, 12 ... Piezoelectric drive element, 12a ... Piezoelectric ceramic layer, 12b, 12b '... 1st electrode, 12c ... 2nd electrode, 12c' ... Overhang connection part, 12d ... Insulating ceramic layer, 12e, 12f ... External connection part, 12g, 12h ... Connection terminal, 13 ... Adhesive (adhesive layer), 14, 15 ... Drive wiring, 16 ... Wiring member, 16a ... Base, 16b, 16c ... Wiring Patterns, 16b ', 16c' ... conductive connection part, 1 ... base, 2 ... mounting part, 3 ... vibration spring, 4 ... mounting part, 5 ... transport body, 20 ... vibratory transfer device

Claims (7)

金属ばね板と、
該金属ばね板に重なるように配置され、圧電セラミック層、該圧電セラミック層の表裏に配置される第1の電極及び第2の電極、並びに、裏面上に露出し前記第1の電極若しくは前記第2の電極を被覆する絶縁セラミック層を一体に焼結させることにより形成された圧電駆動素子と、
該絶縁セラミック層と前記金属ばね板を接着する接着層と、
を具備することを特徴とする圧電駆動体。
A metal spring plate;
The piezoelectric ceramic layer, the first electrode and the second electrode arranged on the front and back surfaces of the piezoelectric ceramic layer, and the first electrode or the first electrode exposed on the back surface are arranged to overlap the metal spring plate. A piezoelectric driving element formed by integrally sintering an insulating ceramic layer covering two electrodes;
An adhesive layer for bonding the insulating ceramic layer and the metal spring plate;
A piezoelectric driver characterized by comprising:
前記絶縁セラミック層が前記圧電セラミック層と同材質で構成されることを特徴とする請求項1に記載の圧電駆動体。   The piezoelectric driver according to claim 1, wherein the insulating ceramic layer is made of the same material as the piezoelectric ceramic layer. 前記絶縁セラミック層は前記圧電セラミック層より薄いことを特徴とする請求項1又は2に記載の圧電駆動体。   The piezoelectric driver according to claim 1, wherein the insulating ceramic layer is thinner than the piezoelectric ceramic layer. 前記圧電駆動素子の上面には、前記第1の電極と、該第1の電極と離間し、前記第2の電極に導電接続された張出電極部とが設けられることを特徴とする請求項1乃至3のいずれか一項に記載の圧電駆動体。   The upper surface of the piezoelectric driving element is provided with the first electrode, and an overhang electrode portion that is separated from the first electrode and is conductively connected to the second electrode. The piezoelectric driving body according to any one of 1 to 3. 前記張出電極部は前記第1の電極と同層に形成され、前記第1の電極より小さな面積を有することを特徴とする請求項4に記載の圧電駆動体。   5. The piezoelectric driver according to claim 4, wherein the overhang electrode portion is formed in the same layer as the first electrode and has a smaller area than the first electrode. 前記圧電駆動素子では、複数の前記圧電セラミック層が前記第1の電極又は前記第2の電極を介して積層されることを特徴とする請求項1乃至5のいずれか一項に記載の圧電駆動体。   6. The piezoelectric drive according to claim 1, wherein in the piezoelectric drive element, a plurality of the piezoelectric ceramic layers are stacked via the first electrode or the second electrode. 7. body. 基台と、該基台の上方に配置された搬送体と、前記基台と前記搬送体との間に接続された圧電駆動体とを具備し、
前記圧電駆動体は、金属ばね板と、該金属ばね板に重なるように配置され、圧電セラミック層、該圧電セラミック層の表裏に配置される第1の電極及び第2の電極、並びに、裏面上に露出し前記第1の電極若しくは前記第2の電極を被覆する絶縁セラミック層を一体に焼結させることにより形成された圧電駆動素子と、該絶縁セラミック層と前記金属ばね板を接着する接着層と、を有することを特徴とする振動式搬送装置。
A base, a transport body disposed above the base, and a piezoelectric driving body connected between the base and the transport body,
The piezoelectric driver is arranged to overlap the metal spring plate, the piezoelectric ceramic layer, the first electrode and the second electrode arranged on the front and back of the piezoelectric ceramic layer, and the back surface A piezoelectric driving element formed by integrally sintering an insulating ceramic layer exposed to the first electrode or the second electrode, and an adhesive layer for bonding the insulating ceramic layer and the metal spring plate And a vibratory transfer device.
JP2009095643A 2009-04-10 2009-04-10 Vibrating transfer device Active JP4673418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009095643A JP4673418B2 (en) 2009-04-10 2009-04-10 Vibrating transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009095643A JP4673418B2 (en) 2009-04-10 2009-04-10 Vibrating transfer device

Publications (2)

Publication Number Publication Date
JP2010240628A true JP2010240628A (en) 2010-10-28
JP4673418B2 JP4673418B2 (en) 2011-04-20

Family

ID=43094298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009095643A Active JP4673418B2 (en) 2009-04-10 2009-04-10 Vibrating transfer device

Country Status (1)

Country Link
JP (1) JP4673418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018042231A (en) * 2016-09-01 2018-03-15 Tdk株式会社 Oscillation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551334A (en) * 2020-06-12 2020-08-18 苏州苏试试验集团股份有限公司 Guiding device of electric vibration table and electric vibration table

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261341A (en) * 2001-02-28 2002-09-13 Taiyo Yuden Co Ltd Piezoelectric element, piezoelectric driving body, and electronic device
JP2003134852A (en) * 2001-10-23 2003-05-09 Sanki:Kk Piezoelectric driver element for conveying equipment
JP2004128135A (en) * 2002-10-01 2004-04-22 Hitachi Metals Ltd Ceramic laminate
JP2006101556A (en) * 2005-12-26 2006-04-13 Soshin Electric Co Ltd Passive component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261341A (en) * 2001-02-28 2002-09-13 Taiyo Yuden Co Ltd Piezoelectric element, piezoelectric driving body, and electronic device
JP2003134852A (en) * 2001-10-23 2003-05-09 Sanki:Kk Piezoelectric driver element for conveying equipment
JP2004128135A (en) * 2002-10-01 2004-04-22 Hitachi Metals Ltd Ceramic laminate
JP2006101556A (en) * 2005-12-26 2006-04-13 Soshin Electric Co Ltd Passive component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018042231A (en) * 2016-09-01 2018-03-15 Tdk株式会社 Oscillation device

Also Published As

Publication number Publication date
JP4673418B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
TWI545968B (en) Piezoelectric actuators, piezoelectric vibrators and mobile terminals
JP6228994B2 (en) Piezoelectric element and piezoelectric vibration device including the same, portable terminal, sound generator, sound generator, electronic device
TWI520389B (en) Piezoelectric actuators, piezoelectric vibrators and mobile terminals
US20090021114A1 (en) Piezoelectric Element and Ultrasonic Actuator
CN110098317B (en) Laminated piezoelectric ceramic component and piezoelectric device
JP5298999B2 (en) Multilayer piezoelectric element
US20110031848A1 (en) Multilayered piezoelectric element and ultrasonic motor
JPWO2012060236A1 (en) Multilayer piezoelectric actuator and piezoelectric vibration device
JP4673418B2 (en) Vibrating transfer device
JP5319195B2 (en) Vibrator
US11189777B2 (en) Multilayer piezoelectric element and vibrating device
JP5429141B2 (en) Piezoelectric actuator and method for manufacturing piezoelectric actuator
JP3535111B2 (en) Piezo actuator
CN110213704B (en) Vibration generating device and electronic apparatus
JP6720959B2 (en) Vibrating device
JP5680202B2 (en) Piezoelectric vibration device and portable terminal
JP2019134035A (en) Laminated piezoelectric ceramic component and piezoelectric device
KR101685104B1 (en) Piezoelectric device and method of manufacturing the same
JP2017118424A (en) Acoustic generator, acoustic generation device and electronic apparatus
JP5589395B2 (en) Piezoelectric actuator
JP7200796B2 (en) Piezoelectric element
JP4516365B2 (en) Ultrasonic motor
JP6733641B2 (en) Vibrating device
JP2018107251A (en) Piezoelectric element and piezoelectric actuator including the same
JP2006320119A (en) Ultrasonic motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4673418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250