JP2010239149A - Baking method of metal particle for mutual fusion of metal particle by high frequency electromagnetic wave irradiation, and electronic component and material for baking metal particle manufactured by employing the baking method of metal particle - Google Patents

Baking method of metal particle for mutual fusion of metal particle by high frequency electromagnetic wave irradiation, and electronic component and material for baking metal particle manufactured by employing the baking method of metal particle Download PDF

Info

Publication number
JP2010239149A
JP2010239149A JP2010140680A JP2010140680A JP2010239149A JP 2010239149 A JP2010239149 A JP 2010239149A JP 2010140680 A JP2010140680 A JP 2010140680A JP 2010140680 A JP2010140680 A JP 2010140680A JP 2010239149 A JP2010239149 A JP 2010239149A
Authority
JP
Japan
Prior art keywords
metal
wiring pattern
electromagnetic wave
metal particles
metal particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010140680A
Other languages
Japanese (ja)
Other versions
JP5184584B2 (en
Inventor
Takuya Harada
琢也 原田
Hidemichi Fujiwara
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010140680A priority Critical patent/JP5184584B2/en
Publication of JP2010239149A publication Critical patent/JP2010239149A/en
Application granted granted Critical
Publication of JP5184584B2 publication Critical patent/JP5184584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide new technical method which can manufacture a low-resistance mounting component in a short period of time even on a substrate material of low-heat resistance and a product manufactured by employing the new technical method, and a metal particle baking material for the mutual fusion of metal particles employed for the product, in a direct circuit drawing method employing the metal particle. <P>SOLUTION: The metal particle excellent in high frequency electromagnetic wave absorbing property or metal particle mixed by a sintering aid agent excellent in the absorbing property of a high frequency electromagnetic wave is coated on each kind of a substrate by surface coating or circuit patterning and, thereafter, high frequency electromagnetic wave irradiation is carried out whereby the mutual fusion method of the metal particle which heats a part of the metal particle selectively is carried out. An electronic mounting component such as a conductive material, a conductive passage, an antenna, a bump, a pad, a via or the like or a three-dimensional wiring substrate and a thermal conductive passage, a catalyst electrode and three-dimensional wiring are formed employing this method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はプリント配線基板や回路基板等の電子実装部品製造における、導電部品(導電路、バンプ等)、立体金属配線パターン、アンテナパターン、熱伝導路、触媒電極、ハンダ接合部及びその形成方法ならびに前記製品を製造する時に用いる金属粒子を相互融着するための金属粒子焼成用材料に関する。   The present invention relates to conductive parts (conductive paths, bumps, etc.), three-dimensional metal wiring patterns, antenna patterns, thermal conductive paths, catalyst electrodes, solder joints, and methods for forming the same in the manufacture of electronic mounting parts such as printed wiring boards and circuit boards. The present invention relates to a metal particle firing material for mutually fusing metal particles used in manufacturing the product.

金属微細粒子の製造技術、独立分散技術、さらには、超微量インクジェット、精密スクリーン印刷、ナノプリンティング、ナノインプリンティングによる微細配線パターンニング技術の近年の著しい発展に伴い、それら技術を応用した直接回路描画法が次世代の電子実装部品形成技術として大いに注目されている。   With the recent remarkable development of fine metal patterning technology by manufacturing technology of fine metal particles, independent dispersion technology, ultra-micro inkjet, precision screen printing, nanoprinting and nanoimprinting, direct circuit drawing using these technologies The method is attracting a great deal of attention as a next-generation electronic packaging component forming technology.

この直接回路描画法は、それまでリゾグラフィーやエッチングといった複雑な工程を経て製造されていた電子実装部品を、金属粒子の直接描画→焼成→相互融着→導電化によって製造するという手法であり、その詳細については非特許文献1第71頁に記載されている。この手法の確立により、導電回路パターン、バンプ、パッド、ビア、アンテナパターンといった電子実装部品を、安価かつ簡便に製造することが可能となると期待される。さらに、電子実装部品の熱伝導路としての利用も検討されている。   This direct circuit drawing method is a method of manufacturing electronic mounting parts that have been manufactured through complicated processes such as lithography and etching by direct drawing of metal particles → firing → mutual fusion → conductive, Details thereof are described on page 71 of Non-Patent Document 1. By establishing this method, it is expected that electronic mounting parts such as conductive circuit patterns, bumps, pads, vias, and antenna patterns can be manufactured inexpensively and easily. Furthermore, the use of electronic mounting parts as a heat conduction path is also being studied.

この直接回路描画法の重要な工程の一つに、金属粒子をパターンニングした回路基板を熱処理し、粒子を相互融着させ、粒子によって構成された回路パターンを導電化する工程がある。   One of the important steps of this direct circuit drawing method is a step of heat-treating a circuit board on which metal particles are patterned, causing the particles to fuse together, and making the circuit pattern constituted by the particles conductive.

これまでに提案されている直接回路描画法においては、この粒子を相互融着させる熱処理工程に、熱風やスチームもしくは電熱線を用いた抵抗加熱炉によって、金属粒子によって構成された回路パターン部分と下地基板部分の実装部品全体を、150℃から210℃で加熱処理することが特許文献1に記載されている。また、同じく実装部品全体を150℃で加熱処理することが特許文献2に記載されている。   In the direct circuit drawing method proposed so far, the circuit pattern portion and the base composed of metal particles are subjected to a heat treatment process in which the particles are fused together by a resistance heating furnace using hot air, steam, or heating wire. Patent Document 1 describes that the entire mounting component of the board portion is heat-treated at 150 ° C. to 210 ° C. Similarly, Patent Document 2 describes that the entire mounted component is heat-treated at 150 ° C.

しかしながら、この従来提案されていた熱処理方法では、金属粒子によって構成された回路パターンと共に下地基板部分も同等に等しく加熱されるため、使用可能な下地基板が、この熱処理時の保持温度よりも耐熱温度の高い材料に限定されるという問題があった。特に次世代の超高速電子デバイスにおいて不可欠な低抵抗の電子実装部品を作成する場合、この熱処理条件を高温・長時間に設定する必要があり、その意味で使用可能な基板材料は大きく限定されるものであった。   However, in this conventionally proposed heat treatment method, the underlying substrate portion is heated equally and together with the circuit pattern composed of metal particles, so that the usable underlying substrate has a heat resistant temperature higher than the holding temperature during this heat treatment. There was a problem that it was limited to a high material. Especially when creating electronic components with low resistance, which are indispensable for next-generation ultra-high-speed electronic devices, it is necessary to set the heat treatment conditions at high temperature and long time. In this sense, usable substrate materials are greatly limited. It was a thing.

さらに、この従来提案されていた熱処理方法では、加熱に数十分の時間を要し、生産性も低いことなどか特許文献1の実施例に記載されている。   Further, in this conventionally proposed heat treatment method, heating takes several tens of minutes, and productivity is low.

Nikkei Electronics Vol.67、No824、(2002)、p67−78.Nikkei Electronics Vol. 67, No824, (2002), p67-78. 特開2002−2999833号公報JP 2002-299983 A 特開2004−39956号公報JP 2004-39956 A

各種基板上にパターンニングされた金属粒子(金属ナノ粒子を含む)の焼成方法としては、抵抗加熱炉による熱処理があるが、この抵抗加熱炉による熱処理では、金属粒子によって構成された回路部分のみならず、金属粒子が配置されている基板全体が加熱されるという問題があった。そのために、金属粒子を用いた直接回路形成法において使用可能な基板材料は、金属粒子を相互融着・導電化するための熱処理温度と基板材料の耐熱温度の関係で決定され、電子回路として必要不可欠な要件である配線の高い導電性を実現するために熱処理温度を高く設定した場合、使用可能な基板にはその熱処理温度よりも耐熱温度の高いものしか使用できなかった。さらに、前記の金属粒子を用いた直接回路描画法においては、使用可能な下地基板が耐熱温度の高い材料に限定されるだけでなく、基板の加熱処理に時間がかかり生産性が低いという問題もあった。
本発明は上記に鑑みてなされたものであり、耐熱性の低い基板材料においても低抵抗の実装部品を短時間に作成することが可能な新しい技術手法を提供するものである。
As a firing method of metal particles (including metal nanoparticles) patterned on various substrates, there is a heat treatment by a resistance heating furnace, but in the heat treatment by this resistance heating furnace, only a circuit portion constituted by metal particles can be used. In other words, there is a problem that the entire substrate on which the metal particles are arranged is heated. Therefore, the substrate material that can be used in the direct circuit formation method using metal particles is determined by the relationship between the heat treatment temperature for mutually fusing and conducting metal particles and the heat resistance temperature of the substrate material, and is necessary as an electronic circuit. When the heat treatment temperature is set high in order to realize the high conductivity of the wiring, which is an indispensable requirement, only a substrate having a heat resistant temperature higher than the heat treatment temperature can be used. Furthermore, in the direct circuit drawing method using the metal particles, not only the usable base substrate is limited to a material having a high heat-resistant temperature, but also the problem that the heat treatment of the substrate takes time and productivity is low. there were.
The present invention has been made in view of the above, and provides a new technical technique capable of producing a low-resistance mounting component in a short time even on a substrate material having low heat resistance.

(1)金属粒子、もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子を、基板上に塗布もしくは表面パターンニングした後、高周波電磁波を照射することで、前記金属粒子もしくは前記焼結助剤を混合した金属粒子を、選択的に発熱・相互融着させて焼成することを特徴とする金属配線パターンの形成方法。(1)において、終結助剤の電磁波吸収性は、金属粒子の電磁波吸収性より高い方が望ましい。
(2)金属粒子が銀、金、銅などの導電性金属もしくはこれら金属を主成分として含有する合金であることを特徴とする(1)に記載の金属配線パターンの形成方法。
(3)金属粒子がプラチナ、パラジウム、ニッケル、ロジウム、イリジウム等の触媒金属もしくはこれら金属を主成分として含有する合金であることを特徴とする(1)に記載の金属配線パターンの形成方法。
(4)金属粒子がスズ、鉛、ビスマス、亜鉛等の低融点金属、もしくはこれら金属からなる合金を主成分とするハンダ材料であることを特徴とする(1)に記載の金属配線パターンの形成方法。
(5)金属粒子の平均粒径が1nm以上100nm以下のナノ粒子であることを特徴とする(1)から(4)のいずれかに記載の金属配線パターンの形成方法。
(6)低融点金属もしくはこれらの金属の合金からなるハンダ材料粒子の平均粒径が1nm以上1cm以下の粒子であることを特徴とする(4)に記載の金属配線パターンの形成方法。
(7)金属粒子もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子に照射する高周波電磁波の周波数が1MHz<f<300GHzであることを特徴とする(1)から(6)に記載の金属配線パターンの形成方法。
(8)焼結助剤の高周波電磁波吸収性が基板の高周波電磁波吸収性よりも高いことを特徴とする(1)から(7)のいずれかに記載の金属配線パターンの形成方法。
(9)焼結助剤がカーボンブラック、カーボンナノチューブ、カーボンフラーレン、VGCF(気相成長カーボンファイバー)を始めとするカーボン材料であることを特徴とする(1)から(8)のいずれかに記載の金属配線パターンの形成方法。
(10)焼結助剤がCr、TiO、CuO、NiO、Co、MnO、α―Fe、V等の遷移金属酸化物であることを特徴とする(1)から(8)のいずれかに記載の金属配線パターンの形成方法。
(11)焼結助剤がn型半導性を示すSnO、In、GeO,ZnO、MgO,SiO等の典型金属酸化物、もしくはITO(インジウム−スズ酸化物)を始めとする典型金属合金の酸化物であることを特徴とする(1)から(8)のいずれかに記載の金属配線パターンの形成方法。
(12)金属粒子もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子を塗布もしくは表面パターンニングする基板が、ポリイミド、ポリアミドイミド、ポリアミド、ガラスエポキシ、ポリフッ化エチレンなどを主成分とするプラスチック基板であることを特徴とする、(1)から(11)のいずれかに記載の金属配線パターンの形成方法。
(13)金属粒子もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子を塗布もしくは表面パターンニングする基板が、酸化物、ガラス、セラミックス、金属、半導体からなる群より選ばれる少なくとも1つからなる基板であることを特徴とする、(1)から(11)のいずれかに記載の金属配線パターンの形成方法。
(14)導電路と導電路の接続部、多層配線基板、バンプ、パッド、ビア、立体金属配線パターン、又は配線のハンダ接合部の作製に適用されることを特徴とする(1)から(13)のいずれかに記載の金属配線パターンの形成方法。
(15)アンテナ、電子シールド材、導電路と小型電子部品を含む電子実装部品、又は電子筐体の作製に適用されることを特徴とする(1)から(13)のいずれかに記載の金属配線パターンの形成方法。
(16)触媒電極又は熱伝導路の作製に適用されることを特徴とする(1)から(13)のいずれかに記載の金属配線パターンの形成方法。
(17)(1)から(16)のいずれかに記載の方法によって基板上に作成された金属配線パターン。
(18)高周波電磁波を吸収する金属粒子、もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子を含む金属粒子焼成用材料。
(19)(18)に記載の金属粒子焼成用材料において、金属粒子が銀、金、銅などの導電性金属もしくはこれらの金属を主成分として含有する合金又は、プラチナ、パラジウム、ニッケル、ロジウム、イリジウム等の触媒金属もしくはこれらの金属を主成分とする合金、あるいは金属粒子がスズ、鉛、ビスマス、亜鉛等の低融点金属からなる合金を主成分とする合金からなる金属粒子の焼成用材料。
(20)(18)又は(19)に記載の金属粒子焼成用材料において、含有する金属粒子の粒径が1nm以上、100nm以下のナノ粒子である金属粒子の焼成用材料。
(21)(18)から(20)のいずれかに記載の金属粒子焼成用材料であって、含有する焼結助剤がカーボンブラック、カーボンナノチューブ、カーボンフラーレン、VGCF(気相成長カーボンファイバ)を始めとするカーボン材料、又はCr、TiO、CuO、NiO、Co、MnO、α―Fe、V等の遷移金属酸化物、n型半導性を示すSnO、In、GeO,ZnO、MgO,SiO等の典型金属酸化物、もしくはITOを始めとする典型金属合金の酸化物である金属粒子焼成用材料。
(22)(18)から(21)のいずれかに記載の金属粒子焼成用材料に、有機系分散媒及び/又は有機系バインダー粒子として機能する樹脂成分と、さらに必要に応じて有機溶媒を加えたことを特徴とする金属粒子焼成用材料。
(23)(22)に記載の金属粒子焼成用材料において、添加した有機系分散媒が金属酸化物の金属成分と配位可能なアミン、アルコール、チオール等の少なくとも1種以上を含み、さらに有機バインダー樹脂がブチラール樹脂、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂から選ばれた少なくとも1種以上を含むことを特徴とする金属粒子焼成用材料。
(1) After applying metal particles or metal particles mixed with a sintering aid having high electromagnetic wave absorption properties on the substrate or patterning the surface, the metal particles or the sintering aid are irradiated by irradiating high-frequency electromagnetic waves. A method of forming a metal wiring pattern, wherein metal particles mixed with an agent are selectively heated and mutually fused and fired. In (1), the electromagnetic wave absorbability of the termination assistant is preferably higher than the electromagnetic wave absorbability of the metal particles.
(2) The method for forming a metal wiring pattern according to (1), wherein the metal particles are a conductive metal such as silver, gold or copper or an alloy containing these metals as a main component.
(3) The method for forming a metal wiring pattern according to (1), wherein the metal particles are a catalyst metal such as platinum, palladium, nickel, rhodium, iridium or an alloy containing these metals as a main component.
(4) The metal wiring pattern according to (1), wherein the metal particles are a low melting point metal such as tin, lead, bismuth, zinc, or a solder material mainly composed of an alloy made of these metals. Method.
(5) The method for forming a metal wiring pattern according to any one of (1) to (4), wherein the metal particles are nanoparticles having an average particle diameter of 1 nm to 100 nm.
(6) The method for forming a metal wiring pattern according to (4), wherein the solder material particles made of a low melting point metal or an alloy of these metals are particles having an average particle diameter of 1 nm to 1 cm.
(7) The frequency of the high frequency electromagnetic wave irradiated to the metal particles mixed with the metal particles or the sintering aid having high electromagnetic wave absorption is 1 MHz <f <300 GHz, wherein (1) to (6) A method for forming a metal wiring pattern.
(8) The method for forming a metal wiring pattern according to any one of (1) to (7), wherein the sintering aid has higher high frequency electromagnetic wave absorbability than the substrate.
(9) The sintering aid is a carbon material such as carbon black, carbon nanotube, carbon fullerene, VGCF (vapor-grown carbon fiber), and any one of (1) to (8) Metal wiring pattern forming method.
(10) The sintering aid is a transition metal oxide such as Cr 2 O 3 , TiO 2 , CuO, NiO, Co 3 O 4 , MnO 2 , α-Fe 2 O 3 , and V 2 O 3. The method for forming a metal wiring pattern according to any one of (1) to (8).
(11) Typical sintering metal oxides such as SnO 2 , In 2 O 3 , GeO 2 , ZnO, MgO, and SiO 2 , which exhibit n-type semiconductivity, or ITO (indium-tin oxide) The method for forming a metal wiring pattern according to any one of (1) to (8), wherein the metal wiring pattern is an oxide of a typical metal alloy.
(12) A plastic whose main component is a polyimide, polyamideimide, polyamide, glass epoxy, polyfluorinated ethylene, or the like, on which a substrate on which metal particles or metal particles mixed with a sintering aid having high electromagnetic wave absorption properties are coated or surface patterned is used. The method for forming a metal wiring pattern according to any one of (1) to (11), wherein the method is a substrate.
(13) The substrate on which the metal particles or the metal particles mixed with the sintering aid having a high electromagnetic wave absorption property is coated or surface-patterned is at least one selected from the group consisting of oxides, glasses, ceramics, metals, and semiconductors. The method for forming a metal wiring pattern according to any one of (1) to (11), wherein the substrate is a substrate.
(14) (1) to (13), characterized in that it is applied to the production of conductive path-to-conductive path connection parts, multilayer wiring boards, bumps, pads, vias, solid metal wiring patterns, or wiring solder joints. ) A method for forming a metal wiring pattern according to any one of
(15) The metal according to any one of (1) to (13), which is applied to manufacture of an antenna, an electronic shielding material, an electronic mounting component including a conductive path and a small electronic component, or an electronic casing A method of forming a wiring pattern.
(16) The method for forming a metal wiring pattern according to any one of (1) to (13), which is applied to manufacture of a catalyst electrode or a heat conduction path.
(17) A metal wiring pattern formed on a substrate by the method according to any one of (1) to (16).
(18) A metal particle firing material containing metal particles that absorb high-frequency electromagnetic waves or metal particles mixed with a sintering aid having high electromagnetic wave absorbability.
(19) In the metal particle firing material according to (18), the metal particles include a conductive metal such as silver, gold, or copper, or an alloy containing these metals as a main component, or platinum, palladium, nickel, rhodium, A material for firing metal particles made of a catalyst metal such as iridium or an alloy containing these metals as a main component, or an alloy containing metal alloys whose main component is a low melting point metal such as tin, lead, bismuth or zinc.
(20) The material for firing metal particles according to (18) or (19), wherein the metal particles contained are nanoparticles having a particle diameter of 1 nm or more and 100 nm or less.
(21) The material for firing metal particles according to any one of (18) to (20), wherein the sintering aid contains carbon black, carbon nanotubes, carbon fullerene, VGCF (vapor grown carbon fiber). Carbon materials such as transition metals, transition metal oxides such as Cr 2 O 3 , TiO 2 , CuO, NiO, Co 3 O 4 , MnO 2 , α-Fe 2 O 3 , V 2 O 3 , n-type semiconductor A material for firing metal particles that is a typical metal oxide such as SnO 2 , In 2 O 3 , GeO 2 , ZnO, MgO, or SiO 2 , or an oxide of a typical metal alloy such as ITO.
(22) A resin component that functions as an organic dispersion medium and / or organic binder particles and, if necessary, an organic solvent are added to the metal particle firing material according to any one of (18) to (21). A metal particle firing material characterized by the above.
(23) In the metal particle firing material according to (22), the added organic dispersion medium contains at least one or more of amine, alcohol, thiol and the like capable of coordinating with the metal component of the metal oxide, and further organic A material for firing metal particles, wherein the binder resin contains at least one selected from a butyral resin, an epoxy resin, a phenol resin, and a polyimide resin.

本発明の方法を用いて、金属粒子を基板上に表面塗布又はパターンニング後、所定の周波数の高周波電磁波を照射して選択加熱することにより、複雑な電子実装部品を、金属粒子を相互融着させて形成することができる。この方法を用いることにより、基板上に導電路やアンテナ、バンプ、パッド、ビア等や多層積層基板を含む電子部品を実装した電子基板及び基板上に熱伝導路を形成できる。このとき、電子部品形成部を選択的に加熱することから、電子部品実装基板には耐熱性を有する基板のみでなく、耐熱性の低い樹脂基板等を用いることが可能となる。   After applying or patterning metal particles onto a substrate using the method of the present invention, a high frequency electromagnetic wave of a predetermined frequency is irradiated and selectively heated, whereby a complicated electronic mounting component is fused to each other. Can be formed. By using this method, a heat conduction path can be formed on an electronic substrate and a substrate on which electronic parts including a conductive path, antenna, bump, pad, via, etc. and a multilayer laminated substrate are mounted on the substrate. At this time, since the electronic component forming portion is selectively heated, not only a substrate having heat resistance but also a resin substrate having low heat resistance can be used as the electronic component mounting substrate.

以下に本発明の高周波電磁波照射を利用した金属粒子の加熱・相互融着方法の詳細について説明する。導電路もしくはバンプ等の実装部品を構成する粒子材料として、高周波電磁波吸収性の金属粒子、もしくは高周波電磁波吸収性の優れた焼結助剤を混合した金属粒子を用い、その粒子を各種基板上に表面塗布もしくは表面パターンニングを行う。基板上への表面塗布又はパターンニング法としては、インクジェット法、ナノプリンティング法、ナノインプリンティング法等の各種回路パターンニング方法がある。ここで導電路とは、そこに電流が流れるもの、電磁誘導により電流が誘起されるもの等を含み、閉回路も開回路も含む。さらに回路の形状やパターンニングによる制約を受けないものとする。本発明における回路も同様の意味で使用しているので、必ずしも閉回路に限らない。   The details of the method for heating and mutual fusion of metal particles using high-frequency electromagnetic wave irradiation according to the present invention will be described below. Use high-frequency electromagnetic wave-absorbing metal particles or metal particles mixed with a sintering aid with excellent high-frequency electromagnetic wave absorption properties as the particle material that constitutes mounting parts such as conductive paths or bumps. Surface coating or surface patterning is performed. Examples of surface coating or patterning methods on a substrate include various circuit patterning methods such as an ink jet method, a nanoprinting method, and a nanoimprinting method. Here, the conductive path includes a current flowing therethrough, a current induced by electromagnetic induction, and the like, and includes a closed circuit and an open circuit. Further, it is assumed that there are no restrictions due to circuit shape or patterning. Since the circuit in the present invention is also used in the same meaning, it is not necessarily limited to a closed circuit.

また、金属粒子をペースト状にして塗布する時には、目的とする電子部品や導電路の形成部に応じて、ペーストの組成を選択できる。ペーストには、少なくとも高周波電磁波を吸収し、相互融着する粒子が含まれることを必須要件とするが、この他に導電性樹脂又は有機溶媒、導電性樹脂及び有機溶媒を必要に応じて混合する。混合する目的は、高周波電磁波を照射する粒子の分散状態の改善や基板との密着性の改善などのためである。   Further, when the metal particles are applied in the form of a paste, the composition of the paste can be selected according to the target electronic component and the conductive path forming part. The paste must include at least particles that absorb high-frequency electromagnetic waves and are fused together. In addition to this, a conductive resin or an organic solvent, a conductive resin, and an organic solvent are mixed as necessary. . The purpose of mixing is to improve the dispersion state of particles irradiated with high-frequency electromagnetic waves, improve the adhesion to the substrate, and the like.

高周波電磁波を吸収する金属粒子としては、銀、金、銅などの導電性金属もしくはこれら金属を主成分として含有する合金、プラチナ、パラジウム、ニッケル、ロジウム、イリジウム等の触媒金属もしくはこれら金属を主成分として含有する合金、スズ、鉛、ビスマス、亜鉛等の低融点金属もしくはこれら金属からなる合金を主成分とするハンダ材料の少なくとも一つを用いる。   Metal particles that absorb high-frequency electromagnetic waves include conductive metals such as silver, gold, and copper, alloys containing these metals as main components, catalytic metals such as platinum, palladium, nickel, rhodium, and iridium, or these metals as main components. And at least one of solder materials mainly composed of a low melting point metal such as tin, lead, bismuth and zinc or an alloy made of these metals.

さらに、場合により金属粒子に混合する高周波電磁波吸収性の優れた焼結助剤としては、カーボンブラック、カーボンナノチューブ、カーボンフラーレン、VGCF(気相成長カーボンファイバ)を始めとするカーボン材料、Cr、TiO、CuO、NiO、Co、MnO、α―Fe、V等の遷移金属酸化物、n型半導性を示すSnO、In、GeO,ZnO、MgO,SiO等の典型金属酸化物、もしくはITO(インジウム−スズ酸化物)を始めとする典型金属合金の酸化物の少なく
とも一つを用いる。
In addition, as a sintering aid having excellent high frequency electromagnetic wave absorbability mixed with metal particles in some cases, carbon materials such as carbon black, carbon nanotubes, carbon fullerene, VGCF (vapor grown carbon fiber), Cr 2 O 3 , transition metal oxides such as TiO 2 , CuO, NiO, Co 3 O 4 , MnO 2 , α-Fe 2 O 3 , V 2 O 3 , SnO 2 , In 2 O 3 exhibiting n-type semiconductivity, At least one of typical metal oxides such as GeO 2 , ZnO, MgO, and SiO 2 , or oxides of typical metal alloys such as ITO (indium-tin oxide) is used.

次に、金属粒子もしくは焼結助剤を混合した金属粒子が表面塗布もしくは回路パターンニングされた実装基板に対し、高周波電磁波の照射を行うことで、上記金属粒子もしくは焼結助剤を混合した金属粒子を選択的に加熱・相互融着させる。この金属粒子の相互融着によって各種基板上に導電性部品を形成する。   Next, the metal particles mixed with the metal particles or the sintering aid are irradiated with high-frequency electromagnetic waves on the surface of the mounting substrate on which the metal particles or the metal particles mixed with the sintering aid are coated or circuit-patterned. The particles are selectively heated and mutually fused. Conductive parts are formed on various substrates by mutual fusion of the metal particles.

本発明の最も特記すべき特徴は次の二つである。一つは、金属微細粒子を用いた直接回路描画法において、その熱処理(粒子相互融着)工程に、抵抗加熱炉ではなく、高周波電磁波照射装置を用いた点であり、もう一つは、それに使用する粒子として、高周波電磁波吸収性の金属粒子もしくは高周波電磁波吸収性の優れた焼結助剤を混合した金属粒子を用いた点である。   The most notable features of the present invention are the following two. One is that in the direct circuit drawing method using fine metal particles, a high-frequency electromagnetic wave irradiation device is used for the heat treatment (particle mutual fusion) process instead of a resistance heating furnace, and the other is As the particles to be used, high-frequency electromagnetic wave-absorbing metal particles or metal particles mixed with a sintering aid excellent in high-frequency electromagnetic wave absorption are used.

高周波電磁波照射による物質加熱は、高周波電磁波の物質内部での電子もしくは分子の電磁誘電現象に起因する。電磁波吸収性の優れた材料に照射された高周波電磁波は、材料を構成する電子もしくは分子を回転・衝突・振動・摩擦させ、エネルギーを失いながら物質内部を伝搬する。このとき生じた電子および分子の運動により物質が加熱される。具体的には、導電性金属においては伝導電子の渦状の流れ(渦電流)が、誘電性物質においては物質内部に存在する電気双極子の振動が誘起され、それにより材料が加熱される。   Material heating by high-frequency electromagnetic wave irradiation is caused by an electromagnetic dielectric phenomenon of electrons or molecules inside the substance of high-frequency electromagnetic waves. The high frequency electromagnetic wave irradiated to the material excellent in electromagnetic wave absorption propagates the inside of the substance while losing energy by rotating, colliding, vibrating, and rubbing electrons or molecules constituting the material. The substance is heated by the movement of electrons and molecules generated at this time. Specifically, in a conductive metal, a vortex flow (eddy current) of conduction electrons is induced, and in a dielectric material, vibration of an electric dipole existing inside the material is induced, thereby heating the material.

従来提案されていた熱風やスチームもしくは電熱線を用いた抵抗加熱炉による熱処理とこの高周波電磁波加熱との最も大きな相違点は、前者では外部から熱伝導によって材料によらず均一に熱が伝えられるのに対し、後者では、目的とする材料が直接加熱され、さらにこの加熱特性が物質により異なることに起因し、目的とする物質のみが選択的に加熱されるという点にある。   The biggest difference between the heat treatment by a resistance heating furnace using hot air, steam, or heating wire, which has been proposed in the past, and this high-frequency electromagnetic wave heating is that heat is uniformly transmitted from the outside by heat conduction regardless of the material. On the other hand, in the latter, the target material is directly heated, and this heating characteristic varies depending on the substance, so that only the target substance is selectively heated.

次に、高周波電磁波による材料加熱における物質による加熱特性の相違について説明する。
まず、導電性金属の加熱については、高周波電磁波によって誘起される渦電流のジュール熱に起因するため、その発熱量は材料の透磁率と電気抵抗の積の1/2乗に比例する。このことから、一般に鉄、タングステン、スズなどの金属は特に加熱性がよいことが知られている。
Next, differences in heating characteristics due to substances in material heating due to high-frequency electromagnetic waves will be described.
First, since the conductive metal is heated due to Joule heat of eddy currents induced by high-frequency electromagnetic waves, the amount of generated heat is proportional to the 1/2 power of the product of the magnetic permeability and electrical resistance of the material. From this, it is generally known that metals such as iron, tungsten, and tin have particularly good heatability.

一方で、誘電性物質の加熱については、物質中の双極子電子の振動に起因するため、その発熱量は、それぞれ物質固有の誘電率と誘電損失角の積(誘電損失係数)に比例する。つまり、誘電損失係数が高い物質では、高周波電子波によって物質が高効率に加熱されるのに対し、誘電損失係数が低い物質では、ほとんど加熱されない。この誘電損失係数の値は、温度、周波数によって変化するが、一般に誘電損失係数の高い材料としては、水、エチレングリコール、カーボン、遷移金属酸化物、n型半導性を示す典型金属酸化物などが知られ、また誘電損失係数の低い材料としては、石英ガラス、ポリスチレン、ポリカーボネート、ポリイミド、ポリフッ化エチレンなどが知られている。   On the other hand, since heating of a dielectric material is caused by vibration of dipole electrons in the material, the amount of heat generated is proportional to the product (dielectric loss coefficient) of the dielectric constant and dielectric loss angle inherent to the material. That is, a substance having a high dielectric loss coefficient is heated with high efficiency by a high-frequency electron wave, whereas a substance having a low dielectric loss coefficient is hardly heated. The value of this dielectric loss coefficient varies depending on the temperature and frequency. In general, materials having a high dielectric loss coefficient include water, ethylene glycol, carbon, transition metal oxides, typical metal oxides exhibiting n-type semiconductivity, etc. In addition, quartz glass, polystyrene, polycarbonate, polyimide, polyfluorinated ethylene, and the like are known as materials having a low dielectric loss coefficient.

本発明では、使用する粒子材料として、電磁波吸収性の金属粒子もしくは誘電損失係数の高い焼結助剤を混合した金属粒子を用い、さらに下地基板として誘電損失係数の低いポリイミドなどの材料を選択することで、粒子に対する選択的加熱を実現している。   In the present invention, electromagnetic wave-absorbing metal particles or metal particles mixed with a sintering aid having a high dielectric loss coefficient are used as the particle material to be used, and a material such as polyimide having a low dielectric loss coefficient is selected as the underlying substrate. This realizes selective heating of the particles.

次に、本発明に使用する高周波電磁波の周波数fの影響について説明する。本発明で使用する照射する高周波電磁波として、周波数が1MHz<f<300GHzの範囲の高周波電磁波を用いる。これは電磁波照射により物質内部に誘電損失現象が生じると考えられる範囲である。適用周波数を1MHz<f<300GHzとするのは、周波数1MHz以下では、誘電損失効果自体がほとんど生じないからであり、また周波数300GHz以上では、照射された電磁波は極表面で減衰し、物質内部まで侵入しないためである。なお、この周波数範囲の高周波電磁波の中で、周波数範囲が10GHz≦f≦300GHzの範囲のものは、電界の均一性が得られ易く、電場不均一により発生する放電現象が起こりにくいという観点から、使用する電磁波としてより適していると考えられる。   Next, the influence of the frequency f of the high frequency electromagnetic wave used in the present invention will be described. The high frequency electromagnetic wave to be used in the present invention is a high frequency electromagnetic wave having a frequency in the range of 1 MHz <f <300 GHz. This is a range where dielectric loss phenomenon is considered to occur inside the substance due to electromagnetic wave irradiation. The reason why the applied frequency is 1 MHz <f <300 GHz is that the dielectric loss effect itself hardly occurs when the frequency is 1 MHz or less. Further, when the frequency is 300 GHz or more, the irradiated electromagnetic wave is attenuated on the pole surface and reaches the inside of the substance. This is to prevent intrusion. Among the high frequency electromagnetic waves in this frequency range, those having a frequency range of 10 GHz ≦ f ≦ 300 GHz are easy to obtain the uniformity of the electric field, and from the viewpoint that the discharge phenomenon caused by the nonuniformity of the electric field hardly occurs. It is thought that it is more suitable as an electromagnetic wave to be used.

次に、本発明に用いる粒子材料について説明する。本発明に使用する粒子の必要要件は、高周波電磁波吸収により相互融着する金属材料であり、その要件を満たすものであれば、粒子の種類を問わない。金属粒子としては、銀、金、銅などの導電性金属もしくはこれら金属を主成分として含有する合金、金属粒子がプラチナ、パラジウム、ニッケル、ロジウム、イリジウム等の触媒金属もしくはこれら金属を主成分として含有する合金、金属粒子がスズ、鉛、ビスマス、亜鉛等の低融点金属、もしくはこれら金属からなる合金を主成分とするハンダ材料の少なくとも一つの金属を用いることができる。   Next, the particulate material used in the present invention will be described. The necessary requirements for the particles used in the present invention are metal materials that are fused together by high-frequency electromagnetic wave absorption, and any kind of particles can be used as long as the requirements are satisfied. Metal particles include conductive metals such as silver, gold and copper or alloys containing these metals as main components, and metal particles contain catalytic metals such as platinum, palladium, nickel, rhodium and iridium, or these metals as main components. It is possible to use at least one metal of a solder material whose main component is a low melting point metal such as tin, lead, bismuth, zinc, or an alloy made of these metals.

ここで、相互融着させる金属粒子のサイズに関しては、一般的には特に制約は設けないが、本発明の目的とする電子実装部品の作成、特に次世代高密度電子デバイスに対応した微細実装部品の作成という観点からは、粒子径が大きいと粒子充点率が低下し、その結果抵抗率が増加する。さらに、粒子の界面エネルギー、粒径減少による融点の低下、さらには高周波電磁波の浸透深さを考慮すると、粒子サイズはより小さい方が好ましく、例えば、平均粒径1nm〜100nmが好ましく、1nm〜50nmがより好ましいと考えられる。   Here, there is generally no particular restriction on the size of the metal particles to be fused together, but the creation of an electronic mounting component for the purpose of the present invention, particularly a fine mounting component compatible with next-generation high-density electronic devices. From the point of view of the production, if the particle size is large, the particle filling rate decreases, and as a result, the resistivity increases. Furthermore, considering the interfacial energy of the particles, the melting point decrease due to particle size reduction, and the penetration depth of the high frequency electromagnetic wave, the particle size is preferably smaller, for example, the average particle size is preferably 1 nm to 100 nm, and preferably 1 nm to 50 nm. Is considered more preferable.

(実施例1)
以下に本発明の実施例について説明する。高周波電磁波を照射した場合の金属粒子の選択加熱性について、以下の実験により確認した。まず金属粒子の一例として、Agナノ粒子ペースト(平均粒径5nm、ハリマ化成株式会社製)を準備した。次にこのAgナノ粒子ペーストを石英基板、ポリイミド、ガラスエポキシの各基板上に部分的に塗布した(図1参照)。なお塗布部分の膜厚は約50μmであった。
Example 1
Examples of the present invention will be described below. The selective heating property of the metal particles when irradiated with high-frequency electromagnetic waves was confirmed by the following experiment. First, as an example of metal particles, an Ag nanoparticle paste (average particle diameter 5 nm, manufactured by Harima Chemicals Co., Ltd.) was prepared. Next, this Ag nanoparticle paste was partially applied on each of a quartz substrate, polyimide, and glass epoxy substrate (see FIG. 1). The applied portion had a thickness of about 50 μm.

なお本実施例では、金属粒子としてペースト化したAgナノ粒子を用いて実験を行ったが、本発明においては用いる粒子は必ずしもこのようなペースト状である必要はない。しかしながら、ペースト化した粒子を用いることで、高周波電磁波照射後に形成された導電材と基板との密着性が向上することが期待される。   In this example, an experiment was performed using Ag nanoparticles pasted as metal particles, but the particles used in the present invention are not necessarily in a paste form. However, the use of pasted particles is expected to improve the adhesion between the conductive material formed after high-frequency electromagnetic wave irradiation and the substrate.

次に、このAgナノ粒子ペーストを部分的に塗布した各種基板に対し、図2に示す低周波電磁波照射装置により、出力500W、周波数(f)=1kHzの低周波電磁波の照射を行った。またこれとは別に、同じくAgナノ粒子ペーストを部分的に塗布した各種基板に対し、図3に示す高周波電磁波照射装置により、出力500W、周波数(f)=28GHzの高周波電磁波の照射も行った。それぞれの電磁波照射において、Agナノ粒子ペーストを塗布した部分と塗布していない基板部分の温度変化を、熱電対を用いて測定した結果を表1、表2に示す。但し、ここでAgナノ粒子ペーストを塗布した部分の温度変化は、特に石英基板上に塗布したものに関する測定結果であるが、この粒子塗布部分の温度変化は基板の種類にほとんど影響されなかった。   Next, low-frequency electromagnetic waves with an output of 500 W and a frequency (f) = 1 kHz were applied to various substrates on which the Ag nanoparticle paste was partially applied by a low-frequency electromagnetic wave irradiation apparatus shown in FIG. Separately, high-frequency electromagnetic waves having an output of 500 W and a frequency (f) = 28 GHz were also applied to various substrates on which the Ag nanoparticle paste was partially applied by the high-frequency electromagnetic wave irradiation apparatus shown in FIG. Tables 1 and 2 show the results of measuring the temperature change of the portion where the Ag nanoparticle paste was applied and the portion where the substrate was not applied using a thermocouple in each electromagnetic wave irradiation. However, although the temperature change of the part which apply | coated Ag nanoparticle paste here is a measurement result regarding what especially apply | coated on the quartz substrate, the temperature change of this particle | grain application part was hardly influenced by the kind of board | substrate.

Figure 2010239149
Figure 2010239149

先ず、表1から、周波数(f)=1000Hzの電磁波を照射した場合、120sec照射後においても、Agナノ粒子塗布部分の温度上昇は5℃以下であり、この周波数の電磁波照射においてAgナノ粒子がほとんど加熱されないことが確認された。この結果は、低周波の電磁波照射は、本発明の目的とする金属粒子の選択的な加熱焼成には不適であることを示唆するものである。   First, from Table 1, when an electromagnetic wave with a frequency (f) = 1000 Hz is irradiated, even after 120 seconds of irradiation, the temperature rise of the Ag nanoparticle application portion is 5 ° C. or less. It was confirmed that it was hardly heated. This result suggests that low-frequency electromagnetic wave irradiation is unsuitable for selective heating and baking of metal particles as an object of the present invention.

Figure 2010239149
Figure 2010239149

一方で、表2より、周波数(f)=28GHzの高周波電磁波を照射した場合、Ag粒子を塗布した領域において顕著な温度上昇が確認された。一方で、Agナノ粒子の塗布を行っていない基板部分では、基板の種類によらずその温度上昇はわずかであった。この結果は、Agナノ粒子の顕著な選択的加熱性を示唆するものである。   On the other hand, from Table 2, when a high frequency electromagnetic wave having a frequency (f) = 28 GHz was irradiated, a significant temperature increase was confirmed in the region where the Ag particles were applied. On the other hand, in the substrate portion where the Ag nanoparticles were not applied, the temperature rise was slight regardless of the type of substrate. This result suggests a remarkable selective heating property of Ag nanoparticles.

このように、この高周波電磁波の照射対象として、Agナノ粒子を始めとする金属粒子を用い、さらに基板材料として石英基板、ポリイミド、ガラスエポキシをはじめとする電磁波吸収性の低い基板を用いることにより、粒子塗布部分のみを選択的に加熱できることを確認した。   As described above, by using metal particles including Ag nanoparticles as an object to be irradiated with the high-frequency electromagnetic wave, and using a substrate with low electromagnetic wave absorption such as quartz substrate, polyimide, and glass epoxy as a substrate material, It was confirmed that only the particle-coated portion can be selectively heated.

(実施例2)
次に、電磁波吸収性の高い焼結助剤の混合による選択加熱性の変化について、次の実験により検証した。まず電磁波吸収性の高い焼結助剤の一例としてVGCF(気相成長カーボンファイバ)を、金属粒子の一例としてAgナノ粒子ペーストを準備し、両者をよく混合した。その後、上記混合によって得られたVGCF―Agナノ粒子混合ペーストを石英基板上に部分的に塗布した(図1参照)。なお塗布部分の膜厚は約50μmであった。
(Example 2)
Next, a change in selective heating property due to mixing of a sintering aid having a high electromagnetic wave absorbing property was verified by the following experiment. First, VGCF (vapor-grown carbon fiber) was prepared as an example of a sintering aid having high electromagnetic wave absorption, and Ag nanoparticle paste was prepared as an example of metal particles, and both were mixed well. Thereafter, the VGCF-Ag nanoparticle mixed paste obtained by the above mixing was partially applied onto a quartz substrate (see FIG. 1). The coating thickness was about 50 μm.

次に、このVGCF―Agナノ粒子混合ペーストを部分的に塗布した石英基板に対し、図3に示す高周波電磁波照射装置により、出力500W、周波数(f)=28GHzの高周波電磁波の照射を行った。表3に、この時の粒子を塗布した部分と塗布していない部分の温度変化を、それぞれ熱電対を用いて測定した結果を示す。   Next, the quartz substrate partially coated with this VGCF-Ag nanoparticle mixed paste was irradiated with a high frequency electromagnetic wave having an output of 500 W and a frequency (f) = 28 GHz by a high frequency electromagnetic wave irradiation apparatus shown in FIG. Table 3 shows the results of measuring the temperature change of the part where the particles were applied and the part where the particles were not applied using a thermocouple.

Figure 2010239149
Figure 2010239149

表3より、VGCF―Agナノ粒子混合ペーストを部分的に塗布した石英基板に対し、周波数(f)=28GHzの高周波電磁波を照射した場合、VGCF―Agナノ粒子混合ペーストを塗布した領域において、焼結助剤であるVGCFを混合していないAgナノ粒子混合ペーストの場合(表2参照)よりもさらに顕著な温度上昇が確認された。またAgナノ粒子の塗布を行っていない基板部分では、先の実験と変わらずその温度上昇はわずかであった。この結果から、VGCFを始めとする焼結助剤の混合により、金属粒子塗布部分の選択加熱性をさらに強めることが出来ることが確認された。   From Table 3, when a high-frequency electromagnetic wave having a frequency (f) = 28 GHz is irradiated to a quartz substrate partially coated with a VGCF-Ag nanoparticle mixed paste, in the region where the VGCF-Ag nanoparticle mixed paste is applied, It was confirmed that the temperature rose significantly more than in the case of the Ag nanoparticle mixed paste in which VGCF as a binder was not mixed (see Table 2). In addition, in the substrate portion where the Ag nanoparticles were not applied, the temperature rise was slight as in the previous experiment. From this result, it was confirmed that the selective heating property of the coated part of the metal particles can be further enhanced by mixing the sintering aid including VGCF.

(実施例3)
さらに、金属粒子もしくは焼結助剤を混合した金属粒子に対する高周波電磁波照射加熱にともなう粒子焼成効果を確認することを目的に、Agナノ粒子ペーストを塗布した石英基板、VGCF―Agナノ粒子混合ペーストを塗布した石英基板に対し、それぞれ、周波数(f)=28GHzの高周波電磁波を照射したサンプル(50℃/minで200℃まで昇温、200℃で5分間保持するように高周波電磁波出力を制御)の粒子塗布部分の電気抵抗測定を行った。なお、電気抵抗の測定は、デジタルマルチメータ(Keithley社製、型式:DMM2000)、直流安定化電源(ケンウッド社製、形式:PAR20−4H)を用いて直流四端子法によって行った。
Example 3
Furthermore, for the purpose of confirming the particle firing effect of high frequency electromagnetic wave irradiation heating on metal particles or metal particles mixed with a sintering aid, a quartz substrate coated with Ag nanoparticle paste, VGCF-Ag nanoparticle mixed paste Each of the coated quartz substrates irradiated with high-frequency electromagnetic waves of frequency (f) = 28 GHz (controlling the high-frequency electromagnetic wave output so as to increase the temperature to 200 ° C. at 50 ° C./min and hold at 200 ° C. for 5 minutes) The electrical resistance of the particle application part was measured. The electrical resistance was measured by a direct current four-terminal method using a digital multimeter (manufactured by Keithley, model: DMM2000) and a direct current stabilized power supply (manufactured by Kenwood, model: PAR20-4H).

その結果、電磁波照射後サンプルのAgナノ粒子ペースト塗布部分、VGCF―Agナノ粒子混合ペースト塗布部分の電気抵抗値は、それぞれ、ρ=6.0μΩ・cm(Agナノ粒子ペースト塗布部分)、ρ=7.4μΩ・cm(VGCF―Agナノ粒子混合ペースト塗布部分)という共に高い導電性が確認された。この結果は、高周波電磁波の照射により選択的に加熱されたAgナノ粒子が相互融着し、低抵抗の銀導電膜が形成されるという事実を示唆するものである。   As a result, the electrical resistance values of the Ag nanoparticle paste application portion and the VGCF-Ag nanoparticle mixed paste application portion of the sample after electromagnetic wave irradiation are ρ = 6.0 μΩ · cm (Ag nanoparticle paste application portion), ρ = A high conductivity of 7.4 μΩ · cm (VGCF-Ag nanoparticle mixed paste application portion) was confirmed. This result suggests the fact that Ag nanoparticles selectively heated by irradiation with high-frequency electromagnetic waves are fused together to form a low-resistance silver conductive film.

さらに、上記と同様の周波数(f)=28GHzの高周波電磁波照射加熱実験を、Auナノ粒子ペースト(平均粒径5nm、ハリマ化成株式会社製)を塗布した石英基板、VGCF−Auナノ粒子混合ペーストを塗布した石英基板に対しても行った。ただし、高周波電磁波の照射は、50℃/minで250℃まで昇温後、250℃で5分間保持するように照射出力を制御して行った。   Furthermore, a high frequency electromagnetic wave irradiation heating experiment with the same frequency (f) = 28 GHz as described above was carried out using a quartz substrate coated with Au nanoparticle paste (average particle size 5 nm, manufactured by Harima Kasei Co., Ltd.), VGCF-Au nanoparticle mixed paste. This was also performed on the coated quartz substrate. However, the high frequency electromagnetic wave irradiation was performed by controlling the irradiation output so that the temperature was raised to 250 ° C. at 50 ° C./min and then held at 250 ° C. for 5 minutes.

その結果、電磁波照射後サンプルのAuナノ粒子ペースト塗布部分、VGCF−Au-ナノ粒子混合ペースト塗布部分の電気抵抗値は、それぞれ、ρ=9.0μΩ・cm(Auナノ粒子ペースト塗布部分)、ρ=9.8μΩ・cm(VGCF−Auナノ粒子混合ペースト塗布部分)という共に高い導電性が確認された。この結果は、Auナノ粒子に対しても、高周波電磁波の照射による選択的な粒子加熱−相互融着が可能であり、低抵抗のAu導電膜が形成されるということを示唆するものである。   As a result, the electrical resistance values of the Au nanoparticle paste coated portion and the VGCF-Au-nanoparticle mixed paste coated portion of the sample after electromagnetic wave irradiation are ρ = 9.0 μΩ · cm (Au nanoparticle paste coated portion), ρ, respectively. = 9.8 μΩ · cm (VGCF-Au nanoparticle mixed paste application portion) and high conductivity were confirmed. This result suggests that selective heating and mutual fusion of particles by irradiation with high-frequency electromagnetic waves is possible even for Au nanoparticles, and a low-resistance Au conductive film is formed.

なお、同様の効果は同じくポリイミド基板上にバンプ状に形成した円柱突起(円柱状、高さ約1mm、直径2mm)においても確認され、形状によらず本方法が適用出来ることが分かった。   The same effect was also confirmed in a cylindrical protrusion (cylindrical shape, height of about 1 mm, diameter of 2 mm) formed in a bump shape on the polyimide substrate, and it was found that this method can be applied regardless of the shape.

金属粒子(もしくは焼結助剤を混合した金属粒子)を部分的に塗布した基板A substrate partially coated with metal particles (or metal particles mixed with a sintering aid) 低周波電磁波照射装置Low frequency electromagnetic wave irradiation device 高周波電磁波照射装置High frequency electromagnetic wave irradiation device

1.各種基板(石英ガラス、ポリイミド、ガラスエポキシ)
2.金属粒子(もしくは焼結助剤を混合した金属粒子)を塗布した領域
3.電磁波照射容器
4.導線
5.加熱電極
6.ターンテーブル
7.電磁波
1. Various substrates (quartz glass, polyimide, glass epoxy)
2. 2. Area where metal particles (or metal particles mixed with a sintering aid) are applied 3. Electromagnetic wave irradiation container Conductor 5 5. Heating electrode Turntable 7. Electromagnetic wave

Claims (23)

金属粒子、もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子を、基板上に塗布もしくは表面パターンニングした後、高周波電磁波を照射することで、前記金属粒子もしくは前記焼結助剤を混合した金属粒子を、選択的に発熱・相互融着させて焼成することを特徴とする金属配線パターンの形成方法。   After applying metal particles or metal particles mixed with a high electromagnetic wave absorbing sintering aid on the substrate or patterning the surface, the metal particles or the sintering aid are mixed by irradiating high frequency electromagnetic waves. A method for forming a metal wiring pattern, wherein the metal particles are selectively heated and mutually fused to be fired. 金属粒子が銀、金、銅などの導電性金属もしくはこれら金属を主成分として含有する合金であることを特徴とする請求項1に記載の金属配線パターンの形成方法。   2. The method for forming a metal wiring pattern according to claim 1, wherein the metal particles are a conductive metal such as silver, gold or copper or an alloy containing these metals as a main component. 金属粒子がプラチナ、パラジウム、ニッケル、ロジウム、イリジウム等の触媒金属もしくはこれら金属を主成分として含有する合金であることを特徴とする請求項1に記載の金属配線パターンの形成方法。   2. The method for forming a metal wiring pattern according to claim 1, wherein the metal particles are a catalyst metal such as platinum, palladium, nickel, rhodium, iridium or an alloy containing these metals as a main component. 金属粒子がスズ、鉛、ビスマス、亜鉛等の低融点金属、もしくはこれら金属からなる合金を主成分とするハンダ材料であることを特徴とする請求項1に記載の金属配線パターンの形成方法。   2. The method for forming a metal wiring pattern according to claim 1, wherein the metal particles are a solder material mainly composed of a low melting point metal such as tin, lead, bismuth, zinc, or an alloy made of these metals. 金属粒子の平均粒径が1nm以上100nm以下のナノ粒子であることを特徴とする請求項1から請求項4のいずれかに記載の金属配線パターンの形成方法。   5. The method for forming a metal wiring pattern according to claim 1, wherein the metal particles are nanoparticles having an average particle diameter of 1 nm to 100 nm. 低融点金属もしくはこれらの金属の合金からなるハンダ材料粒子の平均粒径が1nm以上1cm以下の粒子であることを特徴とする請求項4に記載の金属配線パターンの形成方法。   5. The method for forming a metal wiring pattern according to claim 4, wherein the solder material particles made of a low melting point metal or an alloy of these metals are particles having an average particle diameter of 1 nm or more and 1 cm or less. 金属粒子もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子に照射する高周波電磁波の周波数が1MHz<f<300GHzであることを特徴とする請求項1から6に記載の金属配線パターンの形成方法。   7. The metal wiring pattern according to claim 1, wherein the frequency of the high-frequency electromagnetic wave applied to the metal particles or the metal particles mixed with the sintering aid having high electromagnetic wave absorption is 1 MHz <f <300 GHz. Method. 焼結助剤の高周波電磁波吸収性が基板の高周波電磁波吸収性よりも高いことを特徴とする請求項1から請求項7のいずれかに記載の金属配線パターンの形成方法。   The method for forming a metal wiring pattern according to any one of claims 1 to 7, wherein the high frequency electromagnetic wave absorbability of the sintering aid is higher than that of the substrate. 焼結助剤がカーボンブラック、カーボンナノチューブ、カーボンフラーレン、VGCF(気相成長カーボンファイバー)を始めとするカーボン材料であることを特徴とする請求項1から請求項8のいずれかに記載の金属配線パターンの形成方法。   9. The metal wiring according to claim 1, wherein the sintering aid is a carbon material such as carbon black, carbon nanotube, carbon fullerene, or VGCF (vapor-grown carbon fiber). Pattern formation method. 焼結助剤がCr、TiO、CuO、NiO、Co、MnO、α―Fe、V等の遷移金属酸化物であることを特徴とする請求項1から請求項8のいずれかに記載の金属配線パターンの形成方法。 The sintering aid is a transition metal oxide such as Cr 2 O 3 , TiO 2 , CuO, NiO, Co 3 O 4 , MnO 2 , α-Fe 2 O 3 , and V 2 O 3. The method for forming a metal wiring pattern according to any one of claims 1 to 8. 焼結助剤がn型半導性を示すSnO、In、GeO,ZnO、MgO,SiO等の典型金属酸化物、もしくはITO(インジウム−スズ酸化物)を始めとする典型金属合金の酸化物であることを特徴とする請求項1から請求項8のいずれかに記載の金属配線パターンの形成方法。 Typical metal oxides such as SnO 2 , In 2 O 3 , GeO 2 , ZnO, MgO, SiO 2, etc. in which the sintering aid exhibits n-type semiconductivity, or ITO (indium-tin oxide) 9. The metal wiring pattern forming method according to claim 1, wherein the metal wiring pattern is an oxide of a metal alloy. 金属粒子もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子を塗布もしくは表面パターンニングする基板が、ポリイミド、ポリアミドイミド、ポリアミド、ガラスエポキシ、ポリフッ化エチレンなどを主成分とするプラスチック基板であることを特徴とする、請求項1から請求項11のいずれかに記載の金属配線パターンの形成方法。   The substrate on which metal particles or metal particles mixed with a sintering aid having high electromagnetic wave absorption properties are coated or surface-patterned is a plastic substrate mainly composed of polyimide, polyamideimide, polyamide, glass epoxy, polyfluorinated ethylene or the like. 12. The method for forming a metal wiring pattern according to claim 1, wherein the metal wiring pattern is formed. 前記電磁波吸収性を有する焼結助剤を混合した金属粒子を塗布もしくは表面パターンニングする基板が、酸化物、ガラス、セラミックス、金属、半導体からなる群より選ばれる少なくとも1つからなる基板であることを特徴とする、請求項1から請求項11のいずれかに記載の金属配線パターンの形成方法。   The substrate on which the metal particles mixed with the electromagnetic wave absorbing sintering aid are coated or surface-patterned is a substrate made of at least one selected from the group consisting of oxide, glass, ceramics, metal, and semiconductor. The method for forming a metal wiring pattern according to claim 1, wherein: 導電路と導電路の接続部、多層配線基板、バンプ、パッド、ビア、立体金属配線パターン、又は配線のハンダ接合部の作製に適用されることを特徴とする請求項1から請求項13のいずれかに記載の金属配線パターンの形成方法。   14. The method according to claim 1, wherein the conductive path is applied to a connection portion between conductive paths, a multilayer wiring board, a bump, a pad, a via, a three-dimensional metal wiring pattern, or a solder joint portion of wiring. A method for forming a metal wiring pattern according to claim 1. アンテナ、電子シールド材、導電路と小型電子部品を含む電子実装部品、又は電子筐体の作製に適用されることを特徴とする請求項1から請求項13のいずれかに記載の金属配線パターンの形成方法。   The metal wiring pattern according to any one of claims 1 to 13, wherein the metal wiring pattern is applied to manufacture of an antenna, an electronic shield material, an electronic mounting component including a conductive path and a small electronic component, or an electronic casing. Forming method. 触媒電極又は熱伝導路の作製に適用されることを特徴とする請求項1から請求項13のいずれかに記載の金属配線パターンの形成方法。   The method for forming a metal wiring pattern according to any one of claims 1 to 13, which is applied to manufacture of a catalyst electrode or a heat conduction path. 請求項1から請求項16のいずれかに記載の方法によって基板上に作成された金属配線パターン。   A metal wiring pattern formed on a substrate by the method according to claim 1. 高周波電磁波を吸収する金属粒子、もしくは電磁波吸収性の高い焼結助剤を混合した金属粒子を含む金属粒子焼成用材料。   A metal particle firing material comprising metal particles that absorb high-frequency electromagnetic waves, or metal particles mixed with a sintering aid having high electromagnetic wave absorbability. 請求項18に記載の金属粒子焼成用材料において、金属粒子が銀、金、銅などの導電性金属もしくはこれらの金属を主成分として含有する合金又は、プラチナ、パラジウム、ニッケル、ロジウム、イリジウム等の触媒金属もしくはこれらの金属を主成分とする合金、あるいは金属粒子がスズ、鉛、ビスマス、亜鉛等の低融点金属からなる合金を主成分とする合金からなる金属粒子の焼成用材料。   The material for firing metal particles according to claim 18, wherein the metal particles are a conductive metal such as silver, gold, copper or an alloy containing these metals as a main component, or platinum, palladium, nickel, rhodium, iridium, etc. A material for firing metal particles made of a catalyst metal or an alloy containing these metals as a main component, or an alloy containing metal alloys whose main component is a low melting point metal such as tin, lead, bismuth or zinc. 請求項18又は19に記載の金属粒子焼成用材料において、含有する金属粒子の粒径が1nm以上、100nm以下のナノ粒子である金属粒子の焼成用材料。   20. The metal particle firing material according to claim 18 or 19, wherein the metal particle firing material is a nanoparticle having a particle size of 1 nm or more and 100 nm or less. 請求項18から請求項20のいずれかに記載の金属粒子焼成用材料であって、含有する焼結助剤がカーボンブラック、カーボンナノチューブ、カーボンフラーレン、VGCF(気相成長カーボンファイバ)を始めとするカーボン材料、又はCr、TiO、CuO、NiO、Co、MnO、α―Fe、V等の遷移金属酸化物、n型半導性を示すSnO、In、GeO,ZnO、MgO,SiO等の典型金属酸化物、もしくはITOを始めとする典型金属合金の酸化物である金属粒子焼成用材料。 21. The metal particle firing material according to any one of claims 18 to 20, wherein the sintering auxiliary agent includes carbon black, carbon nanotubes, carbon fullerene, and VGCF (vapor-grown carbon fiber). Carbon materials, transition metal oxides such as Cr 2 O 3 , TiO 2 , CuO, NiO, Co 3 O 4 , MnO 2 , α-Fe 2 O 3 , V 2 O 3 , SnO exhibiting n-type semiconductivity 2 , a material for firing metal particles, which is a typical metal oxide such as In 2 O 3 , GeO 2 , ZnO, MgO, or SiO 2 or an oxide of a typical metal alloy such as ITO. 請求項18から請求項21のいずれかに記載の金属粒子焼成用材料に、有機系分散媒及び/又は有機系バインダー粒子として機能する樹脂成分と、さらに必要に応じて有機溶媒を加えたことを特徴とする金属粒子焼成用材料。   A resin component that functions as an organic dispersion medium and / or organic binder particles and, if necessary, an organic solvent are added to the metal particle firing material according to any one of claims 18 to 21. Metal particle firing material characterized. 請求項22に記載の金属粒子焼成用材料において、添加した有機系分散媒が金属酸化物の金属成分と配位可能なアミン、アルコール、チオール等の少なくとも1種以上を含み、さらに有機バインダー樹脂がブチラール樹脂、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂から選ばれた少なくとも1種以上を含むことを特徴とする金属粒子焼成用材料。   23. The material for firing metal particles according to claim 22, wherein the added organic dispersion medium contains at least one of amine, alcohol, thiol and the like capable of coordinating with the metal component of the metal oxide, and the organic binder resin further comprises A metal particle firing material comprising at least one selected from a butyral resin, an epoxy resin, a phenol resin, and a polyimide resin.
JP2010140680A 2010-06-21 2010-06-21 Method for forming metal wiring pattern, metal wiring pattern, metal wiring board, and metal particles and substrate for forming metal wiring pattern Expired - Fee Related JP5184584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140680A JP5184584B2 (en) 2010-06-21 2010-06-21 Method for forming metal wiring pattern, metal wiring pattern, metal wiring board, and metal particles and substrate for forming metal wiring pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140680A JP5184584B2 (en) 2010-06-21 2010-06-21 Method for forming metal wiring pattern, metal wiring pattern, metal wiring board, and metal particles and substrate for forming metal wiring pattern

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005089593A Division JP4609846B2 (en) 2005-03-25 2005-03-25 Method for producing metal fired body, metal particle firing material used therefor, and wiring pattern obtained thereby

Publications (2)

Publication Number Publication Date
JP2010239149A true JP2010239149A (en) 2010-10-21
JP5184584B2 JP5184584B2 (en) 2013-04-17

Family

ID=43093157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140680A Expired - Fee Related JP5184584B2 (en) 2010-06-21 2010-06-21 Method for forming metal wiring pattern, metal wiring pattern, metal wiring board, and metal particles and substrate for forming metal wiring pattern

Country Status (1)

Country Link
JP (1) JP5184584B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077415A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Conductive reflection film composition and manufacturing method of conductive reflection film
JP5275498B1 (en) * 2012-07-03 2013-08-28 石原薬品株式会社 Conductive film forming method and sintering promoter
WO2014073085A1 (en) * 2012-11-09 2014-05-15 株式会社 日立製作所 Wiring board and method for manufacturing same
JP2016025257A (en) * 2014-07-23 2016-02-08 コニカミノルタ株式会社 Conductive pattern manufacturing device
CN104303242B (en) * 2012-07-03 2016-11-30 日本石原化学株式会社 Conductive film forming method and sintering aid
CN109841421A (en) * 2018-12-26 2019-06-04 谢春艳 Carbon onion/vanadium oxide nanocomposite method is prepared using atomic layer deposition
CN111654980A (en) * 2020-05-29 2020-09-11 南京凯泰化学科技有限公司 Preparation method of glass substrate printed circuit board
WO2024085515A1 (en) * 2022-10-21 2024-04-25 한국전기연구원 Carbon nanomaterial-metal composite electromagnetic wave shielding sheet using amine-metal complex compound and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102562279B1 (en) 2018-01-26 2023-07-31 삼성전자주식회사 Plating solution and metal composite and method of manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192448A (en) * 1988-03-18 1990-07-30 Honda Motor Co Ltd Sintered ceramics and production thereof
JPH0754631A (en) * 1993-08-09 1995-02-28 Hakubunshiya:Kk Filter for collecting minute particle in exhaust gas
JPH11508326A (en) * 1996-04-17 1999-07-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Method for producing sintered body on substrate
JP2000123658A (en) * 1998-10-09 2000-04-28 Fuji Photo Film Co Ltd Manufacture of transparent conductive film and transparent conductive film
JP2001223249A (en) * 1999-11-26 2001-08-17 Ibiden Co Ltd Wafer prober and stage for inspection used for the same
JP2004255337A (en) * 2003-02-27 2004-09-16 Toshiba Corp Method for producing metal/oxide monolith
JP2004319927A (en) * 2003-04-21 2004-11-11 Shinko Electric Ind Co Ltd Patterning device and patterning method of film
JP2004342319A (en) * 2003-03-19 2004-12-02 Kansai Paint Co Ltd Method for sintering semiconductor particulate dispersion solution on polymer film surface, and photocell
WO2005025787A1 (en) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state
JP2005074396A (en) * 2003-09-03 2005-03-24 Toshiba Corp Metal particle-dispersed oxide, metal particle-dispersed oxide sintered compact, and manufacturing method of metal particle-dispersed oxide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192448A (en) * 1988-03-18 1990-07-30 Honda Motor Co Ltd Sintered ceramics and production thereof
JPH0754631A (en) * 1993-08-09 1995-02-28 Hakubunshiya:Kk Filter for collecting minute particle in exhaust gas
JPH11508326A (en) * 1996-04-17 1999-07-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Method for producing sintered body on substrate
JP2000123658A (en) * 1998-10-09 2000-04-28 Fuji Photo Film Co Ltd Manufacture of transparent conductive film and transparent conductive film
JP2001223249A (en) * 1999-11-26 2001-08-17 Ibiden Co Ltd Wafer prober and stage for inspection used for the same
JP2004255337A (en) * 2003-02-27 2004-09-16 Toshiba Corp Method for producing metal/oxide monolith
JP2004342319A (en) * 2003-03-19 2004-12-02 Kansai Paint Co Ltd Method for sintering semiconductor particulate dispersion solution on polymer film surface, and photocell
JP2004319927A (en) * 2003-04-21 2004-11-11 Shinko Electric Ind Co Ltd Patterning device and patterning method of film
JP2005074396A (en) * 2003-09-03 2005-03-24 Toshiba Corp Metal particle-dispersed oxide, metal particle-dispersed oxide sintered compact, and manufacturing method of metal particle-dispersed oxide
WO2005025787A1 (en) * 2003-09-12 2005-03-24 National Institute Of Advanced Industrial Science And Technology Metal nano particle liquid dispersion capable of being sprayed in fine particle form and being applied in laminated state

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077415A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Conductive reflection film composition and manufacturing method of conductive reflection film
JP5275498B1 (en) * 2012-07-03 2013-08-28 石原薬品株式会社 Conductive film forming method and sintering promoter
WO2014006934A1 (en) * 2012-07-03 2014-01-09 石原薬品株式会社 Method for forming conductive film and sintering promoter
CN104303242A (en) * 2012-07-03 2015-01-21 日本石原化学株式会社 Method for forming conductive film and sintering promoter
CN104303242B (en) * 2012-07-03 2016-11-30 日本石原化学株式会社 Conductive film forming method and sintering aid
US9905339B2 (en) 2012-07-03 2018-02-27 Ishihara Chemical Co., Ltd. Conductive film forming method and sintering promoter
WO2014073085A1 (en) * 2012-11-09 2014-05-15 株式会社 日立製作所 Wiring board and method for manufacturing same
JP2016025257A (en) * 2014-07-23 2016-02-08 コニカミノルタ株式会社 Conductive pattern manufacturing device
US9955585B2 (en) 2014-07-23 2018-04-24 Konica Minolta, Inc. Conductive pattern production device
CN109841421A (en) * 2018-12-26 2019-06-04 谢春艳 Carbon onion/vanadium oxide nanocomposite method is prepared using atomic layer deposition
CN111654980A (en) * 2020-05-29 2020-09-11 南京凯泰化学科技有限公司 Preparation method of glass substrate printed circuit board
WO2024085515A1 (en) * 2022-10-21 2024-04-25 한국전기연구원 Carbon nanomaterial-metal composite electromagnetic wave shielding sheet using amine-metal complex compound and method for manufacturing same

Also Published As

Publication number Publication date
JP5184584B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP4609846B2 (en) Method for producing metal fired body, metal particle firing material used therefor, and wiring pattern obtained thereby
JP5184584B2 (en) Method for forming metal wiring pattern, metal wiring pattern, metal wiring board, and metal particles and substrate for forming metal wiring pattern
JP4762582B2 (en) Reduction / mutual fusion method of high-frequency electromagnetic wave irradiation such as metal oxide particles with sintering aid added, and various electronic parts using the same and firing materials such as metal oxide particles
Woo et al. Ink-Jet printing of Cu− Ag-based highly conductive tracks on a transparent substrate
US9676969B2 (en) Composition set, conductive substrate and method of producing the same, and conductive adhesive composition
EP2412007B1 (en) Buffer layer to enhance photo and/or laser sintering
CN101304637B (en) Wiring forming method of printed circuit board
JPWO2013077448A1 (en) Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating
JP2009510747A (en) Method for generating metal surface structure and apparatus therefor
JP2011054892A (en) Solder bonding using conductive paste
Cho et al. Monolithically Programmed Stretchable Conductor by Laser‐Induced Entanglement of Liquid Metal and Metallic Nanowire Backbone
JP2011060751A (en) Conductive material formed by light energy or heat energy, manufacturing method of conductive material, and conductive composition
JP2006236965A5 (en)
JPWO2010113341A1 (en) Metal plate resistor for current detection and manufacturing method thereof
JP2016207903A (en) Manufacturing method of resistor, resistor, and electronic device
JP2011038141A (en) Composite metal-particulate material, metal film, method for producing metal film, printed circuit board and electric wire cable
WO2016152725A1 (en) Electronic device, method for producing same, and circuit substrate
Meng et al. Fabrication of conformal array patch antenna using silver nanoink printing and flash light sintering
CN107025950A (en) The preparation method of high conductivity Nano Silver copper-clad inventive thick film paste can be sintered in atmosphere
KR102090492B1 (en) Conductive resin composition for microwave heating
Jung et al. Microwave welding of silver nanowires for highly transparent conductive electrodes
JP4851070B2 (en) Thermal decomposition mutual fusion method by selective heating of thermally decomposable particles using high frequency electromagnetic wave irradiation, and thermal decomposition mutual fusion method after patterning to various substrates with low dielectric loss coefficient of the thermally decomposable particles and its products application
KR101999284B1 (en) Heating plate and manufacturing method thereof
JP2009016570A (en) Method of manufacturing electromagnetic wave shield member having transparency
WO2016170902A1 (en) Electronic device production method, electronic device, circuit board production method, and circuit board

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120514

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121107

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R151 Written notification of patent or utility model registration

Ref document number: 5184584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees