JP2010238858A - Heat transporter - Google Patents

Heat transporter Download PDF

Info

Publication number
JP2010238858A
JP2010238858A JP2009084307A JP2009084307A JP2010238858A JP 2010238858 A JP2010238858 A JP 2010238858A JP 2009084307 A JP2009084307 A JP 2009084307A JP 2009084307 A JP2009084307 A JP 2009084307A JP 2010238858 A JP2010238858 A JP 2010238858A
Authority
JP
Japan
Prior art keywords
heat
hair
base
heat generating
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009084307A
Other languages
Japanese (ja)
Inventor
Katsuhiro Itakura
克裕 板倉
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009084307A priority Critical patent/JP2010238858A/en
Publication of JP2010238858A publication Critical patent/JP2010238858A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide at low cost a heat transporter having high heat exhaust efficiency. <P>SOLUTION: The present invention relates to a heat transporter 10 which is interposed between a heating part 1 and a radiating part 2 for radiating heat generated by the heating part 1. The heat transporter 10 includes a base 11 and a plurality of bristles 12, having a hollow part H, provided approximately vertically on a surface of the base 11 opposed to the heating object 1 and/or the radiating part 2. The main component of the base 11 and the plurality of bristles 12 is Cu and they are formed by plating. A distal end of the base 11 or of each of the plurality of bristles 12 is directly abutted to the heating object 1 and the radiating part 2 and in the base 11 or the plurality of bristles 12 abutted to at least either the heating object 1 or the radiating part 2, a cavity that the base 11 has or a cavity among the plurality of bristles 12 is filled with a filling 13 comprised of a resin, solder or brazing material containing high heat conductivity fillers. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発熱源となるICチップを備えた電子部品等を搭載した電子機器、例えばテレビ、プロジェクタ、コンピュータ、インバータ装置等の発熱部と、発熱部を冷却するための放熱部との間の熱伝導を向上させる熱輸送体に関するものである。   The present invention provides an electronic device equipped with an electronic component having an IC chip serving as a heat generation source, such as a TV, a projector, a computer, an inverter device, etc., and a heat dissipation portion for cooling the heat generation portion. The present invention relates to a heat transporter that improves heat conduction.

従来から、テレビやプロジェクタの素子、パソコンのCPUなど電子機器から発熱する熱を逃すための手法が各種検討されている。コンピュータについては、デスクトップパソコン、ノートパソコン、サーバを初め、大型のメインフレームコンピュータ等は、大容量の情報を高速で処理するために、その中心となるMPUはますます高集積化され、高速処理のためのクロック数の増大が求められている。これに伴って、年々MPUの発熱量は増大する傾向にある。   Conventionally, various methods for releasing heat generated from electronic devices such as televisions, projector elements, and CPUs of personal computers have been studied. As for computers, desktop computers, notebook computers, servers, large mainframe computers, etc., process large volumes of information at high speed. Therefore, an increase in the number of clocks is required. Along with this, the amount of heat generated by the MPU tends to increase year by year.

しかしながら、発熱量の増加の速さに排熱技術が追いついていないのが現状である。そのため、MPU素子が自身の発熱で誤動作を起こしてしまうため、クロック数増大の開発を一時ストップせざるを得ない状況も生まれつつあり、より効率的な排熱技術に対する必要性が高まっている。   However, the current situation is that exhaust heat technology has not caught up with the rate of increase in the amount of heat generated. Therefore, since the MPU element malfunctions due to its own heat generation, there is a situation in which development for increasing the number of clocks has to be temporarily stopped, and the need for a more efficient exhaust heat technology is increasing.

デスクトップパソコンやサーバ等においては、リアプロテレビやプロジェクタの素子冷却技術とほぼ同じ空冷技術に基づいてMPUの冷却が行われている。すなわち、MPU背面に設けた熱伝導シートや熱伝導樹脂を介してアルミニウム(Al)製ヒートシンクに熱を伝え、背面からファンで空気をあてて大気に放熱している。あるいは、ヒートパイプを用いてMPUから筐体近傍まで熱を運び、そこで大型の放熱フィンを備えたヒートシンクとファンで熱を筐体外へ排出している。   In desktop personal computers, servers, and the like, MPU cooling is performed based on air cooling technology that is substantially the same as element cooling technology for rear-pro televisions and projectors. That is, heat is transmitted to an aluminum (Al) heat sink through a heat conductive sheet or heat conductive resin provided on the back of the MPU, and air is radiated to the atmosphere by applying air from the back with a fan. Alternatively, heat is carried from the MPU to the vicinity of the casing using a heat pipe, and the heat is exhausted outside the casing by a heat sink and a fan provided with large radiating fins.

このような空冷技術の分野における最近の冷却技術として、特許文献1(特開2004−319942号公報)には、放熱部に金属発泡体を用いたヒートシンクが開示されている。また、特許文献2(特開2005−032881号公報)には、低気孔率部と高気孔率部とを有する多孔質放熱体が開示されている。   As a recent cooling technique in the field of such an air cooling technique, Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-319942) discloses a heat sink using a metal foam for a heat radiating portion. Patent Document 2 (Japanese Patent Laid-Open No. 2005-032881) discloses a porous heat dissipating body having a low porosity portion and a high porosity portion.

特開2004−319942号公報JP 2004-319942 A 特開2005−032881号公報JP 2005-032881 A

しかしながら、特許文献1に示されている金属発泡体は、内部に無数の空孔を持つため、その使用方法を誤れば放熱特性が得られるどころか、内部の気孔によって断熱性能が高い発泡スチロールなどのように断熱層の働きをする恐れがある。また、特許文献2の凸状構造部は、例として多孔質焼結体やセラミックス繊維が列挙されているように変形しないため、放熱部に直接隙間なく接触させることが難しい。   However, since the metal foam shown in Patent Document 1 has innumerable pores inside, rather than obtaining heat dissipation characteristics if the usage method is mistaken, such as polystyrene foam having high heat insulation performance due to the internal pores. There is a risk of acting as a heat insulating layer. Moreover, since the convex structure part of patent document 2 does not deform | transform so that a porous sintered compact and ceramic fiber may be enumerated as an example, it is difficult to make it contact with a thermal radiation part directly without gap.

一方、空冷技術の冷却効率が低い問題は依然として残っており、MPUの発熱量増大に伴って益々放熱が追いつかなくなっているのが現状である。また、ヒートパイプは熱を運搬する装置でしかないため、熱の運搬先で大型の放熱フィンを備えたヒートシンクとファンによって大気に放熱し、筐体外へ熱を排出する必要がある点において空冷技術と実質的に同じであり、むしろヒートパイプを採用することによって小型化の妨げになっている。   On the other hand, the problem of the low cooling efficiency of the air cooling technology still remains, and the current situation is that the heat radiation cannot catch up more and more as the heat generation amount of the MPU increases. In addition, since heat pipes are only devices that carry heat, air cooling technology is necessary in that heat must be dissipated to the atmosphere by a heat sink and fan with large radiating fins and discharged to the outside of the housing. It is substantially the same as that, and rather, the adoption of a heat pipe has hindered miniaturization.

この問題を解決するための手法として、例えば特開2007−273930号公報に記載されているように、Cu等の熱伝導性に優れた材料で複数の柱状体を形成し、それら複数の柱状体で冷却部品に熱を伝えることが提案されている。これにより、高分子や有機系のシートやグリースを用いることなく、セラミック基板やICチップを収納したパッケージが有しているうねりや面粗さに起因する隙間での熱抵抗の問題をある程度解消することが可能となった。   As a method for solving this problem, for example, as described in JP-A-2007-273930, a plurality of columnar bodies are formed of a material having excellent thermal conductivity such as Cu, and the plurality of columnar bodies are formed. It has been proposed to transfer heat to cooling parts. This eliminates to some extent the problem of thermal resistance in gaps due to swell and surface roughness of packages containing ceramic substrates and IC chips, without using polymer or organic sheets or grease. It became possible.

しかしながら、Cu等の熱伝導性に優れた材料から放電加工等により複数の柱状体を形成した場合、柱状体の剛性が高くなりすぎて、電子機器に通常許される取り付け圧ではうねりや面粗さを有する発熱部や放熱部に複数の柱状体の先端部を完全に沿わせることができず、一部の柱状部が発熱部や放熱部に接触できなくなり、柱状体全体としての冷却能力を十分に発揮させることができなかった。更に、柱状体は製造コストが高く、実用化の障害となっていた。   However, when a plurality of columnar bodies are formed by electrical discharge machining or the like from a material having excellent thermal conductivity such as Cu, the rigidity of the columnar bodies becomes too high, and undulation and surface roughness are usually caused by the mounting pressure normally allowed for electronic devices. The tip of the multiple columnar bodies cannot be completely aligned with the heat generating part or the heat radiating part, and some of the columnar parts cannot contact the heat generating part or the heat radiating part, and the cooling capacity of the entire columnar body is sufficient. Could not be demonstrated. Furthermore, the columnar body has a high manufacturing cost and has been an obstacle to practical use.

本発明は、このような従来の事情に鑑み、高分子や有機系のシートやグリースを用いることなく、且つ熱抵抗となる隙間も生じることなく、セラミックス等の発熱部(被冷却体)や放熱部に密着して取り付けることができ、被冷却体から伝わった熱を直ちに冷媒や放熱部へ放熱させることができ、従って従来の高分子や有機系のシートやグリースを用いたヒートシンクや放熱フィンを備えたヒートシンクとファンなどの冷却手段に比べて排熱効率が高い新たな熱輸送体を低コストで提供することを目的とする。   In view of such a conventional situation, the present invention does not use a polymer or an organic sheet or grease, and does not generate a gap serving as a thermal resistance, and does not generate a heat generating part (cooled body) such as ceramics or heat dissipation. The heat transferred from the object to be cooled can be immediately dissipated to the refrigerant and the heat radiating part. Therefore, heat sinks and heat radiating fins using conventional polymer and organic sheets and grease can be installed. An object of the present invention is to provide a new heat transporter having higher exhaust heat efficiency than a cooling means such as a heat sink and a fan provided at a low cost.

上記目的を達成するため、本発明が提供する熱輸送体は、ICチップ等の電子部品を備えた発熱部と該発熱部で生じた熱を放熱する放熱部との間に介在する熱輸送体であって、基盤部と、該基盤部の発熱体及び/又は放熱部に対向する面上に略垂直に設けられた、中空部を有する複数の毛状体とを有し、該基盤部及び複数の毛状体は主成分がCuからなり且つメッキにより形成され、前記発熱体及び放熱部には前記基盤部又は複数の毛状体の先端部のいずれかが直接当接しており、前記発熱体及び放熱部の少なくともいずれかに当接する前記基盤部又は複数の毛状体は、基盤部が有する空隙部又は複数の毛状体間の空隙部に充填材が埋められていることを特徴としている。   In order to achieve the above object, the heat transporter provided by the present invention is a heat transporter interposed between a heat generating part provided with an electronic component such as an IC chip and a heat dissipating part that dissipates heat generated in the heat generating part. A base portion and a plurality of hair bodies having a hollow portion provided substantially vertically on a surface facing the heating element and / or the heat dissipation portion of the base portion, and the base portion and The plurality of hairs are mainly composed of Cu and formed by plating, and either the base portion or the tips of the plurality of hairs are in direct contact with the heating element and the heat dissipation part, and the heat generation The base part or the plurality of hairs that contact at least one of the body and the heat radiating part is characterized in that a filler is buried in a space part of the base part or a space part between the plurality of hairs. Yes.

上記本発明の熱輸送体においては、充填材が、金属、セラミック、及びカーボンからなる群より選ばれた少なくとも1つを高熱伝導フィラーとして含有している樹脂であるか、はんだ又はロウ材であることが好ましい。   In the heat transport body of the present invention, the filler is a resin containing at least one selected from the group consisting of metal, ceramic, and carbon as a high thermal conductive filler, or a solder or brazing material. It is preferable.

本発明によれば、ICチップやICチップを収納したパッケージ等の発熱部及び/又は放熱フィンを備えたヒートシンク等の放熱部に対して変形能に富んだ毛状体が直接接触することで、発熱部で発生した熱を放熱部へ効率的に伝えることができる。   According to the present invention, the heat-generating part such as an IC chip or a package containing the IC chip and / or a heat-radiating part such as a heat sink provided with heat-dissipating fins directly contact with the deformable hairs, The heat generated in the heat generating part can be efficiently transmitted to the heat radiating part.

本発明の一実施形態の熱輸送体が発熱部と放熱部との間に介在している様子を示す概略の断面図である。It is a schematic sectional drawing which shows a mode that the heat transport body of one Embodiment of this invention is interposed between the heat-emitting part and the thermal radiation part. 本発明の他の実施態様の熱輸送体が発熱部と放熱部との間に介在している様子を示す概略の断面図である。It is general | schematic sectional drawing which shows a mode that the heat transport body of the other embodiment of this invention is interposed between the heat-emitting part and the thermal radiation part. 本発明の熱輸送体が具備する毛状体を模式的に示す部分拡大断面図である。It is a partial expanded sectional view which shows typically the hair body which the heat transport body of this invention comprises. 本発明の熱輸送体が具備する毛状体を製造する際に好適に使用される起毛が施された繊維を模式的に示す部分拡大断面図である。It is a partial expanded sectional view which shows typically the fiber to which the raising | fluff used suitably used when manufacturing the hair body which the heat transport body of this invention comprises is given. 凹凸を有する発熱部に対して本発明の熱輸送体が具備する毛状体が当接している様子を示す模式図である。It is a schematic diagram which shows a mode that the hair body which the heat transport body of this invention comprises with respect to the heat generating part which has an unevenness | corrugation. 発熱部と放熱部との間に介在している比較例1の熱輸送体を示す概略の断面図である。It is a schematic sectional drawing which shows the heat transport body of the comparative example 1 interposed between the heat-emitting part and the heat radiating part. 図5の熱輸送体が具備する柱状体と発熱部とが互いに当接している様子を示す部分拡大断面図である。It is a partial expanded sectional view which shows a mode that the columnar body which the heat transport body of FIG. 5 comprises, and the heat generating part are mutually contacting. 発熱部と放熱部との間に介在している比較例2の熱輸送体を示す概略の断面図である。It is general | schematic sectional drawing which shows the heat transport body of the comparative example 2 currently interposed between the heat-emitting part and the thermal radiation part. 発熱部と放熱部との間に介在している比較例3の熱輸送体を示す概略の断面図である。It is general | schematic sectional drawing which shows the heat transport body of the comparative example 3 currently interposed between the heat-emitting part and a thermal radiation part.

以下、本発明の熱輸送体の実施形態を、図面を参照しながら説明する。図1は本発明の熱輸送体10の一具体例を示す概略の断面図である。この熱輸送体10は、ICチップやICチップを収納したパッケージ等の発熱部1と、発熱部1で生じた熱を放熱するヒートシンクなどの放熱部2との間に介在し、発熱部1で生じた熱を放熱部2に伝達する役割を担っている。熱輸送体10は、Cuを主成分とする略平板状の基盤部11と、Cuを主成分とする複数の細長い毛状の毛状体12とを有している。   Hereinafter, embodiments of the heat transporter of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a specific example of the heat transporter 10 of the present invention. This heat transporter 10 is interposed between a heat generating part 1 such as an IC chip or a package containing the IC chip and a heat radiating part 2 such as a heat sink for radiating heat generated in the heat generating part 1. It plays a role of transmitting the generated heat to the heat radiating section 2. The heat transport body 10 includes a substantially flat base 11 having Cu as a main component and a plurality of elongated hairs 12 having Cu as a main component.

複数の毛状体12は、基盤部11の上面、すなわち基盤部11において発熱体1に対向する面上に略垂直に設けられている。これにより、発熱部1の下面には複数の毛状体12の各先端部が略垂直な方向から当接し、放熱部2の上面には基盤部11の下面が直接当接する。よって、発熱部1で発生した熱は、複数の毛状体12及びこれらに接続する基盤部11を介して放熱部2に伝えられる。尚、図1の熱輸送体10では6本の毛状体12が示されているが、この本数に限定するものではない。   The plurality of hair bodies 12 are provided substantially vertically on the upper surface of the base portion 11, that is, on the surface of the base portion 11 that faces the heating element 1. Thereby, each front-end | tip part of the several hair body 12 contact | abuts from the substantially perpendicular | vertical direction to the lower surface of the heat generating part 1, and the lower surface of the base | substrate part 11 contact | abuts directly to the upper surface of the thermal radiation part 2. Therefore, the heat generated in the heat generating part 1 is transmitted to the heat radiating part 2 through the plurality of hairs 12 and the base part 11 connected thereto. In addition, although the six hair bodies 12 are shown in the heat transport body 10 of FIG. 1, it is not limited to this number.

図1に示す具体例では、複数の毛状体12が基盤部11の上面のみに設けられているが、これに限定するものではなく、複数の毛状体12を基盤部11の下面のみに設けても良い。あるいは、図2に示す本発明の他の具体例のように、複数の毛状体12を基盤部11の上下両面に設けても良い。複数の毛状体12を基盤部11の上下両面に設けた場合は、片面のみに設けた場合に比べて熱輸送体10をより変形能力に優れたものにすることができる。   In the specific example shown in FIG. 1, the plurality of hair bodies 12 are provided only on the upper surface of the base portion 11. However, the present invention is not limited to this, and the plurality of hair bodies 12 are provided only on the lower surface of the base portion 11. It may be provided. Alternatively, as in another specific example of the present invention shown in FIG. When the plurality of hair bodies 12 are provided on both upper and lower surfaces of the base portion 11, the heat transport body 10 can be made more excellent in deformability than when provided on only one side.

ICチップやICチップを収納したパッケージなどの発熱部1と、ヒートシンクなどの放熱部2との間に熱輸送体10を介在する場合、当該熱輸送体10が当接する発熱部1や放熱部2の当接面に通常存在している反りやうねりを考慮しなければならない。これら反りやうねりの大きさは、例えばうねりの最も高い凸部分と最も低い凹部分との間の高低差が100〜300μm程度と比較的大きい場合がある。   When the heat transport body 10 is interposed between the heat generating portion 1 such as an IC chip or a package containing the IC chip and the heat radiating portion 2 such as a heat sink, the heat generating portion 1 or the heat radiating portion 2 with which the heat transport body 10 abuts. The warpage and waviness that are normally present on the abutment surface must be taken into account. As for the size of these warps and waviness, for example, the height difference between the highest convex portion and the lowest concave portion may be relatively large as about 100 to 300 μm.

本発明の熱輸送体10では、上記したように、発熱部1や放熱部2に当接する部分を複数の毛状体12によって形成しているので、従来の突起物や棒状体に比べて柔らかくすることができる。よって、ICチップやヒートシンクを装着する際に加えられる通常の押し付け圧で容易に毛状体12を変形させることができる。このように、毛状体12は変形能に富んでいるので、反りやうねりのある発熱部1や放熱部2の当接面に対してほとんど全ての毛状体12の先端部を接触させることができ、複数の毛状体12全体として大きな接触面積を得ることができる。よって、熱輸送体10の熱輸送能力を高めることができる。   In the heat transport body 10 of the present invention, as described above, the portions that contact the heat generating portion 1 and the heat radiating portion 2 are formed by the plurality of hair bodies 12, so that they are softer than conventional protrusions and rod-shaped bodies. can do. Therefore, the hair 12 can be easily deformed with a normal pressing pressure applied when the IC chip or the heat sink is attached. Thus, since the hair-like body 12 is rich in deformability, almost all the tips of the hair-like bodies 12 are brought into contact with the contact surfaces of the heat-generating portion 1 and the heat-dissipating portion 2 having warpage and undulation. Thus, a large contact area can be obtained as a whole of the plurality of hairs 12. Therefore, the heat transport capability of the heat transporter 10 can be increased.

ところで、ICチップやICチップを収納したパッケージなどの発熱部1と、ヒートシンクなどの放熱部2とは一般的に異なる材質で形成されているため、互いの熱膨張率が異なっている場合が多い。例えば、発熱部1がセラミック、放熱部2がAlの場合、熱膨張の差が大きくなり、はんだ付け等でこれらを一体接合してしまうと、熱膨張差により簡単に破損してしまう。また、汎用の熱伝導シートをこれらの間に介在させても、ヒートサイクルと熱膨張差による伸縮とにより徐々に接触状態が悪化し、時間経過と共に熱輸送能力が劣化する。   By the way, since the heat generating part 1 such as an IC chip or a package containing the IC chip and the heat radiating part 2 such as a heat sink are generally formed of different materials, their thermal expansion coefficients are often different. . For example, when the heat generating portion 1 is ceramic and the heat radiating portion 2 is Al, the difference in thermal expansion becomes large, and if these are integrally joined by soldering or the like, they are easily damaged by the difference in thermal expansion. Moreover, even if a general-purpose heat conductive sheet is interposed between them, the contact state gradually deteriorates due to the heat cycle and expansion and contraction due to the difference in thermal expansion, and the heat transport capability deteriorates with time.

これに対して、毛状体12は自身の変形能により発熱部1や放熱部2に対して弾性的に接触するため、熱膨張差が生じても発熱部1や放熱部2に応力を発生させることなく熱的な接触を維持することができる。よって、熱膨張差による割れを防ぐことができる。また、ヒートサイクルに対しても、自身の変形能により追随することができるため、当初の熱輸送能力を維持することができる。   In contrast, the hair 12 elastically contacts the heat generating part 1 and the heat radiating part 2 by its own deformability, so that stress is generated in the heat generating part 1 and the heat radiating part 2 even if a difference in thermal expansion occurs. The thermal contact can be maintained without causing it. Therefore, the crack by a thermal expansion difference can be prevented. In addition, since the heat cycle can be followed by its own deformability, the initial heat transport capability can be maintained.

更に、本発明の熱輸送体10においては、図3に示すように、各毛状体12が内部に中空部(空洞)Hを有している。すなわち、各毛状体12において、発熱部1や放熱部2と接触する部分以外は中空構造になっている。これにより、毛状体12において、発熱部1や放熱部2との接触面積を良好に確保しながら変形能を向上させることができる。よって、反りやうねりに起因して様々な角度で局所的に傾斜している発熱部1や放熱部2の当接面に対して毛状体12を均一に接触させることが可能となり、熱を効率的にヒートシンク等の放熱部2に伝えることができる。   Furthermore, in the heat transport body 10 of the present invention, as shown in FIG. 3, each hair body 12 has a hollow portion (cavity) H therein. That is, each hair body 12 has a hollow structure except for a portion that contacts the heat generating portion 1 and the heat radiating portion 2. Thereby, in the ciliary body 12, a deformability can be improved, ensuring the contact area with the heat-emitting part 1 and the heat radiating part 2 favorably. Therefore, it becomes possible to uniformly contact the hair 12 with the contact surfaces of the heat generating portion 1 and the heat radiating portion 2 that are locally inclined at various angles due to warping and undulation, It can be efficiently transmitted to the heat radiating part 2 such as a heat sink.

基盤部11及び毛状体12は、高熱伝導材であるCuから形成されている。Cuは400W/mK程度の比較的高い熱伝導率を有しているため、発熱部1の熱をヒートシンク等の放熱部2に効率的に伝えることができる。また、Cuは金属の中でも比較的柔軟性を有しているため、Cuを主成分とする材料で毛状体12を形成することによって塑性変形しやすくなり、発熱体1や放熱部2との接触面積を大きくすることができ、効率的に伝熱することができるため好ましい。尚、金や銀も高熱伝導率と変形能を有しているが、これらの材料はかなり高価であるため、工業的な面においては好ましくない。   The base part 11 and the hair-like body 12 are made of Cu, which is a high heat conductive material. Since Cu has a relatively high thermal conductivity of about 400 W / mK, the heat of the heat generating portion 1 can be efficiently transferred to the heat radiating portion 2 such as a heat sink. In addition, since Cu is relatively flexible among metals, forming the hair-like body 12 with a material containing Cu as a main component facilitates plastic deformation. This is preferable because the contact area can be increased and heat can be efficiently transferred. Gold and silver also have high thermal conductivity and deformability, but these materials are quite expensive and are not preferable from an industrial viewpoint.

毛状体12は、発熱体1及び/又は放熱部2に対して略垂直な方向から当接することが好ましい。当接方向が水平であれば熱を発熱部1から放熱部2に効率良く伝えることができなくなるからである。また、略垂直な方向から当接することで各毛状体12の延在方向と熱伝達の方向とが略同一となるので、熱伝達距離が最短となるため効率的に熱輸送できる。   It is preferable that the hair-like body 12 comes into contact with the heating element 1 and / or the heat radiating portion 2 from a substantially vertical direction. This is because if the contact direction is horizontal, heat cannot be efficiently transferred from the heat generating portion 1 to the heat radiating portion 2. Moreover, since the extending direction of each ciliary body 12 and the direction of heat transfer become substantially the same by abutting from a substantially vertical direction, the heat transfer distance is the shortest, so that heat can be efficiently transported.

上記構造により、複数の毛状体12又はこれに連なる基盤部11のいずれかが直接発熱部1及び放熱部2に当接することになるが、これら発熱体1及び放熱部2の少なくともいずれかに当接する基盤部11又は複数の毛状体12は、基盤部11が有する空隙部又は複数の毛状体12間の空隙部に、高熱伝導フィラーを含む樹脂等の充填材13が埋められている。これらの空隙部を充填材13で部分的に埋めることで、空隙部が空気のままの場合に比べて熱伝導効率を高めることができ、接触熱抵抗を減少させ、熱輸送能力をより向上させることができる。   With the above structure, any of the plurality of hair bodies 12 or the base portion 11 connected thereto directly contacts the heat generating portion 1 and the heat radiating portion 2. The base portion 11 or the plurality of hair bodies 12 that are in contact with each other are filled with a filler 13 such as a resin containing a high thermal conductive filler in a space portion of the base portion 11 or a space portion between the plurality of hair bodies 12. . By partially filling these voids with the filler 13, the heat conduction efficiency can be increased compared to the case where the voids remain air, the contact thermal resistance is reduced, and the heat transport capability is further improved. be able to.

例えば、図1のように基盤部11の片面のみに毛状体12を立設する場合、発熱部1には毛状体12を直接接触させると共に、放熱部2には毛状体12に連なる基盤部11を直接当接させて熱伝達経路となる熱パスを形成し、更に基盤部11が有する空隙部に高熱伝導フィラー入り樹脂からなる充填材13(図示せず)を埋める。   For example, as shown in FIG. 1, when the hair body 12 is erected only on one surface of the base portion 11, the hair body 12 is brought into direct contact with the heat generating portion 1, and the heat radiation portion 2 is connected to the hair body 12. The base part 11 is brought into direct contact to form a heat path as a heat transfer path, and a filler 13 (not shown) made of a resin with a high thermal conductivity filler is buried in the gap part of the base part 11.

これにより、弾性を持つ複数の毛状体12が発熱部1に当接しながら同時に放熱部2に対して基盤部11をより広い接触面積で密着させることができるので、複数の毛状体12及び基盤部11によって形成される熱パスにおいて、ヒートサイクルによる部材の伸縮にも追随しながら良好な接触状態を維持することができる。更に、発熱部1と放熱部2の異種材料間の熱膨張差にも追随することができる。   Thereby, since the base part 11 can be closely_contact | adhered with a wider contact area with respect to the heat radiating part 2 at the same time, while the some hair-like body 12 which has elasticity contact | abuts to the heat-emitting part 1, several hair-like bodies 12 and In the heat path formed by the base portion 11, a good contact state can be maintained while following the expansion and contraction of the member due to the heat cycle. Furthermore, it is possible to follow a difference in thermal expansion between different materials of the heat generating portion 1 and the heat radiating portion 2.

充填材13の材質は、高熱伝導フィラー入りの樹脂の他、はんだやロウ材を用いることができる。はんだやロウ付けの方が樹脂より熱伝導率が高く、熱抵抗を小さくできるため好ましい。また、樹脂は耐熱温度が200℃程度までのものが多いので、200℃以上の温度になる場合ははんだやロウ付けが好ましい。充填材13の材料をいずれのものに選ぶかは部材の使用温度や熱膨張差に応じて適宜使い分けることができる。   As the material of the filler 13, solder or brazing material can be used in addition to the resin containing the high thermal conductive filler. Solder or brazing is preferable because it has higher thermal conductivity than resin and can reduce thermal resistance. In addition, since many resins have a heat-resistant temperature up to about 200 ° C., soldering or brazing is preferable when the temperature is 200 ° C. or higher. Which material to select for the filler 13 can be appropriately selected according to the operating temperature of the member and the difference in thermal expansion.

一般に、発熱部1に用いられるセラミックと放熱部2に用いられるAlでは熱膨張係数が大きく異なり、これらの間に何も介在させることなくはんだやロウ付けで直接接合してしまうと、熱抵抗を小さくできるが、ヒートサイクルによってセラミックスが割れるため直接接合はできない。これに対して、複数の毛状体12間に存在する空隙部や基盤部11自体が有する空隙部にはんだやロウ材を埋めることによってヒートサイクルによる割れを生ずることなく熱抵抗を小さくすることができる。   In general, the ceramic used for the heat generating part 1 and Al used for the heat radiating part 2 have greatly different coefficients of thermal expansion, and if they are joined directly by soldering or brazing without interposing anything between them, the thermal resistance is reduced. Although it can be reduced, direct bonding is not possible because the ceramic is cracked by the heat cycle. On the other hand, it is possible to reduce the thermal resistance without causing cracks due to heat cycle by embedding solder or brazing material in the gaps between the plurality of hairs 12 or the gaps of the base part 11 itself. it can.

また、基盤部11の空隙部も複数の毛状体12間の空隙部も全て充填材13で埋めて、発熱部1と放熱部2とを接続しても良い。この場合においても、毛状体12は依然として変形能を有しているため、発熱部1及び放熱部2の材質が異なっていても熱応力を生じることがない。複数の毛状体12が基盤部11の両面に設けられている場合は、図2のように、一方の面に設けられている毛状体12と基盤部11とを充填材13で埋め、他方の面に設けられている毛状体12は充填材13で埋めないようにしても良い。   Further, the gap between the base 11 and the gap between the plurality of hairs 12 may be filled with the filler 13 to connect the heat generating part 1 and the heat radiating part 2. Even in this case, since the hair 12 still has deformability, no thermal stress is generated even if the materials of the heat generating portion 1 and the heat radiating portion 2 are different. When the plurality of hair bodies 12 are provided on both surfaces of the base portion 11, as shown in FIG. 2, the hair bodies 12 and the base portion 11 provided on one surface are filled with the filler 13, The hair 12 provided on the other surface may not be filled with the filler 13.

複数の毛状体12を効率的に発熱部1や放熱部2に接触させるために、複数の毛状体12を所定の高さでほぼ均一に揃えることが好ましい。これにより、実際には反ったりうねったりしている発熱部1や放熱部2に対して、複数の毛状体12を個別に変形させて満遍なく接触させることができる。例えば図5に示すように、基盤部11の発熱部1に対向する面上に設けられている複数の毛状体12のうち、発熱部1の凹部に対向している領域に設けられている毛状体12aは、殆ど湾曲させないか湾曲させる場合であっても緩やかに湾曲させ、発熱部1の凸部に対向している領域に設けられている毛状体12bは大きく湾曲させる。これにより、全ての毛状体が発熱部1に確実に接触することができる。   In order to efficiently bring the plurality of hairs 12 into contact with the heat generating part 1 and the heat radiation part 2, it is preferable to arrange the plurality of hairs 12 substantially uniformly at a predetermined height. Accordingly, the plurality of hairs 12 can be individually deformed and uniformly contacted with the heat generating portion 1 and the heat radiating portion 2 that are actually warped or wavy. For example, as shown in FIG. 5, the plurality of hairs 12 provided on the surface of the base 11 facing the heat generating part 1 are provided in a region facing the recess of the heat generating part 1. Even when the hair 12a is hardly bent or curved, the hair 12b is gently bent, and the hair 12b provided in the region facing the convex portion of the heat generating portion 1 is greatly curved. Thereby, all the ciliary bodies can contact the heat generating part 1 reliably.

このように毛状体12に変形能を持たせるためには、各毛状体12の径を小さくするか、各毛状体12の長さをある程度長くすることで可能となる。しかし、毛状体12の径を小さくし過ぎると、発熱部1との接触面積の低下を招き、効率的に熱を伝えることが困難となる。また、毛状体12の長さを長くし過ぎると、熱伝達経路が長くなり、結果的に全体として熱抵抗が大きくなってしまう。   Thus, in order to give the capillaries 12 deformability, it is possible to reduce the diameter of each capillaries 12 or increase the length of each capillaries 12 to some extent. However, if the diameter of the hair-like body 12 is too small, the contact area with the heat generating part 1 is reduced, and it is difficult to efficiently transfer heat. Moreover, when the length of the hair-like body 12 is too long, the heat transfer path becomes long, and as a result, the thermal resistance increases as a whole.

具体的には、熱を伝える毛状体12の長さ(図3においてLで示す距離)が0.2〜3mm、直径(図3においてDで示す距離)が0.02〜0.1mmであることが好ましい。毛状体12の長さが0.2mm未満である場合、毛状体の変形能が小さくなるため好ましくなく、毛状体12の長さが3mmを超える場合は、熱伝達距離が長くなり、相対的に熱抵抗が大きくなるため好ましくない。また、毛状体12の直径が0.1mmを超える場合は変形能が小さくなるため好ましくなく、直径が0.02mm未満の場合は毛状体12一つ当たりの接触面積が相対的に小さくなり、熱伝達量が低下し、効率的な冷却ができなくなるため好ましくない。   Specifically, the length (distance indicated by L in FIG. 3) of the hairs 12 that conduct heat is 0.2 to 3 mm, and the diameter (distance indicated by D in FIG. 3) is 0.02 to 0.1 mm. Preferably there is. When the length of the hair body 12 is less than 0.2 mm, it is not preferable because the deformability of the hair body becomes small. When the length of the hair body 12 exceeds 3 mm, the heat transfer distance becomes long, This is not preferable because the thermal resistance becomes relatively large. In addition, when the diameter of the hair 12 exceeds 0.1 mm, the deformability is small, which is not preferable. When the diameter is less than 0.02 mm, the contact area per hair 12 is relatively small. This is not preferable because the amount of heat transfer is reduced and efficient cooling cannot be performed.

更に、各毛状体12は、L/Dの値が10〜150であることが好ましい。L/Dの値が10未満では、剛性が高くなりすぎて少数の毛状体12しか発熱部1や放熱部2に接触できず十分な熱輸送能力が発揮されない。一方、L/Dの値が150を超えると毛状体12を発熱部1や放熱部2の当接面に対して略垂直に当接させることが困難になるため熱輸送が十分に行えず、熱輸送能力が不足するため好ましくない。   Further, each hairy body 12 preferably has an L / D value of 10 to 150. If the value of L / D is less than 10, the rigidity becomes so high that only a small number of hairs 12 can contact the heat generating part 1 and the heat radiating part 2 and a sufficient heat transport capability is not exhibited. On the other hand, if the value of L / D exceeds 150, it becomes difficult to bring the hair 12 into contact with the contact surfaces of the heat generating portion 1 and the heat radiating portion 2 substantially perpendicularly, so that heat transport cannot be sufficiently performed. This is not preferable because the heat transport capability is insufficient.

更に、上記の形状の条件を満たす毛状体12は、基盤部11上の単位面積当り10〜1000本/mmの密度で存在していることが好ましい。この存在密度が10本/mm未満の場合、相対的に熱伝達量が低下するため好ましくない。また1000本/mmを超えると過密状態となり、毛状体12が変形(湾曲)するためのスペースを確保することが困難となり、結果的に毛状体12の変形(湾曲)量が小さくなるため、毛状体12の発熱部1に対する接触本数の低下を招くために好ましくない。 Furthermore, it is preferable that the hairs 12 satisfying the above-mentioned shape exist at a density of 10 to 1000 / mm 2 per unit area on the base 11. When the existence density is less than 10 / mm 2 , the heat transfer amount is relatively lowered, which is not preferable. Moreover, when it exceeds 1000 / mm < 2 >, it will be in an overcrowded state and it will become difficult to ensure the space for the hair body 12 to deform | transform (bend), and as a result, the deformation | transformation (bend) amount of the hair body 12 will become small. Therefore, it is not preferable because the number of contacts of the hair-like body 12 with respect to the heat generating portion 1 is reduced.

このように複数の毛状体12で発熱部1または放熱部2と接触することができ、しかも毛状体12が適度な柔軟性を有していることから、例えば発熱部1や放熱部2の毛状体12との接触部分に反りや傷があったとしても、毛状体12が変形してこれらの反りや傷に追従することができるため、安定した熱伝達を実現することができる。   In this way, the plurality of hairs 12 can be in contact with the heat generating part 1 or the heat radiating part 2, and since the hairs 12 have appropriate flexibility, for example, the heat generating part 1 or the heat radiating part 2. Even if there is a warp or a flaw in the contact portion with the ciliary body 12, the ciliary body 12 can be deformed to follow the warp or the flaw, so that stable heat transfer can be realized. .

次に、本発明における熱輸送体10の製法を説明する。先ず、起毛又は植毛が均一に施された繊維を準備する。起毛が施された繊維の作製方法としては、例えば、編物、織物等の2枚の織物の間にたて糸の一部を用いてパイルを織り込み、これを2枚に切り分けることで高密度で直立性に優れた起毛の施された繊維を作製することができる。図4には、上記2枚の織物が切り分けられた後の片側の織物を模式的に示している。この図4に示すように、1本の糸は複数本のフィラメントFをよったより線から成ることから、フィラメント数Nを増やすことで同じ起毛ピッチPのまま繊維密度(1/P×1/P×N)を容易に増やすことができる。   Next, the manufacturing method of the heat transporter 10 in the present invention will be described. First, a fiber on which raising or flocking is uniformly applied is prepared. As a method for producing a fiber with brushed fibers, for example, a pile is woven using a part of a warp yarn between two woven fabrics such as a knitted fabric and a woven fabric, and this is divided into two pieces to achieve high density and uprightness. It is possible to produce a fiber that is excellent in raising. FIG. 4 schematically shows the fabric on one side after the two fabrics are cut. As shown in FIG. 4, since one yarn is composed of stranded wires formed by a plurality of filaments F, the fiber density (1 / P × 1 / P is maintained with the same raised pitch P by increasing the number N of filaments. × N) can be easily increased.

一方、植毛が施された繊維は、静電植毛法によって作製することができる。この方法は、植毛する繊維を所望の長さに裁断し、これを篩に通した後、ベースとなる繊維と電極板の間の空間に散布しながら、これらベースとなる繊維と電極板との間に数万ボルトの電圧をかけて植毛するものである。   On the other hand, the fiber to which flocking has been applied can be produced by an electrostatic flocking method. In this method, the fiber to be planted is cut to a desired length, passed through a sieve, and then dispersed in the space between the base fiber and the electrode plate, and between the base fiber and the electrode plate. The hair is planted by applying a voltage of tens of thousands of volts.

このようにして得られた起毛又は植毛が施された繊維にCuをメッキし、その後メッキが施された繊維を熱処理して繊維を除去又はカーボン化する。これにより、Cuを主成分とする材料によって、基盤部11及びこれに立設された毛状体12を形成することができる。このように、起毛又は植毛が施された繊維にCuをメッキすることで従来と比較して安価に熱輸送体10を製造することができる。尚、従来のプレス方法によって本発明と同様の熱輸送体10を形成することは非常に困難である。   Cu thus obtained is plated on the fibers that have been subjected to raising or flocking, and then the plated fibers are heat-treated to remove or carbonize the fibers. Thereby, the base | substrate part 11 and the hair-like body 12 standing by this can be formed with the material which has Cu as a main component. Thus, the heat transporter 10 can be manufactured at a lower cost than in the prior art by plating Cu on the fibers that have undergone raising or flocking. In addition, it is very difficult to form the heat transport body 10 similar to the present invention by the conventional pressing method.

上記したメッキする繊維に好適に使用される起毛又は植毛された繊維は、その先端部の高さができるだけ揃っている方が好ましい。起毛の高さ、植毛の長さを揃えることによって、得られる複数の毛状体12を発熱部1や放熱部2に対して均一に当接させることができる。尚、起毛や植毛の長さ(高さ)やそのベースとなる繊維上に存在する密度は、当然のことながら前述した毛状体12の存在密度や長さと同じ要件が適用されることになる。   The raised or flocked fibers that are preferably used for the above-described fibers to be plated are preferably such that the heights of the tips are as uniform as possible. By aligning the height of raising and the length of flocking, the obtained plurality of hairs 12 can be brought into uniform contact with the heat generating portion 1 and the heat radiating portion 2. Needless to say, the length (height) of raised or flocked hair and the density existing on the base fiber are the same as the above-described density and length of the hairy body 12. .

繊維の突起部分となる起毛や植毛の存在密度が高かったり、高さが高すぎたりする場合は、突起部分の下部まで充分にメッキ液が浸透せず、得られる毛状体12の下部に十分なCu膜が形成されなかったり膜厚が薄くなったりして、熱伝達量が低下するため好ましくない。この繊維の突起部分は、メッキした後、熱処理によって除去される。これにより、突起部分に対応する部分に毛状体12の中空部Hが形成される。所定の形状の毛状体12を作製するためには、繊維の突起部分の直径とメッキ厚とを制御しながら作製する必要がある。   When the density of raised or flocked fibers that become the protruding portion of the fiber is high or the height is too high, the plating solution does not sufficiently penetrate to the lower portion of the protruding portion, and the lower portion of the resulting hairy body 12 is sufficient. An undesirable Cu film is not formed or the film thickness is reduced, which reduces the amount of heat transfer, which is not preferable. The protruding portion of the fiber is removed by heat treatment after plating. Thereby, the hollow part H of the hair-like body 12 is formed in the part corresponding to the protrusion part. In order to produce the hair 12 having a predetermined shape, it is necessary to produce the hair 12 while controlling the diameter of the protruding portion of the fiber and the plating thickness.

本発明の熱輸送体10の作製の際に使用する繊維の材質は、熱処理により除去できるものであれば特に制約はない。例えば、アクリルや、セルロース系のレーヨン、ナイロン等のポリアミド系繊維、ポリエステル等の化学繊維や、綿花、絹、麻等の天然繊維等を使用することができる。但し、上記のように突起部分の直径を制御する観点から、繊維の直径を比較的制御しやすい化学繊維の方がより好ましい。   The material of the fiber used for producing the heat transporter 10 of the present invention is not particularly limited as long as it can be removed by heat treatment. For example, acrylic, cellulose-based rayon, polyamide-based fibers such as nylon, chemical fibers such as polyester, natural fibers such as cotton, silk, and hemp can be used. However, from the viewpoint of controlling the diameter of the protruding portion as described above, a chemical fiber that can relatively easily control the fiber diameter is more preferable.

特に、熱処理後に中空部Hを形成することになる繊維の突起部分は、材質にレーヨンを使用するのが好ましい。レーヨンは化学繊維の中でも比較的柔らかいため、所望の長さになるように切断して揃える際に特に加工がしやすいからである。   In particular, it is preferable to use rayon as the material of the protruding portion of the fiber that will form the hollow portion H after the heat treatment. This is because rayon is relatively soft among chemical fibers, and is particularly easy to process when cutting and aligning to a desired length.

これらの繊維に対してCuメッキを行う場合、これらの繊維のほとんどは導電性を有しないため、先ず無電解メッキにより比較的薄い膜を繊維の上に形成し、その後電気メッキにより基盤部11及び毛状体12を形成することが好ましい。電気メッキは、流す電流量に応じて繊維に析出するCuの量を制御することができるので、毛状体12の直径を所望の大きさにすることができる。また、無電解メッキ、電気メッキにおけるCuの付着量に関しては、500〜2000g/mが好ましい。Cuの付着量が500g/mより少ないと、完全に繊維を被覆することができなくなる。一方、2000g/mより多いと、隣接する繊維の突起部同士がつながってしまい、毛状体12を形成できなくなる。 When Cu plating is performed on these fibers, since most of these fibers are not conductive, a relatively thin film is first formed on the fibers by electroless plating, and then the base 11 and It is preferable to form the hairy body 12. In electroplating, the amount of Cu deposited on the fiber can be controlled in accordance with the amount of current to flow, so that the diameter of the hair 12 can be set to a desired size. Moreover, regarding the adhesion amount of Cu in electroless plating and electroplating, 500-2000 g / m < 2 > is preferable. If the adhesion amount of Cu is less than 500 g / m 2 , the fiber cannot be completely covered. On the other hand, when it is more than 2000 g / m 2 , the protruding portions of adjacent fibers are connected to each other, and the hairy body 12 cannot be formed.

繊維にCuメッキを施した後、繊維を除去する。繊維の除去方法には、熱処理によって除去する方法がある。例えば、窒素や真空等の不活性なガス雰囲気中で、繊維が分解し始める温度、例えば300℃以上の温度で熱処理する。その後、例えば大気中で残渣を燃焼し、Cuの表面に生じた酸化皮膜を水素等の還元雰囲気中で熱処理し、表面の酸化銅を還元することで作製することができる。   After applying Cu plating to the fiber, the fiber is removed. There is a method for removing fibers by heat treatment. For example, heat treatment is performed at a temperature at which the fiber starts to decompose, for example, at a temperature of 300 ° C. or higher in an inert gas atmosphere such as nitrogen or vacuum. Thereafter, for example, the residue can be burned in the atmosphere, and the oxide film formed on the surface of Cu can be heat-treated in a reducing atmosphere such as hydrogen to reduce the surface copper oxide.

また、不活性ガス雰囲気中で熱処理する温度としては、300℃以上が好ましく、Cuの融点である1085℃以下にする必要がある。特に、500〜950℃が好ましく、700〜900℃程度がより好ましい。この程度の温度範囲内で熱処理すると、繊維が分解した際に分解物が大気での燃焼処理によって除去しやすくなるため好ましい。特に、500℃以上であれば、繊維自体の熱分解が進むため、大気中で熱処理した際に毛状体内に残渣が残りにくくなる。更に、700℃以上であればほとんど残渣は残らない。   Further, the temperature for heat treatment in an inert gas atmosphere is preferably 300 ° C. or higher, and needs to be 1085 ° C. or lower, which is the melting point of Cu. In particular, 500-950 degreeC is preferable and about 700-900 degreeC is more preferable. Heat treatment within this temperature range is preferable because when the fibers are decomposed, the decomposition products are easily removed by a combustion process in the atmosphere. In particular, if the temperature is 500 ° C. or higher, the thermal decomposition of the fiber itself proceeds, so that it is difficult for residues to remain in the ciliary body when heat-treated in the atmosphere. Furthermore, if it is 700 degreeC or more, a residue will hardly remain.

また、不活性ガス雰囲気や真空中で熱処理を施さずに、大気中で燃焼することも可能である。しかし、この場合は繊維自体が燃焼し、Cu膜の温度も上昇してしまい、結果的にCu膜表面の酸化膜が厚くなることがあるので好ましくない。すなわち、Cu膜表面の酸化膜が厚くなりすぎると、水素中で還元しても表面上は還元できるものの、中空部の内部に酸化皮膜が残存しやすくなり、毛状体全体の熱伝導率が低下するため好ましくない。   It is also possible to burn in the atmosphere without performing heat treatment in an inert gas atmosphere or vacuum. However, in this case, the fiber itself burns and the temperature of the Cu film also rises. As a result, the oxide film on the surface of the Cu film may become thick, which is not preferable. In other words, if the oxide film on the surface of the Cu film becomes too thick, it can be reduced on the surface even if it is reduced in hydrogen, but the oxide film tends to remain inside the hollow part, and the thermal conductivity of the entire hair is reduced. Since it falls, it is not preferable.

水素で還元する温度は300℃以上が好ましい。これよりも低い温度では、Cuの還元反応の速度が遅く、あまり効果的ではない。効率を考えると、500〜800℃程度が好ましい。また、1000℃を超える温度で還元すると、Cu自身に弾力性がなくなり、焼きなまされた状態になる。このため、毛状体12と発熱部1や放熱部2の接触部において、毛状体12の先端が発熱部1や放熱部2に接触しても、毛状体12の変形のみが大きくなり、結果的に毛状体12と発熱部1や放熱部2との接触面積が小さくなるため好ましくない。   The temperature for reduction with hydrogen is preferably 300 ° C. or higher. At temperatures lower than this, the rate of the Cu reduction reaction is slow and is not very effective. Considering the efficiency, about 500 to 800 ° C. is preferable. Moreover, if it reduces at the temperature over 1000 degreeC, Cu will lose elasticity, and will be in the annealed state. For this reason, even if the tip of the hair 12 contacts the heat generating part 1 or the heat radiating part 2 at the contact part between the hair 12 and the heat generating part 1 or the heat radiating part 2, only the deformation of the hair 12 becomes large. As a result, the contact area between the hair 12 and the heat generating part 1 or the heat radiating part 2 becomes small, which is not preferable.

以上、本発明の熱輸送体を具体例に基づいて説明したが、本発明は係る具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施可能である。すなわち、本発明の技術的範囲は、特許請求の範囲及びその均等物に及ぶものである。   As mentioned above, although the heat transport body of this invention was demonstrated based on the specific example, this invention is not limited to the specific example which concerns, It can implement in the various aspect of the range which does not deviate from the main point of this invention. That is, the technical scope of the present invention extends to the claims and their equivalents.

[実施例1]
発熱部1として、パソコンのCPUに見立てた32mm角×厚さ2mmのセラミックスヒータを準備した。これにリード線を取り付け、電流を流すことで発熱できるようにした。次に放熱部2として、60mm角×高さ30mmのアルミニウム製の放熱フィンを備えたヒートシンクを準備した。
[Example 1]
A ceramic heater having a size of 32 mm square and a thickness of 2 mm was prepared as the heat generating unit 1 as if it were a CPU of a personal computer. A lead wire was attached to this so that heat could be generated by passing an electric current. Next, as the heat radiating part 2, a heat sink provided with aluminum radiating fins of 60 mm square × height 30 mm was prepared.

上記発熱部1と放熱部2との間に介在させる熱輸送体10を作製するため、2枚の織物の間にたて糸の一部を用いてパイルを織り込み、これを2枚に切り分けることで厚み0.5mmの基盤部の片面に起毛を施し、下記表1に示すような起毛長さがそれぞれ異なる4種類のポリエステル系繊維を準備した。これら4種類の繊維にそれぞれ無電解Cuメッキを施し、目付量1500g/mで電解Cuメッキを行った。繊維にCuメッキを施した後、N雰囲気の下、800℃で1時間焼成した。その後、Hを15mol%混合したN雰囲気で800℃にて更に焼成を行い、試料1〜4の熱輸送体を得た。 In order to produce the heat transport body 10 interposed between the heat generating portion 1 and the heat radiating portion 2, a pile is woven using a part of the warp yarn between two woven fabrics, and this is cut into two pieces to obtain a thickness. Brushing was performed on one side of a 0.5 mm base part, and four types of polyester fibers having different brushing lengths as shown in Table 1 below were prepared. These four types of fibers were each subjected to electroless Cu plating, and electrolytic Cu plating was performed at a basis weight of 1500 g / m 2 . The fiber was subjected to Cu plating and then fired at 800 ° C. for 1 hour in an N 2 atmosphere. Thereafter, further baked at 800 ° C. in N 2 atmosphere of H 2 were mixed 15 mol%, to obtain a heat transport of Samples 1-4.

このようにして得られた試料1〜4の熱輸送体を毛状体12が発熱部1に、基盤部11が放熱部2に当接するようにそれぞれセットし、基盤部11に充填材13としてAgグリースを注入した。発熱部1のセラミックヒータに60Wの電力を供給し、発熱部1と放熱部2の温度差ΔTを測定した。測定結果を下記の表1に示す。   The heat transport bodies of Samples 1 to 4 obtained in this way were set so that the hair 12 is in contact with the heat generating part 1 and the base part 11 is in contact with the heat radiating part 2, and the base part 11 is used as the filler 13. Ag grease was injected. A power of 60 W was supplied to the ceramic heater of the heat generating part 1, and the temperature difference ΔT between the heat generating part 1 and the heat radiating part 2 was measured. The measurement results are shown in Table 1 below.

Figure 2010238858
Figure 2010238858

[実施例2]
基盤部の両面に起毛を施した繊維を用いた以外は実施例1と同様にして下記表2に示すような試料5〜7の熱輸送体を準備した。これを発熱部1と放熱部2の間にセットし、以降は実施例1と同様にして充填材13を注入してΔTを測定した。測定結果を下記の表2に示す。尚、試料6及び7には、実施例1に比べ反りの大きなヒートシンクを使用した。
[Example 2]
Heat transporters of Samples 5 to 7 as shown in Table 2 below were prepared in the same manner as in Example 1 except that raised fibers were used on both sides of the base part. This was set between the heat generating part 1 and the heat radiating part 2, and thereafter, the filler 13 was injected in the same manner as in Example 1 and ΔT was measured. The measurement results are shown in Table 2 below. Samples 6 and 7 used heat sinks having a large warpage as compared with Example 1.

Figure 2010238858
Figure 2010238858

[実施例3]
実施例1と同様にして下記表3に示すような試料8〜12の熱輸送体を準備した。これら試料8〜12に対してPbフリーはんだ又はAgロウ材からなる充填材13を用い、使用温度を200℃とした以外は実施例1と同様にしてΔTを測定した。尚、ヒータへの供給電源ケーブルの被覆材は耐熱部材を使用した。測定結果を下記の表3に示す。
[Example 3]
In the same manner as in Example 1, heat transporters of Samples 8 to 12 as shown in Table 3 below were prepared. ΔT was measured in the same manner as in Example 1 except that a filler 13 made of Pb-free solder or an Ag brazing material was used for Samples 8 to 12 and the operating temperature was 200 ° C. A heat-resistant member was used as a covering material for the power supply cable to the heater. The measurement results are shown in Table 3 below.

Figure 2010238858
Figure 2010238858

[比較例1]
発熱部1と放熱部2にとの間に介在させる試料13の熱輸送体として、図6に示すようなCu基盤部3aの片面に多数のCuの柱状体3bが集合した凸状構造部3をワイヤー放電加工にて形成した。この凸状構造部3は、厚さ1mmのCu基盤部3aの上に、高さ0.5mm、断面0.1×0.1mmの多数の柱状体3bが互いに0.4mmの間隔をあけて規則的に配列した構造を有している。このとき、多数の柱状体3bの存在密度は6.25本/mmであった。この凸状構造部3の柱状体3b及び基盤部3aをそれぞれ発熱部1及び放熱部2に当接するようにセットし、実施例1と同様の方法で発熱部1と放熱部2の温度差ΔTを測定した。
[Comparative Example 1]
As a heat transport body of the sample 13 interposed between the heat generating portion 1 and the heat radiating portion 2, a convex structure portion 3 in which a large number of Cu columnar bodies 3b are gathered on one side of a Cu base portion 3a as shown in FIG. Was formed by wire electric discharge machining. The convex structure 3 has a plurality of columnar bodies 3b each having a height of 0.5 mm and a cross-section of 0.1 × 0.1 mm on a Cu base portion 3a having a thickness of 1 mm with a spacing of 0.4 mm. It has a regularly arranged structure. At this time, the existence density of many columnar bodies 3b was 6.25 pieces / mm 2 . The columnar body 3b and the base portion 3a of the convex structure portion 3 are set so as to contact the heat generating portion 1 and the heat radiating portion 2, respectively, and the temperature difference ΔT between the heat generating portion 1 and the heat radiating portion 2 in the same manner as in the first embodiment. Was measured.

[比較例2]
発熱部1と放熱部2にとの間に介在させる試料14の熱輸送体として、図8に示すような厚さ1.5mmのCu製金属多孔体4(セルメット、PPI=50)を準備した。このCu製金属多孔体4を発熱部1及び放熱部2に当接するようにセットし、実施例1と同様の方法により発熱部1と放熱部2の温度差ΔTを測定した。
[Comparative Example 2]
A Cu metal porous body 4 (Celmet, PPI = 50) having a thickness of 1.5 mm as shown in FIG. 8 was prepared as a heat transport body of the sample 14 interposed between the heat generating portion 1 and the heat radiating portion 2. . The Cu metal porous body 4 was set so as to contact the heat generating portion 1 and the heat radiating portion 2, and the temperature difference ΔT between the heat generating portion 1 and the heat radiating portion 2 was measured by the same method as in Example 1.

[比較例3]
実施例1と同様の熱輸送体10の基盤部11を、図9に示すようにシリコーン系接着剤5を介在して放熱部2に接続した以外は実施例1と同様にして試料15の熱輸送体とし、実施例1と同様の方法により発熱部と放熱部の温度差ΔTを測定した。これら比較例1〜3の結果をまとめて下記の表4に示す。
[Comparative Example 3]
The base part 11 of the heat transport body 10 similar to that of Example 1 was connected to the heat dissipation part 2 through the silicone adhesive 5 as shown in FIG. The temperature difference ΔT between the heat generating part and the heat radiating part was measured by the same method as in Example 1 using the transporter. The results of Comparative Examples 1 to 3 are summarized in Table 4 below.

Figure 2010238858
Figure 2010238858

これら表1〜4の結果より、実施例1は、比較例1〜3に比べて効率良く熱輸送できることが分かった。また、実施例2の両面に起毛する場合も、実施例1と同等以上の性能が得られることが分かった。特に、反りの大きなヒートシンクの場合に、片面起毛に比べて両面起毛の方が効率良く熱輸送していた。これは、反りの大きなヒートシンクには基盤部よりも毛状体の方が効率良く熱を伝えることを示している。比較例1の熱輸送体は柱状体の剛性が高いので、図7に示すように発熱部1の凹部において柱状体の先端部が良好に当接できず、その結果効率が低下しているものと思われる。   From the results of Tables 1 to 4, it was found that Example 1 can efficiently transport heat compared to Comparative Examples 1 to 3. Moreover, when raising both surfaces of Example 2, it turned out that the performance more than equivalent to Example 1 is obtained. In particular, in the case of a heat sink with a large warp, double-sided raising efficiently transported heat compared to single-sided raising. This indicates that the hair is more efficiently transferred to the heat sink with a large warp than the base. Since the rigidity of the columnar body is high in the heat transport body of Comparative Example 1, the tip of the columnar body cannot be satisfactorily brought into contact with the recess of the heat generating portion 1 as shown in FIG. I think that the.

また、充填材13をはんだやAgロウ材とすることで、Agグリースなど樹脂系では使用できない200℃の高温雰囲気下でも良好に使用できることが分かる。更に、充填材13としてAgグリースに比べてはんだ、Agロウ材の方が熱伝導率が高く、効率良く熱輸送できることが分かる。   It can also be seen that by using the filler 13 as a solder or an Ag brazing material, it can be used satisfactorily even in a high temperature atmosphere of 200 ° C. that cannot be used in a resin system such as Ag grease. Furthermore, it can be seen that solder and Ag brazing material as filler 13 have higher thermal conductivity and heat transport efficiently than Ag grease.

1 発熱部
2 放熱部
10 熱輸送体
11 基盤部
12 毛状体
13 充填材
DESCRIPTION OF SYMBOLS 1 Heat generating part 2 Heat radiating part 10 Heat transporter 11 Base part 12 Hairy body 13 Filler

Claims (4)

発熱部と該発熱部で生じた熱を放熱する放熱部との間に介在する熱輸送体であって、基盤部と、該基盤部の発熱体及び/又は放熱部に対向する面上に略垂直に設けられた、中空部を有する複数の毛状体とを有し、該基盤部及び複数の毛状体は主成分がCuからなり且つメッキにより形成され、
前記発熱体及び放熱部には前記基盤部又は複数の毛状体の先端部のいずれかが直接当接しており、前記発熱体及び放熱部の少なくともいずれかに当接する前記基盤部又は複数の毛状体は、基盤部が有する空隙部又は複数の毛状体間の空隙部に充填材が埋められていることを特徴とする熱輸送体。
A heat transport body interposed between a heat generating portion and a heat radiating portion that radiates heat generated in the heat generating portion, and is substantially on a surface of the base portion and the surface of the base portion facing the heat generating body and / or the heat radiating portion. A plurality of hair bodies having a hollow portion provided vertically, the base portion and the plurality of hair bodies are mainly composed of Cu and formed by plating,
Either the base portion or the tips of the plurality of hairs are in direct contact with the heat generating body and the heat radiating portion, and the base portion or the plurality of hairs are in contact with at least one of the heat generating body and the heat radiating portion. The heat transporter is characterized in that the filler is filled in a void portion of the base portion or a void portion between the plurality of hair bodies.
前記複数の毛状体は、前記基盤部の両面に設けられていることを特徴とする、請求項1に記載の熱輸送体。   The heat transporter according to claim 1, wherein the plurality of hairs are provided on both surfaces of the base portion. 前記充填材は、金属、セラミック、及びカーボンからなる群より選ばれた少なくとも1つを高熱伝導フィラーとして含有している樹脂であることを特徴とする、請求項1又は2に記載の熱輸送体。   The heat transporter according to claim 1 or 2, wherein the filler is a resin containing at least one selected from the group consisting of metal, ceramic, and carbon as a high thermal conductive filler. . 前記充填材は、はんだ又はロウ材であることを特徴とする、請求項1又は2に記載の熱輸送体。   The heat transporter according to claim 1, wherein the filler is solder or brazing material.
JP2009084307A 2009-03-31 2009-03-31 Heat transporter Pending JP2010238858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084307A JP2010238858A (en) 2009-03-31 2009-03-31 Heat transporter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084307A JP2010238858A (en) 2009-03-31 2009-03-31 Heat transporter

Publications (1)

Publication Number Publication Date
JP2010238858A true JP2010238858A (en) 2010-10-21

Family

ID=43092937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084307A Pending JP2010238858A (en) 2009-03-31 2009-03-31 Heat transporter

Country Status (1)

Country Link
JP (1) JP2010238858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463994B2 (en) 2021-03-26 2024-04-09 住友ベークライト株式会社 heat sink

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463994B2 (en) 2021-03-26 2024-04-09 住友ベークライト株式会社 heat sink

Similar Documents

Publication Publication Date Title
EP2546871B1 (en) Method for producing a heat dissipating structure
JP2012169678A (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
US20090195989A1 (en) Heat sink component and a method of producing a heat sink component
JP2003163315A (en) Module
JP4744385B2 (en) Heat dissipation board and electronic device using the same
JPWO2018173921A1 (en) Ceramic metal circuit board and semiconductor device using the same
JP2016051778A (en) Metal-ceramic bonded substrate
JP2010077013A (en) Carbon-metal composite and circuit member or heat radiation member using the same
JPWO2010087432A1 (en) Heat dissipation base and electronic device using the same
TW200423345A (en) Thermal-conductive substrate package
JP6090529B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2010238858A (en) Heat transporter
JPH09298259A (en) Heat sink and manufacture thereof
US7645641B2 (en) Cooling device with a preformed compliant interface
JP5748487B2 (en) Circuit board and electronic device using the same
JP2009253123A (en) Heat dissipation structure manufacturing method
TW201251524A (en) Circuit board with heat sink and method of fabricating the same
KR101557431B1 (en) Semiconductor unit with submount for semiconductor device
CN216528873U (en) Circuit substrate and insulated gate bipolar transistor module
CN216928558U (en) Heat dissipation circuit board and heat dissipation module
KR20140008128A (en) Substrate for led and led heat-sink structure
KR101102077B1 (en) Light Emitting Module and Light Emitting Device Having the Same
JP2004087612A (en) Heat radiating member and semiconductor device using same
KR101026348B1 (en) Support Substrate Structure for Supporting Electronic Component thereon and Method for Fabrication The Same
TW201505218A (en) Substrate having excellent thermal conductivity in thickness direction, light emitting diode element comprising the substrate and method of manufacturing the substrate