JP2010238836A - Mems structure, mems device, and mems device manufacturing method - Google Patents

Mems structure, mems device, and mems device manufacturing method Download PDF

Info

Publication number
JP2010238836A
JP2010238836A JP2009083904A JP2009083904A JP2010238836A JP 2010238836 A JP2010238836 A JP 2010238836A JP 2009083904 A JP2009083904 A JP 2009083904A JP 2009083904 A JP2009083904 A JP 2009083904A JP 2010238836 A JP2010238836 A JP 2010238836A
Authority
JP
Japan
Prior art keywords
detection electrode
vibrating body
joined
detection
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009083904A
Other languages
Japanese (ja)
Other versions
JP5381235B2 (en
Inventor
Shin Kurihara
晋 栗原
Takao Kumada
貴夫 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2009083904A priority Critical patent/JP5381235B2/en
Publication of JP2010238836A publication Critical patent/JP2010238836A/en
Application granted granted Critical
Publication of JP5381235B2 publication Critical patent/JP5381235B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a MEMS structure that further improves detection accuracy of changes in electrostatic capacity by suppressing displacement between a vibrator and a detection electrode, a MEMS device, and a manufacturing method for the MEMS device. <P>SOLUTION: The MEMS structure 100A includes a vibrator part 1A comprising a support structure part 11 and a vibrator 12b displaceably supported with respect to the support structure part 11, and a detection electrode part 2A comprising a substrate 21 and a detection electrode formed on the substrate 21. The vibrator part 1A and the detection electrode part 2A are joined to each other such that the vibrator 12b and the detection electrode face each other at an interval therebetween in order to detect changes in electrostatic capacity between the vibrator 12b and the detection electrode. The detection electrode is composed of a plurality of mutually separated small electrodes 22a1-22an. Consequently, it allows selection of one or more small electrodes 22a1-22an in accordance with displacement between the vibrator 12b and the detection electrode in a state that the vibrator part 1A and the detection electrode part 2A are joined to each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、振動体と、この振動体に対向する検出電極とを備え、振動体と検出電極との間の静電容量の変化を検出するMEMS構造体、さらにはMEMS構造体を用いたMEMSデバイス及びその製造方法に関する。   The present invention includes a vibrating body and a detection electrode facing the vibrating body, detects a change in capacitance between the vibrating body and the detection electrode, and further uses a MEMS structure. The present invention relates to a device and a manufacturing method thereof.

MEMS(Micro Electro Mechanical System)技術は、マイクロマシン技術の一つで、携帯電話などの小型電子機器に用いられる部品の製造技術として注目されている。
MEMS技術により形成されたMEMS構造体の一つとして、片持ち梁状や両持ち梁状の振動体と、この振動体に対向する検出電極とを備え、振動体と検出電極との間の静電容量の変化を検出するMEMS構造体が、角速度センサ、加速度センサなどの力学量センサのためのセンサ素子として用いられており、その構成は例えば特許文献1に示されている。
[従来の構成例]
図12により、従来のMEMS構造体及びその製造方法の構成例を示す。図12(a)は、振動体部1と検出電極部2とを接合する前の状態を示す側方断面図であり、図12(b)および図12(c)は、振動体部1と検出電極部2とを接合した後の状態を示す側方断面図(図12(c)のA−A断面図)および平面図である。
The MEMS (Micro Electro Mechanical System) technology is one of micromachine technologies, and has attracted attention as a manufacturing technology for components used in small electronic devices such as mobile phones.
As one of the MEMS structures formed by the MEMS technology, a cantilever or doubly-supported vibrating body and a detection electrode facing the vibrating body are provided, and a static electricity between the vibrating body and the detection electrode is provided. A MEMS structure for detecting a change in electric capacity is used as a sensor element for a mechanical quantity sensor such as an angular velocity sensor or an acceleration sensor, and its configuration is disclosed in Patent Document 1, for example.
[Conventional configuration example]
FIG. 12 shows a configuration example of a conventional MEMS structure and a manufacturing method thereof. 12A is a side cross-sectional view showing a state before the vibrating body portion 1 and the detection electrode portion 2 are joined. FIGS. 12B and 12C show the vibrating body portion 1 and the detection electrode portion 2. It is a side sectional view (AA sectional view of Drawing 12 (c)) and a top view showing the state after joining detection electrode part 2.

(イ)従来の構成例における振動体部の構成:
図12(a)に示されるように、振動体部1は、支持構造部11(例えば3200μm□)と可動部12(例えば梁長800μm、梁幅200μm、重錘サイズ800μm□)とを備えた構成となっている。そして、振動体部1は、支持構造部11より水平方向(図12(a)の紙面における右方向)に突出した梁12aの先端に、梁12aよりも幅の広い重錘部である振動体12bが形成されているとともに、梁12aと振動体12bとからなる可動部12と支持構造部11との間に空隙13(例えば深さ350μm)が形成され、振動体12bが支持構造部11に対して変位可能に支持されてなる片持ち梁状の構造をなしている。振動体12bは、可動電極として機能するものであり、梁12aおよび支持構造部11とともに、Si(シリコン)などの材料で形成されている。
(A) Configuration of vibrating body portion in conventional configuration example:
As shown in FIG. 12A, the vibrating body portion 1 includes a support structure portion 11 (for example, 3200 μm □) and a movable portion 12 (for example, a beam length of 800 μm, a beam width of 200 μm, and a weight size of 800 μm □). It has a configuration. The vibrating body portion 1 is a vibrating body that is a weight portion wider than the beam 12a at the tip of the beam 12a that protrudes in the horizontal direction (rightward in the drawing of FIG. 12A) from the support structure portion 11. 12b is formed, and a gap 13 (for example, a depth of 350 μm) is formed between the movable portion 12 including the beam 12a and the vibration body 12b and the support structure portion 11, and the vibration body 12b is formed in the support structure portion 11. On the other hand, it has a cantilever-like structure supported so as to be displaceable. The vibrating body 12b functions as a movable electrode, and is formed of a material such as Si (silicon) together with the beam 12a and the support structure portion 11.

(ロ)従来の構成例における検出電極部の構成:
図12(a)に示されるように、検出電極部2は、例えば電気絶縁材料からなる基板21(例えば2600μm□)に、検出電極22a(例えばサイズ600μm×550μm)、後段の電子回路と接続するための検出電極用接続パッド22c、検出電極22aと検出電極用接続パッド22cとの間を導通接続する検出電極用配線22b(例えば幅100μm)、および、可動電極用パッド23aを形成した構成となっている。
(ハ)従来の構成例における振動体部と検出電極部との接合:
振動体部1と検出電極部2とを、例えば陽極接合などにより接合して、図12(b)〜(c)に示されるMEMS構造体100を構成する。なお、上記の接合の後、例えばメタライズ処理などにより、可動電極用パッド23aと支持構造部11とが電気的に導通する構造とする。なお、陽極接合は、シリコンとガラスとを重ね合わせ、加熱して数百Vの直流電圧を印加し、Si-Oの共有結合をさせることで接合する技術であり、シリコンとガラスとが接合層を介さずに直接接合されるため、接合強度が強いという特長をもっている。
[MEMS構造体のセンサ素子への適用]
図12に示されるようにして作製されたMEMS構造体100は、振動体12b(可動電極)と検出電極22aとが間隔を空けて対向する構造であって、振動体12b(可動電極)と検出電極22aとの間の静電容量C1の変化を検出するセンサ素子として機能するものであり、この静電容量変化に基づいて検出される振動体の変位を通じて、加速度、角速度などの力学量を測定することができる。
(B) Configuration of detection electrode unit in conventional configuration example:
As shown in FIG. 12A, the detection electrode unit 2 is connected to a substrate 21 (for example, 2600 μm □) made of an electrically insulating material, for example, and a detection electrode 22a (for example, a size of 600 μm × 550 μm) and a subsequent electronic circuit. The detection electrode connection pad 22c for detection, the detection electrode wiring 22b (for example, 100 μm in width) for conductively connecting the detection electrode 22a and the detection electrode connection pad 22c, and the movable electrode pad 23a are formed. ing.
(C) Joining of the vibrating body and the detection electrode in the conventional configuration example:
The vibrating body portion 1 and the detection electrode portion 2 are joined by, for example, anodic bonding to configure the MEMS structure 100 shown in FIGS. After the above-described bonding, the movable electrode pad 23a and the support structure portion 11 are electrically connected to each other by, for example, a metallization process. In addition, anodic bonding is a technique in which silicon and glass are superposed, heated and applied with a DC voltage of several hundred volts to form a covalent bond of Si-O. Silicon and glass are bonded to each other. Since it is directly joined without intervening, it has the feature of strong joint strength.
[Application of MEMS structure to sensor element]
The MEMS structure 100 manufactured as shown in FIG. 12 has a structure in which the vibrating body 12b (movable electrode) and the detection electrode 22a face each other with a space therebetween, and the vibrating body 12b (movable electrode) and the detection body. It functions as a sensor element that detects a change in the capacitance C1 between the electrode 22a and measures mechanical quantities such as acceleration and angular velocity through displacement of the vibrating body detected based on the change in capacitance. can do.

特開2006−46995号公報JP 2006-46995 A

振動体(可動電極)と検出電極との間の静電容量C1の変化を検出するMEMS構造体において、振動体部と検出電極部とを接合した状態で振動体と検出電極との位置ずれが生じている場合、例えば下記(a)〜(b)のように、電極対向面積の減少などにより、静電容量変化に基づいて振動体の変位を正確に検出することができなくなり、このMEMS構造体を用いた加速度センサ、角速度センサなど力学量センサの測定精度が低いものとなる。
(a)振動体(可動電極)の検出電極面に対する垂直方向(図12(c)の紙面における奥行き方向)の変位に伴う電極間距離の変化による静電容量C1の変化を検出するMEMS構造体では、検出電極面に対する平行方向(図12(c)の紙面における上下方向または左右方向)に沿って振動体と検出電極との位置ずれが生じている場合、位置ずれの無い場合に比べて電極対向面積が小さい分だけ静電容量C1の大きさが小さくなっているので、例えば静電容量検出回路周辺の浮遊容量の影響をより大きく受けることなどにより、静電容量C1を正確に検出することができなくなり、これにより、振動体の変位を正確に検出することができなくなる。
In the MEMS structure that detects a change in the capacitance C1 between the vibrating body (movable electrode) and the detection electrode, the positional deviation between the vibrating body and the detection electrode is caused in a state in which the vibrating body and the detection electrode are joined. If this occurs, for example, as shown in (a) to (b) below, the displacement of the vibrating body cannot be accurately detected based on the capacitance change due to a decrease in the electrode facing area, etc., and this MEMS structure The measurement accuracy of a mechanical quantity sensor such as an acceleration sensor or an angular velocity sensor using a body is low.
(A) A MEMS structure that detects a change in capacitance C1 due to a change in inter-electrode distance associated with a displacement in the direction perpendicular to the detection electrode surface of the vibrating body (movable electrode) (the depth direction in FIG. 12C). Then, when the positional deviation between the vibrating body and the detection electrode occurs along the direction parallel to the detection electrode plane (vertical direction or horizontal direction in the paper surface of FIG. 12C), the electrode is compared with the case where there is no positional deviation. Since the capacitance C1 is reduced by the smaller facing area, the capacitance C1 can be accurately detected, for example, by being more greatly affected by stray capacitance around the capacitance detection circuit. This makes it impossible to accurately detect the displacement of the vibrating body.

(b)振動体(可動電極)の検出電極面に対する平行方向(図12(c)の紙面における上下方向)の変位に伴う電極対向面積の変化による静電容量C1の変化を検出するMEMS構造体では、検出電極面に対して平行であって上記変位の方向に直交する方向(図12(c)の紙面における左右方向)に沿って振動体と検出電極との位置ずれが生じている場合、位置ずれの無い場合に比べて電極対向面積が小さい分だけ静電容量C1の大きさが小さくなっているので、例えば静電容量検出回路周辺の浮遊容量の影響をより大きく受けることなどにより、静電容量C1を正確に検出することができなくなり、これにより、振動体の変位を正確に検出することができなくなる。また、上記変位の方向(図12(c)の紙面における上下方向)に沿って振動体と検出電極との位置ずれが生じている場合、振動体が基準位置にある状態での静電容量C1の大きさが位置ずれの無い場合の静電容量値からずれているので、振動体の変位を正確に検出することができなくなる。   (B) A MEMS structure that detects a change in capacitance C1 due to a change in electrode facing area due to a displacement in the direction parallel to the detection electrode surface of the vibrating body (movable electrode) (up and down direction in the plane of FIG. 12C). Then, when the positional deviation between the vibrating body and the detection electrode occurs along the direction parallel to the detection electrode surface and perpendicular to the direction of the displacement (the left-right direction in the paper surface of FIG. 12C), Since the capacitance C1 is smaller by the smaller electrode facing area than when there is no positional deviation, the static capacitance around the capacitance detection circuit is more greatly affected by static capacitance. The capacitance C1 cannot be accurately detected, and thus the displacement of the vibrating body cannot be accurately detected. Further, when the displacement of the vibrating body and the detection electrode has occurred along the direction of the displacement (the vertical direction on the paper surface of FIG. 12C), the capacitance C1 in the state where the vibrating body is at the reference position. Since the magnitude of is deviated from the capacitance value when there is no positional deviation, the displacement of the vibrating body cannot be accurately detected.

そして、振動体部と検出電極部とを接合した状態での振動体(可動電極)と検出電極との位置ずれの要因としては、検出電極部の作製工程において基板上に検出電極を形成する際の位置誤差、および、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差が考えられる。
図13は、図12のMEMS構造体における位置ずれを示す説明図であって、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差が生じた場合における接合後のMEMS構造体を示すものである。図13の(a)および(b)は、振動体部1と検出電極部2とを接合した後の状態を示す側方断面図(図13(b)のA−A断面図)および平面図であって、それぞれ、図12の(b)および(c)に対応している。図13(b)において、支持構造部11に対する基板21の相対位置、すなわち振動体部1に対する検出電極部2の相対位置が、2点鎖線で示される基準位置に対して紙面の左方向および下方向にそれぞれL1aおよびL1bだけずれている。検出電極部2の作製工程において基板21上に検出電極22aを形成する際の位置誤差がない場合には、振動体12b(可動電極)に対する検出電極22aの相対位置も、上記と同じずれ量L1aおよびL1bだけずれている。
As a cause of the positional deviation between the vibrating body (movable electrode) and the detection electrode in a state where the vibrating body portion and the detection electrode portion are joined, the detection electrode is formed on the substrate in the manufacturing process of the detection electrode portion. Position error, and position error when aligning (alignment) both in the joining process of the vibrating body part and the detection electrode part can be considered.
FIG. 13 is an explanatory diagram showing a positional shift in the MEMS structure of FIG. 12, in the case where a positional error occurs when aligning both in the joining process of the vibrating body part and the detection electrode part. The MEMS structure after joining is shown. FIGS. 13A and 13B are a side cross-sectional view (cross-sectional view taken along line AA in FIG. 13B) and a plan view showing a state after the vibrating body portion 1 and the detection electrode portion 2 are joined. And correspond to (b) and (c) of FIG. 12, respectively. In FIG. 13B, the relative position of the substrate 21 with respect to the support structure portion 11, that is, the relative position of the detection electrode portion 2 with respect to the vibrating body portion 1 is leftward and downward in the drawing with respect to a reference position indicated by a two-dot chain line. The directions are shifted by L1a and L1b, respectively. When there is no position error when forming the detection electrode 22a on the substrate 21 in the manufacturing process of the detection electrode unit 2, the relative position of the detection electrode 22a with respect to the vibrating body 12b (movable electrode) is also the same deviation amount L1a. And L1b.

そして、図13では、振動体12b(可動電極)に対する検出電極22aの相対位置ずれ(L1a、L1b)により、上記(a)〜(b)項で述べたように、静電容量変化に基づいて振動体12bの変位を正確に検出することができなくなっている。
このため、本発明は、上記の問題点を解決し、振動部と検出電極との位置ずれを抑えることで静電容量変化に基づく振動体の変位の検出精度をより高くすることのできるMEMS構造体、MEMSデバイス及びその製造方法を提供することを目的とする。
In FIG. 13, the detection electrode 22a is displaced relative to the vibrating body 12b (movable electrode) by the relative displacement (L1a, L1b), as described in the above items (a) to (b), based on the capacitance change. The displacement of the vibrating body 12b cannot be detected accurately.
For this reason, the present invention solves the above-mentioned problems, and can suppress the displacement between the vibration part and the detection electrode, thereby increasing the detection accuracy of the displacement of the vibrating body based on the change in capacitance. It is an object to provide a body, a MEMS device, and a manufacturing method thereof.

上記目的を達成するために、本発明によれば、MEMS構造体を、支持構造部と前記支持構造部に対して変位可能に支持された振動体とからなる振動体部と、基板と前記基板上に形成された検出電極とからなる検出電極部とを備えるとともに、振動体と検出電極とが間隔を空けて対向するようにして前記振動体部と前記検出電極部とが接合され、振動体と検出電極との間の静電容量の変化を検出するように構成されたMEMS構造体において、前記検出電極が互いに分離された複数の小電極から構成されていることにより、振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極を選択することができるようにされている構成とする(請求項1の発明)。
上記請求項1の発明によれば、検出電極部の作製工程において基板上に検出電極を形成する際の位置誤差、および、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差の両方への対策として、振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極を例えば後段に接続されるスイッチ回路などによって選択することにより、検出電極部の作製時や振動体部と検出電極部との接合時に生じる電極位置ずれに合わせて、静電容量変化の検出に適合した位置にある小電極を検出電極として用いることができ、これにより、静電容量変化に基づく振動体の変位の検出精度をより高くすることができるようになる。
In order to achieve the above object, according to the present invention, a MEMS structure is composed of a support structure section and a vibration body supported to be displaceable with respect to the support structure section, a substrate, and the substrate. A detection electrode unit comprising a detection electrode formed thereon, and the vibrating body unit and the detection electrode unit are joined so that the vibrating body and the detection electrode face each other with a gap therebetween, and the vibrating body In the MEMS structure configured to detect a change in capacitance between the detection body and the detection electrode, the detection electrode includes a plurality of small electrodes separated from each other, thereby detecting the vibration body portion and the detection body. One or more small electrodes can be selected in accordance with the positional deviation between the vibrating body and the detection electrode in a state where the electrode portion is joined (Invention of Claim 1) ).
According to the first aspect of the present invention, the position error when forming the detection electrode on the substrate in the detection electrode portion manufacturing step and the alignment (alignment) in the bonding step of the vibrating body portion and the detection electrode portion. ) As a countermeasure against both of the position error when the vibration body part and the detection electrode part are joined, one or more small electrodes are used, for example, in correspondence with the positional deviation between the vibration body and the detection electrode. A position that is suitable for detecting changes in capacitance according to the displacement of the electrode position that occurs when the detection electrode part is manufactured or when the vibrating body part and the detection electrode part are joined, by selecting the switch circuit connected to the subsequent stage. Thus, the detection accuracy of the displacement of the vibrating body based on the capacitance change can be further increased.

そして、上記請求項1に記載のMEMS構造体においては、前記基板が透明な板状部材で構成されていることにより、振動体部と検出電極部との接合時に、検出電極部における各小電極の位置を反振動体部側の外部から光学的に確認することができるようにされている構成とするとよい(請求項2の発明)。
上記請求項2の発明によれば、検出電極部の作製工程において基板上に検出電極を形成する際の位置誤差、および、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差の両方への更なる対策として、振動体部と検出電極部との接合時に、検出電極部における各小電極の位置を反振動体部側の外部から透明な基板を介して例えば光学顕微鏡などの光学的手段によって確認しながら位置合わせを行うことができるので、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを小さく抑えることができる。これにより、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれが大きくなり過ぎて、検出電極を構成する全ての小電極の位置が静電容量変化の検出には適合しない位置となるような不具合を防止することができる。したがって、静電容量変化の検出に適合した位置にある1つ以上の小電極を選択して静電容量変化に基づく振動体の変位の検出精度を高くすることが確実にできるようになる。
In the MEMS structure according to claim 1, each of the small electrodes in the detection electrode unit is formed when the vibration body unit and the detection electrode unit are joined, because the substrate is formed of a transparent plate member. It is good to be the structure which can be confirmed optically from the outside of the anti-vibration body part side (invention of Claim 2).
According to the second aspect of the present invention, the position error when forming the detection electrode on the substrate in the detection electrode portion manufacturing process and the alignment (alignment) in the bonding step of the vibrating body portion and the detection electrode portion. ) As a further countermeasure against both of the position error when the vibrating body part and the detection electrode part are joined, the position of each small electrode in the detection electrode part is passed through the transparent substrate from the outside on the anti-vibration body part side. Thus, for example, the alignment can be performed while confirming by optical means such as an optical microscope, so that the positional deviation between the vibration body and the detection electrode that occurs when the vibration body section and the detection electrode section are joined can be suppressed. As a result, the positional deviation between the vibration body and the detection electrode that occurs when the vibration body section and the detection electrode section are joined becomes excessively large, and the positions of all the small electrodes that constitute the detection electrode are used to detect a change in capacitance. It is possible to prevent a problem that the position does not fit. Accordingly, it is possible to reliably increase the detection accuracy of the displacement of the vibrator based on the change in capacitance by selecting one or more small electrodes at positions suitable for detection of the change in capacitance.

また、上記請求項1に記載のMEMS構造体においては、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを抑えるための嵌合部を設けた構成としてもよい(請求項3の発明)。
上記請求項3の発明によれば、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差への更なる対策として、振動体部と検出電極部との接合時に、上記嵌合部が嵌合するようにして位置合わせすることにより、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを小さく抑えることができる。これにより、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれが大きくなり過ぎて、検出電極を構成する全ての小電極の位置が静電容量変化の検出には適合しない位置となるような不具合を防止することができる。したがって、静電容量変化の検出に適合した位置にある1つ以上の小電極を選択して静電容量変化に基づく振動体の変位の検出精度を高くすることが確実にできるようになる。
Further, the MEMS structure according to the first aspect may have a configuration in which a fitting portion is provided to suppress a positional deviation between the vibrating body and the detection electrode that occurs when the vibrating body portion and the detection electrode portion are joined. (Invention of claim 3).
According to the third aspect of the present invention, as a further countermeasure against the position error when aligning both in the joining process of the vibrating body portion and the detection electrode portion, the vibration body portion and the detection electrode portion By aligning the fitting part so that the fitting part is fitted at the time of joining, the positional deviation between the vibrating body and the detection electrode that occurs when joining the vibrating body part and the detection electrode part can be suppressed to be small. As a result, the positional deviation between the vibration body and the detection electrode that occurs when the vibration body section and the detection electrode section are joined becomes excessively large, and the positions of all the small electrodes that constitute the detection electrode are used to detect a change in capacitance. It is possible to prevent a problem that the position does not fit. Accordingly, it is possible to reliably increase the detection accuracy of the displacement of the vibrator based on the change in capacitance by selecting one or more small electrodes at positions suitable for detection of the change in capacitance.

そして、上記請求項3に記載のMEMS構造体においては、前記嵌合部として、振動体部における検出電極部との対向面に、検出電極部の外周形状に嵌合する内周形状を持つ振動体部側の凹部を形成した構成とするとよい(請求項4の発明)。
また、上記請求項3に記載のMEMS構造体においては、前記嵌合部として、振動体部における検出電極部との対向面に振動体部側の凸部(または凹部)を形成するとともに、検出電極部における振動体部との対向面に前記振動体部側の凸部(または凹部)と嵌合する検出電極部側の凹部(または凸部)を形成した構成としてもよい(請求項5の発明)。
また、本発明によれば、請求項1ないし5のいずれか1項に記載のMEMS構造体を用いたMEMSデバイスを、前記各小電極が接続されたスイッチ回路を設けていることにより、振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極を前記スイッチ回路によって選択することができるようにされている構成とする(請求項6の発明)。
In the MEMS structure according to claim 3, as the fitting portion, a vibration having an inner peripheral shape that fits the outer peripheral shape of the detection electrode portion on a surface facing the detection electrode portion in the vibration body portion. It is preferable that the body side recess is formed (invention of claim 4).
In the MEMS structure according to claim 3, as the fitting portion, a convex portion (or a concave portion) on the vibrating body portion side is formed on the surface of the vibrating body portion facing the detection electrode portion, and the detection is performed. It is good also as a structure which formed the recessed part (or convex part) by the side of the detection electrode which fits the convex part (or recessed part) by the side of the said vibrating body part on the surface facing the vibrating body part in an electrode part. invention).
According to the present invention, a MEMS device using the MEMS structure according to any one of claims 1 to 5 is provided with a switch circuit to which the small electrodes are connected, so that a vibrating body is provided. A configuration in which one or more small electrodes can be selected by the switch circuit in response to a positional shift between the vibrating body and the detection electrode in a state where the portion and the detection electrode portion are joined. (Invention of claim 6)

上記請求項6の発明によれば、振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極をスイッチ回路によって選択することにより、検出電極部の作製時や振動体部と検出電極部との接合時に生じる電極位置ずれに合わせて、静電容量変化の検出に適合した位置にある小電極を検出電極として用いることができ、これにより、静電容量変化に基づく振動体の変位の検出精度をより高くすることができるようになる。
さらに、本発明によれば、MEMSデバイスの製造方法を、支持構造部と前記支持構造部に対して変位可能に支持された振動体とからなる振動体部と、基板と前記基板上に形成された検出電極とからなる検出電極部とを備えるとともに、振動体と検出電極とが間隔を空けて対向するようにして前記振動体部と前記検出電極部とが接合され、振動体と検出電極との間の静電容量の変化を検出するように構成されたMEMS構造体を用いたMEMSデバイスの製造方法において、前記検出電極を互いに分離された複数の小電極から構成するとともに、前記各小電極が接続されたスイッチ回路を設けておき、振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極を前記スイッチ回路によって選択するようにした構成とする(請求項7の発明)。
According to the sixth aspect of the present invention, one or more small electrodes are selected by the switch circuit in accordance with the positional deviation between the vibrating body and the detection electrode when the vibrating body and the detection electrode are joined. By using the small electrode at the position suitable for detecting the change in capacitance according to the displacement of the electrode position that occurs when the detection electrode part is manufactured or when the vibrating body part and the detection electrode part are joined, As a result, the detection accuracy of the displacement of the vibrating body based on the capacitance change can be further increased.
Further, according to the present invention, there is provided a method of manufacturing a MEMS device formed on a substrate and the substrate, a vibrating body portion including a supporting structure portion and a vibrating body supported to be displaceable with respect to the supporting structure portion. A detection electrode unit composed of a detection electrode, and the vibration body and the detection electrode unit are joined so that the vibration body and the detection electrode face each other with a space therebetween. In a method of manufacturing a MEMS device using a MEMS structure configured to detect a change in capacitance between the plurality of small electrodes, the detection electrode is composed of a plurality of small electrodes separated from each other. A switch circuit is provided, and one or more small electrodes are connected to the switch circuit in accordance with a positional deviation between the vibrating body and the detection electrode in a state where the vibrating body and the detection electrode are joined. Selected by The configuration is selected (the invention of claim 7).

上記請求項7の発明によれば、検出電極部の作製工程において基板上に検出電極を形成する際の位置誤差、および、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差の両方への対策として、振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極をスイッチ回路によって選択することにより、検出電極部の作製時や振動体部と検出電極部との接合時に生じる電極位置ずれに合わせて、静電容量変化の検出に適合した位置にある小電極を検出電極として用いることができ、これにより、静電容量変化に基づく振動体の変位の検出精度をより高くすることができるようになる。
そして、請求項7に記載のMEMSデバイスの製造方法においては、前記基板を透明な板状部材で構成しておき、振動体部と検出電極部との接合時に、検出電極部における各小電極の位置を反振動体部側の外部から光学的に確認するようにする構成とするよい(請求項8の発明)。
According to the seventh aspect of the present invention, the position error when forming the detection electrode on the substrate in the detection electrode portion manufacturing process and the alignment (alignment) in the bonding step of the vibrating body portion and the detection electrode portion. ) As a countermeasure against both positional errors when switching, one or more small electrodes are switched in response to the positional deviation between the vibrating body and the detection electrode when the vibrating body and the detection electrode are joined. By selecting according to the circuit, the small electrode in the position suitable for detecting the change in capacitance is detected in accordance with the electrode position deviation that occurs when the detection electrode part is manufactured or when the vibrating body part and the detection electrode part are joined. As a result, the detection accuracy of the displacement of the vibrator based on the change in capacitance can be further increased.
In the method for manufacturing a MEMS device according to claim 7, the substrate is configured by a transparent plate-like member, and each small electrode in the detection electrode unit is bonded at the time of joining the vibrating body unit and the detection electrode unit. A configuration may be adopted in which the position is optically confirmed from the outside on the anti-vibration body side (the invention of claim 8).

上記請求項8の発明によれば、検出電極部の作製工程において基板上に検出電極を形成する際の位置誤差、および、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差の両方への更なる対策として、振動体部と検出電極部との接合時に、検出電極部における各小電極の位置を反振動体部側の外部から透明な基板を介して例えば光学顕微鏡などの光学的手段によって確認しながら位置合わせを行うことにより、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを小さく抑えることができる。これにより、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれが大きくなり過ぎて、検出電極を構成する全ての小電極の位置が静電容量変化の検出には適合しない位置となるような不具合を防止することができる。したがって、静電容量変化の検出に適合した位置にある1つ以上の小電極を選択して静電容量変化に基づく振動体の変位の検出精度を高くすることが確実にできるようになる。   According to the eighth aspect of the present invention, the position error when forming the detection electrode on the substrate in the detection electrode portion manufacturing step, and the alignment (alignment) in the bonding step of the vibrating body portion and the detection electrode portion. ) As a further countermeasure against both of the position error when the vibrating body part and the detection electrode part are joined, the position of each small electrode in the detection electrode part is passed through the transparent substrate from the outside on the anti-vibration body part side. Thus, for example, by performing alignment while confirming with an optical means such as an optical microscope, it is possible to suppress a positional deviation between the vibrating body and the detection electrode that occurs when the vibrating body section and the detection electrode section are joined. As a result, the positional deviation between the vibration body and the detection electrode that occurs when the vibration body section and the detection electrode section are joined becomes excessively large, and the positions of all the small electrodes that constitute the detection electrode are used to detect a change in capacitance. It is possible to prevent a problem that the position does not fit. Accordingly, it is possible to reliably increase the detection accuracy of the displacement of the vibrator based on the change in capacitance by selecting one or more small electrodes at positions suitable for detection of the change in capacitance.

また、請求項7に記載のMEMSデバイスの製造方法においては、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを抑えるための嵌合部を設けておき、振動体部と検出電極部との接合時に、前記嵌合部が嵌合するようにして位置合わせする構成としてもよい(請求項9の発明)。
上記請求項9の発明によれば、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差への更なる対策として、振動体部と検出電極部との接合時に、上記嵌合部が嵌合するようにして位置合わせすることにより、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを小さく抑えることができる。これにより、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれが大きくなり過ぎて、検出電極を構成する全ての小電極の位置が静電容量変化の検出には適合しない位置となるような不具合を防止することができる。したがって、静電容量変化の検出に適合した位置にある1つ以上の小電極を選択して静電容量変化に基づく振動体の変位の検出精度を高くすることが確実にできるようになる。
Further, in the method for manufacturing a MEMS device according to claim 7, a fitting portion is provided to suppress a positional deviation between the vibrating body and the detection electrode that occurs when the vibrating body portion and the detection electrode portion are joined. It is good also as a structure which aligns so that the said fitting part may fit at the time of joining of a body part and a detection electrode part (invention of Claim 9).
According to the ninth aspect of the present invention, as a further countermeasure against a position error when aligning both in the joining process of the vibrating body portion and the detection electrode portion, the vibration body portion and the detection electrode portion By aligning the fitting part so that the fitting part is fitted at the time of joining, the positional deviation between the vibrating body and the detection electrode that occurs when joining the vibrating body part and the detection electrode part can be suppressed to be small. As a result, the positional deviation between the vibration body and the detection electrode that occurs when the vibration body section and the detection electrode section are joined becomes excessively large, and the positions of all the small electrodes that constitute the detection electrode are used to detect a change in capacitance. It is possible to prevent a problem that the position does not fit. Accordingly, it is possible to reliably increase the detection accuracy of the displacement of the vibrator based on the change in capacitance by selecting one or more small electrodes at positions suitable for detection of the change in capacitance.

そして、請求項9に記載のMEMSデバイスの製造方法においては、前記嵌合部として、振動体部における検出電極部との対向面に、検出電極部の外周形状に嵌合する内周形状を持つ振動体部側の凹部を形成しておき、振動体部と検出電極部との接合時に、検出電極部と、振動体部側の凹部とが嵌合するようにして位置合わせする構成とするよい(請求項10の発明)。
また、請求項9に記載のMEMSデバイスの製造方法においては、前記嵌合部として、振動体部における検出電極部との対向面に振動体部側の凸部(または凹部)を形成するとともに、検出電極部における振動体部との対向面に前記振動体部側の凸部(または凹部)と嵌合する検出電極部側の凹部(または凸部)を形成しておき、振動体部と検出電極部との接合時に、振動体部側の凸部(または凹部)と、検出電極部側の凹部(または凸部)とが嵌合するようにして位置合わせする構成としてもよい(請求項11の発明)。
In the MEMS device manufacturing method according to claim 9, the fitting portion has an inner peripheral shape that fits to the outer peripheral shape of the detection electrode portion on the surface of the vibrating body portion facing the detection electrode portion. It is preferable to form a concave portion on the vibrating body portion side and align the detecting electrode portion and the concave portion on the vibrating body portion side when the vibrating body portion and the detection electrode portion are joined. (Invention of Claim 10).
Moreover, in the manufacturing method of the MEMS device according to claim 9, as the fitting portion, a convex portion (or a concave portion) on the vibrating body portion side is formed on a surface facing the detection electrode portion in the vibrating body portion, and A detection electrode portion-side recess (or projection) that fits with the vibration body portion-side projection (or recess) is formed on a surface of the detection electrode portion that faces the vibration body portion. It is good also as a structure which aligns so that the convex part (or recessed part) by the side of a vibrating body part and the recessed part (or convex part) by the side of a detection electrode part may fit at the time of joining with an electrode part. Invention).

本発明によれば、上述のように、検出電極部の作製時や振動体部と検出電極部との接合時に生じる電極位置ずれに合わせて、静電容量変化の検出に適合した位置にある小電極を検出電極として用いることができ、これにより、静電容量変化に基づく振動体の変位の検出精度をより高くすることができるようになる。   According to the present invention, as described above, in accordance with the displacement of the electrode position that occurs when the detection electrode portion is manufactured or when the vibrating body portion and the detection electrode portion are joined, the small size is in a position suitable for detecting a change in capacitance. The electrode can be used as a detection electrode, and thereby the detection accuracy of the displacement of the vibrating body based on the change in capacitance can be further increased.

本発明の実施例1によるMEMS構造体の製造方法の概略工程図Schematic process drawing of the manufacturing method of the MEMS structure according to the first embodiment of the present invention. 図1のMEMS構造体における振動体部の構造図FIG. 1 is a structural diagram of a vibrating body in the MEMS structure of FIG. 図1のMEMS構造体における検出電極部の構造図FIG. 1 is a structural diagram of a detection electrode portion in the MEMS structure of FIG. 図1のMEMS構造体における位置ずれを示す説明図Explanatory drawing which shows the position shift in the MEMS structure of FIG. 図1のMEMS構造体を用いたMEMSデバイスの回路構成例を示す回路図The circuit diagram which shows the circuit structural example of the MEMS device using the MEMS structure of FIG. 本発明の実施例2によるMEMS構造体の製造方法の概略工程図Schematic process drawing of a method for manufacturing a MEMS structure according to Embodiment 2 of the present invention. 本発明の実施例3によるMEMS構造体の製造方法の概略工程図Schematic process drawing of a method for manufacturing a MEMS structure according to Embodiment 3 of the present invention. 図7のMEMS構造体における振動体部の構造図FIG. 7 is a structural diagram of a vibrating body in the MEMS structure. 本発明の実施例4によるMEMS構造体の製造方法の概略工程図Schematic process drawing of a method for manufacturing a MEMS structure according to Example 4 of the present invention. 図9のMEMS構造体における振動体部の構造図FIG. 9 is a structural diagram of a vibrating body in the MEMS structure. 図9のMEMS構造体における検出電極部の構造図FIG. 9 is a structural diagram of the detection electrode portion in the MEMS structure. 従来のMEMS構造体の製造方法の概略工程図Schematic process diagram of conventional MEMS structure manufacturing method 図12のMEMS構造体における位置ずれを示す説明図Explanatory drawing which shows the position shift in the MEMS structure of FIG.

以下、本発明の実施形態を図1〜図11に示す実施例に基づいて説明する。同一の構成要素については、同一の符号を付け、重複する説明は省略する。なお、本発明は、下記の実施形態に限定されるものではなく、その要旨を変更しない範囲内で適宜変形して実施することができるものである。
[本発明の実施形態]
Hereinafter, embodiments of the present invention will be described based on examples shown in FIGS. About the same component, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted. In addition, this invention is not limited to the following embodiment, In the range which does not change the summary, it can implement suitably.
Embodiment of the present invention

本発明の実施例1は、検出電極部の作製工程において基板上に検出電極を形成する際の位置誤差、および、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差の両方への対策として、検出電極を互いに分離された複数の小電極から構成しておき、振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極を例えば後段に接続されるスイッチ回路などによって選択するものである。これにより、実施例1では、検出電極部の作製時や振動体部と検出電極部との接合時に生じる電極位置ずれに合わせて、静電容量変化の検出に適合した位置にある小電極を検出電極として用いることができる。
図1〜図5により、本発明の実施例1によるMEMS構造体、MEMSデバイス及びその製造方法の構成を示す。図1は、本発明の実施例1によるMEMS構造体100Aの製造方法の概略工程図であり、図1(b)〜(c)には振動体部1Aと検出電極部2Aとが接合されてなるMEMS構造体100Aの構造が示されている。また、図2は振動体部1Aの構造図であり、図3は検出電極部2Aの構造図である。また、図4は図12のMEMS構造体100Aにおける位置ずれを示す説明図である。さらに、図5は図1のMEMS構造体100Aを用いたMEMSデバイスの回路構成例を示す回路図である。図1〜図5において、図12に示す従来の構成例と機能の同じ要素は、同一の符号を付して示し、従来の構成例(図12)と異なっている部分のみを説明する。
In the first embodiment of the present invention, the position error when forming the detection electrode on the substrate in the manufacturing process of the detection electrode unit and the alignment (alignment) of both in the bonding process of the vibrating body unit and the detection electrode unit As a countermeasure against both of the positional errors at the time, the detection electrode is composed of a plurality of small electrodes separated from each other, and the vibration body and the detection electrode are in a state where the vibration body portion and the detection electrode portion are joined. One or more small electrodes are selected by, for example, a switch circuit connected in the subsequent stage in accordance with the positional deviation. Thereby, in Example 1, the small electrode in the position suitable for the detection of the capacitance change is detected in accordance with the electrode position shift that occurs when the detection electrode part is manufactured or when the vibrating body part and the detection electrode part are joined. It can be used as an electrode.
1 to 5 show the structure of a MEMS structure, a MEMS device, and a manufacturing method thereof according to Embodiment 1 of the present invention. FIG. 1 is a schematic process diagram of a method for manufacturing a MEMS structure 100A according to Embodiment 1 of the present invention. In FIGS. 1B to 1C, a vibrating body portion 1A and a detection electrode portion 2A are joined. A structure of the MEMS structure 100A is shown. 2 is a structural diagram of the vibrating body portion 1A, and FIG. 3 is a structural diagram of the detection electrode portion 2A. FIG. 4 is an explanatory diagram showing a positional shift in the MEMS structure 100A of FIG. 5 is a circuit diagram showing a circuit configuration example of a MEMS device using the MEMS structure 100A of FIG. 1 to 5, elements having the same functions as those of the conventional configuration example shown in FIG. 12 are denoted by the same reference numerals, and only portions different from the conventional configuration example (FIG. 12) will be described.

(イ)実施例1における振動体部の構成:
図2(a)および図2(b)は、それぞれ、振動体部1Aの側方断面図(図2(b)のA−A断面図)および平面図である。図2に示されるように、振動体部1Aは、図12で述べた振動体部1と同様に、支持構造部11(例えば3200μm□)と可動部12(例えば梁長800μm、梁幅200μm、重錘サイズ800μm□)とを備えた構成となっている。
そして、振動体部1Aは、支持構造部11より水平方向(図2(a)の紙面における右方向)に突出した梁12aの先端に、梁12aよりも幅の広い重錘部である振動体12bが形成されているとともに、梁12aと振動体12bとからなる可動部12と支持構造部11との間に空隙13(例えば深さ350μm)が形成され、振動体12bが支持構造部11に対して変位可能に支持されてなる片持ち梁状の構造をなしている。振動体12bは、可動電極として機能するものであり、梁12aおよび支持構造部11とともに、Si(シリコン)などの材料で形成されている。
(A) Configuration of the vibrating body portion in the first embodiment:
2A and 2B are a side sectional view (AA sectional view of FIG. 2B) and a plan view of the vibrating body portion 1A, respectively. As shown in FIG. 2, the vibrating body portion 1 </ b> A is similar to the vibrating body portion 1 described in FIG. 12, with the support structure portion 11 (for example, 3200 μm □) and the movable portion 12 (for example, a beam length of 800 μm, a beam width of 200 μm, And a weight size of 800 μm □).
The vibrating body portion 1A is a vibrating body that is a weight portion that is wider than the beam 12a at the tip of the beam 12a that protrudes in the horizontal direction from the support structure portion 11 (the right direction in FIG. 2A). 12b is formed, and a gap 13 (for example, a depth of 350 μm) is formed between the movable portion 12 including the beam 12a and the vibration body 12b and the support structure portion 11, and the vibration body 12b is formed in the support structure portion 11. On the other hand, it has a cantilever-like structure supported so as to be displaceable. The vibrating body 12b functions as a movable electrode, and is formed of a material such as Si (silicon) together with the beam 12a and the support structure portion 11.

また、振動体部1Aと検出電極部2Aとが接合された状態で振動体部1AのSi(シリコン)などからなる支持構造部11と検出電極部2Aの検出電極22aおよび検出電極用配線22bとが接触しないようにするために、振動体部1Aの上面側(図2(a)における上側)には、上面からの深さd1の凹部14が形成されている。
なお、振動体部1Aの作製には、例えば、上部Si層と下部Si層とをSiO2からなる絶縁層で挟み込んだSOI(Silicon on Insulator)ウェハを用いることができる。SOIウェハとしては、下部Si層の厚さが200〜525μm、絶縁層の厚さが0.2〜1.0μm、上部Si層の厚さが2〜30μmのものが一例として挙げられる。このSOIウェハを用いて、フォトリソグラフィなどにより、振動体12と支持構造部11との間の空隙13、および凹部14などを形成して、振動体部1Aを作製する。
In addition, in the state where the vibrating body portion 1A and the detection electrode portion 2A are joined, the support structure portion 11 made of Si (silicon) or the like of the vibrating body portion 1A, the detection electrode 22a and the detection electrode wiring 22b of the detection electrode portion 2A, In order to prevent contact with each other, a concave portion 14 having a depth d1 from the upper surface is formed on the upper surface side (the upper side in FIG. 2A) of the vibrating body portion 1A.
For example, an SOI (Silicon on Insulator) wafer in which an upper Si layer and a lower Si layer are sandwiched between insulating layers made of SiO 2 can be used to manufacture the vibrating body portion 1A. As an example of the SOI wafer, the lower Si layer has a thickness of 200 to 525 μm, the insulating layer has a thickness of 0.2 to 1.0 μm, and the upper Si layer has a thickness of 2 to 30 μm. Using this SOI wafer, a gap 13 between the vibrating body 12 and the support structure 11, a recess 14, and the like are formed by photolithography or the like, and the vibrating body 1 </ b> A is manufactured.

(ロ)実施例1における検出電極部の構成:
図3(a)および図3(b)は、それぞれ、検出電極部2Aの側方断面図(図3(b)のA−A断面図)および平面図である。図3に示されるように、検出電極部2Aは、例えば電気絶縁材料からなる基板21(例えば2600μm□)に、検出電極、後段の電子回路と接続するための検出電極用接続パッド、検出電極と検出電極用接続パッドとの間を導通接続する検出電極用配線、および、可動電極用パッドを形成した構成であって、図12に示される従来の検出電極部2と基本的な構成は同様であるが、次の点で異なっている。
すなわち、この実施例1による検出電極部2Aでは、図3(b)のように、検出電極を複数の小電極22a1〜22an(例えばサイズ250μm×225μm)(nは2以上の整数であって、図3(b)ではn=5)で構成するとともに、検出電極用配線として、各小電極22a1〜22anにそれぞれ接続された複数の小電極用配線22b1〜22bn(例えば幅100μm)を形成しておく。また、検出電極用接続パッドとして、小電極用配線22b1〜22bnの各端部にはそれぞれ小電極用接続パッド22c1〜22cnを設け、図示されない後段のスイッチ回路に接続可能としておく。
(B) Configuration of the detection electrode unit in Example 1:
3A and 3B are a side sectional view (AA sectional view of FIG. 3B) and a plan view of the detection electrode portion 2A, respectively. As shown in FIG. 3, the detection electrode unit 2A includes, for example, a detection electrode, a detection electrode connection pad for connection to a subsequent electronic circuit, and a detection electrode on a substrate 21 (eg, 2600 μm □) made of an electrically insulating material. This is a configuration in which a detection electrode wiring and a movable electrode pad are formed to be conductively connected to the detection electrode connection pad, and the basic configuration is the same as that of the conventional detection electrode unit 2 shown in FIG. There are differences in the following points.
That is, in the detection electrode unit 2A according to the first embodiment, as shown in FIG. 3B, the detection electrode is a plurality of small electrodes 22a1 to 22an (for example, size 250 μm × 225 μm) (n is an integer of 2 or more, In FIG. 3B, n = 5) and a plurality of small electrode wirings 22b1 to 22bn (for example, a width of 100 μm) respectively connected to the small electrodes 22a1 to 22an are formed as detection electrode wirings. deep. Further, as the detection electrode connection pads, small electrode connection pads 22c1 to 22cn are provided at the end portions of the small electrode wirings 22b1 to 22bn, respectively, so that they can be connected to a subsequent switch circuit (not shown).

そして、基板21における小電極用接続パッド22c1〜22cnの部分には貫通孔22d1〜22dnを形成するとともに貫通孔22d1〜22dnの内周面に金属層22e1〜22enを形成しており、この金属層22e1〜22enを介して小電極用接続パッド22c1〜22cnと小電極用配線22b1〜22bnとを電気的に接続するようにしている。また、基板21における可動電極用パッド23aの部分には貫通孔23bを形成するとともに貫通孔23bの内周面に可動電極用パッド23aと電気的に接続された金属層23cを形成している。
なお、検出電極部2Aにおける小電極22a1〜22an、小電極用配線22b1〜22bn、小電極用接続パッド22c1〜22cnおよび可動電極用パッド23aは、例えば、ガラス板からなる基板21上に銅などの金属膜を蒸着,スパッタなどの方法で薄膜状に成膜し、この金属膜表面に、所望の小電極、小電極用配線、小電極用接続パッドおよび可動電極用パッドの形状となるようにレジストパターニングを行った後、ドライエッチングやウェットエッチングにより金属膜のうちの不要な部分を除去して、小電極22a1〜22an、小電極用配線22b1〜22bn、小電極用接続パッド22c1〜22cnおよび可動電極用パッド23aの金属膜部分だけを残すことにより形成することができる。
The through holes 22d1 to 22dn are formed in the small electrode connection pads 22c1 to 22cn on the substrate 21, and the metal layers 22e1 to 22en are formed on the inner peripheral surfaces of the through holes 22d1 to 22dn. The small electrode connection pads 22c1 to 22cn and the small electrode wirings 22b1 to 22bn are electrically connected through 22e1 to 22en. Further, a through hole 23b is formed in the portion of the movable electrode pad 23a in the substrate 21, and a metal layer 23c electrically connected to the movable electrode pad 23a is formed on the inner peripheral surface of the through hole 23b.
The small electrodes 22a1 to 22an, the small electrode wirings 22b1 to 22bn, the small electrode connection pads 22c1 to 22cn and the movable electrode pad 23a in the detection electrode unit 2A are made of, for example, copper or the like on the substrate 21 made of a glass plate. A metal film is formed into a thin film by a method such as vapor deposition or sputtering, and a resist is formed on the surface of the metal film so as to have the shape of a desired small electrode, small electrode wiring, small electrode connection pad, and movable electrode pad. After patterning, unnecessary portions of the metal film are removed by dry etching or wet etching, and small electrodes 22a1 to 22an, small electrode wirings 22b1 to 22bn, small electrode connection pads 22c1 to 22cn, and movable electrodes It can be formed by leaving only the metal film portion of the pad 23a.

また、上記の貫通孔22d1〜22dn,貫通孔23bは、例えばガラス板からなる基板21に対してサンドブラストなどの方法で加工することができ、貫通孔22d1〜22dn,貫通孔23bの内周面の金属層22e1〜22en,23cは無電解メッキなどの方法で形成することができる。
また、検出電極部2Aにおける基板21として、ガラス板の代わりにSi基板を用いてもよい。基板21としてSi基板を用いる場合には、基板21上に例えばSiO2などの絶縁層を形成した上で、この絶縁層上に小電極22a1〜22an、小電極用配線22b1〜22bnおよび小電極用接続パッド22c1〜22cnを形成することにより検出電極部2Aを作製することができる。
なお、本発明における小電極の個数nは、図3(b)に示される5個に限定されるものでない。
Further, the through holes 22d1 to 22dn and the through holes 23b can be processed by a method such as sandblasting with respect to the substrate 21 made of, for example, a glass plate, and the inner peripheral surfaces of the through holes 22d1 to 22dn and the through holes 23b can be processed. The metal layers 22e1 to 22en and 23c can be formed by a method such as electroless plating.
Further, as the substrate 21 in the detection electrode portion 2A, a Si substrate may be used instead of the glass plate. When a Si substrate is used as the substrate 21, an insulating layer such as SiO 2 is formed on the substrate 21, and the small electrodes 22a1 to 22an, the small electrode wirings 22b1 to 22bn, and the small electrode are formed on the insulating layer. By forming the connection pads 22c1 to 22cn, the detection electrode unit 2A can be manufactured.
Note that the number n of small electrodes in the present invention is not limited to the five shown in FIG.

(ハ)実施例1における振動体部と検出電極部との接合:
図1(a)は、振動体部1Aと検出電極部2Aとを接合する前の状態を示す側方断面図であり、図1(b)および図1(c)は、振動体部1Aと検出電極部2Aとを接合した後の状態を示す側方断面図(図1(c)のA−A断面図)および平面図である。図1に示されるように、振動体部1Aと検出電極部2Aとを、例えば陽極接合などにより接合して、図1(b)〜(c)に示されるMEMS構造体を構成する。
なお、上記の接合の後、検出電極部2Aにおける貫通孔23bの内周面および支持構造部11の上面部領域23dをメタライズ処理して、可動電極用パッド23aと支持構造部11とが電気的に導通する構造とする。なお、図1(a)には、上述のように、接合前の検出電極部2Aにおける貫通孔23bの内周面に、可動電極用パッド23aに接続された金属層23cが既に形成されている構成を示しているが、貫通孔23bの内周面の金属層23cは、接合の後におけるメタライズ処理によって初めて形成される構成としてもよい。
(C) Joining of the vibrating body and the detection electrode in Example 1
FIG. 1A is a side cross-sectional view showing a state before the vibrating body portion 1A and the detection electrode portion 2A are joined. FIGS. 1B and 1C show the vibrating body portion 1A and FIG. It is a side sectional view (AA sectional view of Drawing 1 (c)) and a top view showing the state after joining detection electrode part 2A. As shown in FIG. 1, the vibrating body 1 </ b> A and the detection electrode 2 </ b> A are joined by, for example, anodic bonding to configure the MEMS structure shown in FIGS. 1 (b) to 1 (c).
After the joining, the inner peripheral surface of the through hole 23b in the detection electrode portion 2A and the upper surface portion region 23d of the support structure portion 11 are metalized so that the movable electrode pad 23a and the support structure portion 11 are electrically connected. It is set as the structure connected to. In FIG. 1A, as described above, the metal layer 23c connected to the movable electrode pad 23a is already formed on the inner peripheral surface of the through hole 23b in the detection electrode portion 2A before bonding. Although the configuration is shown, the metal layer 23c on the inner peripheral surface of the through hole 23b may be formed for the first time by metallization after bonding.

(ニ)小電極の選択方式:
振動体部1Aと検出電極部2Aとの接合時に生じる振動体12bと検出電極(複数の小電極22a1〜22an)との位置ずれの量に合わせて上記複数の小電極22a1〜22anの内の1つ以上の小電極を検出電極として選択して利用する。小電極の選択にはスイッチ回路を用いる。すなわち、各小電極22a1〜22anを後段の電子回路部におけるスイッチ回路に接続し、スイッチ回路のON・OFFによって利用する小電極を1つ以上選択する。
複数の小電極22a1〜22anを用意しておくことで、振動体部1Aと検出電極部2Aとが接合された状態での振動体12bと検出電極(複数の小電極22a1〜22an)との位置ずれの態様によって、静電容量変化の検出に適合した位置にある1つ以上の小電極を検出電極として選択することができ、これにより、静電容量変化に基づく振動体の変位の検出精度をより高くすることができるようになる。
(D) Small electrode selection method:
One of the plurality of small electrodes 22a1 to 22an is matched to the amount of positional deviation between the vibrating body 12b and the detection electrodes (the plurality of small electrodes 22a1 to 22an) generated when the vibration body portion 1A and the detection electrode portion 2A are joined. One or more small electrodes are selected and used as detection electrodes. A switch circuit is used to select the small electrode. That is, each of the small electrodes 22a1 to 22an is connected to a switch circuit in the subsequent electronic circuit unit, and one or more small electrodes to be used are selected by turning on / off the switch circuit.
By preparing a plurality of small electrodes 22a1 to 22an, positions of the vibrating body 12b and the detection electrodes (a plurality of small electrodes 22a1 to 22an) in a state where the vibrating body portion 1A and the detection electrode portion 2A are joined. Depending on the mode of deviation, one or more small electrodes in a position suitable for detection of capacitance change can be selected as detection electrodes, thereby increasing the detection accuracy of the displacement of the vibrator based on the capacitance change. Can be higher.

この実施例1を適用することは、電極位置ずれ対策として次の2つの点で有効である。
(a)検出電極部2Aの作製工程において基板21上に形成される検出電極の位置ずれに対応した位置補正を行なうことができる。
(b)振動体部1Aと検出電極部2Aとの接合工程において位置合わせ(アライメント)する際に生じる位置ずれに対応した位置補正を行なうことができる。
なお、小電極の選択方式としては、例えば、静電容量変化の検出に適合した位置にある1つ以上の小電極として、振動体12bの中心位置に最も近い1つの小電極を選択するようにしてもよく、振動体12bの中心位置に近い2つ以上の小電極を選択するようにしてもよい。
また、検出電極として用いる小電極を選択する前に,いずれの小電極が振動体12bの中心位置に近いかを判定する方法としては、例えば、後段の電子回路部におけるスイッチ回路による切り替え操作によって各小電極22a1〜22anと振動体12bとの間の各静電容量Ca1〜Canをそれぞれ個別に測定し、より大きな静電容量値が測定された小電極を、振動体12bの中心位置により近い小電極であると判定する方法を適用することもできる。なお、上記の静電容量測定は、例えば後述の図5に示されるような、後段の電子回路部におけるスイッチ回路に接続された静電容量測定回路で行うことができる。
Applying the first embodiment is effective in the following two points as a countermeasure against electrode position deviation.
(A) In the manufacturing process of the detection electrode portion 2A, position correction corresponding to the position shift of the detection electrode formed on the substrate 21 can be performed.
(B) It is possible to perform position correction corresponding to a positional deviation that occurs when alignment (alignment) is performed in the joining process of the vibrating body portion 1A and the detection electrode portion 2A.
As a selection method of the small electrodes, for example, one small electrode closest to the center position of the vibrating body 12b is selected as one or more small electrodes at a position suitable for detection of capacitance change. Alternatively, two or more small electrodes close to the center position of the vibrating body 12b may be selected.
Further, as a method of determining which small electrode is close to the center position of the vibrating body 12b before selecting the small electrode to be used as the detection electrode, for example, each switching operation by a switch circuit in the electronic circuit unit at the subsequent stage is used. Each of the capacitances Ca1 to Can between the small electrodes 22a1 to 22an and the vibrating body 12b is individually measured, and the small electrode whose larger capacitance value is measured is closer to the center position of the vibrating body 12b. A method for determining an electrode can also be applied. The capacitance measurement can be performed by a capacitance measurement circuit connected to a switch circuit in the electronic circuit section at the subsequent stage, for example, as shown in FIG.

(ホ)MEMS構造体における位置ずれへの対応例:
図4は、図1のMEMS構造体100Aにおける位置ずれの例を示す説明図であって、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差が生じた場合における接合後のMEMS構造体を示すものである。
図4の(a)および(b)は、振動体部1と検出電極部2とを接合した後の状態を示す側方断面図(図4(b)のA−A断面図)および平面図であって、それぞれ、図1の(b)および(c)に対応している。図4(b)において、支持構造部11に対する基板21の相対位置、すなわち振動体部1Aに対する検出電極部2Aの相対位置が、2点鎖線で示される基準位置に対して紙面の左方向および下方向にそれぞれL1aおよびL1bだけずれている。検出電極部2Aの作製工程において基板21上に検出電極(複数の小電極22a1〜22an)を形成する際の位置誤差がない場合には、振動体12b(可動電極)に対する検出電極(複数の小電極22a1〜22an)の相対位置も、上記と同じずれ量L1aおよびL1bだけずれている。
(E) Example of correspondence to misalignment in MEMS structure:
FIG. 4 is an explanatory diagram showing an example of misalignment in the MEMS structure 100A of FIG. 1, and a positional error occurs when aligning them in the bonding process of the vibrating body and the detection electrode. The MEMS structure after joining in the case of a case is shown.
4A and 4B are a side cross-sectional view (cross-sectional view taken along line AA in FIG. 4B) and a plan view showing a state after the vibrating body portion 1 and the detection electrode portion 2 are joined. And correspond to (b) and (c) of FIG. 1, respectively. In FIG. 4B, the relative position of the substrate 21 with respect to the support structure portion 11, that is, the relative position of the detection electrode portion 2A with respect to the vibrating body portion 1A is leftward and downward with respect to the reference position indicated by a two-dot chain line. The directions are shifted by L1a and L1b, respectively. When there is no position error when forming the detection electrodes (the plurality of small electrodes 22a1 to 22an) on the substrate 21 in the manufacturing process of the detection electrode portion 2A, the detection electrodes (the plurality of small electrodes) with respect to the vibrating body 12b (movable electrode). The relative positions of the electrodes 22a1 to 22an) are also shifted by the same shift amounts L1a and L1b as described above.

そして、実施例1では、このような振動体部1Aと検出電極部2Aとが接合された状態での振動体と検出電極との位置ずれに対応させて、静電容量変化の検出に適合した位置にある小電極として、振動体12bの中心位置に最も近い1つの小電極(図4(b)では小電極22a4)を選択するようにしてもよく、また、振動体12bの中心位置に2つ以上の小電極(図4(b)では、例えば、最も近い小電極22a4と、2番目に近い小電極22a3との2つ)を選択するようにしてもよく、これにより、静電容量変化の検出に適合した位置にある小電極を検出電極として用いることができ、静電容量変化に基づく振動体の変位の検出精度をより高くすることができるようになる。
(ヘ)スイッチ回路の構成例:
上述のMEMS構造体100Aを用いてMEMSデバイスを構成する場合、例えば図5に示されるようなスイッチ回路を含む電子回路部200を後段に設ける。
And in Example 1, it matched with the detection of a capacitance change corresponding to the position shift of a vibrating body and a detection electrode in the state where such vibrating body part 1A and detection electrode part 2A were joined. As the small electrode at the position, one small electrode closest to the center position of the vibrating body 12b (small electrode 22a4 in FIG. 4B) may be selected, and 2 may be selected at the center position of the vibrating body 12b. Two or more small electrodes (in FIG. 4B, for example, two of the closest small electrode 22a4 and the second closest small electrode 22a3) may be selected, thereby changing the capacitance. The small electrode at a position suitable for the detection of can be used as the detection electrode, and the detection accuracy of the displacement of the vibrating body based on the change in capacitance can be further increased.
(F) Configuration example of the switch circuit:
When a MEMS device is configured using the MEMS structure 100A described above, for example, an electronic circuit unit 200 including a switch circuit as shown in FIG. 5 is provided in the subsequent stage.

図5において、MEMS構造体100Aに電子回路部200が接続されており、電子回路部200には、MEMS構造体100Aの小電極22a1〜22a5にそれぞれ接続されるスイッチSW1〜SW5からなるスイッチ回路231が設けられている。スイッチSW1〜SW5は、スイッチ制御回路232からの制御指令信号S1〜S5によって、それぞれa側あるいはb側いずれかの接続状態に制御される。そして、スイッチSW1〜SW5のa側は、演算増幅器233の反転入力端子に接続されているとともに、スイッチSW1〜SW5のb側は、演算増幅器233の非反転入力端子に接続されている。なお、スイッチSW1〜SW5は、図5では接点の記号で図示されているが、半導体スイッチ素子で構成することもできる。
また、演算増幅器233の非反転入力端子には交流信号発生器234が接続されているとともに、演算増幅器233の反転入力端子と出力端子との間には帰還抵抗235(Rf)が接続されている。
In FIG. 5, an electronic circuit unit 200 is connected to the MEMS structure 100A, and the electronic circuit unit 200 includes a switch circuit 231 including switches SW1 to SW5 connected to the small electrodes 22a1 to 22a5 of the MEMS structure 100A, respectively. Is provided. The switches SW1 to SW5 are controlled to be connected to either the a side or the b side by control command signals S1 to S5 from the switch control circuit 232, respectively. The a side of the switches SW1 to SW5 is connected to the inverting input terminal of the operational amplifier 233, and the b side of the switches SW1 to SW5 is connected to the non-inverting input terminal of the operational amplifier 233. The switches SW1 to SW5 are illustrated with contact symbols in FIG. 5, but may be configured with semiconductor switch elements.
An AC signal generator 234 is connected to the non-inverting input terminal of the operational amplifier 233, and a feedback resistor 235 (Rf) is connected between the inverting input terminal and the output terminal of the operational amplifier 233. .

小電極22a1〜22a5のうち例えば小電極22a4を検出電極として選択した場合、スイッチSW1〜SW5のうち、スイッチSW4だけがa側の接続状態となり、他のスイッチSW1〜SW3,SW5はb側の接続状態となる。このため、小電極22a4だけが検出電極として演算増幅器233の反転入力端子に接続されるとともに、小電極22a1〜22a3,22a5は接地電位(GND)から浮いた状態で演算増幅器233の非反転入力端子に接続されることになる。なお、振動子12b(可動電極)は接地電位(GND)に接続されている。
このような接続状態において、演算増幅器233には帰還抵抗235を介した負帰還がかかっているとともに演算増幅器233の開ループ利得が極めて大きいことから、演算増幅器233の入力側はイマジナリー・ショートの状態であって、反転入力端子・非反転入力端子間の電位差がほぼ零となっている。
When, for example, the small electrode 22a4 is selected as the detection electrode among the small electrodes 22a1 to 22a5, only the switch SW4 among the switches SW1 to SW5 is connected to the a side, and the other switches SW1 to SW3 and SW5 are connected to the b side. It becomes a state. For this reason, only the small electrode 22a4 is connected to the inverting input terminal of the operational amplifier 233 as a detection electrode, and the small electrodes 22a1 to 22a3 and 22a5 are floating from the ground potential (GND) and the non-inverting input terminal of the operational amplifier 233. Will be connected to. The vibrator 12b (movable electrode) is connected to the ground potential (GND).
In such a connection state, the operational amplifier 233 is subjected to negative feedback via the feedback resistor 235 and the open loop gain of the operational amplifier 233 is extremely large. Therefore, the input side of the operational amplifier 233 is in an imaginary short state. The potential difference between the inverting input terminal and the non-inverting input terminal is almost zero.

そして、交流信号発生器234から演算増幅器233の非反転入力端子に交流信号が印加されているので、演算増幅器233の出力電圧Voは、Vo=Vi(1+jωRf*Cx)となる。ここで、Cxは振動体12bと(検出電極として選択されている)小電極22a4との間の静電容量値であり、Rfは帰還抵抗235の抵抗値であり、さらに、Vi及びωは、交流信号発生器234からの交流信号の電圧及び角周波数である。
従って、演算増幅器233の出力電圧Voを測定することにより、振動体12bと(検出電極として選択されている)小電極22a4との間の静電容量を検出することができる。
ここで、図5の構成において、検出電極として選択されている小電極22a4から演算増幅器233の入力側までの小電極用配線22b4などの導体ラインと、検出電極として選択されていない小電極22a1〜22a3,22a5から演算増幅器233の入力側までの小電極用配線22b1〜22b3,22b5などの導体ラインとの間には浮遊容量が形成されており、導体ラインのレイアウトによっては、上記の導体ライン間の浮遊容量が、振動体12bと(検出電極として選択されている)小電極22a4との間の静電容量に対して無視できない大きさとなる可能性が有る。
Since an AC signal is applied from the AC signal generator 234 to the non-inverting input terminal of the operational amplifier 233, the output voltage Vo of the operational amplifier 233 is Vo = Vi (1 + jωRf * Cx). Here, Cx is a capacitance value between the vibrating body 12b and the small electrode 22a4 (selected as the detection electrode), Rf is a resistance value of the feedback resistor 235, and Vi and ω are The voltage and angular frequency of the AC signal from the AC signal generator 234.
Therefore, by measuring the output voltage Vo of the operational amplifier 233, the electrostatic capacitance between the vibrating body 12b and the small electrode 22a4 (selected as the detection electrode) can be detected.
Here, in the configuration of FIG. 5, a conductor line such as the small electrode wiring 22 b 4 from the small electrode 22 a 4 selected as the detection electrode to the input side of the operational amplifier 233, and the small electrodes 22 a 1 to 22 not selected as the detection electrode. A stray capacitance is formed between the conductor lines such as the small electrode wirings 22b1 to 22b3 and 22b5 from the terminals 22a3 and 22a5 to the input side of the operational amplifier 233. May have a non-negligible magnitude with respect to the capacitance between the vibrating body 12b and the small electrode 22a4 (selected as the detection electrode).

しかしながら、図5の構成では、上述のように、演算増幅器233の入力側がイマジナリー・ショートの状態にあることにより、上記の導体ライン間の浮遊容量がキャンセルされるので、小電極22a4を検出電極とした静電容量検出の精度への影響を抑えることができる。
なお、図5では、5個の小電極(22a1〜22a5)及び対応する5個のスイッチ(SW1〜SW5)を備えた回路構成例が示されているが、小電極の個数及び対応するスイッチの個数は5個に限定されるものでない。
また、本発明によるMEMSデバイスにおける電子回路部の構成は、図5の回路構成に限定されるものではなく、複数の小電極22a1〜22anから1つ以上の小電極を検出電極として選択することができるとともに上記のような導体ライン間などの浮遊容量の影響を抑える対策が図られた構成であればよい。
However, in the configuration of FIG. 5, as described above, the stray capacitance between the conductor lines is canceled when the input side of the operational amplifier 233 is in an imaginary short state, so the small electrode 22a4 is used as the detection electrode. The influence on the accuracy of capacitance detection can be suppressed.
FIG. 5 shows a circuit configuration example including five small electrodes (22a1 to 22a5) and corresponding five switches (SW1 to SW5). However, the number of small electrodes and the corresponding switch The number is not limited to five.
Further, the configuration of the electronic circuit unit in the MEMS device according to the present invention is not limited to the circuit configuration of FIG. 5, and one or more small electrodes can be selected as the detection electrode from the plurality of small electrodes 22a1 to 22an. Any configuration that can reduce the influence of stray capacitance between the conductor lines as described above may be used.

本発明の実施例2は、実施例1の構成に加えて、検出電極部の作製工程において基板上に検出電極を形成する際の位置誤差、および、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差の両方への更なる対策を施すものであって、前記基板を透明な板状部材で構成しておき、振動体部と検出電極部との接合時に、検出電極部における各小電極の位置を反振動体部側の外部から透明な基板を介して例えば光学顕微鏡などの光学的手段によって確認しながら位置合わせするものである。これにより、実施例2では、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを小さく抑えることができるので、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれが大きくなり過ぎて、検出電極を構成する全ての小電極の位置が静電容量変化の検出には適合しない位置となるような不具合を防止することができ、静電容量変化の検出に適合した位置にある1つ以上の小電極を選択して静電容量変化に基づく振動体の変位の検出精度を高くすることが確実にできるようになる。   In the second embodiment of the present invention, in addition to the configuration of the first embodiment, the position error when forming the detection electrode on the substrate in the manufacturing process of the detection electrode portion, and the bonding step of the vibrating body portion and the detection electrode portion In this case, the substrate is made of a transparent plate-shaped member, and the vibration body portion and the detection electrode portion are arranged together. At the time of joining, the position of each small electrode in the detection electrode unit is aligned while being confirmed from the outside on the anti-vibration body side through an optical means such as an optical microscope through a transparent substrate. As a result, in the second embodiment, the positional deviation between the vibrating body and the detection electrode that occurs when the vibrating body portion and the detection electrode portion are joined can be suppressed to be small. Therefore, the vibration that occurs when the vibrating body portion and the detection electrode portion are joined. It is possible to prevent such a problem that the position deviation between the body and the detection electrode becomes too large, and the positions of all the small electrodes constituting the detection electrode are not suitable for the detection of the capacitance change. It becomes possible to reliably increase the detection accuracy of the displacement of the vibrator based on the change in capacitance by selecting one or more small electrodes at positions suitable for detection of the change in capacitance.

図6により、本発明の実施例2によるMEMS構造体及びその製造方法の構成を示す。図6は、本発明の実施例2によるMEMS構造体の製造方法の概略工程図であり、図6(b)〜(c)には振動体部1Bと検出電極部2Bとが接合されてなるMEMS構造体100Bの構造が示されている。図6において、図12に示す従来の構成例、あるいは、図1〜5で説明した実施例1と機能の同じ要素は、同一の符号を付して示し、異なっている部分のみを説明する。
(イ)実施例2における振動体部の構成:
実施例2における振動体部1Bは、実施例1における振動体部1A(図2)と同様な構成のものを用いることができる。
(ロ)実施例2における検出電極部の構成:
実施例2における検出電極部2Bは、実施例1における検出電極部2A(図3)と同様な構造のものを用いることができるが、特に、基板21として透明なガラス板を用いている点に特徴がある。これにより、実施例2では、振動体部1Bと検出電極部2Bとを接合する際に、検出電極部2Bにおける小電極22a1〜22anの位置を透明な基板21を介して光学的手段によって確認することができる。
FIG. 6 shows the structure of a MEMS structure and a manufacturing method thereof according to Embodiment 2 of the present invention. FIG. 6 is a schematic process diagram of a method for manufacturing a MEMS structure according to a second embodiment of the present invention. In FIGS. 6B to 6C, the vibrating body portion 1B and the detection electrode portion 2B are joined. The structure of the MEMS structure 100B is shown. 6, elements having the same functions as those of the conventional configuration example illustrated in FIG. 12 or the first embodiment described with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and only different portions will be described.
(A) Configuration of vibrating body part in Example 2:
As the vibrating body portion 1B in the second embodiment, one having the same configuration as that of the vibrating body portion 1A (FIG. 2) in the first embodiment can be used.
(B) Configuration of detection electrode unit in Example 2:
The detection electrode unit 2B according to the second embodiment may have the same structure as that of the detection electrode unit 2A (FIG. 3) according to the first embodiment. In particular, a transparent glass plate is used as the substrate 21. There are features. Thereby, in Example 2, when joining the vibrating body part 1B and the detection electrode part 2B, the position of the small electrodes 22a1 to 22an in the detection electrode part 2B is confirmed by optical means through the transparent substrate 21. be able to.

なお、検出電極部2Bにおける基板21は、上記のガラス板に限定されるものではなく、光学的に透明な板状部材であればよい。
(ハ)実施例2における振動体部と検出電極部との接合:
図6(a)は、振動体部1Bと検出電極部2Bとを接合する前の状態を示す側方断面図であり、図6(b)および図6(c)は、振動体部1Bと検出電極部2Bとを接合した後の状態を示す側方断面図(図6(c)のA−A断面図)および平面図である。図6に示されるように、振動体部1Bと検出電極部2Bとを、例えば陽極接合などにより接合して、図6(b)〜(c)に示されるMEMS構造体100Bを構成する。
そして、実施例2では、上記のように、検出電極部4Bにおける基板21として透明なガラス板を用いているので、振動体部1Bと検出電極部2Bとを接合する際に、検出電極部2Bにおける小電極22a1〜22anの振動体部1Bに対する相対的な位置を透明な基板21を介して例えば光学顕微鏡などの光学的手段により確認しながら、例えば次のような基準に基づいて位置合わせを行なうことができる。
In addition, the board | substrate 21 in the detection electrode part 2B is not limited to said glass plate, What is necessary is just an optically transparent plate-shaped member.
(C) Joining of the vibrating body part and the detection electrode part in Example 2
FIG. 6A is a side sectional view showing a state before the vibrating body portion 1B and the detection electrode portion 2B are joined, and FIGS. 6B and 6C show the vibrating body portion 1B and FIG. It is a side sectional view (AA sectional view of Drawing 6 (c)) and a top view showing the state after joining detection electrode part 2B. As shown in FIG. 6, the vibrating body portion 1 </ b> B and the detection electrode portion 2 </ b> B are joined by, for example, anodic bonding to configure the MEMS structure 100 </ b> B shown in FIGS.
In Example 2, as described above, since the transparent glass plate is used as the substrate 21 in the detection electrode unit 4B, the detection electrode unit 2B is bonded to the vibrating body unit 1B and the detection electrode unit 2B. While confirming the relative positions of the small electrodes 22a1 to 22an with respect to the vibrating body portion 1B by optical means such as an optical microscope through the transparent substrate 21, alignment is performed based on the following criteria, for example. be able to.

(a)小電極22a1〜22anのうち、1つの小電極(例えば22a3)の位置が、振動体12bの中心位置と一致するように位置合わせする。
(b)小電極22a1〜22anのうち、極力多数の小電極の位置が、振動体12bに対向する領域内に入るように位置合わせする。
なお、図6は、検出電極部2Bの作製工程において基板上11に検出電極(小電極22a1〜22an)を形成する際の位置誤差に対応するため、透明な基板21を介して光学的手段により確認しながら、小電極22a1〜22anのうち中央部の小電極である小電極22a3の位置が振動体12bの中心位置に最も近くなるように位置合わせした場合の接合状態を示している。このような基板上における検出電極形成位置の誤差に対応するための位置合わせを行う場合、支持構造部11に対する基板21の相対位置は基準位置(図6(c)の2点鎖線)に対して(例えば図6(c)では紙面の左方向および下方向にそれぞれL2aおよびL2bだけ)ずれることになるが、振動体12bと検出電極との位置関係はより適正なものとなる。
(A) Among the small electrodes 22a1 to 22an, alignment is performed so that the position of one small electrode (for example, 22a3) coincides with the center position of the vibrating body 12b.
(B) Among the small electrodes 22a1 to 22an, alignment is performed so that the position of as many small electrodes as possible falls within the region facing the vibrating body 12b.
6 corresponds to a positional error when the detection electrodes (small electrodes 22a1 to 22an) are formed on the substrate 11 in the manufacturing process of the detection electrode portion 2B, so that optical means are used through the transparent substrate 21. While being confirmed, the joining state is shown when the small electrode 22a3, which is the small electrode at the center of the small electrodes 22a1 to 22an, is aligned so as to be closest to the center position of the vibrating body 12b. When alignment is performed to cope with such an error in the detection electrode formation position on the substrate, the relative position of the substrate 21 with respect to the support structure portion 11 is relative to the reference position (two-dot chain line in FIG. 6C). (For example, in FIG. 6 (c), L2a and L2b are respectively leftward and downward in the drawing), but the positional relationship between the vibrating body 12b and the detection electrode becomes more appropriate.

また、実施例2では、検出電極部2Bにおける基板21として透明なガラス板を用いていることにより、振動体部1Bと検出電極部2Bとを接合した後も、振動体12bと検出電極部2Bの小電極22a1〜22anとの位置関係を透明な基板21を介して光学的手段によって確認することができるので、静電容量変化の検出に適合した位置にある小電極を検出電極として選択する作業を確実に行なうことができる。
したがって、位置合わせ(アライメント)する際の電極位置ずれ対策として、この実施例2の構成を用いることで、実施例1よりも更に正確に静電容量変化を検出することが可能となる。
In Example 2, since a transparent glass plate is used as the substrate 21 in the detection electrode portion 2B, the vibration body 12b and the detection electrode portion 2B are joined even after the vibration body portion 1B and the detection electrode portion 2B are joined. Since the positional relationship with the small electrodes 22a1 to 22an can be confirmed by optical means through the transparent substrate 21, the operation of selecting a small electrode at a position suitable for detecting a change in capacitance as a detection electrode Can be performed reliably.
Therefore, by using the configuration of the second embodiment as a countermeasure against the electrode position deviation at the time of alignment (alignment), it becomes possible to detect the capacitance change more accurately than the first embodiment.

本発明の実施例3は、実施例1の構成に加えて、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差への更なる対策を施すものであって、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを抑えるための嵌合部として、振動体部における検出電極部との対向面に、検出電極部の外周形状に嵌合する内周形状を持つ振動体部側の凹部を形成しておき、振動体部と検出電極部との接合時に、検出電極部が振動体部の凹部内に嵌合するようにして位置合わせするものである。これにより、実施例3では、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを小さく抑えることができるので、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれが大きくなり過ぎて、検出電極を構成する全ての小電極の位置が静電容量変化の検出には適合しない位置となるような不具合を防止することができ、静電容量変化の検出に適合した位置にある1つ以上の小電極を選択して静電容量変化に基づく振動体の変位の検出精度を高くすることが確実にできるようになる。   In the third embodiment of the present invention, in addition to the configuration of the first embodiment, a further measure is taken against a position error when aligning both in the joining process of the vibrating body portion and the detection electrode portion. As a fitting portion for suppressing the positional deviation between the vibration body and the detection electrode that occurs when the vibration body portion and the detection electrode portion are joined, the detection electrode portion of the vibration body portion is opposed to the detection electrode portion. A concave portion on the vibrating body portion side having an inner circumferential shape that fits to the outer peripheral shape is formed, and the detection electrode portion is fitted into the concave portion of the vibrating body portion when the vibrating body portion and the detection electrode portion are joined. To align. As a result, in the third embodiment, the positional deviation between the vibrating body and the detection electrode that occurs when the vibrating body portion and the detection electrode portion are joined can be suppressed to be small. Therefore, the vibration that occurs when the vibrating body portion and the detection electrode portion are joined. It is possible to prevent such a problem that the position deviation between the body and the detection electrode becomes too large, and the positions of all the small electrodes constituting the detection electrode are not suitable for the detection of the capacitance change. It becomes possible to reliably increase the detection accuracy of the displacement of the vibrator based on the change in capacitance by selecting one or more small electrodes at positions suitable for detection of the change in capacitance.

図7〜図8により、本発明の実施例3によるMEMS構造体及びその製造方法の構成を示す。図7は、本発明の実施例3によるMEMS構造体の製造方法の概略工程図であり、図7(b)および図7(c)には振動体部1Cと検出電極部2Cとが接合されてなるMEMS構造体100Cの構造が示されている。また、図8は振動体部1Cの構造図である。図7〜図8において、図12に示す従来の構成例、あるいは、図1〜5で説明した実施例1と機能の同じ要素は、同一の符号を付して示し、異なっている部分のみを説明する。
(イ)実施例3における振動体部の構成:
図8(a)および図8(b)は、それぞれ、振動体部1Cの側方断面図(図8(b)のA−A断面図)および平面図である。
実施例3における振動体部1C(図8)は、実施例1における振動体部1A(図2)に対して、振動体部1Cにおける検出電極部2Cとの対向面に、検出電極部2Cの外周形状に嵌合する内周形状を持つ凹部15を形成しておく点に特徴があり、それ以外の点では、振動体部1A(図2)と同様である。
7 to 8 show the structure of the MEMS structure according to the third embodiment of the present invention and the manufacturing method thereof. FIG. 7 is a schematic process diagram of the manufacturing method of the MEMS structure according to the third embodiment of the present invention. In FIGS. 7B and 7C, the vibrating body portion 1C and the detection electrode portion 2C are joined. The structure of the MEMS structure 100C is shown. FIG. 8 is a structural diagram of the vibrating body portion 1C. 7 to 8, the same components as those in the conventional configuration example shown in FIG. 12 or the first embodiment described in FIGS. 1 to 5 are denoted by the same reference numerals, and only different portions are shown. explain.
(A) Configuration of vibrating body part in Example 3
FIG. 8A and FIG. 8B are a side sectional view (AA sectional view of FIG. 8B) and a plan view of the vibrating body portion 1C, respectively.
The vibrating body portion 1C (FIG. 8) according to the third embodiment is arranged on the surface of the vibrating body portion 1C facing the detection electrode portion 2C with respect to the vibrating body portion 1A (FIG. 2). It is characterized in that a concave portion 15 having an inner peripheral shape that fits to the outer peripheral shape is formed, and the other points are the same as those of the vibrating body portion 1A (FIG. 2).

すなわち、実施例3では、振動体12bと検出電極(複数の小電極22a1〜22an)との位置ずれを抑制するため、振動体部1Cと検出電極部2Cとの接合工程において両者を位置合わせ(アライメント)する際の位置誤差への対策として、振動体部1Cに深さd2(例えば1μm)の凹部15をエッチングにより形成しておく。ここで、この凹部15の内周形状は、検出電極部2Cの外周形状(例えば2600μm□)に合わせておき、振動体部1Cの凹部15と検出電極部2Cとが嵌合できるようにしておく。
(ロ)実施例3における検出電極部の構成:
実施例3における検出電極部2Cとしては、図3に示される実施例1の検出電極部2Aと同様な構成のものを用いることができる。
(ハ)実施例3における振動体部と検出電極部との接合
図7(a)は、振動体部1Cと検出電極部2Cとを接合する前の状態を示す側方断面図であり、図7(b)および図7(c)は、振動体部1Cと検出電極部2Cとを接合した後の状態を示す側方断面図(図7(c)のA−A断面図)および平面図である。図7に示されるように、振動体部1Cと検出電極部2Cとを、例えば陽極接合などにより接合して、図7(b)〜(c)に示されるMEMS構造体100Cを構成する。
That is, in Example 3, in order to suppress positional deviation between the vibrating body 12b and the detection electrodes (a plurality of small electrodes 22a1 to 22an), both are aligned in the joining process of the vibrating body portion 1C and the detection electrode portion 2C ( As a countermeasure against a position error at the time of alignment), a recess 15 having a depth d2 (for example, 1 μm) is formed in the vibrating body 1C by etching. Here, the inner peripheral shape of the concave portion 15 is matched with the outer peripheral shape (for example, 2600 μm □) of the detection electrode portion 2C so that the concave portion 15 of the vibrating body portion 1C and the detection electrode portion 2C can be fitted. .
(B) Configuration of the detection electrode unit in Example 3:
As the detection electrode portion 2C in the third embodiment, one having the same configuration as that of the detection electrode portion 2A in the first embodiment shown in FIG. 3 can be used.
(C) Joining of vibrating body part and detection electrode part in Example 3 FIG. 7A is a side sectional view showing a state before the vibrating body part 1C and the detection electrode part 2C are joined. 7 (b) and FIG. 7 (c) are a side cross-sectional view (cross-sectional view taken along line AA in FIG. 7 (c)) and a plan view showing a state after the vibrating body portion 1C and the detection electrode portion 2C are joined. It is. As shown in FIG. 7, the vibrating body portion 1 </ b> C and the detection electrode portion 2 </ b> C are joined by, for example, anodic bonding to configure the MEMS structure 100 </ b> C shown in FIGS. 7B to 7C.

そして、実施例3では、振動体部1Cと検出電極部2Cとの接合工程において両者を位置合わせ(アライメント)する際の位置誤差への対策として、ボンダーにて振動体部1Cと検出電極部2Cとを陽極接合などにより接合する前に、図7に示されるように、検出電極部2Cが振動体部1Cの凹部15内に嵌合するようにして位置合わせすることにより、接合工程における位置あわせ(アライメント)の際に生じる振動体12bと検出電極(複数の小電極22a1〜22an)との位置ずれを抑えることができる。   In Example 3, as a countermeasure against a position error when aligning both in the bonding process of the vibrating body portion 1C and the detection electrode portion 2C, the vibrating body portion 1C and the detection electrode portion 2C are bonded by a bonder. Before bonding by anodic bonding or the like, as shown in FIG. 7, the detection electrode portion 2C is aligned so as to fit into the recess 15 of the vibrating body portion 1C, thereby aligning in the bonding step. The positional deviation between the vibrating body 12b and the detection electrodes (the plurality of small electrodes 22a1 to 22an) generated during (alignment) can be suppressed.

本発明の実施例4は、実施例1の構成に加えて、振動体部と検出電極部との接合工程において両者を位置合わせ(アライメント)する際の位置誤差への更なる対策を施すものであって、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを抑えるための嵌合部として、振動体部における検出電極部との対向面に振動体部側の凸部(または凹部)を形成するとともに、検出電極部における振動体部との対向面に前記振動体部側の(凸部または凹部)と嵌合する検出電極部側の(凹部または凸部)を形成しておき、振動体部と検出電極部との接合時に、振動体部側の(凸部または凹部)と、検出電極部側の(凹部または凸部)とが嵌合するようにして位置合わせするものである。これにより、実施例4では、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを小さく抑えることができるので、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれが大きくなり過ぎて、検出電極を構成する全ての小電極の位置が静電容量変化の検出には適合しない位置となるような不具合を防止することができ、静電容量変化の検出に適合した位置にある1つ以上の小電極を選択して静電容量変化に基づく振動体の変位の検出精度を高くすることが確実にできるようになる。   In the fourth embodiment of the present invention, in addition to the configuration of the first embodiment, a further measure against a positional error when aligning both in the joining process of the vibrating body portion and the detection electrode portion is taken. As a fitting portion for suppressing the positional deviation between the vibration body and the detection electrode that occurs when the vibration body portion and the detection electrode portion are joined, the vibration body portion side surface of the vibration body portion is opposed to the detection electrode portion. A convex portion (or a concave portion) is formed, and the detection electrode portion side (the concave portion or the convex portion) is fitted to the vibrating body portion side (the convex portion or the concave portion) on the surface facing the vibrating body portion in the detection electrode portion. So that (the convex portion or the concave portion) on the vibration body portion side and the (concave portion or the convex portion) on the detection electrode portion side are fitted when the vibrating body portion and the detection electrode portion are joined. Align it. Thereby, in Example 4, since the position shift of the vibrating body and the detection electrode that occurs when the vibrating body portion and the detection electrode portion are joined can be suppressed to a small value, the vibration that occurs when the vibrating body portion and the detection electrode portion are joined. It is possible to prevent such a problem that the position deviation between the body and the detection electrode becomes too large, and the positions of all the small electrodes constituting the detection electrode are not suitable for the detection of the capacitance change. It becomes possible to reliably increase the detection accuracy of the displacement of the vibrator based on the change in capacitance by selecting one or more small electrodes at positions suitable for detection of the change in capacitance.

図9〜図11により、本発明の実施例4によるMEMS構造体及びその製造方法の構成を示す。図9は、本発明の実施例4によるMEMS構造体の製造方法の概略工程図であり、図9(b)〜(c)には振動体部1Dと検出電極部2Dとが接合されてなるMEMS構造体100Dの構造が示されている。また、図10は振動体部1Dの構造図であり、図11は検出電極部2Dの構造図である。図9〜図11において、図12に示す従来の構成例、あるいは、図1〜5で説明した実施例1と機能の同じ要素は、同一の符号を付して示し、異なっている部分のみを説明する。
(イ)実施例4における振動体部の構成:
図10(a)および図10(b)は、それぞれ、振動体部1Dの側方断面図(図10(b)のA−A断面図)および平面図である。
9 to 11 show the structure of a MEMS structure and a method for manufacturing the same according to Embodiment 4 of the present invention. FIG. 9 is a schematic process diagram of a method for manufacturing a MEMS structure according to a fourth embodiment of the present invention. In FIGS. 9B to 9C, a vibrating body portion 1D and a detection electrode portion 2D are joined. The structure of the MEMS structure 100D is shown. FIG. 10 is a structural diagram of the vibrating body portion 1D, and FIG. 11 is a structural diagram of the detection electrode portion 2D. 9 to 11, elements having the same functions as those of the conventional configuration example shown in FIG. 12 or the first embodiment described with reference to FIGS. 1 to 5 are denoted by the same reference numerals, and only different portions are shown. explain.
(A) Configuration of vibrating body part in Example 4:
FIG. 10A and FIG. 10B are a side sectional view (AA sectional view of FIG. 10B) and a plan view of the vibrating body portion 1D, respectively.

実施例4における振動体部1D(図10)は、実施例1における振動体部1A(図2)に対して、検出電極部2Dの凸部26と対応する位置に、凸部26の外周形状に嵌合する内周形状を持つ振動体部側の凹部16をエッチング等により形成しておく点に特徴があり、それ以外の点では、振動体部1A(図2)と同様である。
(ロ)実施例4における検出電極部の構成:
図11(a)および図11(b)は、それぞれ、検出電極部2Dの側方断面図(図11(b)のA−A断面図)および平面図である。
実施例4における検出電極部2D(図11)は、実施例1における検出電極部2A(図3)に対して、振動体部1Dの凹部16と対応する位置に、凹部16の内周形状に嵌合する外周形状を持つ凸部26を成膜等により形成しておく点に特徴があり、それ以外の点では、検出電極部2A(図3)と同様である。
The vibrating body portion 1D (FIG. 10) in the fourth embodiment has an outer peripheral shape of the convex portion 26 at a position corresponding to the convex portion 26 of the detection electrode portion 2D with respect to the vibrating body portion 1A (FIG. 2) in the first embodiment. The concave portion 16 on the vibrating body portion side having an inner peripheral shape that fits in is formed by etching or the like, and is otherwise the same as the vibrating body portion 1A (FIG. 2).
(B) Configuration of detection electrode unit in Example 4:
FIG. 11A and FIG. 11B are a side sectional view (AA sectional view in FIG. 11B) and a plan view of the detection electrode portion 2D, respectively.
The detection electrode portion 2D (FIG. 11) in the fourth embodiment has an inner peripheral shape of the concave portion 16 at a position corresponding to the concave portion 16 of the vibrating body portion 1D with respect to the detection electrode portion 2A (FIG. 3) in the first embodiment. The protrusion 26 having the outer peripheral shape to be fitted is characterized in that it is formed by film formation or the like, and is otherwise the same as the detection electrode portion 2A (FIG. 3).

(ハ)実施例4における振動体部と検出電極部との接合
図9(a)は、振動体部1Dと検出電極部2Dとを接合する前の状態を示す側方断面図であり、図9(b)および図9(c)は、振動体部1Dと検出電極部2Dとを接合した後の状態を示す側方断面図(図9(c)のA−A断面図)および平面図である。図9に示されるように、振動体部1Dと検出電極部2Dとを、例えば陽極接合などにより接合して、図9(b)〜(c)に示されるMEMS構造体100Dを構成する。
そして、実施例4では、振動体部1Dと検出電極部2Dとの接合工程において両者を位置合わせ(アライメント)する際の位置誤差への対策として、ボンダーにて振動体部1Dと検出電極部2Dとを陽極接合などにより接合する前に、図9に示されるように、振動体部1D側の凹部16と検出電極部2D側の凸部26とが嵌合するようにして位置合わせすることにより、接合工程における位置合わせ(アライメント)の際に生じる振動体12bと検出電極(複数の小電極22a1〜22an)との位置ずれを抑えることができる。
(C) Joining of vibrating body part and detection electrode part in Example 4 FIG. 9A is a side sectional view showing a state before joining the vibrating body part 1D and the detection electrode part 2D. 9 (b) and FIG. 9 (c) are a side sectional view (a sectional view taken along line AA in FIG. 9 (c)) and a plan view showing a state after the vibrating body portion 1D and the detection electrode portion 2D are joined. It is. As shown in FIG. 9, the vibrating body portion 1 </ b> D and the detection electrode portion 2 </ b> D are joined by, for example, anodic bonding to configure the MEMS structure 100 </ b> D shown in FIGS.
In Example 4, as a countermeasure against a position error when aligning both in the bonding process of the vibrating body portion 1D and the detection electrode portion 2D, the vibrating body portion 1D and the detection electrode portion 2D are bonded by a bonder. 9 by anodic bonding or the like, as shown in FIG. 9, by positioning so that the concave portion 16 on the vibrating body portion 1D side and the convex portion 26 on the detection electrode portion 2D side are fitted. The positional deviation between the vibrating body 12b and the detection electrodes (the plurality of small electrodes 22a1 to 22an) that occurs during alignment (alignment) in the joining process can be suppressed.

(ニ)実施例4における位置合わせ用の凸部および凹部:
実施例4における位置合わせ用の凸部26及び凹部16のそれぞれの平面形状は、図9〜図11に示されるように矩形であってもよく、その他の形状であってもよい。
凸部26及び凹部16のそれぞれの個数は、図9〜図11に示される2個に限定されるものではなく、それ以上の個数であってもよく、凸部26と凹部16とが嵌合した状態で振動体部1Dと検出電極部2Dとの接合面上での相対的位置関係が確実に規定されるものであればよい。そして、凸部26及び凹部16のそれぞれの平面形状が、円形以外の形状、例えば図9〜図11に示される矩形である場合には、凸部26及び凹部16のそれぞれの個数が1個であっても、凸部26と凹部16とが嵌合した状態で振動体部1Dと検出電極部2Dとの接合面上での相対的位置関係が規定されるので、適用可能である。
(D) Convex and concave portions for alignment in Example 4:
Each planar shape of the convex portion 26 and the concave portion 16 for alignment in the fourth embodiment may be rectangular as shown in FIGS. 9 to 11 or may be other shapes.
The number of each of the convex part 26 and the concave part 16 is not limited to two shown in FIGS. 9 to 11, and may be more than that, and the convex part 26 and the concave part 16 are fitted. The relative positional relationship on the joint surface between the vibrating body portion 1D and the detection electrode portion 2D is only required to be defined reliably. And when each planar shape of the convex part 26 and the recessed part 16 is shapes other than circular, for example, the rectangle shown by FIGS. 9-11, the number of each of the convex part 26 and the recessed part 16 is one piece. Even if it exists, since the relative positional relationship on the joint surface of vibrating body part 1D and detection electrode part 2D is prescribed | regulated in the state which the convex part 26 and the recessed part 16 fitted, it is applicable.

(ニ)別の構成例:
実施例4では、上述のように、振動体部1Dにおける検出電極部2Dとの対向面に振動体部側の凹部16を形成するとともに、検出電極部2Dにおける振動体部1Dとの対向面に振動体部側の凹部16と嵌合する検出電極部側の凸部26を形成しておき、振動体部1Dと検出電極部2Dとの接合時に、振動体部側の凹部16と検出電極部側の凸部26とが嵌合するようにして位置合わせする構成としている。本発明においては、上記構成に代えて、振動体部側と検出電極部側とで凹部と凸部とを逆にした構成、すなわち、振動体部における検出電極部との対向面に振動体部側の凸部を形成するとともに、検出電極部における振動体部との対向面に前記振動体部側の凸部と嵌合する検出電極部側の凹部を形成しておき、振動体部と検出電極部との接合時に、振動体部側の凹部と検出電極部側の凸部とが嵌合するようにして位置合わせする構成としてもよい。
[MEMS構造体の適用例]
本発明によるMEMS構造体は、振動体(可動電極)と検出電極とが間隔を空けて対向する構造であって、振動体(可動電極)と検出電極との間の静電容量C1の変化を検出するセンサ素子として機能するものであり、この静電容量変化に基づいて検出される振動体の変位を通じて、加速度、角速度などの力学量を測定することができる。
(D) Another configuration example:
In Example 4, as described above, the concave portion 16 on the vibrating body portion side is formed on the surface facing the detection electrode portion 2D of the vibrating body portion 1D, and the surface facing the vibrating body portion 1D on the detection electrode portion 2D is formed. A convex part 26 on the detection electrode part side that fits into the concave part 16 on the vibration body part side is formed, and when the vibration body part 1D and the detection electrode part 2D are joined, the concave part 16 on the vibration body part side and the detection electrode part are formed. It is set as the structure which aligns so that the convex part 26 of the side may fit. In the present invention, instead of the above-described configuration, a configuration in which the concave portion and the convex portion are reversed on the vibrating body portion side and the detection electrode portion side, that is, the vibrating body portion on the surface facing the detection electrode portion in the vibrating body portion. And forming a concave portion on the detection electrode portion side that fits with the convex portion on the vibration body portion side on the surface of the detection electrode portion facing the vibration body portion, and detecting the vibration body portion and the detection portion. It is good also as a structure which aligns so that the recessed part by the side of a vibrating body part and the convex part by the side of a detection electrode part may fit at the time of joining with an electrode part.
[Application example of MEMS structure]
The MEMS structure according to the present invention has a structure in which a vibrating body (movable electrode) and a detection electrode are opposed to each other with a space therebetween, and changes in the capacitance C1 between the vibrating body (movable electrode) and the detection electrode. It functions as a sensor element to detect, and mechanical quantities such as acceleration and angular velocity can be measured through displacement of the vibrating body detected based on this capacitance change.

(イ)加速度センサへの適用
例えば図1(b)〜(c)に示される構成のMEMS構造体100Aをセンサ素子として用いるとともに、振動体12b(可動電極)と検出電極(複数の小電極22a1〜22anから選択された小電極)との間の静電容量C1を検出する容量検出回路を後段の電子回路として設けることにより、MEMSデバイスである加速度センサを構成することができる。
この加速度センサでは、垂直方向(図1(b)の紙面における上下方向)の加速度を受けて、振動体12b(可動電極)が垂直方向(図1(b)の紙面における上下方向)に変位し、この変位に伴う振動体12b(可動電極)と検出電極との電極間距離の変化による静電容量C1の変化を容量検出回路で検出して、この静電容量変化に基づいて検出される振動体12bの変位を通じて、垂直方向の加速度を測定するようにすることができる。
(A) Application to an acceleration sensor For example, the MEMS structure 100A having the configuration shown in FIGS. 1B to 1C is used as a sensor element, and a vibrating body 12b (movable electrode) and detection electrodes (a plurality of small electrodes 22a1). An acceleration sensor that is a MEMS device can be configured by providing a capacitance detection circuit that detects a capacitance C1 between the small electrodes selected from ˜22an as a subsequent electronic circuit.
In this acceleration sensor, the vibration body 12b (movable electrode) is displaced in the vertical direction (up and down direction on the paper surface in FIG. 1B) in response to acceleration in the vertical direction (up and down direction on the paper surface in FIG. 1B). The change in the capacitance C1 due to the change in the distance between the vibrating body 12b (movable electrode) and the detection electrode accompanying this displacement is detected by the capacitance detection circuit, and the vibration detected based on the change in capacitance. Through the displacement of the body 12b, the vertical acceleration can be measured.

また、この加速度センサでは、水平方向(図1(c)の紙面における上下方向)の加速度を受けて、振動体12b(可動電極)が水平方向(図1(c)の紙面における上下方向)に変位し、この変位に伴う振動体12b(可動電極)と検出電極との電極対向面積の変化による静電容量C1の変化を容量検出回路で検出して、この静電容量変化に基づいて検出される振動体の変位を通じて、水平方向の加速度を測定するようにすることもできる。ただし、図1(c)に示されているように各小電極22a1〜22anの個別の面積は振動体12bの面積に比べて小さいため、水平方向の加速度測定の場合、極力多くの小電極を検出電極として選択しておき、振動体12bの水平方向の変位に伴う振動体12b(可動電極)と検出電極との電極対向面積の変化率が十分大きなものとなるようにすることが好ましい。   Further, in this acceleration sensor, the vibration body 12b (movable electrode) receives the acceleration in the horizontal direction (vertical direction on the paper surface in FIG. 1C) and the vibrating body 12b (movable electrode) in the horizontal direction (vertical direction on the paper surface in FIG. 1C). The capacitance detection circuit detects a change in the capacitance C1 due to a change in the electrode facing area between the vibrating body 12b (movable electrode) and the detection electrode accompanying the displacement, and is detected based on the capacitance change. It is also possible to measure the horizontal acceleration through the displacement of the vibrating body. However, as shown in FIG. 1C, the individual areas of the small electrodes 22a1 to 22an are smaller than the area of the vibrating body 12b. Therefore, in the case of measuring the acceleration in the horizontal direction, as many small electrodes as possible are used. It is preferable to select it as a detection electrode so that the rate of change of the electrode facing area between the vibrating body 12b (movable electrode) and the detection electrode accompanying the horizontal displacement of the vibrating body 12b is sufficiently large.

なお、後者の水平方向の加速度測定において加速度の方向も検出する場合には、検出電極部2Aに複数の小電極22a1〜22anからなる検出電極を1対設け、振動体12b(可動電極)の変位方向(図1(c)の紙面における上下方向)に沿って振動体12b(可動電極)の基準位置の両側に振り分けるようにして前記1対の検出電極を配置し、各検出電極と振動体12b(可動電極)との間の静電容量の変化をそれぞれ検出する構成とする。
(ロ)角速度センサへの適用
また、例えば図1(b)〜(c)に示される構成のMEMS構造体100Aをセンサ素子として用い、振動体12b(可動電極)と検出電極(複数の小電極22a1〜22anから選択された小電極)との間の静電容量C1を検出する容量検出回路を後段の電子回路として設けるとともに、振動体12bあるいは梁12aの側面と間隔を空けて対向する電極面を備えた、図示されない一対の駆動電極を振動体12bあるいは梁12aの両側(図1(c)の紙面における上側及び下側)に配置することにより、MEMSデバイスである角速度センサを構成することができる。
When detecting the direction of acceleration in the latter horizontal acceleration measurement, the detection electrode unit 2A is provided with a pair of detection electrodes including a plurality of small electrodes 22a1 to 22an, and the displacement of the vibrating body 12b (movable electrode) is detected. The pair of detection electrodes are arranged so as to be distributed on both sides of the reference position of the vibrating body 12b (movable electrode) along the direction (vertical direction on the paper surface of FIG. 1C), and each detection electrode and the vibrating body 12b are arranged. A configuration is adopted in which a change in electrostatic capacitance with each (movable electrode) is detected.
(B) Application to an angular velocity sensor Further, for example, a MEMS structure 100A having the configuration shown in FIGS. 1B to 1C is used as a sensor element, and a vibrating body 12b (movable electrode) and detection electrodes (a plurality of small electrodes) And a capacitance detection circuit for detecting a capacitance C1 between the electrodes 12a1 to 22an) and an electrode surface facing the vibration member 12b or the side surface of the beam 12a with a gap therebetween. An angular velocity sensor, which is a MEMS device, can be configured by arranging a pair of drive electrodes (not shown) provided with both sides of the vibrating body 12b or the beam 12a (upper and lower sides in the drawing of FIG. 1C). it can.

この角速度センサでは、上記駆動電極に交流電圧の駆動信号を印加すると、振動体12b(可動電極)が固定周波数で水平方向(図1(c)の紙面における上下方向)に強制振動する。このとき、振動体12b(可動電極)および梁12aを軸とした角速度が加わると、振動体12b(可動電極)が強制振動方向に対して直行する方向(図1(c)の紙面における奥行き方向、すなわち、図1(b)の紙面における上下方向)に角速度に比例したコリオリ振動を始め、振動体12b(可動電極)と検出電極(複数の小電極22a1〜22anから選択された小電極)との電極間距離の変化により静電容量C1が変化する。静電容量C1の変化を容量検出回路で検出して、この静電容量変化に基づいて検出される振動体の変位を通じて、角速度を測定するようにすることができる。
(ハ)そして、本発明のMEMS構造体は、上述のように、振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを小さく抑えることができ、これにより、静電容量変化に基づく振動体の変位の検出精度をより高くすることができるので、このような本発明のMEMS構造体を例えば加速度センサ、角速度センサなどの力学量センサのセンサ素子として用いることにより、力学量センサの測定精度をより向上させることができるようになる。
In this angular velocity sensor, when an AC voltage drive signal is applied to the drive electrode, the vibrating body 12b (movable electrode) is forcibly vibrated in a horizontal direction (vertical direction in the plane of FIG. 1C) at a fixed frequency. At this time, when an angular velocity about the vibrating body 12b (movable electrode) and the beam 12a is applied, the direction in which the vibrating body 12b (movable electrode) is orthogonal to the forced vibration direction (the depth direction in FIG. 1C). That is, starting with Coriolis vibration proportional to the angular velocity in the vertical direction on the paper surface of FIG. 1B, a vibrating body 12b (movable electrode) and a detection electrode (small electrode selected from a plurality of small electrodes 22a1 to 22an) The capacitance C1 changes due to the change in the inter-electrode distance. The change in the capacitance C1 can be detected by a capacitance detection circuit, and the angular velocity can be measured through the displacement of the vibrating body detected based on the change in capacitance.
(C) As described above, the MEMS structure of the present invention can suppress the positional deviation between the vibration body and the detection electrode that occurs when the vibration body section and the detection electrode section are joined. Since the detection accuracy of the displacement of the vibrating body based on the capacitance change can be further increased, by using such a MEMS structure of the present invention as a sensor element of a mechanical quantity sensor such as an acceleration sensor or an angular velocity sensor, The measurement accuracy of the mechanical quantity sensor can be further improved.

1,1A,1B,1C,1D・・・振動体部
11・・・支持構造部、12・・・可動部、12a・・・梁、12b・・・振動体、13・・・空隙、14・・・凹部、15・・・凹部、16・・・凹部
2,2A,2B,2C,2D・・・検出電極部
21・・・基板、22a・・・検出電極、22a1〜22a5・・・小電極、22b・・・検出電極用配線、22b1〜22b5・・・小電極用配線、22c・・・検出電極用接続パッド、22c1〜22c5・・・小電極用接続パッド、23a・・・可動電極用接続パッド、26・・・凸部
L1a,L1b,L2a,L2b・・・位置ずれ量
100,100A,100B,100C,100D・・・MEMS構造体
200・・・電子回路部
231・・・スイッチ回路、232・・・スイッチ制御回路、233・・・演算増幅器、234・・・交流信号発生器、235・・・帰還抵抗、SW1〜SW5・・・スイッチ
1, 1A, 1B, 1C, 1D ... vibrating body part 11 ... support structure part, 12 ... movable part, 12a ... beam, 12b ... vibrating body, 13 ... gap, 14 ... Recesses, 15 ... Recesses, 16 ... Recesses 2, 2A, 2B, 2C, 2D ... Detection electrodes 21 ... Substrate, 22a ... Detection electrodes, 22a1 to 22a5 ... Small electrode, 22b ... detection electrode wiring, 22b1-22b5 ... small electrode wiring, 22c ... detection electrode connection pad, 22c1-22c5 ... small electrode connection pad, 23a ... movable Electrode connection pads 26... Convex portions L 1 a, L 1 b, L 2 a, L 2 b ... misregistration amounts 100, 100 A, 100 B, 100 C, 100 D... MEMS structure 200. Switch circuit, 232 ... Switch system Circuit, 233 ... operational amplifier, 234 ... AC signal generator, 235 ... feedback resistor, SW1 to SW5 ... switch

Claims (11)

支持構造部と前記支持構造部に対して変位可能に支持された振動体とからなる振動体部と、
基板と前記基板上に形成された検出電極とからなる検出電極部とを備えるとともに、
振動体と検出電極とが間隔を空けて対向するようにして前記振動体部と前記検出電極部とが接合され、振動体と検出電極との間の静電容量の変化を検出するように構成されたMEMS構造体において、
前記検出電極が互いに分離された複数の小電極から構成されていることにより、
振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極を選択することができるようにされている
ことを特徴とするMEMS構造体。
A vibrating body portion comprising a supporting structure portion and a vibrating body supported to be displaceable with respect to the support structure portion;
A detection electrode unit comprising a substrate and a detection electrode formed on the substrate;
The vibrating body portion and the detection electrode portion are joined such that the vibrating body and the detection electrode face each other with a space therebetween, and a change in capacitance between the vibrating body and the detection electrode is detected. In a structured MEMS structure,
The detection electrode is composed of a plurality of small electrodes separated from each other,
One or more small electrodes can be selected in accordance with the positional deviation between the vibrating body and the detection electrode when the vibrating body and the detection electrode are joined. MEMS structure.
前記基板が透明な板状部材で構成されていることにより、
振動体部と検出電極部との接合時に、各小電極の振動体に対する相対的位置を反振動体部側の外部から光学的に確認することができるようにされている
ことを特徴とする請求項1に記載のMEMS構造体。
By the substrate being made of a transparent plate member,
When the vibrating body portion and the detection electrode portion are joined, the relative position of each small electrode with respect to the vibrating body can be optically confirmed from the outside on the anti-vibrating body portion side. Item 4. The MEMS structure according to Item 1.
振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを抑えるための嵌合部を設けた
ことを特徴とする請求項1に記載のMEMS構造体。
The MEMS structure according to claim 1, further comprising a fitting portion for suppressing a positional deviation between the vibration body and the detection electrode that occurs when the vibration body section and the detection electrode section are joined.
前記嵌合部として、振動体部における検出電極部との対向面に、検出電極部の外周形状に嵌合する内周形状を持つ振動体部側の凹部を形成した
ことを特徴とする請求項3に記載のMEMS構造体。
The concave portion on the vibrating body portion side having an inner peripheral shape that fits the outer peripheral shape of the detection electrode portion is formed on the surface of the vibrating body portion facing the detection electrode portion as the fitting portion. 4. The MEMS structure according to 3.
前記嵌合部として、振動体部における検出電極部との対向面に振動体部側の凸部(または凹部)を形成するとともに、検出電極部における振動体部との対向面に前記振動体部側の凸部(または凹部)と嵌合する検出電極部側の凹部(または凸部)を形成した
ことを特徴とする請求項3に記載のMEMS構造体。
As the fitting portion, a convex portion (or a concave portion) on the vibration body portion side is formed on the surface of the vibration body portion facing the detection electrode portion, and the vibration body portion is formed on the surface of the detection electrode portion facing the vibration body portion. The MEMS structure according to claim 3, wherein a concave portion (or convex portion) on the detection electrode portion side that fits with the convex portion (or concave portion) on the side is formed.
請求項1ないし5のいずれか1項に記載のMEMS構造体を用いたMEMSデバイスであって、
前記各小電極が接続されたスイッチ回路を設けていることにより、
振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極を前記スイッチ回路によって選択することができるようにされている
ことを特徴とするMEMSデバイス。
A MEMS device using the MEMS structure according to any one of claims 1 to 5,
By providing a switch circuit to which the small electrodes are connected,
One or more small electrodes can be selected by the switch circuit in accordance with the positional deviation between the vibrating body and the detection electrode when the vibrating body and the detection electrode are joined. The MEMS device characterized by the above-mentioned.
支持構造部と前記支持構造部に対して変位可能に支持された振動体とからなる振動体部と、
基板と前記基板上に形成された検出電極とからなる検出電極部とを備えるとともに、
振動体と検出電極とが間隔を空けて対向するようにして前記振動体部と前記検出電極部とが接合され、振動体と検出電極との間の静電容量の変化を検出するように構成されたMEMS構造体を用いたMEMSデバイスの製造方法において、
前記検出電極を互いに分離された複数の小電極から構成するとともに、前記各小電極が接続されたスイッチ回路を設けておき、
振動体部と検出電極部とが接合された状態での振動体と検出電極との位置ずれに対応させて、1つ以上の小電極を前記スイッチ回路によって選択するようにした
ことを特徴とするMEMSデバイスの製造方法。
A vibrating body portion comprising a supporting structure portion and a vibrating body supported to be displaceable with respect to the support structure portion;
A detection electrode unit comprising a substrate and a detection electrode formed on the substrate;
The vibrating body portion and the detection electrode portion are joined such that the vibrating body and the detection electrode face each other with a space therebetween, and a change in capacitance between the vibrating body and the detection electrode is detected. In the manufacturing method of the MEMS device using the made MEMS structure,
The detection electrode is composed of a plurality of small electrodes separated from each other, and a switch circuit to which the small electrodes are connected is provided.
One or more small electrodes are selected by the switch circuit in response to a positional shift between the vibrating body and the detection electrode in a state where the vibrating body and the detection electrode are joined. Manufacturing method of a MEMS device.
前記基板を透明な板状部材で構成しておき、
振動体部と検出電極部との接合時に、各小電極の振動体に対する相対的位置を反振動体部側の外部から光学的に確認するようにした
ことを特徴とする請求項7に記載のMEMSデバイスの製造方法。
The substrate is composed of a transparent plate member,
The relative position of each small electrode with respect to the vibrating body is optically confirmed from the outside on the anti-vibrating body side when the vibrating body section and the detection electrode section are joined. Manufacturing method of a MEMS device.
振動体部と検出電極部との接合時に生じる振動体と検出電極との位置ずれを抑えるための嵌合部を設けておき、
振動体部と検出電極部との接合時に、前記嵌合部が嵌合するようにして位置合わせする
ことを特徴とする請求項7に記載のMEMSデバイスの製造方法。
A fitting portion is provided to suppress a positional deviation between the vibrating body and the detection electrode that occurs when the vibrating body portion and the detection electrode section are joined.
The method for manufacturing a MEMS device according to claim 7, wherein positioning is performed so that the fitting portion is fitted when the vibrating body portion and the detection electrode portion are joined.
前記嵌合部として、振動体部における検出電極部との対向面に、検出電極部の外周形状に嵌合する内周形状を持つ振動体部側の凹部を形成しておき、
振動体部と検出電極部との接合時に、検出電極部と、振動体部側の凹部とが嵌合するようにして位置合わせする
ことを特徴とする請求項9に記載のMEMSデバイスの製造方法。
As the fitting portion, on the surface of the vibrating body portion facing the detection electrode portion, a concave portion on the vibrating body portion side having an inner circumferential shape fitted to the outer circumferential shape of the detection electrode portion is formed,
The method of manufacturing a MEMS device according to claim 9, wherein when the vibrating body portion and the detection electrode portion are joined, the detection electrode portion and the concave portion on the vibrating body portion side are fitted so as to be aligned. .
前記嵌合部として、振動体部における検出電極部との対向面に振動体部側の凸部(または凹部)を形成するとともに、検出電極部における振動体部との対向面に前記振動体部側の凸部(または凹部)と嵌合する検出電極部側の凹部(または凸部)を形成しておき、
振動体部と検出電極部との接合時に、振動体部側の凸部(または凹部)と、検出電極部側の凹部(または凸部)とが嵌合するようにして位置合わせする
ことを特徴とする請求項9に記載のMEMSデバイスの製造方法。
As the fitting portion, a convex portion (or a concave portion) on the vibration body portion side is formed on the surface of the vibration body portion facing the detection electrode portion, and the vibration body portion is formed on the surface of the detection electrode portion facing the vibration body portion. Forming a concave part (or convex part) on the detection electrode part side to be fitted to the convex part (or concave part) on the side,
At the time of joining the vibrating body part and the detection electrode part, the convex part (or concave part) on the vibrating body part side and the concave part (or convex part) on the detection electrode part side are fitted and aligned. A method for manufacturing a MEMS device according to claim 9.
JP2009083904A 2009-03-31 2009-03-31 MEMS structure, MEMS device and manufacturing method thereof Expired - Fee Related JP5381235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083904A JP5381235B2 (en) 2009-03-31 2009-03-31 MEMS structure, MEMS device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083904A JP5381235B2 (en) 2009-03-31 2009-03-31 MEMS structure, MEMS device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010238836A true JP2010238836A (en) 2010-10-21
JP5381235B2 JP5381235B2 (en) 2014-01-08

Family

ID=43092923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083904A Expired - Fee Related JP5381235B2 (en) 2009-03-31 2009-03-31 MEMS structure, MEMS device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5381235B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286738A (en) * 2001-03-23 2002-10-03 Omron Corp Speed sensor
JP2005017216A (en) * 2003-06-27 2005-01-20 Act Lsi:Kk Three-axes acceleration sensor
JP2006046995A (en) * 2004-08-02 2006-02-16 Seiko Instruments Inc Sealed-type mems and manufacturing method for sealed-type mems
JP2006349613A (en) * 2005-06-20 2006-12-28 Micro Precision Kk Capacitive detection type acceleration sensor
JP2007303922A (en) * 2006-05-10 2007-11-22 Alps Electric Co Ltd Capacitive pressure sensor
JP2008008672A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Acceleration sensor
JP2008128879A (en) * 2006-11-22 2008-06-05 Seiko Instruments Inc Angular velocity sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286738A (en) * 2001-03-23 2002-10-03 Omron Corp Speed sensor
JP2005017216A (en) * 2003-06-27 2005-01-20 Act Lsi:Kk Three-axes acceleration sensor
JP2006046995A (en) * 2004-08-02 2006-02-16 Seiko Instruments Inc Sealed-type mems and manufacturing method for sealed-type mems
JP2006349613A (en) * 2005-06-20 2006-12-28 Micro Precision Kk Capacitive detection type acceleration sensor
JP2007303922A (en) * 2006-05-10 2007-11-22 Alps Electric Co Ltd Capacitive pressure sensor
JP2008008672A (en) * 2006-06-27 2008-01-17 Matsushita Electric Works Ltd Acceleration sensor
JP2008128879A (en) * 2006-11-22 2008-06-05 Seiko Instruments Inc Angular velocity sensor

Also Published As

Publication number Publication date
JP5381235B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5432440B2 (en) Oscillator device
US8115367B2 (en) Piezoelectric actuator provided with a displacement meter, piezoelectric element, and positioning device
JP5105968B2 (en) Angular velocity detector
WO2016038794A1 (en) Electrostatic device
JP2010036280A (en) Manufacturing method of mems structure
US9804233B2 (en) MEMS magnetic field sensor
JP4974359B2 (en) Mechanical quantity sensor
JP5381235B2 (en) MEMS structure, MEMS device and manufacturing method thereof
JP2001349732A (en) Micro-machine device, angular acceleration sensor, and acceleration sensor
JP6455751B2 (en) MEMS piezoelectric sensor
JP2011196966A (en) Inertia sensor
US20230243653A1 (en) Vibrating-type gyroscope element and angular velocity sensor comprising same
JP5816707B2 (en) Angular velocity detector
JP2008224229A (en) Inertial sensor, its manufacturing method, and electric and electronic device
JP4466283B2 (en) Gyro sensor
JP2013108929A (en) Vibration type gyro with high accuracy
JP2010190758A (en) Displacement detecting element, micro electromechanical apparatus and electronic device
JP5481545B2 (en) Angular velocity detector
JP2001349731A (en) Micro-machine device, angular acceleration sensor, and acceleration sensor
JP2020118603A (en) Angular velocity sensor
JP2010236957A (en) Mems structure and method of manufacturing the same
JP4611005B2 (en) Sensor element
JP2005292125A (en) Displacement sensor and its manufacturing method
JP2007069320A (en) Function element and its manufacturing method
JP6365521B2 (en) MEMS equipment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees