JP2010236870A - Hole shape measuring method - Google Patents

Hole shape measuring method Download PDF

Info

Publication number
JP2010236870A
JP2010236870A JP2009081895A JP2009081895A JP2010236870A JP 2010236870 A JP2010236870 A JP 2010236870A JP 2009081895 A JP2009081895 A JP 2009081895A JP 2009081895 A JP2009081895 A JP 2009081895A JP 2010236870 A JP2010236870 A JP 2010236870A
Authority
JP
Japan
Prior art keywords
hole
distances
light
measurement
optical probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009081895A
Other languages
Japanese (ja)
Other versions
JP5252641B2 (en
Inventor
Kenji Nishibori
賢司 西堀
Masamitsu Hattori
政光 服部
Daiki Maesako
大器 前迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryoei Engineering Co Ltd
Daido Gakuen School
Original Assignee
Ryoei Engineering Co Ltd
Daido Gakuen School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryoei Engineering Co Ltd, Daido Gakuen School filed Critical Ryoei Engineering Co Ltd
Priority to JP2009081895A priority Critical patent/JP5252641B2/en
Publication of JP2010236870A publication Critical patent/JP2010236870A/en
Application granted granted Critical
Publication of JP5252641B2 publication Critical patent/JP5252641B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hole shape measuring method which accurately measures a hole shape even for a tapered hole and even when the axial line of a hole is inclined. <P>SOLUTION: Simultaneous or successive measuring beams are applied to three or more points on a hole peripheral surface as a first measurement position. The reflected light is guided to an imaging lens through a light guide member and is guided to a light receiving element. On the basis of the light receiving position of the light receiving element, the distances a, b, c, ... from the axial line of an optical probe to the hole inner peripheral surface are determined. The optical probe is moved to a second measurement position in the probe axial direction, and the distances a1, b1, c1, ... from the axial line of the optical probe to the hole inner peripheral surface are determined in the same manner as described above. For the obtained distances, when the ratios of a to a1, b to b1, c to c1, ... are different from each other, it is determined that the axial line of the optical probe and the axial line of the hole do not match, and the inclination angles between a and a1, b and b1, c and c1, ... are determined. The deviation of the measurement positions is corrected from the inclination angles, and the hole inner diameters of the first and second measurement positions from the center of the first and second measurement positions are determined, thereby obtaining the hole shape. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はアルミダイカスト成形品のように抜き勾配が形成される孔形状をも精度よく測定することができる孔形状測定方法に関するものである。   The present invention relates to a hole shape measuring method capable of accurately measuring a hole shape in which a draft angle is formed as in an aluminum die cast product.

従来、孔形状の測定として、レーザ光を孔内面に照射し、孔内面からの反射光を光位置検出素子により受光し、受光した位置に基づいて孔内面と装置の基準線との間の寸法を求めるものがある(例えば、特許文献1参照)。また、プローブより被測定物の内壁面に基本光を照射し、内壁面で反射した散乱光を受光素子により受光し、受光位置に基づいて穴の内径を算出するものがある(例えば、特許文献2参照)。   Conventionally, as a measurement of the hole shape, a laser beam is irradiated on the inner surface of the hole, the reflected light from the inner surface of the hole is received by the optical position detection element, and the dimension between the inner surface of the hole and the reference line of the apparatus based on the received position. (For example, refer to Patent Document 1). Also, there is a type in which basic light is irradiated from the probe to the inner wall surface of the object to be measured, scattered light reflected by the inner wall surface is received by a light receiving element, and the inner diameter of the hole is calculated based on the light receiving position (for example, Patent Documents) 2).

しかし、特許文献1、2による孔形状の測定では孔にテーパが形成されていたり、孔の軸線と装置の軸線とがずれていたりした場合、孔形状を測定できないという問題があった。   However, in the measurement of the hole shape according to Patent Documents 1 and 2, there is a problem that the hole shape cannot be measured when the hole is tapered or the axis of the hole is deviated from the axis of the device.

特開平7−260439号公報JP 7-260439 A 特開2008−157635号公報JP 2008-157635 A

本発明は孔がテーパ孔であっても、孔の軸線がずれていても、正確に孔形状を測定することができる孔形状測定方法を提供することを目的とするものである。   An object of the present invention is to provide a hole shape measuring method capable of accurately measuring a hole shape even if the hole is a tapered hole or the axis of the hole is deviated.

本発明は、成形品に形成される孔内に孔軸と軸線と一致させて光学式プローブを孔内に挿入して孔内周面に測定光を照射して孔形状を測定する孔形状測定方法において、第1の測定位置となる孔円周面の3点以上の箇所に同時または逐次測定光を照射し、孔内面からの反射光を導光部材により結像レンズに導き受光素子に導光させ、該受光素子の受光位置に基づき光学式プローブの軸線から孔内周面までの距離a、b、c・・を求めたうえ、光学式プローブをプローブ軸方向の第2の測定位置に移動させて前記と同様に光学式プローブの軸線から孔内周面までの距離a1、b1、c1・・ を求め、得られた距離aとa1、距離bとb1、距離cとc1・・との各比が異なる場合、光学式プローブの軸線と孔の軸線が一致していない、あるいは平行になっていないと判定し、距離aとa1、距離bとb1、と距離cとc1・・間の各傾き角度を求め、各傾き角度から測定位置のずれを補正したうえ第1と第2の測定位置の中心座標から第1と第2の測定位置の孔内径を求めて孔形状を得ることを特徴とするものである。   The present invention relates to a hole shape measurement in which an optical probe is inserted into a hole in a hole formed in a molded product so as to coincide with the axis, and the hole inner surface is irradiated with measurement light to measure the hole shape. In this method, three or more points on the circumferential surface of the hole serving as the first measurement position are irradiated with measurement light simultaneously or sequentially, and the reflected light from the hole inner surface is guided to the imaging lens by the light guide member and guided to the light receiving element. .., And obtaining distances a, b, c... From the axis of the optical probe to the inner peripheral surface of the hole based on the light receiving position of the light receiving element, and then moving the optical probe to the second measuring position in the probe axial direction. The distances a1, b1, c1,... From the axis of the optical probe to the inner peripheral surface of the optical probe are obtained in the same manner as described above, and the obtained distances a and a1, distances b and b1, and distances c and c1,. If the ratios are different, the axis of the optical probe and the axis of the hole do not match or are parallel The first and second measurement positions are calculated after correcting the deviation of the measurement position from each inclination angle, and determining the inclination angles between the distances a and a1, the distances b and b1, and the distances c and c1,. The hole shape is obtained by obtaining the hole inner diameters at the first and second measurement positions from the center coordinates.

なお、ミラーまたはプリズムよりなる導光部材により反射光を結像レンズに導いたり、ボールレンズにより測定光を孔内周面に照射したり、反射光を1つの結像レンズで結像させたりしてもよい。   The reflected light is guided to the imaging lens by a light guide member composed of a mirror or a prism, the measurement light is irradiated to the inner peripheral surface of the hole by a ball lens, or the reflected light is imaged by one imaging lens. May be.

本発明は、第1の測定位置となる孔円周面の3点以上の箇所に同時または逐次測定光を照射し、孔内面からの反射光を導光部材により結像レンズに導き受光素子に導光させ、該受光素子の受光位置に基づき光学式プローブの軸線から孔内周面までの距離a、b、c・・を求めたうえ、光学式プローブをプローブ軸方向の第2の測定位置に移動させて前記と同様に光学式プローブの軸線から孔内周面までの距離a1、b1、c1・・ を求め、得られた距離aとa1、距離bとb1、距離cとc1・・との各比が異なる場合、光学式プローブの軸線と孔の軸線が一致していない、あるいは平行になっていないと判定し、距離aとa1、距離bとb1、と距離cとc1・・間の各傾き角度を求め、各傾き角度から測定位置のずれを補正したうえ第1と第2の測定位置の中心座標から第1と第2の測定位置の孔内径を求めて孔形状を得ることにより、測定する孔がテーパ孔であったり、孔の軸線が傾いていたりしても精確に孔形状を測定することができる。   In the present invention, three or more points on the circumferential surface of the hole serving as the first measurement position are irradiated with measurement light simultaneously or sequentially, and the reflected light from the inner surface of the hole is guided to the imaging lens by the light guide member and used as the light receiving element. The light probe is guided, and distances a, b, c,... From the axis of the optical probe to the inner peripheral surface of the hole are obtained based on the light receiving position of the light receiving element, and the optical probe is moved to the second measuring position in the probe axial direction. In the same manner as described above, distances a1, b1, c1,... From the axis of the optical probe to the inner peripheral surface of the hole are obtained, and the obtained distances a and a1, distances b and b1, and distances c and c1. Are different from each other, it is determined that the axis of the optical probe and the axis of the hole do not match or are not parallel, and the distances a and a1, the distances b and b1, and the distances c and c1. The first and second measurement positions are obtained after each inclination angle is obtained and the deviation of the measurement position is corrected from each inclination angle. By obtaining the hole inner diameter at the first and second measurement positions from the center coordinates to obtain the hole shape, the hole shape can be accurately measured even if the hole to be measured is a tapered hole or the hole axis is inclined. can do.

また、請求項2のように、ミラーまたはプリズムよりなる導光部材により反射光を結像レンズに導くことにより、簡単な構造になり、組み立て構造の精度を高めることができる。   Further, as described in claim 2, by guiding the reflected light to the imaging lens by the light guide member made of a mirror or a prism, the structure becomes simple and the accuracy of the assembly structure can be improved.

さらに、請求項3のように、ボールレンズにより測定光を孔内周面に照射することにより、孔内周面との距離により反射光像径が大きくなるという影響を少なくすることができる。   Further, as described in claim 3, by irradiating the inner peripheral surface with the measurement light by the ball lens, it is possible to reduce the influence that the reflected light image diameter increases due to the distance from the inner peripheral surface of the hole.

請求項4のように、反射光を1つの結像レンズで結像させることにより、構造が簡単で組み付けが容易になり精度も出しやすく、生産性も向上させることができるうえに製造コストを低減できる。   As described in claim 4, by forming an image of the reflected light with one imaging lens, the structure is simple, the assembly is easy, the accuracy is easily improved, the productivity is improved, and the manufacturing cost is reduced. it can.

本発明の第1の実施例を示す断面図である。It is sectional drawing which shows the 1st Example of this invention. 孔の軸線とプローブの軸線が一致した状態を示す説明図である。It is explanatory drawing which shows the state which the axis line of the hole and the axis line of the probe corresponded. 孔の軸線とプローブの軸線が平行であるが一致しない状態を示す説明図である。It is explanatory drawing which shows the state where the axis line of a hole and the axis line of a probe are parallel, but do not correspond. テーパ孔の軸線とプローブの軸線が一致した状態を示す説明図である。It is explanatory drawing which shows the state in which the axis line of the taper hole and the axis line of the probe corresponded. テーパ孔の軸線とプローブの軸線が平行であるが一致しない状態を示す説明図である。It is explanatory drawing which shows the state which the axis line of a taper hole and the axis line of a probe are parallel, but do not correspond. 孔の軸線がプローブの軸線に対して傾いた状態を示す説明図である。It is explanatory drawing which shows the state which the axis line of the hole inclined with respect to the axis line of a probe. テーパ孔の軸線がプローブの軸線に対して傾いた状態を示す説明図である。It is explanatory drawing which shows the state which the axis line of the taper hole inclined with respect to the axis line of a probe. テーパ孔の軸線がプローブの軸線に対して傾いた際の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method when the axis line of a taper hole inclines with respect to the axis line of a probe. 測定位置のずれの補正方法を示す説明図である。It is explanatory drawing which shows the correction method of the shift | offset | difference of a measurement position. テーパ角度を求める方法を示す説明図である。It is explanatory drawing which shows the method of calculating | requiring a taper angle. 第1の測定位置と第2の測定位置における3点間が等しい距離に測定された場合を示す説明図である。It is explanatory drawing which shows the case where three points in a 1st measurement position and a 2nd measurement position are measured by the equal distance. 第1の測定位置と第2の測定位置における3点間が異なる距離に測定された場合を示す説明図である。It is explanatory drawing which shows the case where 3 points | pieces in a 1st measurement position and a 2nd measurement position are measured by the different distance. 本発明の第2の実施例を示す断面図である。It is sectional drawing which shows the 2nd Example of this invention. 本発明の第3の実施例を示す断面図である。It is sectional drawing which shows the 3rd Example of this invention.

次に、本発明の第1の実施例を図1に基づいて詳細に説明する。
図中1は本発明の光学式プローブであり、該光学式プローブ1は成形品の孔内周面外に配置されるヘッド2と、孔内に遊挿される鏡筒部3とからなる。
Next, a first embodiment of the present invention will be described in detail with reference to FIG.
In the figure, reference numeral 1 denotes an optical probe according to the present invention. The optical probe 1 includes a head 2 disposed outside the inner peripheral surface of a molded product and a lens barrel portion 3 that is loosely inserted into the hole.

前記ヘッド2には位置検出センサ、CCD素子等の受光素子20、反射光を拡大あるいは縮小、あるいは等倍して受光素子20に入射させるリレーレンズ21、レーザーダイオード、発光ダイオード等の光源22、光源光を光ファイバー24に向けて集光させるコンデンサレンズ23、孔内に測定光を導く3本の光ファイバー24等が設けられている。位置検出センサの場合、測定光は逐次照射されて受光するものとし、CCD素子の場合、3色別の測定光を照射して同時に受光することができる。なお、リレーレンズ21の焦点距離の比を変えることにより、投影倍率の変更が可能となり、受光素子20のサイズに合わせることができる。   The head 2 includes a position detection sensor, a light receiving element 20 such as a CCD element, a relay lens 21 for enlarging, reducing, or equalizing reflected light to enter the light receiving element 20, a light source 22 such as a laser diode or a light emitting diode, a light source A condenser lens 23 that collects the light toward the optical fiber 24, three optical fibers 24 that guide the measurement light into the hole, and the like are provided. In the case of a position detection sensor, the measurement light is sequentially irradiated and received, and in the case of a CCD element, measurement light for three colors can be irradiated and received simultaneously. Note that by changing the focal length ratio of the relay lens 21, the projection magnification can be changed and can be adjusted to the size of the light receiving element 20.

前記鏡筒部3の先方部周縁には測定光を孔内周面に向けて反射させるミラー30が120°間隔で3箇所配置されている。前記各光ファイバー24の先端はミラー30の斜面に臨ませてある。なお、ミラー30を配置する代わりに光ファイバー24の先端面を斜めにカットして測定光がカット面で反射して孔内周面に照射されるようにしてもよく、要は、光ファイバー24からの測定光が斜めから孔内周面に照射されればよい。   Three mirrors 30 for reflecting the measuring light toward the inner peripheral surface of the hole are arranged at 120 ° intervals on the periphery of the tip of the lens barrel 3. The tip of each optical fiber 24 faces the slope of the mirror 30. Instead of arranging the mirror 30, the front end surface of the optical fiber 24 may be cut obliquely so that the measurement light is reflected by the cut surface and applied to the inner peripheral surface of the hole. The measurement light may be applied to the hole inner peripheral surface from an oblique direction.

また、前記鏡筒部3の先端には結像レンズ31に臨ませた導光部材32としてのミラー32aが取り付けられており、孔内周面からの反射光を結像レンズ31に導光させている。また、ミラー32a後方には光線絞り33、結像レンズ31、フィールドレンズ34、ロッドレンズ35またはイメージコンジットが光学軸上に順次配列されている。なお、ミラー32aは具体的にはコーンミラーや角錐ミラー等を用いる。   Further, a mirror 32a as a light guide member 32 facing the imaging lens 31 is attached to the tip of the lens barrel 3, and the reflected light from the inner peripheral surface of the hole is guided to the imaging lens 31. ing. Further, a beam stop 33, an imaging lens 31, a field lens 34, a rod lens 35, or an image conduit are sequentially arranged on the optical axis behind the mirror 32a. The mirror 32a specifically uses a cone mirror, a pyramid mirror, or the like.

このように構成されたものは、成形品に形成される孔内に孔の軸線とプローブの軸線を一致させて光学式プローブ1を孔内に挿入し、光ファイバー24から照射される測定光はミラー30を介して孔内周面に斜めから孔内壁面に照射されることとなる。   In such a structure, the optical probe 1 is inserted into the hole with the axis of the hole coincided with the axis of the probe in the hole formed in the molded product, and the measurement light emitted from the optical fiber 24 is mirrored. The inner wall surface of the hole is irradiated obliquely to the inner peripheral surface of the hole through 30.

測定光の照射は少なくとも3点120°間隔で同時または逐次に行われる。同時に照射する場合は3色の異なる色をCCD素子に受光させることにより、3点を同時に検出できる。また、位置検出センサのように同時に受光させることができない場合は、逐次、測定光を点滅させたり、シャッタにより測定光をオンオフさせたりして3点ごとに行なう。   Irradiation of measurement light is performed simultaneously or sequentially at at least three points at intervals of 120 °. In the case of simultaneous irradiation, three points can be detected simultaneously by causing the CCD element to receive three different colors. If the light cannot be received at the same time as in the position detection sensor, the measurement light is blinked sequentially, or the measurement light is turned on and off by the shutter, and the measurement is performed every three points.

孔内周面に照射された測定光は反射されてミラー32aに入射されて反射し、光線絞り33を介して結像レンズ31に導光される。そして、フィールドレンズ34、ロッドレンズ35あるいは、イメージコンジット、リレーレンズ21を介して受光素子20に受光される。   The measurement light applied to the inner peripheral surface of the hole is reflected, is incident on the mirror 32 a, is reflected, and is guided to the imaging lens 31 through the beam stop 33. Then, the light is received by the light receiving element 20 through the field lens 34, the rod lens 35, the image conduit, and the relay lens 21.

受光素子20に受光された反射光は、例えば、図11に示されるように、第1の測定位置で距離a、b 、cが測定される。   For example, as shown in FIG. 11, the reflected light received by the light receiving element 20 is measured at distances a, b, and c at the first measurement position.

次いで、光学式プローブ1を一定距離移動させて第2の測定位置において、前記と同様の測定を行い、図11に示されるように、距離a1 、b1、 c1を得る。このとき距離a、b 、cと距離a1 、b1、 c1とが同じ比なら、図2、3、4に示されるように、光学式プローブ1の軸線と孔の軸線とが一致、あるいはプローブの軸線と孔の軸線が平行になっているので、第1の測定位置の距離a、b 、cに基づいて孔の中心座標を求めたうえ、孔の内径を求める。なお、光学式プローブ1の軸線と孔の軸線とが一致、あるいは、光学式プローブ1の軸線と孔の軸線とが平行になっていることが分かっている場合には、1回の測定で孔の内径を求めることができる。なお、図2、3、4においては、測定位置を2点表して説明を分かりやすくしている。   Next, the optical probe 1 is moved by a certain distance, and the same measurement as described above is performed at the second measurement position, and distances a1, b1, and c1 are obtained as shown in FIG. At this time, if the distances a, b, c and the distances a1, b1, c1 are the same ratio, the axis of the optical probe 1 coincides with the axis of the hole, as shown in FIGS. Since the axis and the axis of the hole are parallel, the center coordinates of the hole are obtained based on the distances a, b and c of the first measurement position, and the inner diameter of the hole is obtained. When it is known that the axis of the optical probe 1 is coincident with the axis of the hole, or the axis of the optical probe 1 and the axis of the hole are parallel, the hole is measured by one measurement. Can be obtained. 2, 3, and 4, two measurement positions are represented for easy understanding.

さらに、第2の測定位置の距離a1 、b1、 c1に基づいて孔の中心座標を求めたうえ、孔の内径を求め、図10に示されるように、第1、第2の内径に基づいて孔のテーパ角度θ次式により求めるθ=tan-1{(D2-D1 )/2p}を求め、平行孔、テーパ孔の孔形状孔を測定する。 Further, after obtaining the center coordinates of the hole based on the distances a1, b1, and c1 of the second measurement positions, the inner diameter of the hole is obtained, and as shown in FIG. 10, based on the first and second inner diameters. seeking determined by the taper angle theta 2 quadratic holes θ 2 = tan -1 {(D 2 -D 1) / 2p}, measured parallel holes, tapered holes of the hole-shaped hole.

また、図5、6、7に示されるように、光学式プローブ1の軸線とテーパ孔の軸線とが平行だが一致しない場合や、テーパ孔や平行孔の軸線とプローブの軸線とが傾いている場合、第1の測定位置の距離a、b 、cと、光学式プローブ1をプローブ軸方向に一定距離移動させた第2の測定位置の距離a1 、b1、 c1との比は異なるので、図8に示されるように、3点毎の傾き角度θを次式により求めるθ=tan-1{(L2-L1)/ (p−z+z) }。なお、図5、6、7においても、測定位置を2点表して説明を分かりやすくしている。 As shown in FIGS. 5, 6, and 7, the axis of the optical probe 1 and the axis of the tapered hole are parallel but not coincident, or the axis of the tapered or parallel hole and the axis of the probe are inclined. In this case, the ratios of the distances a, b, c of the first measurement positions and the distances a1, b1, c1 of the second measurement positions obtained by moving the optical probe 1 by a certain distance in the probe axis direction are different. As shown in FIG. 8, θ 1 = tan −1 {(L 2 −L 1 ) / (p−z 1 + z 2 )} is obtained from the following equation for the inclination angle θ 1 for every three points. 5, 6, and 7, two measurement positions are represented for easy understanding.

次いで、図9に示されるように、測定位置のずれを式L1 = L1 - z1tanθおよび式L = L- ztanθから求める。このようにしてずれを補正したうえ、孔の中心座標を求め、孔の内径を求める。次いで、前記と同様、孔のテーパ角度θ次式により求めるθ=tan-1{(D2-D1 )/2p} を求め、平行孔、テーパ孔の孔形状孔を測定する。なお、図9において、説明を分かりやすくするために、孔を大きく傾斜させたものとしている。 Then, as shown in FIG. 9, the displacement of the measuring position wherein L 1 obtained from z 2 tanθ 1 - '= L 1 - z 1 tanθ 1 and wherein L 2' = L 2. In this way, the deviation is corrected, the center coordinates of the hole are obtained, and the inner diameter of the hole is obtained. Then, similarly to the above, seek determined by the taper angle theta 2 quadratic holes θ 2 = tan -1 {(D 2 -D 1) / 2p}, measured parallel holes, tapered holes of the hole-shaped hole. In FIG. 9, the holes are greatly inclined for easy understanding.

また、図13は本発明の第2の実施例を示すもので、第1の実施例と相違する点は、プリズム36を介して測定光を孔内壁面に照射している点と、ミラー32aの代わりにプリズム32bを導光部材32として用い反射光を結像レンズ31に導光させている点と、測定光をボールレンズ38を介して孔内壁面に照射している点であり、ボールレンズ38を用いることにより測定光の光強度を高めて検出精度を高めるとともに、プリズム32bを用いることにより組み付け精度を向上させている以外は、第1の実施例と構成及び作用効果は同じであるので説明を省略する。なお、プリズム32bは具体的にはコーンプリズムや角錐プリズム等を用いる。   FIG. 13 shows a second embodiment of the present invention. The difference from the first embodiment is that the measurement light is irradiated onto the inner wall surface of the hole through the prism 36 and the mirror 32a. Instead of the prism 32b as the light guide member 32, the reflected light is guided to the imaging lens 31, and the measurement light is irradiated to the inner wall surface of the hole through the ball lens 38. The configuration and operational effects are the same as those of the first embodiment, except that the lens 38 is used to increase the light intensity of the measurement light to improve the detection accuracy, and the prism 32b is used to improve the assembly accuracy. Therefore, explanation is omitted. The prism 32b specifically uses a cone prism, a pyramid prism, or the like.

図14は本発明の第3の実施例を示すもので、半球レンズ39を介して測定光を孔内壁面に照射している点と、2つの半球レンズ39を合わせたボールレンズを結像レンズ31として結像させる点が相違し、2つの半球レンズ39を重ねたボールレンズを用いて照射と結像を行なうことによりレンズ数を低減させる以外は、第1の実施例と構成及び作用効果は同じであるので説明を省略する。   FIG. 14 shows a third embodiment of the present invention, in which a ball lens combining two hemispherical lenses 39 and a point where measurement light is irradiated on the inner wall surface of the hole through the hemispherical lens 39 is an imaging lens. The first embodiment is the same as the first embodiment except that the number of lenses is reduced by performing irradiation and imaging using a ball lens in which two hemispherical lenses 39 are overlapped. Since it is the same, explanation is omitted.

1 光学式プローブ
2 ヘッド
20 受光素子
21 リレーレンズ
22 光源
23 コンデンサレンズ
24 光ファイバー
3 鏡筒部
30 ミラー
31 結像レンズ
32 導光部材
32a ミラー
32b プリズム
33 光線絞り
34 フィールドレンズ
35 ロッドレンズ(イメージコンジット)
36 プリズム
38 ボールレンズ
39 半球レンズ






1 Optical probe 2 Head
20 Photo detector
21 Relay lens
22 Light source
23 condenser lens
24 Optical fiber 3 Tube section
30 mirror
31 Imaging lens
32 Light guide member
32a mirror
32b prism
33 Light aperture
34 Field lens
35 Rod lens (image conduit)
36 prism
38 ball lens
39 Hemispherical lens






Claims (4)

成形品に形成される孔内に孔軸と軸線と一致させて光学式プローブを孔内に挿入して孔内周面に測定光を照射して孔形状を測定する孔形状測定方法において、第1の測定位置となる孔円周面の3点以上の箇所に同時または逐次測定光を照射し、孔内面からの反射光を導光部材により結像レンズに導き受光素子に導光させ、該受光素子の受光位置に基づき光学式プローブの軸線から孔内周面までの距離a、b、c・・を求めたうえ、光学式プローブをプローブ軸方向の第2の測定位置に移動させて前記と同様に光学式プローブの軸線から孔内周面までの距離a1、b1、c1・・ を求め、得られた距離aとa1、距離bとb1、距離cとc1・・との各比が異なる場合、光学式プローブの軸線と孔の軸線が一致していない、あるいは平行になっていないと判定し、距離aとa1、距離bとb1、と距離cとc1・・間の各傾き角度を求め、各傾き角度から測定位置のずれを補正したうえ第1と第2の測定位置の中心座標から第1と第2の測定位置の孔内径を求めて孔形状を得ることを特徴とする孔形状測定方法。   In a hole shape measuring method for measuring a hole shape by inserting an optical probe into a hole formed in a hole formed in a molded article and irradiating measurement light on the inner peripheral surface of the hole. 3 or more points on the circumferential surface of the hole serving as the measurement position of 1 are irradiated simultaneously or sequentially, and the reflected light from the inner surface of the hole is guided to the imaging lens by the light guide member and guided to the light receiving element, Based on the light receiving position of the light receiving element, the distances a, b, c... From the axis of the optical probe to the inner peripheral surface of the hole are obtained, and the optical probe is moved to the second measurement position in the probe axial direction. Similarly, the distances a1, b1, c1,... From the axis of the optical probe to the inner peripheral surface of the hole are obtained, and the ratios of the obtained distances a and a1, distances b and b1, and distances c and c1. If they are different, the axis of the optical probe and the axis of the hole do not match or are not parallel Then, the respective inclination angles between the distances a and a1, the distances b and b1, and the distances c and c1,... Are obtained, and the center of the first and second measurement positions is corrected by correcting the deviation of the measurement position from each inclination angle. A hole shape measuring method characterized by obtaining hole shapes by obtaining hole inner diameters at first and second measurement positions from coordinates. ミラーまたはプリズムよりなる導光部材により反射光を結像レンズに導くことを特徴とする請求項1に記載の孔形状測定方法。   The hole shape measuring method according to claim 1, wherein the reflected light is guided to the imaging lens by a light guide member made of a mirror or a prism. ボールレンズにより測定光を孔内周面に照射することを特徴とする請求項1または2に記載の孔形状測定方法。   3. The hole shape measuring method according to claim 1, wherein the measurement light is irradiated to the inner peripheral surface of the hole by a ball lens. 反射光を1つの結像レンズで結像させることを特徴とする請求項1から3のいずれかに記載の孔形状測定方法。
4. The hole shape measuring method according to claim 1, wherein the reflected light is imaged by one imaging lens.
JP2009081895A 2009-03-30 2009-03-30 Hole shape measurement method Expired - Fee Related JP5252641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081895A JP5252641B2 (en) 2009-03-30 2009-03-30 Hole shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081895A JP5252641B2 (en) 2009-03-30 2009-03-30 Hole shape measurement method

Publications (2)

Publication Number Publication Date
JP2010236870A true JP2010236870A (en) 2010-10-21
JP5252641B2 JP5252641B2 (en) 2013-07-31

Family

ID=43091337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081895A Expired - Fee Related JP5252641B2 (en) 2009-03-30 2009-03-30 Hole shape measurement method

Country Status (1)

Country Link
JP (1) JP5252641B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003124A (en) * 2011-06-22 2013-01-07 Mitsutoyo Corp Tracking type laser interferometer
JP2014196993A (en) * 2013-03-08 2014-10-16 アイシン精機株式会社 Sensor unit and inner surface shape inspection apparatus
US10066931B2 (en) 2014-11-25 2018-09-04 Adamant Namiki Precision Jewel Co., Ltd. Optical inner-surface measurement device
WO2020008613A1 (en) * 2018-07-06 2020-01-09 オリンパス株式会社 Objective optical system
US20210268601A1 (en) * 2017-07-18 2021-09-02 ConsultEngineerIP AG Optical head
CN113639968A (en) * 2021-08-09 2021-11-12 南京森林警察学院 Lens parameter measuring method based on focal depth continuation astigmatism probe
JP7387938B1 (en) * 2023-06-12 2023-11-28 鹿島建設株式会社 Tunnel inner shape measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134205A (en) * 1990-09-27 1992-05-08 Mitsubishi Motors Corp Non-contact type bore measuring tool
JP2004045374A (en) * 2002-05-17 2004-02-12 Jfe Engineering Kk Pipeline shape measuring apparatus and method
JP2008157635A (en) * 2006-12-20 2008-07-10 Daido Gakuen Optical measurement apparatus and optical measurement method
JP2009300325A (en) * 2008-06-16 2009-12-24 Toyota Motor Corp Device and method for measuring cross-sectional shape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134205A (en) * 1990-09-27 1992-05-08 Mitsubishi Motors Corp Non-contact type bore measuring tool
JP2004045374A (en) * 2002-05-17 2004-02-12 Jfe Engineering Kk Pipeline shape measuring apparatus and method
JP2008157635A (en) * 2006-12-20 2008-07-10 Daido Gakuen Optical measurement apparatus and optical measurement method
JP2009300325A (en) * 2008-06-16 2009-12-24 Toyota Motor Corp Device and method for measuring cross-sectional shape

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003124A (en) * 2011-06-22 2013-01-07 Mitsutoyo Corp Tracking type laser interferometer
JP2014196993A (en) * 2013-03-08 2014-10-16 アイシン精機株式会社 Sensor unit and inner surface shape inspection apparatus
US10066931B2 (en) 2014-11-25 2018-09-04 Adamant Namiki Precision Jewel Co., Ltd. Optical inner-surface measurement device
US20210268601A1 (en) * 2017-07-18 2021-09-02 ConsultEngineerIP AG Optical head
US11975404B2 (en) * 2017-07-18 2024-05-07 ConsultEngineerIP AG Optical head
WO2020008613A1 (en) * 2018-07-06 2020-01-09 オリンパス株式会社 Objective optical system
JPWO2020008613A1 (en) * 2018-07-06 2021-06-03 オリンパス株式会社 Objective optics and endoscope
JP7079327B2 (en) 2018-07-06 2022-06-01 オリンパス株式会社 Objective optical system and endoscope
US11931004B2 (en) 2018-07-06 2024-03-19 Olympus Corporation Objective optical system
CN112384839A (en) * 2018-07-06 2021-02-19 奥林巴斯株式会社 Objective optical system
CN113639968A (en) * 2021-08-09 2021-11-12 南京森林警察学院 Lens parameter measuring method based on focal depth continuation astigmatism probe
CN113639968B (en) * 2021-08-09 2023-11-14 南京森林警察学院 Lens parameter measurement method based on focal depth extended astigmatic probe
JP7387938B1 (en) * 2023-06-12 2023-11-28 鹿島建設株式会社 Tunnel inner shape measurement system

Also Published As

Publication number Publication date
JP5252641B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5252641B2 (en) Hole shape measurement method
US8049901B2 (en) Measuring device and measuring method
EP3001139B1 (en) System and method of measuring geometric characteristics of an object
JP5383509B2 (en) Light flux generation method, light deflection element, and optical measuring device
CN101210806B (en) measuring method of angle deviation along azimuth axis direction and pitching angle deviation of laser emission axis and mechanical base level normal based on secondary light source
JP2010518367A5 (en)
JP2012229978A (en) Device for photographing inner peripheral surface of hole
JP2016118541A (en) Bore imaging system
JP2013170919A (en) Hole inner circumferential surface imaging apparatus
CN106802232B (en) A kind of microcobjective numerical aperture measurement method and system based on total reflection
CN111366088A (en) Laser confocal height measurement system and height measurement method
JP2009288075A (en) Aberration measuring device and aberration measuring method
JP2008026049A (en) Flange focal distance measuring instrument
JP6743788B2 (en) Displacement sensor
JP2007093293A (en) Optical system for objective lens inclination adjustment
JP2010216922A (en) Optical displacement meter and optical displacement measurement method
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
JP2013148437A (en) Focus detection device, wavefront aberration measurement device and lens manufacturing method
JP2014173912A (en) Shape measuring device
KR101937187B1 (en) Apparatus for detecting error of surface
RU2245516C2 (en) Device for controlling parts apertures
JP2009198345A (en) Method and apparatus for measuring in-bore shape
JP4768422B2 (en) Inner diameter measuring device and inner wall observation device for through hole
JP2010181782A (en) Automatic focusing device
JP2008145268A (en) Focal plane inclination type cofocal surface profile measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees