JP2010235691A - Coated porous inorganic particle and molded article using the same - Google Patents

Coated porous inorganic particle and molded article using the same Download PDF

Info

Publication number
JP2010235691A
JP2010235691A JP2009082905A JP2009082905A JP2010235691A JP 2010235691 A JP2010235691 A JP 2010235691A JP 2009082905 A JP2009082905 A JP 2009082905A JP 2009082905 A JP2009082905 A JP 2009082905A JP 2010235691 A JP2010235691 A JP 2010235691A
Authority
JP
Japan
Prior art keywords
particles
coated
particle
calcium silicate
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009082905A
Other languages
Japanese (ja)
Other versions
JP5181395B2 (en
Inventor
Masato Tanaka
眞人 田中
Kafu Saito
夏風 齋藤
Tomohiro Inoue
智博 井上
Kenji Futomi
健志 太見
Masato Sakiyama
正人 崎山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Niigata University NUC
Original Assignee
A&A Material Corp
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp, Niigata University NUC filed Critical A&A Material Corp
Priority to JP2009082905A priority Critical patent/JP5181395B2/en
Publication of JP2010235691A publication Critical patent/JP2010235691A/en
Application granted granted Critical
Publication of JP5181395B2 publication Critical patent/JP5181395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded article exhibiting both excellent insulating property and strength. <P>SOLUTION: The particle is made by coating the surface of a porous aggregate of silicic acid calcium hydrate crystal with a thermosetting resin, and the molded article is obtained by using the same. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、断熱材等の原料として有用な被覆された多孔性無機粒子及びそれを用いた成形体に関する。   The present invention relates to coated porous inorganic particles useful as a raw material for a heat insulating material and the like, and a molded body using the same.

けい酸カルシウム成形体は、耐火性、断熱性及び強度に優れていることから広く建材として使用されている。けい酸カルシウム成形体の重要な特性は優れた断熱性にあり、建材だけでなく、工業用プラントにおける各装置の機器および配管類等においても広く使用されている。   Calcium silicate compacts are widely used as building materials because they are excellent in fire resistance, heat insulation and strength. An important characteristic of a calcium silicate molded body is excellent heat insulation, and it is widely used not only for building materials but also for equipment and piping of each device in an industrial plant.

断熱材用途において、従来はマトリックス中にかさ密度の低い多孔性無機粒子等を添加することで、材料の空隙率を上げて、比重を小さくすることで熱伝導率を下げることが一般的であった。しかし、断熱性を上げるために、空隙率を上げると、材料は脆くなり、強度が低下してしまうため、限界があった。   Conventionally, in thermal insulation applications, it has been common to increase the porosity of a material by adding porous inorganic particles having a low bulk density to the matrix, and to lower the thermal conductivity by reducing the specific gravity. It was. However, if the porosity is increased in order to increase the heat insulation, the material becomes brittle and the strength is lowered, so there is a limit.

断熱性を向上させるための技術として、低熱伝導率の気体で発泡させた有機系発泡ビーズをけい酸カルシウム水和物結晶体に含有させた高断熱性成形体が既に知られている(特許文献1)。しかし、この成形体は、けい酸カルシウム水和物結晶体と有機系発泡ビーズとの混合成形であるため、有機系発泡ビーズの不均一分散や脱落が発生し、部分的な性能低下及びけい酸カルシウム水和物結晶体の比率が高いために、成形体の強度的脆さにも問題がある。   As a technique for improving heat insulation, a highly heat-insulated molded body in which organic foam beads foamed with a gas having low thermal conductivity are contained in a calcium silicate hydrate crystal is already known (patent document). 1). However, since this molded body is a mixed molding of calcium silicate hydrate crystals and organic foam beads, non-uniform dispersion and dropping of the organic foam beads occur, resulting in partial performance degradation and silicic acid. Since the ratio of the calcium hydrate crystal is high, there is also a problem in the strength brittleness of the molded body.

一方、構成材料の低熱伝導率化手段としては、真空マイクロカプセル及びこれを用いた断熱材(特許文献2)がある。しかしこの断熱材は、カプセル強度に限界があり、単独での使用では強度的に問題があるため、補強用のガスシール性のある壁でカプセルを保護する必要がある。
また、多孔性無機粒子であるゾノトライトで樹脂を補強したゾノトライト強化ポリプロピレン組成物(特許文献3)も報告されている。この発明においてはゾノトライトの樹脂への混合により強度の増強効果は得られるが、組成物の大半が樹脂を占めているため、低熱伝導率は得られないという欠点がある。
On the other hand, as means for reducing the thermal conductivity of the constituent material, there are vacuum microcapsules and a heat insulating material using the same (Patent Document 2). However, since this heat insulating material has a limit in capsule strength and has a problem in strength when used alone, it is necessary to protect the capsule with a wall having a gas sealing property for reinforcement.
In addition, a zonotlite-reinforced polypropylene composition (Patent Document 3) in which a resin is reinforced with zonotlite, which is a porous inorganic particle, has been reported. In the present invention, the effect of enhancing the strength can be obtained by mixing the zonotlite with the resin. However, since most of the composition occupies the resin, there is a drawback that low thermal conductivity cannot be obtained.

特開平8−109079号公報JP-A-8-109079 特開2002−128906号公報JP 2002-128906 A 特開平10−36598号公報JP 10-36598 A

本発明の課題は、優れた断熱性と強度とを両立させた成形体を提供することにある。   The subject of this invention is providing the molded object which made the outstanding heat insulation and intensity | strength compatible.

そこで本発明者は、けい酸カルシウム成形体の断熱性と強度を向上させるべく種々検討したところ、成形体の密度、けい酸カルシウム水和物結晶のサイズではなく、けい酸カルシウム水和物結晶の凝集体が有する多孔性に着目した。このけい酸カルシウム水和物結晶の凝集体をそのまま使用するのではなく、粒子の状態で、その表面を熱硬化性樹脂で被覆すれば、内部に独立孔を有したままの多孔性粒子が得られ、この多孔性粒子を成形すれば優れた断熱性と強度を両立した成形体が得られることを見出し、本発明を完成した。   Therefore, the present inventor has made various studies to improve the heat insulating property and strength of the calcium silicate molded body, but not the density of the molded body and the size of the calcium silicate hydrate crystals, but the calcium silicate hydrate crystals. Attention was paid to the porosity of the aggregate. Rather than using the aggregate of calcium silicate hydrate crystals as it is, if the surface is coated with a thermosetting resin in the form of particles, porous particles with independent pores inside can be obtained. As a result, it has been found that if the porous particles are molded, a molded body having both excellent heat insulating properties and strength can be obtained, and the present invention has been completed.

すなわち、本発明は、けい酸カルシウム水和物結晶の多孔性凝集体の表面が熱硬化性樹脂で被覆された粒子を提供するものである。
また、本発明は、上記被覆粒子を含む組成物を成形して得られる成形体を提供するものである。
That is, the present invention provides particles in which the surface of a porous aggregate of calcium silicate hydrate crystals is coated with a thermosetting resin.
Moreover, this invention provides the molded object obtained by shape | molding the composition containing the said coating particle.

本発明の被覆粒子は、内部に微細な独立孔を有し、かつ強度が高いため、これを成形して得られる成形体の熱伝導率は低下する。従って、本発明の被覆粒子を用いて成形された成形体は、優れた断熱性を有し、かつ強度も高いので、建材分野、プラント分野等における断熱材として有用である。   Since the coated particles of the present invention have fine independent pores inside and have high strength, the thermal conductivity of a molded product obtained by molding the coated particles decreases. Accordingly, a molded body formed using the coated particles of the present invention has excellent heat insulation properties and high strength, and is useful as a heat insulating material in the building material field, plant field, and the like.

ゾノトライト粒子の断面の走査電顕写真(上段)及びその断面の炭素分析結果を示す図である。It is a figure which shows the carbon analysis result of the scanning electron micrograph (upper stage) of the cross section of a zonotlite particle, and the cross section. 本発明の被覆ゾノトライト粒子の断面の走査電顕写真(上段)及びその断面の炭素分析結果を示す図である。It is a figure which shows the scanning electron micrograph (upper stage) of the cross section of the covering xonotlite particle | grains of this invention, and the carbon analysis result of the cross section. ゾノトライト粒子の細孔分布を示す図である。It is a figure which shows the pore distribution of a zonotlite particle. 本発明の被覆ゾノトライト粒子の細孔分布を示す図である。It is a figure which shows the pore distribution of the covering xonotlite particle | grains of this invention.

本発明の被覆粒子は、けい酸カルシウム水和物結晶の多孔性凝集体の表面が、熱硬化性樹脂で被覆された粒子である。けい酸カルシウム水和物結晶は、常法、例えばけい酸質原料と石灰質原料とを水中に分散させたものを水熱反応させることにより製造できる。代表的なけい酸質原料はけい石粉であり、代表的な石灰質原料は消石灰又は生石灰である。代表的なカルシウム水和物結晶は、ゾノトライトとトバモライトであるが、ゾノトライトを製造する場合には、前記原料のCaO成分とSiO2成分とのモル比(C/S)を0.9〜1.3とし、水/固形分比(質量比)10〜35で混合撹拌し、オートクレーブ中170〜210℃、0.8〜2.0MPaの飽和水蒸気圧下で、4〜20時間水熱反応させることにより製造することができる。また、トバモライトを製造する場合には、C/Sを0.3〜1.2とし、水/固形分比(質量比)8〜25で混合撹拌し、オートクレーブ中140〜210℃、0.4〜2.0MPaの飽和水蒸気圧下で、1〜12時間水熱反応させることにより製造することができる。 The coated particles of the present invention are particles in which the surface of a porous aggregate of calcium silicate hydrate crystals is coated with a thermosetting resin. Calcium silicate hydrate crystals can be produced by a conventional method, for example, by hydrothermal reaction of a silicate raw material and a calcareous raw material dispersed in water. A typical siliceous raw material is quartzite powder, and a typical calcareous raw material is slaked lime or quicklime. Typical calcium hydrate crystals are zonotlite and tobermorite. When producing zonotrite, the molar ratio (C / S) of the CaO component to the SiO 2 component of the raw material is 0.9 to 1. 3 and mixed and stirred at a water / solid content ratio (mass ratio) of 10 to 35, and subjected to a hydrothermal reaction in an autoclave at 170 to 210 ° C. and a saturated steam pressure of 0.8 to 2.0 MPa for 4 to 20 hours. Can be manufactured. Moreover, when manufacturing a tobermorite, C / S shall be 0.3-1.2, and it stirs and mixes by water / solid content ratio (mass ratio) 8-25, and is 140-210 degreeC, 0.4 in an autoclave. It can be produced by a hydrothermal reaction for 1 to 12 hours under a saturated water vapor pressure of ˜2.0 MPa.

けい酸カルシウム水和物結晶の種類は特に限定されないが、代表的なものとしては、前記ゾノトライトとトバモライトがあり、本発明においては、耐熱性の点からゾノトライトがより好ましい。針状のゾノトライト結晶の多孔性凝集体は、前記水熱反応中において、撹拌することにより得ることができる。   The type of calcium silicate hydrate crystals is not particularly limited, but representative examples include the above-mentioned zonotlite and tobermorite. In the present invention, zonotrite is more preferable from the viewpoint of heat resistance. The porous aggregate of acicular xonotlite crystals can be obtained by stirring during the hydrothermal reaction.

けい酸カルシウム水和物結晶の多孔性凝集体は、多孔性の点から、窒素吸着によるBET比表面積が40m2/g以上であるのが好ましい。また、けい酸カルシウム水和物結晶の多孔性凝集体は、得られる成形体の熱伝導性を低くし、良好な断熱性を確保する点から、0.01〜0.30μmの孔、特に0.01〜0.06μmの孔を有するのが好ましい。孔の有無及び孔径は窒素吸着による細孔分布および走査型電子顕微鏡により判定及び測定することができる。 From the viewpoint of porosity, the porous aggregate of calcium silicate hydrate crystals preferably has a BET specific surface area of 40 m 2 / g or more by nitrogen adsorption. In addition, the porous aggregate of calcium silicate hydrate crystals has a pore size of 0.01 to 0.30 μm, particularly 0, from the viewpoint of lowering the thermal conductivity of the obtained molded product and ensuring good heat insulation. It is preferable to have pores of 0.01 to 0.06 μm. The presence or absence of pores and the pore diameter can be determined and measured by a pore distribution by nitrogen adsorption and a scanning electron microscope.

また、けい酸カルシウム水和物結晶の凝集体の粒子径は、30〜130μm、特に30〜80μmであるのが好ましい。この粒子径はレーザー回折型粒度分布測定機により測定できる。   The particle diameter of the aggregate of calcium silicate hydrate crystals is preferably 30 to 130 μm, particularly preferably 30 to 80 μm. This particle size can be measured by a laser diffraction type particle size distribution measuring machine.

本発明における被覆粒子の被覆材料である熱硬化性樹脂としては、エポキシ樹脂、メラミン樹脂、フェノール樹脂、ウレタン樹脂、不飽和ポリエステル樹脂等が挙げられるが、これらの中でもエポキシ樹脂が力学的性質および耐熱性、耐湿・耐水性の点で好ましい。   Examples of the thermosetting resin that is a coating material for the coated particles in the present invention include epoxy resins, melamine resins, phenol resins, urethane resins, and unsaturated polyester resins. Among these, epoxy resins are mechanical properties and heat resistance. From the viewpoint of water resistance, moisture resistance and water resistance.

本発明被覆粒子中の熱硬化性樹脂の含有量(被覆量)は、被覆粒子中15〜50質量%、特に30〜50質量%が好ましい。熱硬化性樹脂の含有量が少ないと十分な粒子の補強効果が得られず、多すぎると固体伝熱の影響が大きくなり、熱伝導率の低減効果が十分でなくなる。   The content (coating amount) of the thermosetting resin in the coated particles of the present invention is preferably 15 to 50% by mass, particularly 30 to 50% by mass in the coated particles. If the content of the thermosetting resin is small, sufficient effect of reinforcing particles cannot be obtained. If the content is too large, the effect of solid heat transfer becomes large, and the effect of reducing thermal conductivity becomes insufficient.

熱硬化性樹脂の被覆手段は、特に限定されず、前記の多孔性凝集体粒子表面に均一に熱硬化性樹脂含有液を付着させた後、硬化させればよい。より具体的には、多孔性凝集体粒子表面に硬化剤を均一に付着させておき(分散液)、一方、熱硬化性樹脂の均一溶液を作成しておき、当該均一溶液中に多孔性凝集体粒子分散液を添加して、多孔性凝集体粒子表面上で硬化反応させることにより得られる。さらに詳細には、前記多孔性凝集体粒子を硬化剤を溶解した溶液に浸漬後、その溶液を粒子内部に担持した粒子又は溶媒のみを蒸発除去した粒子を作製する工程と、得られた多孔性凝集体粒子を、熱硬化性樹脂及び界面活性剤を溶解した油相中に添加・混合した後、攪拌しながら所定の温度に昇温し、所定の時間硬化反応させる工程と、前記硬化反応で得られた被覆粒子分散相である油相を溶媒で洗浄、置換し、乾燥により溶媒を除去することで被覆粒子の粉体を得る工程とにより得られる。   The means for coating the thermosetting resin is not particularly limited, and the thermosetting resin-containing liquid may be uniformly adhered to the surface of the porous aggregate particles and then cured. More specifically, the curing agent is uniformly attached to the surface of the porous aggregate particles (dispersion liquid), and on the other hand, a uniform solution of the thermosetting resin is prepared, and the porous aggregate is added to the uniform solution. It can be obtained by adding the aggregated particle dispersion and causing a curing reaction on the surface of the porous aggregate particles. In more detail, after the porous aggregate particles are immersed in a solution in which a curing agent is dissolved, particles that carry the solution inside the particles or particles in which only the solvent is removed by evaporation are prepared, and the obtained porosity After adding and mixing the aggregate particles in the oil phase in which the thermosetting resin and the surfactant are dissolved, the temperature is raised to a predetermined temperature while stirring, and a curing reaction is performed for a predetermined time. The obtained oil phase which is the coated particle dispersed phase is washed and replaced with a solvent, and the solvent is removed by drying to obtain a powder of coated particles.

得られた本発明の被覆粒子は、粒子内部に原料粒子とほぼ同じ孔を有するのが好ましい。すなわち、被覆粒子の内部には、0.01〜0.30μm、さらに0.01〜0.06μmの独立孔を有するのが好ましい。また窒素吸着によるBET比表面積が5〜30m2/g、特に5〜15m2/gであるのが好ましい。 The obtained coated particles of the present invention preferably have substantially the same pores as the raw material particles inside the particles. That is, it is preferable that the coated particles have independent pores of 0.01 to 0.30 μm, and further 0.01 to 0.06 μm. Moreover, it is preferable that the BET specific surface area by nitrogen adsorption is 5-30 m < 2 > / g, especially 5-15 m < 2 > / g.

本発明の被覆粒子は、その表面が熱硬化性樹脂で被覆されているため、強度が向上しており、3〜7mN、特に5〜7mNの圧縮破壊荷重を有するのが好ましい。ここで圧縮破壊荷重は微小圧縮試験機により測定できる。   Since the surface of the coated particle of the present invention is coated with a thermosetting resin, the strength is improved, and it is preferable to have a compressive fracture load of 3 to 7 mN, particularly 5 to 7 mN. Here, the compressive fracture load can be measured by a micro compression tester.

得られる本発明被覆粒子の総発熱量は、不燃性の点から、8.0MJ/m2以下であるのが好ましい。ここで発熱量は示差走査熱量計により測定できる。 The total calorific value of the obtained coated particles of the present invention is preferably 8.0 MJ / m 2 or less from the viewpoint of nonflammability. Here, the calorific value can be measured by a differential scanning calorimeter.

本発明の被覆粒子は、粒子内部に微細な独立孔を有するとともに熱硬化性樹脂で被覆されていることから強度が顕著に向上している。従って、この被覆粒子を含有する組成物を成形して得られる成形体は、優れた断熱性と優れた強度を有するため断熱性成形体として有用である。   Since the coated particles of the present invention have fine independent pores inside the particles and are coated with a thermosetting resin, the strength is remarkably improved. Accordingly, a molded product obtained by molding the composition containing the coated particles is useful as a heat insulating molded product because it has excellent heat insulating properties and excellent strength.

本発明成形体の原料としては、本発明被覆粒子以外に例えば、けい酸カルシウム水和物結晶体、繊維、充填材等を用いることができる。本発明被覆粒子100質量部に対して、けい酸カルシウム水和物結晶体20〜70質量部、繊維1〜10質量部、充填材10〜50質量部を添加することができる。   As a raw material for the molded article of the present invention, for example, calcium silicate hydrate crystals, fibers, fillers and the like can be used in addition to the coated particles of the present invention. 20 to 70 parts by mass of calcium silicate hydrate crystals, 1 to 10 parts by mass of fibers, and 10 to 50 parts by mass of filler can be added to 100 parts by mass of the coated particles of the present invention.

繊維としては、ガラス繊維、炭素繊維、ビニロン繊維、ロックウール等が挙げられ、充填材としては、炭酸カルシウム、珪砂、クレー等が挙げられる。さらに成形体の表面に、無機、有機系塗料を塗布することによって表面を改質することもできる。   Examples of the fiber include glass fiber, carbon fiber, vinylon fiber, rock wool, and the like, and examples of the filler include calcium carbonate, silica sand, and clay. Furthermore, the surface can be modified by applying an inorganic or organic paint to the surface of the molded body.

成形方法としては、例えば乾式又は湿式プレスによる圧縮成形等が挙げられる。得られる本発明成形体の熱伝導率は、例えばかさ密度0.30〜0.50g/cm3の成形体とした場合に0.03〜0.07W/m・Kである。
ここで熱伝導率は非定常熱線法、レーザーフラッシュ法等により測定できる。
Examples of the molding method include compression molding using a dry or wet press. The thermal conductivity of the obtained molded article of the present invention is 0.03 to 0.07 W / m · K when, for example, a molded article having a bulk density of 0.30 to 0.50 g / cm 3 is used.
Here, the thermal conductivity can be measured by an unsteady hot wire method, a laser flash method, or the like.

また、本発明成形体の曲げ強度は、0.1〜0.5N/mm2、特に0.3〜0.5N/mm2であるのが好ましい。 Furthermore, the bending strength of the present invention formed body, 0.1~0.5N / mm 2, is preferably particularly 0.3 to 0.5 N / mm 2.

次に実施例及び比較例を挙げて、本発明を詳細に説明する。   Next, an Example and a comparative example are given and this invention is demonstrated in detail.

以下の実施例及び比較例において述べる粒子の物性評価は下記の方法に従って行った。
(1)粒子断面組成分析
粒子の断面を走査型電子顕微鏡及びエネルギー分散型X線分析装置にて分析する。
(2)粒子有機質含有量の測定
示差熱熱重量同時測定装置により、粒子に含まれる有機質量を測定する。
(3)粒子発熱量の測定
示差走査熱量測定装置より、粒子の発熱量を求める。
(4)粒子圧縮破壊荷重の測定
微小圧縮試験機により、粒子の圧縮破壊荷重を測定する。
(5)粒子熱伝導率の測定
粒子を乾式プレスにより成形し、レーザーフラッシュ法熱定数測定装置又は熱線法熱伝導率測定装置により熱伝導率を求める。
(6)粒子比表面積の測定
窒素吸着によるBET比表面積測定装置により、粒子の比表面積を求める。
(7)粒子細孔径分布の測定
窒素吸着によるBET比表面積測定装置により、粒子の細孔分布を求める。
The physical properties of the particles described in the following examples and comparative examples were evaluated according to the following methods.
(1) Particle cross-sectional composition analysis The cross-section of a particle is analyzed with a scanning electron microscope and an energy dispersive X-ray analyzer.
(2) Measurement of particulate organic content The organic mass contained in the particles is measured with a differential thermothermal gravimetric simultaneous measurement device.
(3) Measurement of particle calorific value A particle calorific value is obtained from a differential scanning calorimeter.
(4) Measurement of particle compressive fracture load The particle's compressive fracture load is measured with a micro compression tester.
(5) Measurement of particle thermal conductivity Particles are molded by a dry press, and the thermal conductivity is determined by a laser flash method thermal constant measuring device or a hot wire method thermal conductivity measuring device.
(6) Measurement of specific surface area of particles The specific surface area of particles is determined by a BET specific surface area measuring device by nitrogen adsorption.
(7) Measurement of particle pore size distribution The particle pore size distribution is determined with a BET specific surface area measuring device by nitrogen adsorption.

実施例1
(1)ゾノトライト粒子の作製
石灰質原料として生石灰(太平洋セメント(社)製、CaO純度96.2%)322.0g、けい酸質原料としてシリカ70(敦賀セメント(社)製、SiO純度96.3%)344.6gを60℃に加温した10kgの水中に攪拌しながら投入した。5分間攪拌後、内容積17Lの攪拌式オートクレーブに移し、攪拌機の回転数300rpmで攪拌しながら、保持温度204℃まで、2時間30分かけて一定に昇温し、その後回転数を230rpmに下げて保持温度204℃で6時間30分保持して水熱合成反応を行った。その後、12時間以上かけて自然放冷し、ゾノトライトスラリーを得た。
続いてゾノトライトスラリーを吸引脱水ろ過し、ケーキ状のろ物を105℃で24時間乾燥することで、平均粒子径70μmのゾノトライト粒子結晶体を得た。
Example 1
(1) Production of Zonotolite Particles 322.0 g of quick lime (manufactured by Taiheiyo Cement Co., Ltd., CaO purity 96.2%) as a calcareous raw material, and silica 70 (manufactured by Tsuruga Cement Co., Ltd., SiO purity 96.3) as a siliceous raw material %) 344.6 g was added to 10 kg of water heated to 60 ° C. with stirring. After stirring for 5 minutes, transfer to a stirring autoclave with an internal volume of 17 L. While stirring at a rotation speed of 300 rpm of the stirrer, the temperature is constantly raised to a holding temperature of 204 ° C. over 2 hours and 30 minutes, and then the rotation speed is reduced to 230 rpm. The hydrothermal synthesis reaction was carried out by holding at a holding temperature of 204 ° C. for 6 hours and 30 minutes. Thereafter, it was allowed to cool naturally over 12 hours to obtain a zonotlite slurry.
Subsequently, the zonotlite slurry was subjected to suction dehydration filtration, and the cake-like filtrate was dried at 105 ° C. for 24 hours to obtain zonotrite particle crystals having an average particle diameter of 70 μm.

(2)被覆ゾノトライト粒子の作製
ゾノトライト粒子4.0gを、エポキシ樹脂の硬化剤であるイミダゾール4.0gを溶解したエタノール20gに浸漬し、エタノール溶液を粒子内部に担持した粒子の分散液として準備する。
続いて、1Lのフラスコへコーン油(和光純薬工業(社)製)520gを投入した後、エポキシ樹脂JER815(ジャパンエポキシレジン(社)製)8g及び界面活性剤Span80(和光純薬工業(社)製)6.0gを添加し、80℃に昇温して溶解させた。この溶液を攪拌した状態で、上記の分散液を滴下・混合し、6時間硬化反応を行い、被覆ゾノトライト粒子分散した油相を得た。
続いて、この油相をヘキサンで洗浄、置換した後、80℃で24時間乾燥することで、被覆ゾノトライト粒子を得た。
(2) Production of coated zonotlite particles 4.0 g of zonotrite particles are immersed in 20 g of ethanol in which 4.0 g of imidazole, which is a curing agent for epoxy resin, is dissolved, and a dispersion of particles carrying the ethanol solution inside the particles is prepared. .
Subsequently, 520 g of corn oil (manufactured by Wako Pure Chemical Industries, Ltd.) was charged into a 1 L flask, and then 8 g of epoxy resin JER815 (manufactured by Japan Epoxy Resin Co., Ltd.) and a surfactant Span 80 (Wako Pure Chemical Industries, Ltd.). )) 6.0 g was added and heated to 80 ° C. to dissolve. While the solution was stirred, the above dispersion was dropped and mixed, and a curing reaction was performed for 6 hours to obtain an oil phase in which the coated zonotolite particles were dispersed.
Subsequently, the oil phase was washed and replaced with hexane, and then dried at 80 ° C. for 24 hours to obtain coated zonotlite particles.

実施例2〜3
被覆ゾノトライト粒子の作製において、エポキシ樹脂量を変えた以外は実施例1と同様に作製した被覆ゾノトライト粒子を作製した。粒子の物性試験結果を表1に示す。また、熱伝導率については、粒子をかさ密度0.3g/cm3にプレス成形したものを測定用試料とした。
Examples 2-3
Coated xonotlite particles produced in the same manner as in Example 1 except that the amount of epoxy resin was changed in the production of coated zonotlite particles. The physical property test results of the particles are shown in Table 1. As for the thermal conductivity, a sample for measurement was obtained by press-molding particles to a bulk density of 0.3 g / cm 3 .

比較例1
実施例1(1)で得たゾノトライト粒子を比較例1とした。粒子の物性試験結果を表1に示す。また、熱伝導率については、粒子をかさ密度0.3g/cm3にプレス成形したものを測定用試料とした。
Comparative Example 1
The zonotrite particles obtained in Example 1 (1) were referred to as Comparative Example 1. The physical property test results of the particles are shown in Table 1. As for the thermal conductivity, a sample for measurement was obtained by press-molding particles to a bulk density of 0.3 g / cm 3 .

以上で述べた実施例及び比較例から、本発明によって提供される被覆ゾノトライト粒子は、従来のゾノトライト粒子単体、又はポリマー単体では成しえなかった、低発熱性、強度の両立、及び低熱伝導性を得ることが可能である。   From the examples and comparative examples described above, the coated zonotolite particles provided by the present invention are low exothermic, compatible in strength, and low thermal conductivity, which cannot be achieved by conventional zonotolite particles or polymers alone. It is possible to obtain

比較例1及び実施例3の粒子の断面の走査電子顕微鏡写真を図1及び図2に示す。図1及び図2の対比から明らかなように、本発明被覆粒子はその内部に0.01〜0.30μmの独立孔を有し、かつその表面において炭素が検出され、当該炭素は樹脂に由来することから、熱硬化性樹脂で被覆されていることが分かる。   Scanning electron micrographs of the cross sections of the particles of Comparative Example 1 and Example 3 are shown in FIGS. As is clear from the comparison between FIG. 1 and FIG. 2, the coated particles of the present invention have 0.01 to 0.30 μm of independent pores in the interior thereof, and carbon is detected on the surface, and the carbon is derived from the resin. From this, it can be seen that it is coated with a thermosetting resin.

また、比較例1及び実施例3の粒子の細孔分布を図3及び図4に示す。図3及び図4から明らかなように、本発明被覆粒子表面において、0.002〜0.030μmの細孔が大幅に減少したことから、粒子表面が熱硬化性樹脂で被覆された状態で、内部に独立孔が残っていることが推測される。   Moreover, the pore distribution of the particle | grains of the comparative example 1 and Example 3 is shown in FIG.3 and FIG.4. As apparent from FIG. 3 and FIG. 4, since the pores of 0.002 to 0.030 μm were greatly reduced on the surface of the coated particle of the present invention, the particle surface was coated with a thermosetting resin. It is presumed that independent holes remain inside.

Claims (8)

けい酸カルシウム水和物結晶の多孔性凝集体の表面が熱硬化性樹脂で被覆された粒子。   Particles in which the surface of a porous aggregate of calcium silicate hydrate crystals is coated with a thermosetting resin. けい酸カルシウム水和物の結晶が、針状のゾノトライト結晶体である請求項1記載の被覆粒子。   2. The coated particle according to claim 1, wherein the crystal of calcium silicate hydrate is a needle-like zonotlite crystal. 熱硬化性樹脂の含有量が被覆粒子中15〜50質量%である請求項1又は2記載の被覆粒子。   The coated particle according to claim 1 or 2, wherein the content of the thermosetting resin is 15 to 50% by mass in the coated particle. 窒素吸着によるBET比表面積が5〜30m2/gであり、被覆粒子の内部に0.01〜0.30μmの独立孔を有する請求項1〜3のいずれか1項記載の被覆粒子。 The coated particle according to any one of claims 1 to 3, which has a BET specific surface area of 5 to 30 m 2 / g by nitrogen adsorption and has 0.01 to 0.30 µm of independent pores inside the coated particle. 3〜7mNの圧縮破壊荷重を有する請求項1〜4のいずれか1項記載の被覆粒子。   The coated particle according to any one of claims 1 to 4, which has a compressive fracture load of 3 to 7 mN. かさ密度0.30〜0.50g/cm3の成形体とした場合に0.03〜0.07W/m・Kの熱伝導率を有するものである請求項1〜5記載の被覆粒子。 The coated particles according to claim 1, which have a thermal conductivity of 0.03 to 0.07 W / m · K when formed into a compact having a bulk density of 0.30 to 0.50 g / cm 3 . 請求項1〜6のいずれか1項記載の被覆粒子を含む組成物を成形して得られる成形体。   The molded object obtained by shape | molding the composition containing the coating particle of any one of Claims 1-6. 断熱性成形体である請求項7記載の成形体。   The molded body according to claim 7, which is a heat insulating molded body.
JP2009082905A 2009-03-30 2009-03-30 Coated porous inorganic particles and molded body using the same Active JP5181395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082905A JP5181395B2 (en) 2009-03-30 2009-03-30 Coated porous inorganic particles and molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082905A JP5181395B2 (en) 2009-03-30 2009-03-30 Coated porous inorganic particles and molded body using the same

Publications (2)

Publication Number Publication Date
JP2010235691A true JP2010235691A (en) 2010-10-21
JP5181395B2 JP5181395B2 (en) 2013-04-10

Family

ID=43090331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082905A Active JP5181395B2 (en) 2009-03-30 2009-03-30 Coated porous inorganic particles and molded body using the same

Country Status (1)

Country Link
JP (1) JP5181395B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050035A1 (en) * 2010-10-14 2012-04-19 ニチアス株式会社 Heat insulating material and method for producing heat insulating material
JP2016102179A (en) * 2014-11-28 2016-06-02 旭化成株式会社 Granular molded body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203856A (en) * 1997-01-23 1998-08-04 Asahi Chem Ind Co Ltd Calcium silicate composition and its molding product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203856A (en) * 1997-01-23 1998-08-04 Asahi Chem Ind Co Ltd Calcium silicate composition and its molding product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050035A1 (en) * 2010-10-14 2012-04-19 ニチアス株式会社 Heat insulating material and method for producing heat insulating material
JP2016102179A (en) * 2014-11-28 2016-06-02 旭化成株式会社 Granular molded body

Also Published As

Publication number Publication date
JP5181395B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
Abbas et al. Silica aerogel derived from rice husk: An aggregate replacer for lightweight and thermally insulating cement-based composites
Gupta et al. Use of biochar-coated polypropylene fibers for carbon sequestration and physical improvement of mortar
JP6026504B2 (en) Heat insulating material composition, heat insulating material using the same, and method for manufacturing heat insulating material
Huang et al. Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance
Peng et al. Facile preparation for gelatin/hydroxyethyl cellulose‐SiO2 composite aerogel with good mechanical strength, heat insulation, and water resistance
Lu et al. TiO2 containing electromagnetic wave absorbing aggregate and its application in concrete
JP2008100877A (en) Inorganic board and its manufacturing method
Ojo et al. Development of unfired earthen building materials using muscovite rich soils and alkali activators
CN111499405B (en) Preparation method of porous ceramsite, product and application of porous ceramsite in concrete subway track acoustic panel
TW201425270A (en) Precursors and transport methods for hydrothermal liquid phase sintering (HLPS)
Miao et al. A triply synergistic method for palygorskite activation to effectively impregnate phase change materials (PCMs) for thermal energy storage
Miao et al. Effects of heat-treatment conditions in the preparation of aluminum silicate fiber-based ceramic filter element for hot-gas filtration
JP5190399B2 (en) Method for producing calcium silicate plate
JP5181395B2 (en) Coated porous inorganic particles and molded body using the same
Jia et al. Controllable preparation of aerogel/expanded perlite composite and its application in thermal insulation mortar
JP5871685B2 (en) Calcium silicate molded body and method for producing the same
Shahmirzadi et al. Geopolymer mortars for use in construction 3D printing: Effect of LSS, graphene oxide and nanoclay at different environmental conditions
Pu et al. Influence of sepiolite addition on mechanical strength and microstructure of fly ash-metakaolin geopolymer paste
Jaya et al. Effect of anisotropic pores on the material properties of metakaolin geopolymer composites incorporated with corrugated fiberboard and rubber
JP2004292224A (en) Method of manufacturing calcium silicate material
KR101376296B1 (en) ALC composition with alkalies and fabrication method of ALC using this composition
Fardjaoui et al. Modulation of inorganic matrices for functional nanoarchitectures fabrication: The simultaneous effect of moisture and temperature in the preparation of metakaolin based geopolymers
Feng et al. Investigation on basic properties and durability of metakaolin based geopolymer modified with silane
Kang et al. A novel approach to fabricate porous magnesia materials with excellent properties via pore-forming agent
TWI445871B (en) Light weight and thermal insulation composition aggregates and fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5181395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250