JP2010234307A - Humidity adjustment device - Google Patents

Humidity adjustment device Download PDF

Info

Publication number
JP2010234307A
JP2010234307A JP2009086657A JP2009086657A JP2010234307A JP 2010234307 A JP2010234307 A JP 2010234307A JP 2009086657 A JP2009086657 A JP 2009086657A JP 2009086657 A JP2009086657 A JP 2009086657A JP 2010234307 A JP2010234307 A JP 2010234307A
Authority
JP
Japan
Prior art keywords
water vapor
humidity
small
cylinder
small hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009086657A
Other languages
Japanese (ja)
Inventor
Kunitaka Mizobe
都孝 溝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU SANKOSHA KK
Original Assignee
KYUSHU SANKOSHA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU SANKOSHA KK filed Critical KYUSHU SANKOSHA KK
Priority to JP2009086657A priority Critical patent/JP2010234307A/en
Publication of JP2010234307A publication Critical patent/JP2010234307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a humidity adjustment device which is capable of increasing the transferring amount of steam and does not break a membrane due to the deformation by air pressure even if the volume of chamber space is enlarged in dehumidifying or humidifying the indoor humidity, or suppressing the change of humidity by transferring the steam of the closed chamber space such as a box, a pipe, an article housing box and the like. <P>SOLUTION: The humidity adjustment device is prepared by fitting a cap 10 at the uppermost end of a hollow pipe 1 so that it communicates with the inner space of the hollow pipe 1 having a height of 100 m or above and the inner diameter of 30 cm, inserting one end of a communicating tube 11d into each of small apertures 10b installed at the outer periphery of the cap, supporting the other end with an outside fixing plate 12 and a mesh net 13, forming a steam transferring control vessel by installing three leaves of waterproof permeable membranes 11a, 11b, 11c at the inside of each communicating tube 11d wherein the fixing plate 12 and the mesh net 13 are fitted so that they are energized to the direction of the cap 10 with a spring 12c, and arranging a tubular and outer hood 14 to capsulate the cap 10, communicating tube 11d, fixing plate 12 and mesh net 13. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、函体・管・物品収納箱・小さな収納室等の大気に非開放の比較的大きな室空間の湿度を、防水性透過膜を用いて無電源で大気との間で水蒸気移動させて室内の湿度を調整する装置に関する。室内の湿度を低くする除湿装置、室内の湿度を高める加湿装置、湿度変動を低く抑える湿度変動抑制装置として利用できる技術である。   In the present invention, the humidity of a relatively large room space that is not open to the atmosphere, such as a box, tube, article storage box, or small storage room, is transferred to the atmosphere without a power source using a waterproof permeable membrane. It is related with the apparatus which adjusts indoor humidity. This is a technology that can be used as a dehumidifying device that lowers indoor humidity, a humidifying device that increases indoor humidity, and a humidity fluctuation suppressing device that reduces humidity fluctuations.

本出願人は、大気と非開放の函体内の空間との間に連通筒を設け、連通筒の内部の通気路に膜特性が異なる防水性透過膜を所定間隔離して複数設けることで、大気と函体内の空間の水蒸気の移動を制御する水蒸気移動制御装置を開発した。この開発した装置は、特許出願され、特開平5−322060号公報,特開平7−68124号公報において知られている。   The present applicant provides a communication tube between the atmosphere and the space in the non-opened box, and provides a plurality of waterproof permeable membranes having different membrane characteristics in the air passage inside the communication tube, with a predetermined distance between them. And we developed a water vapor movement control device that controls the movement of water vapor in the space inside the box. This developed device has been applied for a patent and is known in Japanese Patent Application Laid-Open Nos. 5-322060 and 7-68124.

しかしながら、函体の空間容量が大きくなると、水蒸気移動質量を増加させねばならなくなる。大略、空間容量と比例して防水性透過膜の面積を大きくせねばならない。しかしながら、防水性透過膜を大径にすると、この膜に働く空気圧によって膜が膨れて変形し、膜が破損する恐れがあった。
水蒸気移動制御装置の対象容積が大容量になると、天候の変化にともなって発生する表面温度の温度の上下動の幅も大きくなり、このため耐圧性が問題となる。
又、膜の引張り強さや変形を考慮すると、大面積に対して適用する場合には、防水可能な透過膜自体の変形が発生し、透過量の異常な変動や予期しがたい温度勾配などが発生する可能性が高く、大きな表面積の装置を作成することは困難であった。
However, when the space capacity of the box increases, the water vapor transfer mass must be increased. In general, the area of the waterproof permeable membrane must be increased in proportion to the space capacity. However, if the waterproof permeable membrane has a large diameter, the membrane may swell and deform due to the air pressure acting on the membrane, and the membrane may be damaged.
When the target volume of the water vapor movement control device is large, the range of the vertical movement of the surface temperature that occurs with changes in the weather also increases, and thus pressure resistance becomes a problem.
Also, considering the tensile strength and deformation of the membrane, when applied to a large area, the waterproof permeable membrane itself is deformed, resulting in abnormal fluctuations in the amount of permeation and unpredictable temperature gradients. It is highly probable that it would be difficult to create a device with a large surface area.

次に、湿度調整器の一部は大気に露されるで、天候で強風・暴風雨を受けることが発生する。強い風・雨水があると湿度調整器の性能を著しく低下させる。又落雷すると、湿度調整器内の温度・空気圧が急激に上昇して使用していた膜等を破損させる。   Next, a part of the humidity controller is exposed to the atmosphere, which may cause strong winds and storms in the weather. If there is strong wind or rain water, the performance of the humidity controller will be significantly reduced. If a lightning strike occurs, the temperature and air pressure in the humidity controller will rise rapidly, damaging the membrane used.

特開平5−322060号公報JP-A-5-322060 特開平7−68124号公報JP 7-68124 A

本発明が解決しようとする課題は、従来のこれらの問題点を解消し、水蒸気を制御する空間が大容積になって、膜の圧力による破損がなく、且つ高い能力でもって水蒸気移動を制御できる湿度調整装置を提供することにある。その上で、強風・雨水・雷等の天候に対しても耐えて使用できるものにすることにある。   The problem to be solved by the present invention is to solve these conventional problems, the space for controlling water vapor becomes large, there is no damage due to the pressure of the membrane, and water vapor movement can be controlled with high capacity It is to provide a humidity adjusting device. In addition, it is to be able to withstand weather such as strong winds, rainwater, and thunder.

かかる課題を解決した本発明の構成は、
1) 湿度を調整する非開放の室空間と連通するように取り付けられ且つ内部が袋空間となった筒体の外周壁面に室と筒体との連通口の口径より小さな小孔を複数設け、各小孔に同小孔と一端が連通し他端が外気と連通する連通筒を取り付け、同連通筒の内部の通気路に3枚の防水性透過膜を所定間隔離して設けて同透過膜の特性によって水蒸気の移動を制御する水蒸気移動制御器を各小孔毎に形成し、各小孔に取り付けられた複数の水蒸気移動制御器によって室内の湿度を制御することを特徴とする湿度調整装置
2) 各水蒸気移動制御器の連通筒の内側端部を内部に段部がある小孔に摺動可能に嵌入し、同内側部と小孔の段部との間に環状パッキンを介在し、連通筒の外側端部を係止する固定板を筒体外周面に向けて付勢するスプリングを介して弾支した、前記1)記載の湿度調整装置
3) 固定板の外側に所定間隔離してメッシュネットを設け、筒体の外周面・水蒸気移動制御器・固定板及びメッシュネットを内側に包被する外套を筒体に設け、同外套の一部に外套内部と外気との通気路を設けた、前記2)記載の湿度調整装置
4) 外套と筒体とを通電素材で作製し、防雷のために同外套と筒体とを大地に接地した、前記3)記載の湿度調整装置
5) 筒体に設けた小孔の一部には水蒸気移動制御器を形成させず、小孔の孔を塞ぐ栓体を小孔に取り付けて水蒸気移動制御器の数を調整した、前記1)〜4)何れかに記載の湿度調整装置
6) 水蒸気移動制御器の3枚の防水性透過膜の外気側の防水性透過膜は吸湿性がある不織布から構成される防水性透過膜からなり、内側の防水性透過膜は外気側よりも透過性が高い防水性透過膜からなり、中間の防水性透過膜は内側及び外気側よりも透過性が高い防水性透過膜であって吸湿性が時間経過に伴って変化する度合いが前記順番が変化しない組み合わせの膜を使用して、水蒸気移動制御器が室内の湿度変動を抑止するようにした、前記1)〜5)何れかに記載の湿度調整装置
にある。
The configuration of the present invention that solves this problem is as follows.
1) A plurality of small holes smaller than the diameter of the communication port between the chamber and the cylinder are provided on the outer peripheral wall surface of the cylinder that is attached so as to communicate with the non-open chamber space for adjusting the humidity and the inside is a bag space, Each small hole is attached with a communication tube having one end communicating with the small hole and the other end communicating with the outside air, and three waterproof permeable membranes are provided in the ventilation passage inside the communication tube and separated by a predetermined distance. A humidity control apparatus, wherein a water vapor movement controller that controls the movement of water vapor according to the characteristics of each is formed for each small hole, and the indoor humidity is controlled by a plurality of water vapor movement controllers attached to each small hole 2) The inner end portion of the communicating tube of each water vapor transfer controller is slidably fitted into a small hole having a step portion inside, and an annular packing is interposed between the inner portion and the step portion of the small hole, A spring that urges the fixing plate that locks the outer end of the communicating cylinder toward the outer peripheral surface of the cylinder. 3) Humidity adjustment device described in 1) above, which is supported by a mesh, and a mesh net is provided on the outside of the fixed plate at a predetermined interval, and the outer peripheral surface of the cylinder, the water vapor movement controller, the fixed plate and the mesh net are wrapped inside. The humidity adjusting device according to 2) above, wherein a covering mantle is provided on a cylindrical body, and an air passage between the inside of the mantle and outside air is provided on a part of the mantle. The humidity adjusting device according to 3), in which the mantle and the cylinder are grounded for lightning, and a water vapor movement controller is not formed in a part of the small hole provided in the cylindrical body. The humidity adjusting device according to any one of 1) to 4) above, wherein the number of the water vapor transfer controllers is adjusted by attaching plugs to close the holes to the small holes 6) of the three waterproof permeable membranes of the water vapor transfer controller The waterproof permeable membrane on the outside side consists of a waterproof permeable membrane made of hygroscopic nonwoven fabric, The permeation membrane consists of a waterproof permeable membrane that is more permeable than the outside air side, and the intermediate waterproof permeable membrane is a waterproof permeable membrane that is more permeable than the inside and outside air sides, and the hygroscopicity is with time. The humidity adjusting apparatus according to any one of 1) to 5), wherein the water vapor movement controller suppresses the humidity fluctuation in the room by using a film whose degree of change does not change the order.

本発明によれば、室空間と連通する筒体の袋空間は室空間の容積に応じた広めの空間容積・口径を必要とするが、筒体外周に取り付けた水蒸気移動制御器の連通筒及びその内部に設けた防水性透過膜の直径は、筒体の室空間との連通口の口径に比べ大幅に小径であり、従って同じ圧力が作用しても膜の変形・変位は少なくなり、膜の耐圧強度は高いものとなる。又、膜が小径となる分、一個当たりの水蒸気移動量が小さいが、筒体外周には複数又は多数個の水蒸気移動制御器を設けることで、全体の水蒸気移動量を大きくでき、広い室空間の水蒸気の移動制御を可能とする。   According to the present invention, the bag space of the tubular body communicating with the chamber space requires a wider space volume / diameter according to the volume of the chamber space. The diameter of the waterproof permeable membrane provided inside is significantly smaller than the diameter of the communication port with the chamber space of the cylinder, and therefore, deformation and displacement of the membrane are reduced even when the same pressure is applied. The withstand pressure strength is high. In addition, the amount of water vapor movement per piece is small as the membrane becomes smaller in diameter, but by providing multiple or many water vapor movement controllers on the outer periphery of the cylinder, the overall amount of water vapor movement can be increased, and a wide room space It is possible to control the movement of water vapor.

筒体の外周面に設けた小孔には、全て水蒸気移動制御器を取り付ける必要はなく、余った小孔があれば連通筒と同じ外形寸法の中実のプラスチック製等の栓体を固定板との間に嵌装して小孔を閉塞してもよい。又余分の小孔の閉塞手段として、上記の栓体の他に、小孔の内側孔開口を閉鎖する所要長さの内筒を筒体内面に嵌挿する方法もある。種々の室空間に対応できる湿度調整装置にするため、やや大きめの筒体に多くの小孔を設け、余分となる小孔を上記の閉塞手段で塞ぐことで、種々の容積の室空間に対し、その環境に最適な個数の水蒸気移動制御器だけ取り付けるようにするようにでき、室空間の大きさの対応性と湿度調整能力への対応性とを良好にでき、且つ生産コストも部品品種数を少なくできて安価にできる。   It is not necessary to attach a water vapor transfer controller to all small holes provided on the outer peripheral surface of the cylindrical body. If there are extra small holes, a solid plastic plug with the same external dimensions as the communicating cylinder is fixed to the fixed plate. The small hole may be closed by fitting between the two. In addition to the plug body described above, there is a method of fitting an inner cylinder of a required length for closing the inner hole opening of the small hole into the inner surface of the cylindrical body as means for closing the extra small hole. In order to make the humidity control device compatible with various room spaces, many small holes are provided in a slightly larger cylinder, and the extra small holes are closed with the above-mentioned closing means, so that the chamber space with various volumes can be used. It is possible to install only the optimal number of water vapor transfer controllers for the environment, which makes it possible to improve the compatibility of the room space size and the humidity adjustment capability, and the production cost is the number of parts. Can be made less expensive.

又、水蒸気移動制御器の外側に、メッシュネット及び外套を設ければ、風・雨水・塩分・粉塵・黄砂・虫等が水蒸気移動制御器に直接接触することを防ぎ、膜の破損・汚れ及び水蒸気移動制御器の性能の低下を防ぐ。又、メッシュネットは空気の流れを少なくして撹拌して空気の状態の均一化をする。   In addition, if a mesh net and mantle are provided outside the water vapor movement controller, wind, rainwater, salt, dust, yellow sand, insects, etc. are prevented from coming into direct contact with the water vapor movement controller, causing damage to the membrane, Prevents performance degradation of water vapor transfer controller. Further, the mesh net reduces the air flow and stirs to make the air state uniform.

各水蒸気移動制御器の連通筒の大気側端部を固定板とスプリングで筒体方向に付勢するように保持するものでは、連通筒は段付き小孔にパッキンを介して気密状に取り付けられ、又室空間筒体内空間に高い圧力が発生した場合、又は落雷で一時的に高い空気圧が作用する場合に、連通筒はその空気圧による力がスプリングの付勢力に勝って外方向に少し摺動する。摺動することでパッキンによる気密性が緩んで、筒体内の空気を筒体外の大気側へ放出して筒体内の空気圧を低下させ、膜が高い空気圧で破損するのを防いでいる。   In the case where the atmosphere side end of the communication tube of each water vapor movement controller is held by a fixed plate and a spring so as to be urged in the cylinder direction, the communication tube is attached to the stepped small hole in an airtight manner via a packing. Also, when high pressure is generated in the chamber space, or when high air pressure is temporarily applied due to lightning, the communicating cylinder slides slightly outward due to the force of the air pressure surpassing the biasing force of the spring. To do. By sliding, the airtightness due to the packing is loosened, and the air inside the cylinder is discharged to the atmosphere side outside the cylinder to reduce the air pressure inside the cylinder, thereby preventing the membrane from being damaged by high air pressure.

更に、外套と筒体を大地にアースするものでは、落雷してもその雷の影響を弱め、装置が破損するのを防ぐ。   Furthermore, if the jacket and the cylinder are grounded to the ground, even if a lightning strikes, the effect of the lightning is weakened and the device is prevented from being damaged.

図1は、実施例の全体配置を示す説明図である。FIG. 1 is an explanatory diagram showing the overall arrangement of the embodiment. 図2は、実施例の上部湿度変動抑制装置のキャップ体と、固定板との分解説明図である。FIG. 2 is an exploded explanatory view of the cap body and the fixing plate of the upper humidity fluctuation suppressing device of the embodiment. 図3は、実施例の上部湿度変動抑制装置の縦断面図である。FIG. 3 is a longitudinal sectional view of the upper humidity fluctuation suppressing device of the embodiment. 図4は、実施例の小型湿度変動抑制器の取付状態を示す説明図である。FIG. 4 is an explanatory view showing a mounting state of the small humidity fluctuation suppressor of the embodiment. 図5は、実施例の連通筒の取付の拡大説明図である。FIG. 5 is an enlarged explanatory view of attachment of the communicating cylinder of the embodiment. 図6は、実施例の小型湿度変動抑制器の縦断面図である。FIG. 6 is a vertical cross-sectional view of the small humidity fluctuation suppressor of the embodiment. 図7は、下部と中間の湿度変動抑制装置の縦断面図である。FIG. 7 is a vertical cross-sectional view of the lower and middle humidity fluctuation suppressing device. 図8は、斜めの中空管に取り付けた例を示す説明図である。FIG. 8 is an explanatory view showing an example of attachment to an oblique hollow tube. 図9は、透過膜による水蒸気移動質量の時間変化を示す模式図である。FIG. 9 is a schematic diagram showing a change with time of the water vapor moving mass by the permeable membrane. 図10は、透過膜による水蒸気移動質量を示す説明図である。FIG. 10 is an explanatory diagram showing the mass of water vapor transferred by the permeable membrane. 図11は、透過膜の不織布面から撥水面方向の透過質量を示す説明図である。FIG. 11 is an explanatory diagram showing the transmission mass in the direction of the water repellent surface from the nonwoven fabric surface of the permeable membrane. 図12は、実施例の小型湿度変動抑制器1個当りの断熱膜の有無による湿度抑制特性の変化を示す特性図である。FIG. 12 is a characteristic diagram showing a change in humidity suppression characteristics depending on the presence or absence of a heat insulating film per small humidity fluctuation suppressor of the example. 図13は、小型湿度変動抑制器1個当りの湿度抑制対象の室空間の大きさに対する室内湿度の変化を示す説明図である。FIG. 13 is an explanatory diagram showing changes in room humidity with respect to the size of the room space subject to humidity suppression per small humidity fluctuation suppressor. 図14は、中空管の高さによる管内容積の変化を示す説明図である。FIG. 14 is an explanatory diagram showing a change in the internal volume of the hollow tube depending on the height of the hollow tube. 図15は、上部湿度調整装置の外套上面の表面模様図である。FIG. 15 is a surface pattern diagram of the upper surface of the outer jacket of the upper humidity adjusting device.

本発明の水蒸気移動制御器は室空間の水蒸気を大気へ放出する除湿の場合と、その逆の加湿の場合及び湿度変動を抑制する場合とがある。   The water vapor movement controller of the present invention has a case of dehumidification that releases water vapor in a room space to the atmosphere, a case of reverse humidification, and a case of suppressing humidity fluctuation.

防水性透過膜に近接して導電性多孔体のメッシュを設けることが好ましい。このメッシュ(導電性多孔体)は、膜近傍に配置され、膜近傍の温度変化を均質化するとともに、水蒸気の移動の方向性も均質化し、膜の支持と補強を行い、又銅によるオリゴジナミー効果で、細菌や真菌による膜部の表面汚損を予防する。   It is preferable to provide a conductive porous mesh in the vicinity of the waterproof permeable membrane. This mesh (conductive porous body) is placed in the vicinity of the membrane, homogenizing the temperature change in the vicinity of the membrane, homogenizing the direction of movement of water vapor, supporting and reinforcing the membrane, and the oligodynamic effect of copper Thus, the surface of the membrane is prevented from being soiled by bacteria and fungi.

本実施例は、建造物の支柱鋼管で100mを超える垂直な中空管の最上端に設置され、中空管内の空間の湿度の変動を80%RH以下に、又下方が50%RH近くになるように抑えるために設けた長尺中空管の上部湿度変動抑制装置として使用した例であり、本発明の湿度調整装置は上部湿度変動抑制装置として使用されている。又本発明の水蒸気移動制御器は実施例では小型湿度変動抑制器として、本発明の筒体は有蓋の8角形状の角筒状のキャップ体として具現化されている。
又本実施例は、固定板・メッシュネット・外套及びスプリングによる固定板の弾支の構造を有する例でもある。
以下、詳細に説明する。
In this embodiment, the steel pillar steel pipe of the building is installed at the uppermost end of a vertical hollow pipe exceeding 100 m, and the humidity fluctuation of the space in the hollow pipe is 80% RH or less and the lower part is close to 50% RH. This is an example used as an upper humidity fluctuation suppressing device for a long hollow tube provided to suppress the humidity, and the humidity adjusting device of the present invention is used as an upper humidity fluctuation suppressing device. In the embodiment, the water vapor movement controller of the present invention is embodied as a small humidity fluctuation suppressor, and the cylinder of the present invention is embodied as a covered octagonal rectangular tube cap.
The present embodiment is also an example having a structure of a fixed plate elastic support by a fixed plate, a mesh net, a mantle and a spring.
Details will be described below.

本実施例は、建造物の主柱鋼管である中空管の最上端の開口に有蓋筒状の金属製キャップ体を開口とキャップ体内部が連通するように取り付け、同キャップ体(本発明の筒体に相当)の外周面に沿って小径の小孔を多数設け、各小孔に小型湿度変動抑制器(本発明の水蒸気移動制御器に相当)を水平に取り付け、その小型湿度変動抑制器の外周にメッシュネットと外套を取り付けている。更に中空管の途中と最下端それぞれに、上記小型湿度変動抑制器より4割程内径が大きい中型の中間・下部湿度変動抑制装置を設け、同中間・下部湿度変動抑制装置には毛細管現象によって外部に排水する非通気性のフェルト製排水体を備え、内部に非通気の排水路を形成させている。   In this embodiment, a lidded cylindrical metal cap body is attached to the opening at the uppermost end of a hollow pipe, which is a main column steel pipe of a building, so that the opening and the inside of the cap body communicate with each other. A small humidity fluctuation suppressor (equivalent to the water vapor movement controller of the present invention) is horizontally installed in each small hole along the outer peripheral surface of the cylindrical body), and the small humidity fluctuation suppressor is mounted horizontally. A mesh net and a jacket are attached to the outer periphery of the. In addition, middle and lower humidity fluctuation suppression devices with an inner diameter approximately 40% larger than the small humidity fluctuation suppressor are provided in the middle and lower end of the hollow tube, respectively. A non-breathable felt drainage body that drains to the outside is provided, and a non-ventilated drainage channel is formed inside.

図中、Tは100m以上の建造物の主柱、Wは中空管1の最上端に取り付けた上部湿度変動抑制装置、Lは主柱Tとなる鋼管の中空管1の最下端に取り付けた中型の排水体を内部に形成した下部湿度変動抑制装置、Mは中空管1の中間に取り付けた中型の排水体を内部に形成した中間湿度変動抑制装置であり、下部及び中間湿度変動抑制装置は略同じ構造を有する。   In the figure, T is a main pillar of a building of 100 m or more, W is an upper humidity fluctuation suppressing device attached to the uppermost end of the hollow tube 1, and L is attached to the lowermost end of the hollow tube 1 of the steel pipe that becomes the main pillar T. Lower humidity fluctuation suppression device with a medium-sized drainage body formed inside, M is an intermediate humidity fluctuation suppression device with a middle-sized drainage body attached inside the hollow tube 1 inside, and lower and intermediate humidity fluctuation suppression The device has substantially the same structure.

1は主柱Tとなる内径30cmで高さ100m以上のフランジで継がれた鋼管製中空管、1a,1bは中空管1のフランジ部、1cは中空管1内の内部空間、1dはフランジ部1bに設けられたボルト孔であってキャップ体10のボルト孔10cとを貫通する断熱表面処理されたボルトで連結されている。2は主柱Tのコンクリート基礎である。10は上部湿度変動抑制装置Wの内径30cmの有蓋の金属製8角筒状のキャップ体、10aは同キャップ体のフランジ部、10bはキャップ体10の8角筒の各外周面に設けた1列縦6個の一面2列の割合で各8面に設けた段付きの96個の小孔、10cはフランジ部10aに設けた中空管1の最上端のフランジ部1aと連結するためのボルト孔、10dはフランジ部1a,10aとの連結を断熱して気密にするパッキン、10eは上面のネジ孔、10fはキャップ体10の内部空間、11は各小孔10bに取り付けられる内径が約32mmで外径が約36mmの小型湿度変動抑制器、11a,11b,11cは小型湿度変動抑制器11内の通気路の防水性透過膜であり、外気側は吸湿性がある不織布から構成される防水性透過膜からなり、内側は外気側よりも透過性が高い防水性透過膜からなり、中間の膜は内側及び外気側よりも透過性が高い防水性透過膜であって、吸湿性が時間経過に伴って変化する度合いが、前記順番が変化しない組み合わせの膜を使用している。   1 is a hollow tube made of steel pipe connected by a flange having an inner diameter of 30 cm and a height of 100 m or more, which is a main column T, 1a and 1b are flange portions of the hollow tube 1, 1c is an internal space in the hollow tube 1, 1d Is a bolt hole provided in the flange portion 1b, and is connected by a heat-treated surface-treated bolt that penetrates the bolt hole 10c of the cap body 10. 2 is the concrete foundation of the main pillar T. Reference numeral 10 denotes a lid-made metal octagonal cylindrical cap body having an inner diameter of 30 cm of the upper humidity fluctuation suppressing device W, 10a is a flange portion of the cap body, and 10b is provided on each outer peripheral surface of the octagonal cylinder of the cap body 10. 96 small holes with steps provided on each of the eight surfaces in a ratio of six rows in one row and two rows, 10c are connected to the flange portion 1a at the uppermost end of the hollow tube 1 provided in the flange portion 10a. Bolt holes, 10d are gaskets that thermally insulate the connection with the flange portions 1a, 10a, 10e is a screw hole on the upper surface, 10f is an internal space of the cap body 10, and 11 has an inner diameter attached to each small hole 10b. A small humidity fluctuation suppressor having an outer diameter of 32 mm and an outer diameter of about 36 mm, 11a, 11b, and 11c are waterproof permeable membranes for the air passages in the small humidity fluctuation suppressor 11, and the outside air side is composed of a hygroscopic nonwoven fabric. Made of waterproof permeable membrane The inner side consists of a waterproof permeable membrane that is more permeable than the outside air side, and the middle membrane is a waterproof permeable membrane that is more permeable than the inside and outside air sides, and the degree to which the hygroscopicity changes over time However, a combination of membranes in which the order does not change is used.

11dは小型湿度変動抑制器11の内部を通気路とするケーシングの連通筒、11eは中間の防水性透過膜11bに近接して設けた導電性多孔体のメッシュ、11fは防水性透過膜11a,11bで区画される外側小室、11gは防水性透過膜11b,11cで区画される内側小室、11hは小孔10bの内壁面と当接させるパッキンである。   11d is a communicating tube of a casing having the inside of the small humidity fluctuation suppressor 11 as a ventilation passage, 11e is a mesh of a conductive porous body provided close to the intermediate waterproof permeable membrane 11b, 11f is a waterproof permeable membrane 11a, An outer small chamber defined by 11b, 11g an inner small chamber defined by the waterproof permeable membranes 11b and 11c, and 11h a packing to be brought into contact with the inner wall surface of the small hole 10b.

12は縦6個2列の小型湿度変動抑制器11の外周部をキャップ体10の外周面に保持する縦長の固定板である。同固定板12は一対の金属製押え板12−1,12−2の間に間装した耐熱性で通気性で透湿性の断熱膜12−3との積層からなっている。12aは同固定板内側面に設けた小型湿度変動抑制器11の外縁を係止する段付きの係止孔、12bは固定板12をキャップ体10の外周面に固定するためのスプリング12c付の取付ネジ、12cは固定板12及びメッシュネット13をキャップ体10方向に付勢するスプリング、12dは連結ネジ、12eはスペーサ、12fは小型湿度変動抑制器11の外周端を押え板12−2の係止孔12aの段部に押し付け気密状にするパッキンである。13は固定板12の外周に配置され、連結ネジ12dでもって固定板12に取り付けられ、風・水等が直接小型湿度変動抑制器11に接触するのを防ぐ縦長板状のメッシュネットである。14は同メッシュネットの外側に同メッシュネット・小型湿度変動抑制器・キャップ体の全体を被せるように取り付けられる金属製外套、14aは同外套をキャップ体10の上面に取り付ける取付ネジ、14bはキャップ体10の内周面に付設した断熱性塗装、15a,15b,15cは通気路、17はフランジ部10aの外側に取り付けた下端に排水溝を設けた排水と凍結破壊防止のための水切り板、18a,18c,18cは金属製外套14・キャップ体10・中空管1とを接続する防雷の為にするアース線である。   Reference numeral 12 denotes a vertically long fixing plate that holds the outer peripheral portion of the six small vertical humidity change suppressors 11 in two rows on the outer peripheral surface of the cap body 10. The fixing plate 12 is composed of a laminate of a heat-resistant, air-permeable and moisture-permeable heat insulating film 12-3 interposed between a pair of metal pressing plates 12-1 and 12-2. 12a is a stepped locking hole for locking the outer edge of the small humidity fluctuation suppressor 11 provided on the inner surface of the fixed plate, and 12b is provided with a spring 12c for fixing the fixed plate 12 to the outer peripheral surface of the cap body 10. A mounting screw, 12c is a spring for urging the fixing plate 12 and the mesh net 13 in the direction of the cap body 10, 12d is a connecting screw, 12e is a spacer, 12f is an outer peripheral end of the small humidity fluctuation suppressor 11 of the holding plate 12-2. The packing is pressed against the step of the locking hole 12a to make it airtight. Reference numeral 13 denotes a vertically long mesh net disposed on the outer periphery of the fixed plate 12 and attached to the fixed plate 12 with a connecting screw 12d to prevent wind, water, etc. from coming into direct contact with the small humidity fluctuation suppressor 11. 14 is a metal outer jacket attached to the outside of the mesh net so as to cover the entire mesh net, a small humidity fluctuation suppressor, and the cap body, 14a is a mounting screw for attaching the outer jacket to the upper surface of the cap body 10, and 14b is a cap. Heat-insulating coating attached to the inner peripheral surface of the body 10, 15a, 15b, 15c are ventilation passages, 17 is a drainage plate provided with a drainage groove at the lower end attached to the outside of the flange portion 10a, and a draining plate for preventing freezing destruction, Reference numerals 18a, 18c, and 18c denote ground wires for lightning protection that connect the metal mantle 14, the cap body 10, and the hollow tube 1.

20a〜20kは下部湿度変動抑制装置L及び中間湿度変動抑制装置Mの共通した構成部分であって、小型湿度変動抑制器11と同様な通気路と膜構造を有し、小型湿度変動抑制器11に比べ外径が大きくて47mmとする中型のものである。20a,20b,20cは小型湿度変動抑制器11の防水性透過膜11a,11b,11cと同質の膜で内径が大きく41mm程の防水性透過膜である。20dはケーシングである連通筒、20dは連通筒20dの内側の内筒及び膜間とメッシュとのスペーサ、20eは防水性透過膜20bに近接して設けた導電性多孔体のメッシュ、20fは防水性透過膜20a,20bで区画される外側小室、20gは防水性透過膜20b,20cで区画される内側小室、20hは中空管1の内部空間と下部・中間湿度変動抑制装置L,Mの連通筒20dとを連通する連通管、20iはフェルト製の毛細管現象で水を移動させる非通気性排水体、20kは連通筒20dの周壁内に形成された排水路である。20lは連通筒20dの下端を支持するリング状ワッシャ、20mは同ワッシャに穿孔した排水孔である。 Reference numerals 20a to 20k are components common to the lower humidity fluctuation suppressing device L and the intermediate humidity fluctuation suppressing device M, and have the same air passage and membrane structure as the small humidity fluctuation suppressing device 11, and the small humidity fluctuation suppressing device 11 is used. Is a medium-sized one having an outer diameter of 47 mm. 20a, 20b and 20c are waterproof permeable membranes having the same quality as the waterproof permeable membranes 11a, 11b and 11c of the small humidity fluctuation suppressor 11 and having a large inner diameter of about 41 mm. 20d is a communication cylinder as a casing, 20d 1 is an inner cylinder inside the communication cylinder 20d and a spacer between the membrane and the mesh, 20e is a conductive porous mesh provided close to the waterproof permeable membrane 20b, and 20f is An outer chamber defined by the waterproof permeable membranes 20a and 20b, 20g is an inner chamber defined by the waterproof permeable membranes 20b and 20c, and 20h is an inner space of the hollow tube 1 and lower and intermediate humidity fluctuation suppression devices L and M. A communication tube 20d communicating with the communication tube 20d, 20i is a non-breathable drainage body that moves water by a felt capillary phenomenon, and 20k is a drainage channel formed in the peripheral wall of the communication tube 20d. 20l is a ring-shaped washer that supports the lower end of the communication cylinder 20d, and 20m is a drain hole drilled in the washer.

フェルト製の排水体20iは、フェルト内の繊維に、寒天又はオブラート等の長鎖タンパク質を防腐剤としてタンニン酸を用いて、防腐処理・防虫処理を行ったエマルジョンをpH調整してほぼ中性としたコロイド状液を含浸させ、乾燥させたフェルトの表面に、アラビアのり等の被膜状の水溶性糊剤により表面を覆う処理を行った。
全体をアラビアのりのような糊剤で固めると、フェルト内に含まれる硬化乾燥した後に水分に接触しても、膨潤して崩壊するまでに長時間を要する。ところで、水分に接触して早期に気密性を破壊し、通水性を確保するためには、フェルト内に浸入したタンパク鎖の膨潤を活用して、最外側の被膜(アラビアのりの被膜)を早く(3分以内)崩壊して、排水を促進することができる。
本排水機構にあっては、排水機能が作動した後は、フェルト材はエアフィルター効果を持ち、外界の異物の保護空間内への侵入を阻止する。但し、通気性はほとんどない。フェルト材の素材としては、ポリエステル綿・ナイロン・合成繊維・天然繊維など任意であるが、耐候性の高い物質が好ましい。又吸湿性は低い素材の方が、前記のコロイド液乾燥に都合がよく、製作しやすく、安定した機能を得やすい。
Felt drainage 20i is made almost neutral by adjusting the pH of an emulsion that has been subjected to antiseptic and insecticidal treatments using tannic acid as a preservative for long-chain proteins such as agar or oblate on the fibers in the felt. The surface of the felt that was impregnated with the colloidal liquid and dried was covered with a film-like water-soluble paste such as Arabic glue.
When the whole is hardened with a paste such as Arabian glue, it takes a long time to swell and disintegrate even if it comes into contact with moisture after being cured and dried contained in the felt. By the way, in order to destroy the airtightness at an early stage in contact with moisture and to ensure water permeability, the outermost coating (arabic glue coating) is made faster by utilizing the swelling of protein chains that have entered the felt. It can collapse (within 3 minutes) and promote drainage.
In this drainage mechanism, after the drainage function is activated, the felt material has an air filter effect, and prevents foreign substances from entering the protective space. However, there is almost no breathability. As a material for the felt material, polyester cotton, nylon, synthetic fiber, natural fiber and the like are arbitrary, but a material having high weather resistance is preferable. A material with low hygroscopicity is more convenient for drying the colloidal liquid, is easy to manufacture, and is stable.

中空管1に傾斜がある場合には、図8のように、大容量対応型水蒸気移動制御装置を水平に配置するように、配置するための補助傾斜リング19を配置してもよい。   When the hollow tube 1 is inclined, as shown in FIG. 8, an auxiliary inclined ring 19 may be arranged so that the large-capacity water vapor movement control device is arranged horizontally.

上部湿度変動抑制装置Wの外套14は、導電性体により被覆されるか、導電性構成材料によって構成され、中空管1に電気的にアース線18a,18b,18cに接続され、接地される。この結果、直撃雷による焼損が予防される。   The outer jacket 14 of the upper humidity fluctuation suppressing device W is covered with a conductive material or made of a conductive constituent material, and is electrically connected to the ground wire 18a, 18b, 18c and grounded to the hollow tube 1. . As a result, burnout due to direct lightning is prevented.

尚、同外套14は、強い風・雨水・粉塵等が直接小型湿度変動抑制器11に当たるのを防ぐ。その内側のメッシュネット13によって更に被覆され、水滴が滞りにくい構造となっている。この結果、地上での風速が2m/secでも高度の高い60m位置などでは8m/secであるような場合は頻繁に発生しているために、水蒸気の移動制御を行うための、装置・膜の表面温度が異常に変動して、水蒸気移動が悪作用を受けることを予防することができる。   The outer jacket 14 prevents strong wind, rainwater, dust and the like from directly hitting the small humidity fluctuation suppressor 11. It is further covered with a mesh net 13 on the inside, and has a structure in which water droplets are less likely to stagnate. As a result, even when the wind speed on the ground is 2 m / sec, it frequently occurs when the altitude is 60 m at a high altitude, such as 8 m / sec. It can be prevented that the surface temperature fluctuates abnormally and the water vapor movement is adversely affected.

外套14の下に配置される、外套14下で風力を低下させるメッシュネット13の設計は任意であり、実施例では、俵積み配列など任意であるし、複数の多孔メッシュを打ち抜き板から構成し、離隔をおいてこれらの多孔メッシュを複数配置してもよい。   The design of the mesh net 13 disposed under the mantle 14 to reduce the wind force under the mantle 14 is arbitrary, and in the embodiment, it is arbitrary such as a stacking arrangement, and a plurality of perforated meshes are formed from punched plates. A plurality of these porous meshes may be arranged at intervals.

最下位や中間部の湿度変動抑制装置L,Mは、排水や管路内の乱流の発生による水蒸気の排出促進作用を有する。最外側の外套14は日除け及び雨よけ、外套14の内側のリムは乱流発生堤防となる。   The lowermost and middle humidity fluctuation suppression devices L and M have an action of promoting the discharge of water vapor due to the generation of turbulent flow in the drainage or pipes. The outermost mantle 14 is shaded and protected from rain, and the inner rim of the mantle 14 is a turbulent levee.

固定板12は、小型湿度変動抑制器11の外周部をキャップ体10の外周面に設けられた段付き小孔10b内のパッキン11hを介して、取付ネジ12bとスプリング12cによりキャップ体10へ圧接される。メッシュネット13と固定板12は、連結ネジ12dにより12eのスペーサで一定間隔に固定される。これらは、取付ネジ12bにより貫通され、スプリング12cによってキャップ体10の方向に小型湿度変動抑制器11を段付き小孔10b内のパッキン11hを介して圧接される。   The fixing plate 12 is pressed against the cap body 10 by a mounting screw 12b and a spring 12c via a packing 11h in a stepped small hole 10b provided on the outer peripheral surface of the cap body 10 at the outer periphery of the small humidity fluctuation suppressor 11. Is done. The mesh net 13 and the fixing plate 12 are fixed at regular intervals by a spacer 12e by a connecting screw 12d. These are penetrated by the mounting screw 12b, and the small humidity fluctuation suppressor 11 is pressed by the spring 12c in the direction of the cap body 10 through the packing 11h in the stepped small hole 10b.

もしも建造物の中空管1頂部等に落雷が起きたときには、中空管内部1c及びキャップ体10の内部空間10fの内圧が急激に上昇して、小型湿度変動抑制器11の内部に過剰な圧力が加わらないように、前記小型湿度変動抑制器11は、段付き小孔10b内を滑走して浮き上がり、中空管1の内部空間1cやキャップ体10の内部空間10fの急激な圧力の変化は、リークによって緩衝され、小型湿度変動抑制器11の内部の破損を防止する。   If a lightning strike occurs at the top of the hollow tube 1 of the building, the internal pressure of the hollow tube interior 1c and the internal space 10f of the cap body 10 suddenly rises and excessively increases in the small humidity fluctuation suppressor 11. The small humidity fluctuation suppressor 11 slides and floats in the stepped small hole 10b so that no pressure is applied, and sudden pressure changes in the internal space 1c of the hollow tube 1 and the internal space 10f of the cap body 10 occur. Is buffered by a leak and prevents damage to the inside of the small humidity fluctuation suppressor 11.

環状の水切り板17は、外套14の内側にあり、キャップ体10のフランジ部10aに固定されている。外套14とキャップ体10のフランジの間には、隙間が5mm程度を隔てる、通気路15aが環状に在る。
水蒸気の移動は、中空管内部1cにより、キャップ体の内部空間10fを経由して、小型湿度変動抑制器11の通気路となる膜11a,11b,11c、小室11f,11gを通り、メッシュネット13と固定板12の間通気路15cよりメッシュネット13を経由して、外套14内側の通気路15bに至り、通気路15aより大気中に拡散する。水切り板17は、外套14からの直接の風当たりを撹拌する作用や、風雨の直接の小型湿度変動抑制器11への吹きつけを防止し、前記小型湿度変動抑制器11の水蒸気の移動特性への悪作用を小さくする。
The annular draining plate 17 is inside the outer jacket 14 and is fixed to the flange portion 10 a of the cap body 10. Between the outer sheath 14 and the flange of the cap body 10, there is an annular air passage 15a with a gap of about 5 mm.
The movement of the water vapor passes through the membrane 11a, 11b, 11c and the small chambers 11f, 11g, which become the air passage of the small humidity fluctuation suppressor 11, via the internal space 10f of the cap body by the hollow tube inside 1c, and the mesh net. 13 and the fixed plate 12 through the mesh net 13 from the air passage 15c to the air passage 15b on the inner side of the outer jacket 14, and diffused into the atmosphere from the air passage 15a. The draining plate 17 prevents the action of stirring the direct wind from the mantle 14 and the direct blowing of wind and rain to the small humidity fluctuation suppressor 11, and improves the water vapor movement characteristics of the small humidity fluctuation suppressor 11. Reduce adverse effects.

又、図4に示される固定板12とキャップ体10の間の間隙dにある小型湿度変動抑制器11を、キャップ体10の外周で押さえ板12の間に、ウレタンや発泡スチロール、ガラス繊維などの断熱材を小型湿度変動抑制器11を取り囲むようにして周着して充填してもよい。この断熱材の効果としては小型湿度変動抑制器11の表面温度の急激な温度変化を予防し、小型湿度変動抑制器の性能を安定化することができる。
外套14は、キャップ体10の頂部に取付ネジ14aにて取り付けるが、このネジ孔10eはキャップ体10の頂部を貫通せず水漏れが起こることはない。
メッシュネット13は、地上では2m/sec位の風速でも50mなどの高さでも風速は高くなり8〜10m/secとなることは多いので、小型湿度変動抑制器11の外表面等に直接強風が当たって前記小型湿度変動抑制器11の急激な温度変動を避けることができ、性能の安定化と耐久性の安定化が図られる。
Further, the small humidity fluctuation suppressor 11 in the gap d between the fixed plate 12 and the cap body 10 shown in FIG. 4 is placed between the pressing plate 12 on the outer periphery of the cap body 10, such as urethane, foamed polystyrene, glass fiber or the like. The heat insulating material may be placed around and filled so as to surround the small humidity fluctuation suppressor 11. As an effect of this heat insulating material, a rapid temperature change of the surface temperature of the small humidity fluctuation suppressor 11 can be prevented, and the performance of the small humidity fluctuation suppressor can be stabilized.
The outer jacket 14 is attached to the top of the cap body 10 with a mounting screw 14a, but the screw hole 10e does not penetrate the top of the cap body 10 and water leakage does not occur.
The mesh net 13 has a high wind speed of 8 to 10 m / sec at a wind speed of about 2 m / sec or 50 m on the ground, and is often 8 to 10 m / sec. In this case, a rapid temperature fluctuation of the small humidity fluctuation suppressor 11 can be avoided, so that the performance and the durability can be stabilized.

外套14は、日除け及び通気路15aをキャップ体10のフランジ部10aの間に形成し、強風や強雨が外套14内に直接浸入することを予防する小さな環状スリットを形成する。
外套14の素材は金属製であるが、内面には耐熱性の断熱性塗装14bが施され、外套14から前記小型湿度変動抑制器11への輻射熱による悪作用を予防し、又外套14内を紫外線から保護する。
又外套14の下に、輻射熱を断熱するための断熱材をメッシュネット13の外周に配置してもよい。
The mantle 14 forms a small annular slit that forms a sunshade and a ventilation passage 15 a between the flange portions 10 a of the cap body 10 and prevents strong wind and heavy rain from directly entering the mantle 14.
The material of the outer jacket 14 is made of metal, but the inner surface is provided with a heat-resistant heat-insulating coating 14b to prevent an adverse effect due to radiant heat from the outer jacket 14 to the small humidity fluctuation suppressor 11, and the inside of the outer jacket 14 is also protected. Protect from UV rays.
Further, a heat insulating material for insulating radiant heat may be disposed on the outer periphery of the mesh net 13 under the outer jacket 14.

本実施例において、中空管1内の水蒸気は主として上部湿度変動抑制装置Wによって、副次的に下部湿度変動抑制装置L,中間湿度変動抑制装置Mによって移動制御され、中空管1内の湿度変動は大略80%RH以下で、下方は50%RH近い湿度に抑制される。   In this embodiment, the water vapor in the hollow tube 1 is controlled to move mainly by the upper humidity fluctuation suppressing device W and secondarily by the lower humidity fluctuation suppressing device L and the intermediate humidity fluctuation suppressing device M. The humidity fluctuation is approximately 80% RH or less, and the lower part is suppressed to a humidity close to 50% RH.

上部湿度変動抑制装置Wには、水蒸気が上昇流とともに集まる傾向があるが、その水蒸気は中空管1の最上端の内径30cmのキャップ体10の内部に進入する。この水蒸気はキャップ本体10の外周面に水平に設けられた96個の内径32mm程の小型湿度変動抑制器11によって中空管1内の湿度変動を小さくするように作用する。同様に中空管1の下部と中間でも、外径47mmの中型の湿度変動抑制装置L,Mによっても湿度変動を少なくするようにしている。   In the upper humidity fluctuation suppressing device W, the water vapor tends to gather together with the upward flow, but the water vapor enters the cap body 10 having an inner diameter of 30 cm at the uppermost end of the hollow tube 1. The water vapor acts to reduce the humidity fluctuation in the hollow tube 1 by 96 small humidity fluctuation suppressors 11 having an inner diameter of about 32 mm provided horizontally on the outer peripheral surface of the cap body 10. Similarly, in the lower and middle portions of the hollow tube 1, humidity fluctuations are reduced by medium-sized humidity fluctuation suppression devices L and M having an outer diameter of 47 mm.

これらの小型湿度変動抑制器11及び下部・中間の中型の湿度変動抑制装置L,Mの水蒸気移動制御による湿度変動抑制の作用は、防水性透過膜11a,11b,11c、20a,20b,20cの作用によるものである。以下、その湿度抑制の現象を説明する。   The action of moisture fluctuation suppression by the water vapor movement control of the small humidity fluctuation suppressor 11 and the middle and lower middle-sized humidity fluctuation suppression devices L and M of the waterproof permeable membranes 11a, 11b, 11c, 20a, 20b, and 20c. This is due to action. Hereinafter, the phenomenon of humidity suppression will be described.

中空管内と外気とを連通する通気路においてこれら3種類の防水性透過膜の移動境界面から2小室に区分され、これらの空間の間で熱交換が行われる。移動現象が膜によって制限され、等圧変化傾向で、移動境界面の熱交換が移動方向に行われる。この経過で移動エネルギーの伝搬ロスが発生する。
この熱伝達は逆方向でも同様であるが、大気側は図10に示したように容積に制限はないので、圧力変化は発生しない。そこで、中空管側から大気側への移動には、中空管内と大気間の水蒸気圧差で移動が発生し、大気側と中空管内の水蒸気圧が等しくなるまで移動が継続しやすく、大気方向へ移動し易い。
同様に、外気側の方が中空管内に比べて水蒸気圧が高い場合には、中空管方向への水蒸気の移動が発生する。しかし、この移動方向では、結果的に中空管内部の圧力上昇をまねき、明らかな仕事量を必要とする。また中空管内圧及び中間の透過膜から他の透過膜への圧力上昇のための仕事量が必要となるが、熱エネルギーの伝搬ロスがあるため抑制される。これらの結果、中空管内は、中空管内部よりも高い外気側の水蒸気圧量にはなりにくく、圧力差の矛盾は、水蒸気の移動が抑制されるかわりに、空気が移動して安定する。この現象は、結果的には逆浸透現象に類似する。
具体的な水蒸気の移動経過では、中空管内部空間からの熱伝播は、外気方向への水蒸気の浮力によって、最上部にある上部湿度変動抑制装置の小型湿度抑制器11の集合体から、熱的には並列回路として排出される。
下方又は中間の湿度変動抑制装置L,Mでは、外気からの水蒸気の保護空間への移動を妨げる効果を期待するので、膜部の補強を行う。この結果、除湿された空気が、保護空間に流入するとともに、外気流の異物の侵入を妨げる。
An air passage that communicates the inside of the hollow tube with the outside air is divided into two small chambers from the moving boundary surfaces of these three types of waterproof permeable membranes, and heat exchange is performed between these spaces. The movement phenomenon is limited by the film, and the heat exchange at the movement boundary surface is performed in the movement direction with a tendency to change the isobaric pressure. In this process, a propagation loss of kinetic energy occurs.
This heat transfer is the same in the reverse direction, but the atmospheric pressure has no limit on the volume as shown in FIG. Therefore, the movement from the hollow tube side to the atmosphere side is caused by the difference in water vapor pressure between the hollow tube and the atmosphere, and the movement is likely to continue until the water vapor pressure in the atmosphere side and the hollow tube becomes equal, and the movement toward the atmosphere. Easy to move.
Similarly, when the water vapor pressure is higher on the outside air side than in the hollow tube, the water vapor moves toward the hollow tube. However, this moving direction results in an increase in pressure inside the hollow tube and requires a clear amount of work. In addition, the work pressure for increasing the pressure inside the hollow tube and the pressure from the intermediate permeable membrane to another permeable membrane is required, but it is suppressed because there is a propagation loss of thermal energy. As a result, the inside of the hollow tube is less likely to have a higher water vapor pressure on the outside air side than the inside of the hollow tube, and the contradiction in the pressure difference is stabilized by the movement of the air instead of the movement of the water vapor. This phenomenon is similar to the reverse osmosis phenomenon as a result.
In the specific progress of the movement of water vapor, the heat propagation from the hollow tube internal space is caused by the buoyancy of the water vapor in the direction of the outside air from the assembly of the small humidity suppressors 11 of the upper humidity fluctuation suppressing device at the top. It is discharged as a parallel circuit.
In the lower or middle humidity fluctuation suppression devices L and M, the effect of hindering the movement of water vapor from the outside air to the protection space is expected, so the membrane portion is reinforced. As a result, the dehumidified air flows into the protection space and prevents the entry of foreign matter in the external airflow.

水蒸気移動量の差を形成する境界面の移動量を説明するため、図9,10に通気路の透過膜の透過量の比率で示す模式図を示している。
更に水蒸気の移動量を求めるために、中空管内側の圧力を1として、等温等圧下での水蒸気の移動量を精密測定した結果をもとに、時間経過に伴って変化させた水蒸気の移動質量図9の上3本を、理論的に組み合わせた場合を仮定して、透過量を単純に比率計算して求める。
図11に、膜の不織布から撥水面方向の透過質量を示している。この結果は、不織布から撥水面方向への水蒸気の透過質量を示す。逆方向の移動量の変化は、膜では、表面積が大きい不織布の方が外気側を向いている場合の方が移動速度は速くなるが、温度の影響は大きくなりやすい。
しかし、概ね、水蒸気の不織布から撥水面方向への移動量と、撥水面から不織布面への移動量はほぼ等しいものとして差し支えない。これらの方向性は、膜の表面汚損や表面の温度変化を考慮して配置することが望ましい。
In order to explain the amount of movement of the boundary surface that forms the difference in the amount of water vapor movement, FIGS.
In addition, in order to determine the amount of water vapor movement, the pressure inside the hollow tube is set to 1, and the water vapor movement changed over time based on the result of precise measurement of the amount of water vapor movement under isothermal isobaric pressure. Assuming a case where the top three of the mass diagram 9 are theoretically combined, the transmission amount is obtained by simply calculating the ratio.
In FIG. 11, the permeation | transmission mass of the water-repellent surface direction from the nonwoven fabric of a film | membrane is shown. This result shows the permeation | transmission mass of the water vapor | steam from a nonwoven fabric to a water-repellent surface direction. As for the change in the amount of movement in the reverse direction, in the case of the membrane, the nonwoven fabric having a larger surface area faces the outside air, the movement speed becomes faster, but the influence of temperature tends to increase.
However, in general, the amount of movement of water vapor from the nonwoven fabric in the direction of the water-repellent surface and the amount of movement from the water-repellent surface to the nonwoven fabric surface may be substantially equal. It is desirable to arrange these directions in consideration of the surface contamination of the film and the temperature change of the surface.

特に、本実施例の上部湿度変動抑制装置Wは、キャップ体の内径が300mmに対し、小型湿度変動抑制器11の内径が32mmで約1/10の径で、面積にして1/100程となるので、透過膜の圧力に対する耐圧性は全く問題なく使用できる。   In particular, in the upper humidity fluctuation suppressing device W of the present embodiment, the inner diameter of the cap body is 300 mm, the inner diameter of the small humidity fluctuation suppressor 11 is 32 mm, about 1/10 of the diameter, and about 1/100 in area. Therefore, the pressure resistance against the pressure of the permeable membrane can be used without any problem.

以上のように、本実施例の装置なしでは、中間管1内の湿度が90%RH以上から40%RH以下の湿度変動を一日一サイクルで生じる場合でも、湿度を80%RH以下で低い方も50%RH近くにまでできて湿度変動幅を大きく低減し、中空管内の結露の発生を抑え、中空管の内部の錆・腐食を少なくして、寿命を長くできるものとした。   As described above, without the apparatus of the present embodiment, even when the humidity in the intermediate pipe 1 changes in humidity from 90% RH to 40% RH in one cycle per day, the humidity is low at 80% RH or less. It was also possible to extend the life to near 50% RH, greatly reducing the humidity fluctuation range, suppressing the occurrence of condensation in the hollow tube, reducing rust and corrosion inside the hollow tube, and extending the life.

次に、本実施例の固定板12には、通気性で透湿性の耐熱性の断熱膜12−3を中間に挟んでいる。この断熱膜12−3がある場合とない場合の湿度特性の違いについて説明する。   Next, a heat-insulating film 12-3 that is air permeable and moisture permeable is sandwiched between the fixing plate 12 of this embodiment. The difference in humidity characteristics with and without the heat insulating film 12-3 will be described.

室空間の容積36Lにたいして、結露防止器の湿度調整装置を1個装着した場合の特性をもとに耐熱膜12−3の効果を下記実験で説明する。この耐熱膜12−3は、図9のP1の外側に配置され、通気路を形成する。
(実験説明)
室空間の初期湿度を100%RHとして外気湿度が65%RHの場合に、室内の湿度が下降を示し、その測定開始から約24時間後に外気湿度を95%RHに変えた場合の室内の湿度の上昇の抑制が行われる態様を図12に示す。図12の比較は断熱膜12−3の有無の差異である。標準仕様がないもので、難熱仕様としたものが断熱膜12−3が存在するものである。
難燃仕様でのラインは、耐熱膜12−3による通気路の断熱を行い、この結果下降特性が速い。
一方、標準仕様の水蒸気移動制御装置の特性は、24時間後の難燃仕様と同一の集束点を持つ。
The effect of the heat-resistant film 12-3 will be described in the following experiment based on the characteristics when one humidity adjusting device of a dew condensation preventer is attached to the volume 36L of the room space. This heat-resistant film 12-3 is disposed outside P1 in FIG. 9 and forms a ventilation path.
(Experiment explanation)
When the initial humidity of the room space is 100% RH and the outside air humidity is 65% RH, the indoor humidity shows a drop, and the indoor humidity when the outside air humidity is changed to 95% RH about 24 hours after the start of the measurement. FIG. 12 shows a mode in which the increase in the number is suppressed. The comparison in FIG. 12 is the difference in the presence or absence of the heat insulating film 12-3. There is no standard specification, and the heat-resistant specification is the one with the heat insulating film 12-3.
The flame-retardant specification line insulates the air passage by the heat-resistant film 12-3, and as a result, the descending characteristic is fast.
On the other hand, the characteristics of the standard water vapor movement control device have the same focusing point as the flame retardant specification after 24 hours.

中空管などの大容量の水蒸気移動制御を行う場合には、構造物の頂部にすえつけるために、直射日光などによる温度上昇にたいする悪作用の対策が必要である。水蒸気の選択透過性が殆ど無い、また水蒸気の移動速度への抑制が働きにくい性質の耐熱の断熱膜12−3を通気路の最外側への配置を行うことで、特に、耐熱性の低い素材でも、水蒸気の移動制御能力を向上させ、安定した長期機能の確保が可能となる。   When performing large-capacity water vapor movement control of a hollow tube or the like, it is necessary to take measures against an adverse effect on temperature rise caused by direct sunlight or the like in order to set up the top of the structure. By disposing the heat-resistant heat-insulating film 12-3, which has almost no water vapor selective permeability and hardly suppresses the movement speed of water vapor, on the outermost side of the air passage, in particular, a material having low heat resistance However, it is possible to improve the ability to control the movement of water vapor and secure a stable long-term function.

一つの水蒸気移動モジュール(小型湿度変動抑制器:以下同様)が耐えることができる圧力には制限がある。これは透湿膜に張力限界が存在するからであって、多孔性の導電性多孔体ではさまれた場合に問題となる。
図1および図2中のMやLでは、水蒸気の移動量には制限がかけられるが、一つのモジュールが処理することができる水蒸気移動量は、図13の実験値の通りで、下記のように概算される。
水蒸気を理想気体と仮定した場合には、
難燃仕様の下降特性は、湿度調整空間の対象容積の増加に伴って、上記のように変化する。この結果は一方では、ある特定の容積にたいして水蒸気移動制御モジュールの数量を増加させない場合には、より大きな圧力がかかることを示す。
そこで、適正な容積対比により水蒸気制御モジュールの数量を増加させて使用する必要がある。
このために、出願の内容構成により、頂部に敷設される水蒸気移動モジュールの数量が適正に増加されることによって、適正耐圧を維持することができ、水蒸気の下降速度を維持することができる。
There is a limit to the pressure that one water vapor transfer module (small humidity fluctuation suppressor: the same applies below) can withstand. This is because there is a tension limit in the moisture permeable membrane, and it becomes a problem when sandwiched between porous conductive porous bodies.
In M and L in FIG. 1 and FIG. 2, the amount of water vapor transferred is limited, but the amount of water vapor transferred by one module is as shown in the experimental values of FIG. To be estimated.
Assuming that water vapor is an ideal gas,
The descending characteristic of the flame retardant specification changes as described above as the target volume of the humidity adjustment space increases. This result, on the other hand, indicates that greater pressure is applied if the number of water vapor transfer control modules is not increased for a particular volume.
Therefore, it is necessary to increase the number of steam control modules by using an appropriate volume contrast.
For this reason, an appropriate pressure | voltage resistance can be maintained and the descent | fall speed | velocity | rate of water vapor | steam can be maintained by appropriately increasing the quantity of the water vapor | steam movement modules laid by the top part by the content structure of an application.

一方、強化された膜支持機構を有する中空間中部や下部の下部・中間湿度変動抑制装置L,Mでは、これらの通気特性は維持されないが、外気からの水蒸気の浸入を拒み、逆に空気の通過を許すことになる。
この結果、浮力によって上昇する性質の水蒸気は、急速に頂部に設けられた水蒸気移動制御装置が集合する湿度調整装置(上部湿度変動抑制装置W)から排出されるが、長尺中空管1の内部空間への水蒸気の外気側からの侵入量は極端に制限を受けるために、中空管内の低湿度環境を確保することができ、腐食予防などを効果的に促進することができる。
また、長尺中空管1では、高度の高い位置では風速が高く、ケーブルなどの維持システムの表面積が大きくなり、相対的に高度の低い位置よりも、熱交換速度が速くなる。
つまり、低い位置よりも高度が高い位置の方が、温度が下降する速度が速く、一方、水蒸気は上昇する性質を持つので、温められた低い位置を通過した水蒸気は、管路を上昇するに従って、次第に、温度が下降する結果、飽和水蒸気圧に接近する。この結果、管路内部の上部では、管路の下部に比べると結露がより高度に発生し、この液滴が滴下することが考えられる。
On the other hand, in the middle and lower lower / intermediate humidity fluctuation suppression devices L and M having the enhanced membrane support mechanism, these ventilation characteristics are not maintained, but the intrusion of water vapor from the outside air is refused, and conversely It will allow passage.
As a result, the water vapor that rises due to buoyancy is rapidly discharged from the humidity adjusting device (upper humidity fluctuation suppressing device W) where the water vapor movement control device provided at the top gathers. Since the amount of water vapor entering the internal space from the outside air side is extremely limited, a low-humidity environment in the hollow tube can be secured, and corrosion prevention can be effectively promoted.
Further, in the long hollow tube 1, the wind speed is high at a high altitude position, the surface area of a maintenance system such as a cable is increased, and the heat exchange rate is higher than that at a relatively low altitude position.
In other words, the position where the altitude is higher than the low position has a faster temperature decreasing speed, while the water vapor has the property of rising, so that the water vapor that has passed through the warmed low position rises up the pipeline. Gradually, as the temperature drops, it approaches the saturated water vapor pressure. As a result, it is conceivable that dew condensation occurs at a higher level in the upper part of the pipe than in the lower part of the pipe, and this droplet drops.

そこで、下部や中部にすえつけられる下部・中間湿度変動抑制装置L,Mには、異常時排水機構(排水体20i,排水路20k)を設ける。この装置では、中空管1内の結露水・水は連通管20hを介して連通筒20dに流入し、排水体20iに浸透して連通筒20d内の排水路20kとワッシャ20lの排水孔20mを通って外部へ流下して排出される。
しかし、前記のように、LやMの配置は、下方からの水蒸気の浸入量が、極端に制限を受ける一方、管路内への外気の浸入を拒み、水蒸気移動制御モジュールが、1方向へのエアーフィルタ化することによる表面汚損を予防するとともに、管路内部の汚損を促進する、外気側からの水蒸気の管路内方向への侵入を極力抑制する機構と構成となる。
Therefore, the lower / intermediate humidity fluctuation suppressing devices L and M installed at the lower and middle portions are provided with an abnormal drainage mechanism (drainage body 20i, drainage channel 20k). In this apparatus, the dew condensation water / water in the hollow tube 1 flows into the communication cylinder 20d through the communication pipe 20h, penetrates into the drainage body 20i, and drains 20m in the communication cylinder 20d and the drain hole 20m of the washer 20l. It flows down to the outside and is discharged.
However, as described above, the arrangement of L and M is extremely limited in the amount of water vapor entering from below, while rejecting the ingress of outside air into the pipeline, and the water vapor movement control module moves in one direction. In addition to preventing surface contamination due to the use of an air filter, the mechanism and configuration promotes contamination inside the pipeline and suppresses intrusion of water vapor from the outside air into the pipeline as much as possible.

図15は、上部湿度調整装置の外套を上面から見た平面模様の図面である。
鳥害対策として、鳥が上部湿度調整装置の上面に止まり、糞便尿などで外套14の上面が汚損すると、その通気路15aなどが表面汚損してしまい、風速の高い位置に配置される本湿度調整装置の主要部である固定板12や断熱膜12−3、小型湿度変動抑制器11などを汚損してしまう恐れがある。
また、外套14の効果として、断熱や直射日光からの保護があるが、これらは熱的に計算された温度変化を辿るように設計されている。長期にわたり鳥による糞便や尿などの汚損によって、これらの熱設計が乱される恐れがある。
更に、鳥などの糞便や尿によって、外套の取付ネジ14aの破損が発生してしまうことが考えられる。
そこで、取付ネジ14aにパッキンを配置して、水密として、鳥害による汚損物質の装置内浸入を阻むとともに、外套14の上面に、図15のような絵図を配置することで、鳥害を予防することができる。また、図15にあげた眼様模様の色調は、主として猛禽類やカラスなどが嫌う色調として、暗赤色や赤外線や紫外線反射性塗料などを用いるなど自由である。
FIG. 15 is a plan view of the upper humidity control device as seen from the top.
As a measure against bird damage, if the bird stays on the upper surface of the upper humidity control device and the upper surface of the mantle 14 is soiled by fecal urine or the like, the air passage 15a or the like is soiled and the main humidity placed at a high wind speed position. There is a possibility that the fixing plate 12, the heat insulating film 12-3, the small humidity fluctuation suppressor 11 and the like, which are the main parts of the adjusting device, are soiled.
Further, as an effect of the mantle 14, there is heat insulation and protection from direct sunlight, but these are designed to follow a temperature change calculated thermally. These thermal designs can be disturbed by long-term fouling of birds such as feces and urine.
Furthermore, it is conceivable that the mounting screw 14a of the mantle may be damaged by feces such as birds and urine.
Therefore, a packing is arranged on the mounting screw 14a to prevent water damage and prevent the damage of the pollutant material caused by bird damage from entering the apparatus, and a pictorial diagram as shown in FIG. can do. Further, the color tone of the eye-like pattern shown in FIG. 15 can be freely used, for example, dark red, infrared rays, ultraviolet reflective paints, etc., as the color tone which raptors and crows dislike.

本発明は、大きな内径で長尺の鋼管・ダクト、屋外設置の金属製函体、閉鎖されることが多い居住空間・天井空間・植物育苗室・動物飼育室等の湿度管理装置として使用でき、除湿装置又は加湿装置あるいは湿度変動抑制装置、結露防止装置、結露・湿度による錆発生防止装置等として広く使用できる。   The present invention can be used as a humidity management device for a long steel pipe / duct with a large inner diameter, a metal box installed outdoors, a residential space, a ceiling space, a plant nursery room, an animal breeding room, etc. It can be widely used as a dehumidifying device, a humidifying device, a humidity fluctuation suppressing device, a dew condensation prevention device, a rust generation prevention device due to condensation / humidity, or the like.

T 主柱
W 上部湿度変動抑制装置(湿度調整装置)
L 下部湿度変動抑制装置
M 中間湿度変動抑制装置
1 中空管
d 間隙
1a,1b フランジ部
1c 内部空間
1d ボルト孔
2 コンクリート基礎
10 キャップ体
10a フランジ部
10b 小孔
10c ボルト孔
10d パッキン
10e ネジ孔
10f 内部空間
11 小型湿度変動抑制器(水蒸気移動制御器)
11a,11b,11c 防水性透過膜
11d 連通筒
11e メッシュ
11f 外側小室
11g 内側小室
11h パッキン
12 固定板
12−1 押え板
12−2 押え板
12−3 断熱膜
12a 係止孔
12b 取付ネジ
12c スプリング
12d 連結ネジ
12e スペーサ
12f パッキン
13 メッシュネット
14 外套
14a 取付ネジ
14b 断熱性塗装
15a,15b,15c 通気路
17 水切り板
18a,18b,18c アース線
19 補助傾斜リング
20a,20b,20c 防水性透過膜
20d 連通筒
20d 内筒
20e メッシュ
20f 外側小室
20g 内側小室
20h 連通管
20i 排水体
20k 排水路
20l 押えワッシャ
20m 排水孔
T Main pillar W Upper humidity fluctuation suppression device (humidity adjustment device)
L Lower Humidity Fluctuation Control Device M Intermediate Humidity Fluctuation Control Device 1 Hollow tube d Gap 1a, 1b Flange 1c Internal space 1d Bolt hole 2 Concrete foundation 10 Cap body 10a Flange 10b Small hole 10c Bolt hole 10d Packing 10e Screw hole 10f Internal space 11 Small humidity fluctuation suppressor (water vapor movement controller)
11a, 11b, 11c Waterproof permeable membrane 11d Communicating tube 11e Mesh 11f Outer chamber 11g Inner chamber 11h Packing 12 Fixing plate 12-1 Holding plate 12-2 Holding plate 12-3 Heat insulating membrane 12a Locking hole 12b Mounting screw 12c Spring 12d Connecting screw 12e Spacer 12f Packing 13 Mesh net 14 Mantle 14a Mounting screw 14b Heat insulating coating 15a, 15b, 15c Air passage 17 Drain plates 18a, 18b, 18c Ground wire 19 Auxiliary inclined ring 20a, 20b, 20c Waterproof permeable membrane 20d Communication Tube 20d 1 Inner tube 20e Mesh 20f Outer small chamber 20g Inner small chamber 20h Communication pipe 20i Drainage body 20k Drainage channel 20l Presser washer 20m Drainage hole

Claims (6)

湿度を調整する非開放の室空間と連通するように取り付けられ且つ内部が袋空間となった筒体の外周壁面に室と筒体との連通口の口径より小さな小孔を複数設け、各小孔に同小孔と一端が連通し他端が外気と連通する連通筒を取り付け、同連通筒の内部の通気路に3枚の防水性透過膜を所定間隔離して設けて同透過膜の特性によって水蒸気の移動を制御する水蒸気移動制御器を各小孔毎に形成し、各小孔に取り付けられた複数の水蒸気移動制御器によって室内の湿度を制御することを特徴とする湿度調整装置。   A plurality of small holes smaller than the diameter of the communication port between the chamber and the cylinder are provided on the outer peripheral wall surface of the cylinder that is attached so as to communicate with the non-open chamber space for adjusting the humidity and the inside is a bag space. Attach the small hole to the hole and a communication tube with one end communicating with the outside air, and three waterproof permeable membranes separated by a predetermined distance in the air passage inside the communication tube. A humidity control apparatus, wherein a water vapor movement controller that controls the movement of water vapor is formed for each small hole, and the indoor humidity is controlled by a plurality of water vapor movement controllers attached to each small hole. 各水蒸気移動制御器の連通筒の内側端部を内部に段部がある小孔に摺動可能に嵌入し、同内側部と小孔の段部との間に環状パッキンを介在し、連通筒の外側端部を係止する固定板を筒体外周面に向けて付勢するスプリングを介して弾支した、請求項1記載の湿度調整装置。   The inner end of the communicating cylinder of each water vapor transfer controller is slidably fitted into a small hole with a step inside, and an annular packing is interposed between the inner part and the step of the small hole. The humidity adjusting device according to claim 1, wherein a fixing plate that locks the outer end of the tube is elastically supported via a spring that urges the fixing plate toward the outer peripheral surface of the cylindrical body. 固定板の外側に所定間隔離してメッシュネットを設け、筒体の外周面・水蒸気移動制御器・固定板及びメッシュネットを内側に包被する外套を筒体に設け、同外套の一部に外套内部と外気との通気路を設けた、請求項2記載の湿度調整装置。   A mesh net is provided on the outer side of the fixed plate at a predetermined interval, and the outer surface of the cylindrical body, the water vapor movement controller, the outer plate covering the inner side of the fixed plate and the mesh net are provided on the cylindrical body, The humidity adjusting device according to claim 2, wherein a ventilation path is provided between the inside and outside air. 外套と筒体とを通電素材で作製し、防雷のために同外套と筒体とを大地に接地した、請求項3記載の湿度調整装置。   4. The humidity adjusting apparatus according to claim 3, wherein the mantle and the cylinder are made of a current-carrying material, and the mantle and the cylinder are grounded to the ground for lightning protection. 筒体に設けた小孔の一部には水蒸気移動制御器を形成させず、小孔の孔を塞ぐ栓体を小孔に取り付けて水蒸気移動制御器の数を調整した、請求項1〜4何れかに記載の湿度調整装置。   The water vapor movement controller is not formed in a part of the small holes provided in the cylindrical body, and the number of the water vapor movement controllers is adjusted by attaching a plug body that closes the hole of the small hole to the small hole. The humidity adjusting apparatus according to any one of the above. 水蒸気移動制御器の3枚の防水性透過膜の外気側の防水性透過膜は吸湿性がある不織布から構成される防水性透過膜からなり、内側の防水性透過膜は外気側よりも透過性が高い防水性透過膜からなり、中間の防水性透過膜は内側及び外気側よりも透過性が高い防水性透過膜であって吸湿性が時間経過に伴って変化する度合いが前記順番が変化しない組み合わせの膜を使用して、水蒸気移動制御器が室内の湿度変動を抑止するようにした、請求項1〜5何れかに記載の湿度調整装置。   The waterproof permeable membrane on the outside air side of the three waterproof permeable membranes of the water vapor movement controller consists of a waterproof permeable membrane made of hygroscopic nonwoven fabric, and the inner waterproof permeable membrane is more permeable than the outside air side The waterproof permeable membrane is a waterproof permeable membrane having a higher permeability than the inner side and the outside air side, and the degree of change in hygroscopicity with time does not change. The humidity adjusting apparatus according to any one of claims 1 to 5, wherein the water vapor movement controller suppresses humidity fluctuation in the room using a combination film.
JP2009086657A 2009-03-31 2009-03-31 Humidity adjustment device Pending JP2010234307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086657A JP2010234307A (en) 2009-03-31 2009-03-31 Humidity adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009086657A JP2010234307A (en) 2009-03-31 2009-03-31 Humidity adjustment device

Publications (1)

Publication Number Publication Date
JP2010234307A true JP2010234307A (en) 2010-10-21

Family

ID=43089179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086657A Pending JP2010234307A (en) 2009-03-31 2009-03-31 Humidity adjustment device

Country Status (1)

Country Link
JP (1) JP2010234307A (en)

Similar Documents

Publication Publication Date Title
US20170231169A1 (en) Growing System
US10393442B2 (en) Ventilation and noise reduction system for centralized cooling tower
SE0702099A1 (en) Dehumidifying ventilation and control of air flow in confined spaces
CA2985998C (en) Gas permeable arrester seal with integrated weep conduit for ridge vents
EP2457437A2 (en) Intelligence canopy greenhouse control system
US20130216311A1 (en) Flood flaps vent for sealed crawlspace
KR100716895B1 (en) Auto pressure control apparatus for transformer
KR101983669B1 (en) Hive type wall greening device
CN102979216A (en) Rural resident plant material thermal-insulating composite wall body and anti-worm-damage method thereof
JP6395618B2 (en) Foundation drainer
JP2010234307A (en) Humidity adjustment device
US6145750A (en) Ventilator for beneath enclosed structures
SE536969C2 (en) Light absorbing unit
JP2010209532A (en) Device for regulating humidity of internal space of long hollow pipe
JP5636397B2 (en) Air conditioning system and its construction method
CN102870555A (en) Multifunctional grain depot ventilating device
CN216552512U (en) Anti-condensation wall
JP2009270397A (en) Building construction with venting structure
CN207920216U (en) It is a kind of for the thermal imaging detection of forest fire protection and the protective device of pre-warning facility
CN203136649U (en) Water curtain type greenhouse
WO2024174110A1 (en) Novel planting type roof of energy-saving building
RU2361049C2 (en) Method for group storage of equipment objects and device for group storage of equipment objects
Staniforth Conservation heating to Slow Conservation: A tale of the appropriate rather than the ideal
Less Measured Moisture Performance of Sealed and Insulated Attics with Permeable Insulation In California Homes
KR200220428Y1 (en) Double Wall House