JP2010209532A - Device for regulating humidity of internal space of long hollow pipe - Google Patents

Device for regulating humidity of internal space of long hollow pipe Download PDF

Info

Publication number
JP2010209532A
JP2010209532A JP2009054306A JP2009054306A JP2010209532A JP 2010209532 A JP2010209532 A JP 2010209532A JP 2009054306 A JP2009054306 A JP 2009054306A JP 2009054306 A JP2009054306 A JP 2009054306A JP 2010209532 A JP2010209532 A JP 2010209532A
Authority
JP
Japan
Prior art keywords
humidity
hollow tube
small
humidity fluctuation
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009054306A
Other languages
Japanese (ja)
Inventor
Kunitaka Mizobe
都孝 溝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU SANKOSHA KK
Original Assignee
KYUSHU SANKOSHA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU SANKOSHA KK filed Critical KYUSHU SANKOSHA KK
Priority to JP2009054306A priority Critical patent/JP2010209532A/en
Publication of JP2010209532A publication Critical patent/JP2010209532A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)
  • Bridges Or Land Bridges (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce deterioration in a hollow pipe caused by rust etc., so as to maintain high durability by suppressing dew condensation and the accumulation of water in such a manner as to suppress the occurrence of a high humidity fluctuation in one cycle per day between high and low humidity in a vertically or obliquely-installed long hollow pipe for use in a bridge, a building, etc., without the use of a power source. <P>SOLUTION: A cap body 10 is provided at the uppermost end of the vertical hollow steel pipe 1 in such a manner as to communicate with the internal space 1c of the hollow pipe 1; a large number of small holes 10b are formed at the outer peripheral surface of the cap body 10; a small-size humidity fluctuation suppressing device 11 in which three waterproof permeable films are formed at required spaces in an internal ventilation passage of a communication cylinder is horizontally attached to each of the small holes 10b; a fixing plate 12 and a mesh net 13 for supporting an outer end of the small-size humidity fluctuation suppressing device 11 are attached; and an overcoat 14 is attached to form a lower ventilation passage 15a by enveloping them. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、橋、建造物の主柱パイプの如く、垂直又は斜めに高く立設された鋼管・パイプ等の中空管の内部空間の湿度が、大気の湿度・温度によって大きく変動するのを水蒸気透過膜を用いて低く抑えて抑止して、湿度変動によって生じる結露水による中空管の錆・腐食等の劣化を少なくして中空管の耐久性を高める技術に関する。   According to the present invention, the humidity of the internal space of a hollow pipe such as a steel pipe or pipe standing vertically or obliquely high, such as a main pillar pipe of a bridge or a building, greatly varies depending on the humidity and temperature of the atmosphere. The present invention relates to a technique for increasing the durability of a hollow tube by suppressing it to a low level using a water vapor permeable membrane and reducing deterioration such as rust and corrosion of the hollow tube due to condensed water caused by humidity fluctuations.

従来、この垂直な中空管内の湿度調整は、自然通気の他には具体的な対策が行われていない。地球温暖化などで、熱交換のヒートベルト循環に異常をきたしている現状の気象環境では、寒暖の差が大きくなり、急激な気象の変動や風速の変動など、垂直の中空管内の腐食進行にとって不利な状況が進む。また、温度上昇に伴って化学反応の一種である腐食現象も急速に進展し、予測されていた耐用年数を大きく下回る実用年数となる可能性が高くなり、安全性も著しく脅かされるリスクが高まったが、温暖化が明らかとなる前は、予測は不可能であった。   Conventionally, no specific measures have been taken to adjust the humidity in the vertical hollow tube other than natural ventilation. In the current weather environment, which is causing abnormalities in the heat belt circulation of heat exchange due to global warming, etc., the difference between cold and warm becomes large, and it is difficult for the progress of corrosion in vertical hollow pipes such as rapid weather fluctuations and wind speed fluctuations. Unfavorable situation goes on. Corrosion phenomenon, which is a kind of chemical reaction, also progresses rapidly with increasing temperature, and it is likely that the service life will be significantly less than the expected service life, and the risk of seriously threatening safety has also increased. But before warming became apparent, it was impossible to predict.

従来、屋外で設置される垂直の主柱の鋼管の内部に雨水・虫・鳥・塵等の進入を抑える対策として、特開2004−229811号公報に示すように、主柱内部の最上端開口に、下方を開口した逆J字状のエルボー管を連結し、下方開口にメッシュを取り付けた構造のものが知られている。しかしながら、鋼管内部は大気と連通していて、空気及び湿度(水蒸気)の出入りは自由である。そのため大気の湿度が大きく変動する場合、鋼管内部の空気の湿度も大きく変動し、この変動によって、鋼管内部に結露・溜水が生じることがあった。これが鋼管内部の腐食・錆の進行を速めて鋼管の耐久年数が短くなることがある。これを避けるため、鋼管内に結露水・雨水が溜まらないように鋼管下部に排水孔を設けていた。しかし、これでも結露による劣化は抑えられなかった。更に鋼管内を完全密閉しても結露や密閉したはずの保護空間内に水が貯留する現象は避けることができなかった。   Conventionally, as a measure to suppress the entry of rainwater, insects, birds, dust, etc. into the steel pipe of a vertical main pillar installed outdoors, as shown in JP-A-2004-229811, the uppermost end opening inside the main pillar In addition, there is known a structure in which an inverted J-shaped elbow tube having a lower opening is connected and a mesh is attached to the lower opening. However, the inside of the steel pipe communicates with the atmosphere, and air and humidity (water vapor) can freely enter and exit. For this reason, when the humidity of the air greatly fluctuates, the humidity of the air inside the steel pipe also fluctuates greatly, and this fluctuation may cause dew condensation and accumulated water inside the steel pipe. This may accelerate the progress of corrosion and rust inside the steel pipe and shorten the service life of the steel pipe. In order to avoid this, a drainage hole was provided at the bottom of the steel pipe so that condensed water and rainwater would not accumulate in the steel pipe. However, even this did not prevent deterioration due to condensation. Furthermore, even if the inside of the steel pipe is completely sealed, dew condensation or the phenomenon that water is stored in the protected space that should have been sealed cannot be avoided.

本出願の発明者は、密閉した室と大気とを連通する通気路に防水性水蒸気透過膜を複数配置することで、水蒸気の移動を制御して室内部の湿度変動を低く抑える水蒸気移動制御装置を開発し出願し、この出願は特開平7−68124号公報、特開平5−322060号公報、特開2008−200552号公報として公開されている。
本発明者が開発したこれら装置は、大略室空間125Lにつき1個の配置で湿度降下速度を維持できていた。しかしながら、100m以上の建造物の中空管という特殊な管内部の湿度調整に、透過膜を使用することは想致されるものでなかった。
The inventor of the present application provides a water vapor movement control apparatus that controls the movement of water vapor and keeps humidity fluctuations in the room low by arranging a plurality of waterproof water vapor permeable membranes in an air passage that communicates the sealed chamber and the atmosphere. This application has been published as JP-A-7-68124, JP-A-5-322060, and JP-A-2008-200552.
These devices developed by the present inventor were able to maintain the rate of humidity drop with one arrangement per room space 125L. However, it has not been conceived to use a permeable membrane for adjusting the humidity inside a special tube called a hollow tube of a building of 100 m or more.

特開2004−229811号公報JP 2004-229811 A 特開平7−68124号公報JP 7-68124 A 特開平5−322060号公報JP-A-5-322060 特開2008−200552号公報JP 2008-200552 A

本発明は、従来のこれらの問題点を解消し、屋外で使用される橋・建造物等で使用される垂直又は傾斜した中空管内部で生じる高湿度と低湿度の一日一サイクルの高い湿度変動を無電源で抑制して結露・溜水を抑え、大きな湿度変化による錆等による中空管の劣化を少なくして高い耐久性を保持できるようにする長尺中空管の湿度調整装置を提供することにある。   The present invention eliminates these conventional problems, and high daily and high humidity cycles are generated in a vertical or inclined hollow tube used in bridges and buildings used outdoors. Humidity adjustment device for long hollow tubes that suppresses humidity fluctuations with no power source, suppresses condensation and accumulated water, reduces deterioration of hollow tubes due to rust caused by large humidity changes, and maintains high durability Is to provide.

又、別の課題として、水蒸気移動制御装置が湿度制御する中空管の空間容積が大容量になると膜面積も大きくなり、天候の変化にともなって発生する表面温度の温度の上下動の幅も大きくなり、閉鎖空間である保護空間の内部空気の膨張や収縮による呼吸現象も大きくなり、このため膜の耐圧性・耐久性が問題となってくる。
腐食の進行を抑制するためには、腐食反応を促進する外来異物(塩分や硫化物など)による表面汚損の予防と腐食反応が急速に生じる水分の抑制が重要である。
又、膜の引張り強さや変形を考慮すると、大面積に対して適用する場合には、防水可能な透過膜自体の変形が発生し、透過量の異常な変動や予期しがたい温度勾配などが発生する可能性が高く、大きな表面積の装置を作成することは困難であった。本発明の別の課題は、湿度調整する中空管の内部空間が大容量になっても膜が適正な膜強度以内で、水蒸気の移動制御を長期にわたって確実に確保することができるようにすることにある。
In addition, as another problem, when the space volume of the hollow tube controlled by the water vapor movement control device becomes large, the membrane area increases, and the range of the vertical movement of the surface temperature generated due to changes in weather also increases. As the size increases, the respiration phenomenon due to the expansion and contraction of the internal air in the protected space, which is a closed space, also increases, and the pressure resistance and durability of the membrane become a problem.
In order to suppress the progress of corrosion, it is important to prevent surface contamination due to foreign substances (salts, sulfides, etc.) that promote the corrosion reaction and to suppress moisture that causes the corrosion reaction rapidly.
Also, considering the tensile strength and deformation of the membrane, when applied to a large area, the waterproof permeable membrane itself is deformed, resulting in abnormal fluctuations in the amount of permeation and unpredictable temperature gradients. It is highly probable that it would be difficult to create a device with a large surface area. Another problem of the present invention is that even when the internal space of the hollow tube for humidity adjustment becomes a large capacity, the membrane can be reliably secured over a long period of time by controlling the movement of water vapor within an appropriate membrane strength. There is.

かかる課題を解決した本発明の構成は、
1) 屋外で垂直又は斜めに設置された非開放の長尺中空管の内部空間の湿度調整装置であって、中空管の管内部と外気とを連通するように形成した通気路に複数の防水性水蒸気透過膜を所定間隔離して配置して膜特性によって管内の湿度変動を抑止する上部湿度変動抑制装置を中空管の最上端に設け、同上部湿度変動抑制装置を除いて中空管内部を気密化し、最下端に管内の水を毛細管現象によって外部に排水する非通気性のフェルト製排水体を設けて非通気の排水路を形成し、中空管内部を上部湿度変動抑制装置の水蒸気透過膜と排水体とで大気の粉塵・雨水及び虫の進入を防止するとともに中空管内部の湿度の大きな変動を抑制して中空管の湿度変動による劣化を抑えて中空管の耐久性を高める、長尺中空管の内部空間の湿度調整装置
2) 中空管の最下端にも、外気と連通する通気路に複数の防水性水蒸気透過膜を所定間隔離して配置して膜特性によって管内の湿度変動を抑える下部湿度変動抑制装置を設け、同下部湿度変動抑制装置内部に非通気性のフェルト製排水体を設けて非通気の排水路を形成した、前記1)記載の長尺中空管の内部空間の湿度調整装置
3) 最上端の上部湿度変動抑制装置が、中空管の最上端の管開口に取り付けられる中空の有蓋筒状キャップ体の外周面に多数の小径の連通孔を設け、同連通孔に一端が接続され他端が大気と連通するように設けた小径の連通筒の内部の通気路に所定間隔離して複数の防水性水蒸気透過膜を設けた小型湿度変動抑制器を各連通孔それぞれに気密状に且つ水平に取り付け、更に同小型湿度変動抑制器の外側に直接風雨水が接触しないようにするメッシュネットを有蓋筒外側に設け、更にその外側を通気空間のある外套で保護した構造とした、前記1)又は2)記載の長尺中空管の内部空間の湿度調整装置
にある。
The configuration of the present invention that solves this problem is as follows.
1) A humidity adjusting device for an internal space of a non-open long hollow tube installed vertically or obliquely outdoors, and is provided with a plurality of air passages formed so as to communicate the inside of the hollow tube and the outside air. An upper humidity fluctuation suppression device is installed at the top end of the hollow tube to prevent humidity fluctuations in the tube according to the membrane characteristics by arranging the waterproof water vapor permeable membranes separated by a predetermined distance, and is hollow except for the upper humidity fluctuation suppression device Airtight inside the tube, non-ventilated felt drainage that drains the water in the tube to the outside by capillarity at the bottom end to form a non-vented drainage channel, the inside of the hollow tube is an upper humidity fluctuation suppression device The water vapor permeable membrane and drainage body prevent atmospheric dust, rainwater and insects from entering, and suppress large fluctuations in the humidity inside the hollow tube to suppress deterioration due to humidity fluctuations in the hollow tube. Humidity adjustment device 2 for the internal space of long hollow tubes to increase durability ) At the bottom end of the hollow tube, a lower humidity fluctuation suppression device is also provided at the lower end of the hollow pipe, which is arranged with a plurality of waterproof water vapor permeable membranes separated by a predetermined distance in the air passage that communicates with the outside air. The humidity adjusting device for the internal space of the long hollow tube described in 1) above, wherein a non-venting felt drainage body is provided inside the lower humidity fluctuation suppressing device to form a non-venting drainage channel. The humidity fluctuation suppression device is provided with many small-diameter communication holes on the outer peripheral surface of a hollow covered cylindrical cap body attached to the uppermost tube opening of the hollow tube, and one end is connected to the communication hole and the other end is the atmosphere. A small humidity fluctuation suppressor provided with a plurality of waterproof water vapor permeable membranes separated by a predetermined distance in the air passage inside the small-diameter communication tube provided so as to communicate with each other is attached airtightly and horizontally to each communication hole, In addition, wind and rainwater is directly outside the small humidity fluctuation suppressor. The humidity adjusting device for the internal space of the long hollow tube as described in 1) or 2) above, wherein a mesh net for preventing contact is provided on the outer side of the covered cylinder, and the outside is further protected by a mantle having a ventilation space. It is in.

本発明によれば、中空管の最上端の上部湿度変動抑制装置によって中空管内部の水蒸気が高湿度のときは中空管内部の水蒸気を大気へ排出し、又低湿度のときは大気側の水蒸気を中空管内へ移動させ、中空管内の湿度の変動を抑える。そして最上端の上部湿度変動抑制装置で水蒸気を排出するときは、中空管内の水蒸気は中空管内を上昇する傾向があって、上部空間の湿度がより高くなって速やかに排出される。
これによって、中空管内の湿度が80%を超える湿度となったとしても、速やかに相対湿度が80%以下にでき、又50%よりかなり低い湿度の場合は50%に近い湿度に高めることができ、中空管内の湿度変動を抑え、よって大きい湿度変動による腐食の発生を少なくし、結露水や水蒸気濃度の変動を抑えて、腐食反応の起き初めた物質内への水分の拡散を抑えて、錆の発生を抑制する。
又中空管内の底部に溜まった水は、非通気性のフェルト製排水体によって、中空管の外へ排水でき、高湿度となること、水による錆の発生及び中空管の劣化を防ぐ。
更に、雨水・粉塵・塩分・火山灰・黄砂及び虫は、上部湿度変動抑制装置の防水性水蒸気透過膜と非通気性排水体によって遮断され、中空管内に進入しないようにしている。
According to the present invention, when the water vapor inside the hollow tube is high humidity by the upper humidity fluctuation suppressing device at the uppermost end of the hollow tube, the water vapor inside the hollow tube is discharged to the atmosphere, and when the moisture is low, The water vapor on the side is moved into the hollow tube to suppress fluctuations in humidity within the hollow tube. And when discharging | emitting water vapor | steam with the uppermost upper humidity fluctuation | variation suppression apparatus, the water vapor | steam in a hollow tube tends to raise the inside of a hollow tube, the humidity of upper space becomes higher, and is discharged | emitted rapidly.
As a result, even if the humidity in the hollow tube exceeds 80%, the relative humidity can be quickly reduced to 80% or less, and when the humidity is significantly lower than 50%, the humidity can be increased to a value close to 50%. , Suppresses humidity fluctuations in the hollow tube, thus reducing the occurrence of corrosion due to large humidity fluctuations, suppressing fluctuations in the concentration of condensed water and water vapor, and suppressing the diffusion of moisture into the material where the corrosion reaction has started. Suppresses the occurrence of
Also, the water accumulated at the bottom of the hollow tube can be drained out of the hollow tube by a non-breathable felt drainage body, resulting in high humidity, the generation of rust due to water and the deterioration of the hollow tube.
Furthermore, rainwater, dust, salt, volcanic ash, yellow sand, and insects are blocked by the waterproof water vapor permeable membrane of the upper humidity fluctuation suppression device and the non-ventilated drainage body so as not to enter the hollow tube.

最上端の上部湿度変動抑制装置が、中空管の最上端に取り付けた有蓋筒状キャップ体の外周面に多数の小孔を設け、各小孔に小型湿度変動抑制器を多数設けた構造としたものでは、小型湿度変動抑制器の内径が小さいので、空気圧で膜が大きく膨らむように変形することがなく、耐圧性が高くでき、大容量の中空管内部空間の場合でも使用できるものとしている。
加えて、これら小型湿度変動抑制器の外周に、メッシュネット・外套を設けたものでは、雨水・風・虫・粉塵・火山灰・黄砂が小型湿度変動抑制器に直接接触しないようにして、これらの影響を少なくしている。
The uppermost upper humidity fluctuation suppressing device has a structure in which a large number of small holes are provided on the outer peripheral surface of a covered cylindrical cap body attached to the uppermost end of the hollow tube, and a large number of small humidity fluctuation suppressors are provided in each small hole. In this case, the small humidity fluctuation suppressor has a small inner diameter, so that it does not deform so that the membrane swells greatly with air pressure, can have high pressure resistance, and can be used even in the case of a large volume hollow tube internal space. Yes.
In addition, in the case where mesh nets and mantles are provided around the periphery of these small humidity fluctuation suppressors, make sure that rainwater, wind, insects, dust, volcanic ash, and yellow sand do not directly contact these small humidity fluctuation suppressors. The influence is reduced.

図1は、実施例の全体配置を示す説明図である。FIG. 1 is an explanatory diagram showing the overall arrangement of the embodiment. 図2は、実施例の上部湿度変動抑制装置のキャップ体と、固定板との分解説明図である。FIG. 2 is an exploded explanatory view of the cap body and the fixing plate of the upper humidity fluctuation suppressing device of the embodiment. 図3は、実施例の上部湿度変動抑制装置の縦断面図である。FIG. 3 is a longitudinal sectional view of the upper humidity fluctuation suppressing device of the embodiment. 図4は、実施例の小型湿度変動抑制器の取付状態を示す説明図である。FIG. 4 is an explanatory view showing a mounting state of the small humidity fluctuation suppressor of the embodiment. 図5は、実施例の小型湿度変動抑制器の縦断面図である。FIG. 5 is a vertical cross-sectional view of the small humidity fluctuation suppressor of the embodiment. 図6は、下部と中間の湿度変動抑制装置の縦断面図である。FIG. 6 is a vertical cross-sectional view of the lower and middle humidity fluctuation suppressing device. 図7は、斜めの中空管に取り付けた例を示す説明図である。FIG. 7 is an explanatory view showing an example of attachment to an oblique hollow tube. 図8は、透過膜による水蒸気移動質量の時間変化を示す模式図である。FIG. 8 is a schematic diagram showing the change over time in the mass of water vapor transferred by the permeable membrane. 図9は、透過膜による水蒸気移動質量比を示す説明図である。FIG. 9 is an explanatory diagram showing the water vapor transfer mass ratio by the permeable membrane. 図10は、透過膜の不織布面から撥水面方向の透過質量を示し、98→65%RH及び50→65%RHへの3種類の膜の時間経過に伴う水蒸気移動質量として、透過特性の変化を示す説明図である。FIG. 10 shows the permeation mass in the direction from the nonwoven fabric surface of the permeable membrane to the water repellent surface, and the change in permeation characteristics as water vapor transfer mass over time of three types of membranes from 98 → 65% RH and 50 → 65% RH. It is explanatory drawing which shows.

本発明で、中空管の最上端位置に中空管内部と連通するように取り付ける上部湿度変動抑制装置は、一個でも複数個でも、又は小型湿度変動抑制器を多数集合させたものでもよい。
又中空管の最上端に設ける小型湿度変動抑制器は水平に設置されるのが好ましい。
In the present invention, the upper humidity fluctuation suppressing device attached to the hollow tube at the uppermost end position so as to communicate with the inside of the hollow pipe may be one or plural, or a plurality of small humidity fluctuation suppressing devices may be assembled.
The small humidity fluctuation suppressor provided at the uppermost end of the hollow tube is preferably installed horizontally.

中空管の最下端及び途中位置にも湿度変動抑制装置又は非通気性排水体付き湿度変動抑制装置を取り付けると、更に湿度の変動を抑止できる能力が高くなる。
これは、管路内の流体の流路が、高度の高い部位と低い部位での風速の違いから発生する空気への熱伝達や、雨の後の風による大きな気化熱による管路の表面温度の温度下降に伴う湿度上昇や結露を予防するための、中間部リーク点である。中間部の取付位置は、管路内の実測データなどを考慮して算出された飽和水蒸気圧によって発生する浮力と、中間部の取り付けた中間湿度変動抑制装置を経由した空気による中空管内の乱流の発生で流入する乾燥空気の比率を効果的に排気方向に上昇を促進しやすい位置に配置される。
又、中空管の最下端の非通気性のフェルト製排水体は最下端に設けた湿度変動抑制装置内に一体的に設けてもよい。
If the humidity fluctuation suppressing device or the humidity fluctuation suppressing device with a non-ventilated drainage body is also attached to the lowermost end and the middle position of the hollow tube, the ability to further suppress the fluctuation of humidity becomes higher.
This is because the flow path of the fluid in the pipeline is heat transfer to the air due to the difference in wind speed between the high and low altitude areas, and the surface temperature of the pipeline due to the large heat of vaporization caused by wind after rain. This is an intermediate leak point for preventing an increase in humidity and condensation due to a decrease in temperature. The attachment position of the intermediate part is the buoyancy generated by the saturated water vapor pressure calculated in consideration of the actual measurement data in the pipe and the turbulent flow in the hollow pipe by the air via the intermediate humidity fluctuation suppression device attached to the intermediate part The ratio of the dry air that flows in due to the occurrence of this is effectively arranged to facilitate the increase in the exhaust direction.
Further, the non-breathable felt drainage body at the lowermost end of the hollow tube may be provided integrally in a humidity fluctuation suppressing device provided at the lowermost end.

上部・下部又は中部に設けられる湿度変動抑制装置及び小型湿度変動抑制器に用いられる防水性透過膜としては、外気側は吸湿性がある不織布から構成される防水性透過膜からなり、内側は外気側よりも透過性が高い防水性透過膜からなり、中間の膜は内側及び外気側よりも透過性が高い防水性透過膜であって、水蒸気の移動透過特性が時間経過に伴って変化する度合いが前記順番が一定時間は大小関係が変化しない組み合わせの膜を使用する。   As a waterproof permeable membrane used in the humidity fluctuation suppressing device and small humidity fluctuation suppressor provided in the upper, lower or middle part, the outside air side is composed of a waterproof permeable membrane composed of a hygroscopic nonwoven fabric, and the inside is outside air It consists of a waterproof permeable membrane that is more permeable than the side, and the intermediate membrane is a waterproof permeable membrane that is more permeable than the inner and outside air sides, and the degree to which the water vapor transfer property changes over time However, a combination of membranes in which the magnitude relationship does not change for a certain period of time is used.

更に、防水性透過膜に近接して導電性多孔体のメッシュを設けることが好ましい。このメッシュ(導電性多孔体)は、膜近傍に配置され、膜近傍の温度変化を均質化するとともに、水蒸気の移動の方向性も均質化し、膜の支持と補強を行い、又銅によるオリゴジナミー効果で、細菌や真菌による膜部の表面汚損を予防する。   Furthermore, it is preferable to provide a conductive porous mesh in the vicinity of the waterproof permeable membrane. This mesh (conductive porous body) is placed in the vicinity of the membrane, homogenizing the temperature change in the vicinity of the membrane, homogenizing the direction of movement of water vapor, supporting and reinforcing the membrane, and the oligodynamic effect of copper Thus, the surface of the membrane is prevented from being soiled by bacteria and fungi.

本発明を、100mを超える建造物の略垂直の主柱鋼管を中空管として実施した実施例でもって説明する。   The present invention will be described with an embodiment in which a substantially vertical main column steel pipe of a building exceeding 100 m is implemented as a hollow pipe.

本実施例は、建造物の主柱鋼管である中空管の最上端の開口に有蓋筒状の金属製キャップ体を開口とキャップ体内部が連通するように取り付け、同キャップ体の外周面に沿って小径の小孔を多数設け、各小孔に小型湿度変動抑制器を水平に取り付け、その小型湿度変動抑制器の外周にメッシュネットと外套を取り付けている。更に中空管の途中と最下端それぞれに、上記小型湿度変動抑制器より通気路の膜部が補強された中間・下部湿度変動抑制装置を設け、同中間・下部湿度変動抑制装置には毛細管現象によって外部に排水する非通気性のフェルト製排水体を備え、内部に非通気の排水路を形成させている。   In this embodiment, a lidded cylindrical metal cap body is attached to the opening at the uppermost end of a hollow pipe, which is a main pillar steel pipe of a building, so that the opening and the inside of the cap body communicate with each other. A large number of small holes having small diameters are provided along the small holes. A small humidity fluctuation suppressor is horizontally attached to each small hole, and a mesh net and a mantle are attached to the outer periphery of the small humidity fluctuation suppressor. Furthermore, an intermediate / lower humidity fluctuation suppression device is provided in the middle and lower end of the hollow tube with the membrane part of the air passage reinforced by the small humidity fluctuation suppressor, and the middle / lower humidity fluctuation suppression device has a capillary phenomenon. Is provided with a non-breathable felt drainage body that drains to the outside, and a non-ventilated drainage channel is formed inside.

図1,2,3,4,5中、Tは100m以上の建造物の主柱、Wは中空管1の最上端に取り付けた上部湿度変動抑制装置、Lは主柱となる鋼管の中空管1の最下端に取り付けた中型の排水体を内部に形成した下部湿度変動抑制装置、Mは中空管1の中間に取り付けた中型の排水体を内部に形成した中間湿度変動抑制装置である。   1, 2, 3, 4, and 5, T is a main pillar of a building of 100 m or more, W is an upper humidity fluctuation suppressing device attached to the uppermost end of the hollow tube 1, and L is a steel pipe that is a main pillar. Lower humidity fluctuation suppression device formed inside a middle drainage body attached to the lowermost end of the empty pipe 1, M is an intermediate humidity fluctuation suppression device formed inside a middle drainage body attached in the middle of the hollow tube 1 is there.

1は主柱Tとなる内径30cmで高さ100m以上のフランジで継がれた鋼管製中空管、1a,1bは中空管1のフランジ部、2は主柱Tのコンクリート基礎である。10は上部湿度変動抑制装置Wの内径30cmの有蓋の8角筒状のキャップ体、10aは同キャップ体のフランジ部、10bはキャップ体10の8角筒の各外周面に設けた1列縦6個の一面2列の割合で各8面に設けた段付きの96個の小孔、10cはフランジ部10aに設けた中空管1の最上端のフランジ部1aと連結するためのボルト孔、10dはフランジ部1a,10aとの連結を気密にするパッキンで、中空管1と熱的に断熱する作用ももつ。10eは上面のネジ孔、10fはキャップ体10の内部空間、11は各小孔10bに取り付けられる内径が約32mmで外径が約36mmの小型湿度変動抑制器、11a,11b,11cは小型湿度変動抑制器11内の通気路の防水性透過膜であり、外気側は吸湿性がある不織布から構成される防水性透過膜からなり、内側は外気側よりも透過性が高い防水性透過膜からなり、中間の膜は内側及び外気側よりも透過性が高い防水性透過膜であって、水蒸気の移動透過特性が時間経過に伴って変化する度合いが、前記順番が一定時間は大小関係が変化しない組み合わせの膜を使用している。   1 is a hollow tube made of steel pipe connected by a flange having an inner diameter of 30 cm and a height of 100 m or more, and 1a and 1b are flange portions of the hollow tube 1, and 2 is a concrete foundation of the main column T. 10 is a covered octagonal cylindrical cap body having an inner diameter of 30 cm of the upper humidity fluctuation suppressing device W, 10a is a flange portion of the cap body, and 10b is a single vertical column provided on each outer peripheral surface of the octagonal cylinder of the cap body 10. 96 small holes with steps provided on each of the eight surfaces in a ratio of six rows on one side, 10c are bolt holes for connecting to the uppermost flange portion 1a of the hollow tube 1 provided on the flange portion 10a Reference numeral 10d denotes a packing that hermetically connects the flange portions 1a and 10a, and also has a function of thermally insulating the hollow tube 1 from heat. 10e is a screw hole on the upper surface, 10f is an internal space of the cap body 10, 11 is a small humidity fluctuation suppressor having an inner diameter of about 32 mm and an outer diameter of about 36 mm attached to each small hole 10b, and 11a, 11b, and 11c are small humidity. It is a waterproof permeable membrane of the air passage in the fluctuation suppressor 11, the outside air side is made of a waterproof permeable membrane composed of a hygroscopic nonwoven fabric, and the inside is made of a waterproof permeable membrane having higher permeability than the outside air side. The intermediate membrane is a waterproof permeable membrane that is more permeable than the inside and outside air, and the degree to which the water vapor transfer characteristics change over time changes in magnitude when the order is constant for a certain period of time. Do not use a combination membrane.

11dは小型湿度変動抑制器11の内部を通気路とするケーシングの連通筒、11eは中間の防水性透過膜11bに近接して設けた導電性多孔体のメッシュ、11fは防水性透過膜11a,11bで区画される外側小室、11gは防水性透過膜11b,11cで区画される内側小室、11hは小孔10bの内壁面と当接させるパッキンであり、小孔10bは、小型湿度変動抑制器11の外気側空間15cとキャップ体10と内腔10fとを連通する通気路となる。   11d is a communicating tube of a casing having the inside of the small humidity fluctuation suppressor 11 as a ventilation passage, 11e is a mesh of a conductive porous body provided close to the intermediate waterproof permeable membrane 11b, 11f is a waterproof permeable membrane 11a, 11 b is an outer chamber defined by 11 b, 11 g is an inner chamber defined by the waterproof permeable membranes 11 b and 11 c, 11 h is a packing that abuts against the inner wall surface of the small hole 10 b, and the small hole 10 b is a small humidity fluctuation suppressor. 11 is an air passage that communicates the outside air-side space 15c, the cap body 10, and the lumen 10f.

12は縦6個2列の小型湿度変動抑制器11の外周部をキャップ体10の外周面に保持する縦長の固定板、12aは小型湿度変動抑制器11と外気側空間15cとを連通する同固定板内側面に設けた小型湿度変動抑制器11の外縁を係止する段付きの係止孔、12bは固定板12をキャップ体10の外周面に固定するためのスプリング12c付の取付ネジ、12cは固定板12及びメッシュネット13をキャップ体10方向に付勢するスプリング、13は固定板12の外周に配置され、連結ネジ12dでもって固定板12にスペーサ12eで間隔をあけて取り付けられ、風・水等や後述の外套14からの輻射熱が直接小型湿度変動抑制器11に影響するのを防ぐ縦長板状のメッシュネットである。図中のメッシュネット13と固定板12は平行に記載配置されているが、例えば上方が狭く下方が広い配置として輻射熱や風雨からの悪作用を裂けるようにしてもよい。14は同メッシュネットの外側に同メッシュネット・小型湿度変動抑制器・キャップ体の全体を被せるように取り付けられる金属製外套、14aは同外套をキャップ体10の上面に取り付ける取付ネジ、14bは断熱材、15a,15b,15cは通気路、17はフランジ部10aの外側に取り付けた下端に排水溝を設けた排水と凍結破壊防止のための水切り板、18a,18c,18cは金属製外套14・キャップ体10・中空管1とを接続する防雷の為にする電気的接地のためのアース線である。   Reference numeral 12 denotes a vertically long fixed plate that holds the outer peripheral portion of the six vertical two rows of small humidity fluctuation suppressors 11 on the outer peripheral surface of the cap body 10, and 12a is the same that connects the small humidity fluctuation suppressor 11 and the outside air side space 15c. A stepped locking hole for locking the outer edge of the small humidity fluctuation suppressor 11 provided on the inner surface of the fixing plate, 12b is a mounting screw with a spring 12c for fixing the fixing plate 12 to the outer peripheral surface of the cap body 10, 12c is a spring that urges the fixing plate 12 and the mesh net 13 toward the cap body 10, and 13 is arranged on the outer periphery of the fixing plate 12, and is attached to the fixing plate 12 with a spacer 12e with a connection screw 12d, This is a vertically long mesh net that prevents wind, water, etc. and radiant heat from the outer jacket 14 described later from directly affecting the small humidity fluctuation suppressor 11. Although the mesh net 13 and the fixed plate 12 in the drawing are arranged in parallel, for example, the upper part is narrow and the lower part may be wide so that the adverse effects from radiant heat and wind and rain may be broken. 14 is a metal outer jacket that is attached to the outside of the mesh net so that the entire mesh net, a small humidity fluctuation suppressor, and the cap body are covered, 14a is a mounting screw that attaches the outer jacket to the upper surface of the cap body 10, and 14b is heat insulating. 15a, 15b and 15c are ventilation passages, 17 is a drainage drainage groove provided at the lower end attached to the outside of the flange portion 10a and a draining plate for preventing freeze breakage, and 18a, 18c and 18c are metal jackets 14 This is a ground wire for electrical grounding for lightning protection connecting the cap body 10 and the hollow tube 1.

20a〜20kは下部湿度変動抑制装置L及び中間湿度変動抑制装置Mの共通した構成部分であって、小型湿度変動抑制器11と同様な通気路と膜構造を有し、小型湿度変動抑制器11に比べ外径が大きくて47mmとする中型のものである。20a,20b,20cは小型湿度変動抑制器11の防水性透過膜11a,11b,11cと同質の膜で内径は等しい防水性透過膜である。20dはケーシングである連通筒、20eは防水性透過膜20bに近接して設けた導電性多孔体のメッシュ、20fは防水性透過膜20a,20bで区画される外側小室、20gは防水性透過膜20b,20cで区画される内側小室、20hは中空管1の内部空間と下部・中間湿度変動抑制装置L,Mの連通筒20dとを連通する連通管、20iはフェルト製の毛細管現象で水を移動させる非通気性排水体、20kは連通筒20dの周壁内に形成された排水路である。
尚、膜の補強メッシュを付与して、上部の小型湿度変動抑制器11よりも強化されている。
Reference numerals 20a to 20k are components common to the lower humidity fluctuation suppressing device L and the intermediate humidity fluctuation suppressing device M, and have the same air passage and membrane structure as the small humidity fluctuation suppressing device 11, and the small humidity fluctuation suppressing device 11 is used. Is a medium-sized one having an outer diameter of 47 mm. Reference numerals 20a, 20b, and 20c are waterproof permeable membranes having the same inner diameter as the waterproof permeable membranes 11a, 11b, and 11c of the small humidity fluctuation suppressor 11. 20d is a communication cylinder as a casing, 20e is a conductive porous mesh provided in the vicinity of the waterproof permeable membrane 20b, 20f is an outer chamber defined by the waterproof permeable membranes 20a and 20b, and 20g is a waterproof permeable membrane. 20 h is an inner chamber defined by 20 c, 20 h is a communication pipe that connects the internal space of the hollow tube 1 and the communication cylinder 20 d of the lower / intermediate humidity fluctuation suppressing devices L and M, and 20 i is a felt capillary action and water. A non-breathable drainage body 20k is moved, and 20k is a drainage channel formed in the peripheral wall of the communication cylinder 20d.
In addition, the reinforcement mesh of the film | membrane is provided and it is strengthened rather than the small small humidity fluctuation suppressor 11 of the upper part.

フェルト製の排水体20iは、フェルト内の繊維に、寒天又はオブラート等の長鎖タンパク質を防腐剤としてタンニン酸を用いて、防腐処理・防虫処理を行ったエマルジョンをpH調整してほぼ中性としたコロイド状液を含浸させ、乾燥させたフェルトの表面に、アラビアのり等の被膜状の水溶性糊剤により表面を覆う処理を行った。
全体をアラビアのりのような糊剤で固めると、フェルト内に含まれる硬化乾燥した後に水分に接触しても、膨潤して崩壊するまでに長時間を要する。ところで、水分に接触して早期に気密性を破壊し、通水性を確保するためには、フェルト内に浸入したタンパク鎖の膨潤を活用して、最外側の被膜(アラビアのりの被膜)を早く(3分以内)崩壊して、排水を促進することができる。
本排水機構にあっては、排水機能が作動した後は、前記糊剤やフェルト内のタンパク質は一部溶出した後でも、フェルト材はエアフィルター効果を持ち、外界の異物の保護空間内への侵入を阻止して通気路となるが水蒸気の移動には制限がかけられる。フェルト材の素材とては、ポリエステル綿・ナイロン・合成繊維・天然繊維など任意であるが、耐候性の高い物質が好ましい。又吸湿性は低い素材の方が、前記のコロイド液乾燥に都合がよく、製作しやすく、安定した機能を得やすい。
Felt drainage 20i is made almost neutral by adjusting the pH of an emulsion that has been subjected to antiseptic and insecticidal treatments using tannic acid as a preservative for long-chain proteins such as agar or oblate on the fibers in the felt. The surface of the felt that was impregnated with the colloidal liquid and dried was covered with a film-like water-soluble paste such as Arabic glue.
When the whole is hardened with a paste such as Arabian glue, it takes a long time to swell and disintegrate even if it comes into contact with moisture after being cured and dried contained in the felt. By the way, in order to destroy the airtightness at an early stage in contact with moisture and to ensure water permeability, the outermost coating (arabic glue coating) is made faster by utilizing the swelling of protein chains that have entered the felt. It can collapse (within 3 minutes) and promote drainage.
In this drainage mechanism, after the drainage function is activated, the felt material has an air filter effect even after the glue and the protein in the felt are partially eluted, and the foreign matter is introduced into the protective space. Intrusion is prevented and a ventilation path is formed, but the movement of water vapor is limited. The material of the felt material is arbitrary, such as polyester cotton, nylon, synthetic fiber, and natural fiber, but a material having high weather resistance is preferable. A material with low hygroscopicity is more convenient for drying the colloidal liquid, is easy to manufacture, and is stable.

中空管1に傾斜がある場合には、図6のように、11aや11cの外側に水が付着貯留しにくいように、また小型湿度変動抑制器11が水平に配置されるように、大容量対応型水蒸気移動制御装置を水平に配置するように、配置するための補助傾斜リング19を配置してもよい。   When the hollow tube 1 is inclined, as shown in FIG. 6, the large humidity fluctuation suppressor 11 is arranged horizontally so that water does not easily adhere to and accumulate on the outside of 11a and 11c. You may arrange | position the auxiliary | assistant inclination ring 19 for arrange | positioning so that a capacity | capacitance type water vapor movement control apparatus may be arrange | positioned horizontally.

上部湿度変動抑制装置Wの外套14は、導電性体により被覆されるか、導電性構成材料によって構成され、中空管1に電気的にアース線18a,18b,18cに接続され、接地される。この結果、直撃雷による焼損が予防される。
尚、同外套14は、強い風・雨水・粉塵及び紫外線などの太陽光等が直接小型湿度変動抑制器11に当たるのを防ぐ。その内側のメッシュネット13によって更に被覆され、水滴が滞りにくい構造となっている。この結果、地上での風速が2m/secでも高度の高い60m位置などでは8m/secであるような場合は頻繁に発生しているために、水蒸気の移動制御を行うための、装置・膜の表面温度が異常に変動して、水蒸気移動が悪作用を受けることを予防することができる。
The outer jacket 14 of the upper humidity fluctuation suppressing device W is covered with a conductive material or made of a conductive constituent material, and is electrically connected to the ground wire 18a, 18b, 18c and grounded to the hollow tube 1. . As a result, burnout due to direct lightning is prevented.
The outer jacket 14 prevents strong wind, rainwater, dust and sunlight such as ultraviolet rays from directly hitting the small humidity fluctuation suppressor 11. It is further covered with a mesh net 13 on the inside, and has a structure in which water droplets are less likely to stagnate. As a result, even when the wind speed on the ground is 2 m / sec, it frequently occurs when the altitude is 60 m at a high altitude, such as 8 m / sec. It can be prevented that the surface temperature fluctuates abnormally and the water vapor movement is adversely affected.

外套14の下に配置される、外套14下で風力を低下させるメッシュネット13の設計は任意であり、実施例では、パンチ小孔の配置は、俵積み配列など任意であるし、複数の多孔メッシュを打ち抜き板から構成し、離隔をおいてこれらの多孔メッシュを複数配置してもよい。
また、15cの空間は固定板と平行でなくともよい。
The design of the mesh net 13 disposed under the outer cannula 14 to reduce the wind force under the outer cannula 14 is arbitrary, and in the embodiment, the arrangement of the punch holes is arbitrary such as a stacked arrangement, and a plurality of porous holes The mesh may be formed from a punched plate, and a plurality of these porous meshes may be arranged at a distance.
Further, the space 15c may not be parallel to the fixed plate.

最下位や中間部の湿度変動抑制装置L,Mは、排水や管路内の乱流の発生による水蒸気の排出促進作用を有する。最外側の外套14は日除け及び雨よけ、外套14の内側のリム状の水切り板17は乱流発生堤防となる。   The lowermost and middle humidity fluctuation suppression devices L and M have an action of promoting the discharge of water vapor due to the generation of turbulent flow in the drainage or pipes. The outermost mantle 14 is shaded and protected from rain, and the rim-like draining plate 17 inside the mantle 14 is a turbulent levee.

固定板12は、小型湿度変動抑制器11の外周部をキャップ体10の外周面に設けられた段付き小孔10b内のパッキン11hを介して、取付ネジ12bとスプリング12cによりキャップ体10へ圧接される。メッシュネット13と固定板12は、連結ネジ12dにより12eのスペーサで間隔をあけて固定される。これらは、取付ネジ12bにより貫通され、スプリング12cによってキャップ体10の方向に小型湿度変動抑制器11を段付き小孔10b内のパッキン11hを介して圧接される。   The fixing plate 12 is pressed against the cap body 10 by a mounting screw 12b and a spring 12c via a packing 11h in a stepped small hole 10b provided on the outer peripheral surface of the cap body 10 at the outer periphery of the small humidity fluctuation suppressor 11. Is done. The mesh net 13 and the fixing plate 12 are fixed to each other with a spacer 12e by a connecting screw 12d. These are penetrated by the mounting screw 12b, and the small humidity fluctuation suppressor 11 is pressed by the spring 12c in the direction of the cap body 10 through the packing 11h in the stepped small hole 10b.

もしも建造物の中空管1頂部等に落雷が起きたときには、中空管内部1c及びキャップ体10の内部空間10fの内圧が急激に上昇して、小型湿度変動抑制器11の内部に過剰な圧力が加わらないように、前記小型湿度変動抑制器11は、段付き小孔10b内を滑走して浮き上がり、中空管1の内部空間1cやキャップ体10の内部空間10fの急激な圧力の変化は、リークによって緩衝され、小型湿度変動抑制器11の内部の破損を防止する。又図中には省略したが、11と同径の圧力変化検出用センサを配置して、圧力異常を検出することができる。   If a lightning strike occurs at the top of the hollow tube 1 of the building, the internal pressure of the hollow tube interior 1c and the internal space 10f of the cap body 10 suddenly rises and excessively increases in the small humidity fluctuation suppressor 11. The small humidity fluctuation suppressor 11 slides and floats in the stepped small hole 10b so that no pressure is applied, and sudden pressure changes in the internal space 1c of the hollow tube 1 and the internal space 10f of the cap body 10 occur. Is buffered by a leak and prevents damage to the inside of the small humidity fluctuation suppressor 11. Although not shown in the figure, a pressure change detection sensor having the same diameter as 11 can be arranged to detect a pressure abnormality.

環状の水切り板17は、外套14の内側にあり、キャップ体10のフランジ部10aに固定されている。外套14とキャップ体10のフランジの間には、隙間が5mm程度を隔てる、通気路15aが環状に在る。
水蒸気の移動は、中空管内部1cにより、キャップ体の内部空間10fを経由して、小型湿度変動抑制器11の通気路となる膜11a,11b,11c,小室11f,11gを通り、メッシュネット13と固定板12の間通気路15cよりメッシュネット13を経由して、外套14内側の通気路15bに至り、通気路15aより大気中に拡散する。水切り板17は、外套14からの直接の風当たりを撹拌する作用や、風雨の直接の小型湿度変動抑制器11への吹きつけを防止し、前記小型湿度変動抑制器11の水蒸気の移動特性への悪作用を小さくする。
The annular draining plate 17 is inside the outer jacket 14 and is fixed to the flange portion 10 a of the cap body 10. Between the outer sheath 14 and the flange of the cap body 10, there is an annular air passage 15a with a gap of about 5 mm.
The movement of the water vapor passes through the membrane 11a, 11b, 11c and the small chambers 11f, 11g, which are the ventilation passages of the small humidity fluctuation suppressor 11, via the inner space 10f of the cap body by the hollow tube inside 1c, and the mesh net. 13 and the fixed plate 12 through the mesh net 13 from the air passage 15c to the air passage 15b on the inner side of the outer jacket 14, and diffused into the atmosphere from the air passage 15a. The draining plate 17 prevents the action of stirring the direct wind from the mantle 14 and the direct blowing of wind and rain to the small humidity fluctuation suppressor 11, and improves the water vapor movement characteristics of the small humidity fluctuation suppressor 11. Reduce adverse effects.

又、固定板12とキャップ体10の間の間隙dに耐熱性保温材を配置してもよい。
外套14は、キャップ体10の頂部に取付ネジ14aにて取り付けるが、このネジ孔10eはキャップ体10の頂部を貫通せず水漏れが起こることはない。
メッシュネット13は、地上では2m/sec位の風速でも50mなどの高さでも風速は高くなり8〜10m/secとなることは多いので、小型湿度変動抑制器11の外表面等に直接強風が当たって前記小型湿度変動抑制器11の急激な温度変動を避けることができ、性能の安定化と耐久性の安定化が図られる。
Further, a heat resistant heat insulating material may be disposed in the gap d between the fixed plate 12 and the cap body 10.
The outer jacket 14 is attached to the top of the cap body 10 with a mounting screw 14a, but the screw hole 10e does not penetrate the top of the cap body 10 and water leakage does not occur.
The mesh net 13 has a high wind speed of 8 to 10 m / sec at a wind speed of about 2 m / sec or 50 m on the ground, and is often 8 to 10 m / sec. In this case, a rapid temperature fluctuation of the small humidity fluctuation suppressor 11 can be avoided, so that the performance and the durability can be stabilized.

外套14は、日除け及び通気路15aをキャップ体10のフランジ部10aの間に形成し、強風や強雨が外套14内に浸入することを予防する小さな環状スリット15aを形成する。
外套14の素材は金属製であるが、内面には耐熱性の断熱性塗装が施され、外套14から前記小型湿度変動抑制器11への輻射熱による悪作用を予防し、又外套14内を紫外線から保護する。
又外套14の下に、輻射熱を断熱するための断熱材をメッシュネット13の外周に配置してもよい。
The mantle 14 forms a sun shield and a ventilation passage 15a between the flange portions 10a of the cap body 10 and forms a small annular slit 15a that prevents strong wind and heavy rain from entering the mantle 14.
The material of the outer jacket 14 is made of metal, but the inner surface is coated with a heat-resistant heat-insulating coating to prevent adverse effects due to radiant heat from the outer jacket 14 to the small humidity fluctuation suppressor 11, and the inside of the outer jacket 14 is exposed to ultraviolet rays. Protect from.
Further, a heat insulating material for insulating radiant heat may be disposed on the outer periphery of the mesh net 13 under the outer jacket 14.

本実施例において、中空管1内の水蒸気は主として上部湿度変動抑制装置Wによって、副次的に下部湿度変動抑制装置L,中間湿度変動抑制装置Mによって移動制御され、中空管1内の湿度変動は大略80%RH以下で、下方は50%RH近い湿度に抑制される。   In this embodiment, the water vapor in the hollow tube 1 is controlled to move mainly by the upper humidity fluctuation suppressing device W and secondarily by the lower humidity fluctuation suppressing device L and the intermediate humidity fluctuation suppressing device M. The humidity fluctuation is approximately 80% RH or less, and the lower part is suppressed to a humidity close to 50% RH.

上部湿度変動抑制装置Wには、水蒸気が上昇流とともに集まる傾向があるが、その水蒸気は中空管1の最上端の内径30cmのキャップ体10の内部に進入する。この水蒸気はキャップ本体10の外周面に水平に設けられた96個の内径32mm程の小型湿度変動抑制器11によって中空管1内の湿度変動を小さくするように作用するとともに、外気側への水蒸気の拡散を促進する。同様に中空管1の下部と中間でも、外径47mmの中型の湿度変動抑制装置L,Mによっても湿度変動を少なくして乱流を生じ効率的に水蒸気の排出を促進するようにしている。   In the upper humidity fluctuation suppressing device W, the water vapor tends to gather together with the upward flow, but the water vapor enters the cap body 10 having an inner diameter of 30 cm at the uppermost end of the hollow tube 1. This water vapor acts to reduce the humidity fluctuation in the hollow tube 1 by 96 small humidity fluctuation suppressors 11 having an inner diameter of about 32 mm provided horizontally on the outer peripheral surface of the cap body 10, and to the outside air side. Promotes water vapor diffusion. Similarly, in the lower and middle portions of the hollow tube 1, the medium-sized humidity fluctuation suppression devices L and M having an outer diameter of 47 mm also reduce humidity fluctuations to generate turbulent flow and efficiently promote the discharge of water vapor. .

これらの小型湿度変動抑制器11及び下部・中間の中型の湿度変動抑制装置L,Mの水蒸気移動制御による湿度変動抑制の作用は、防水性透過膜11a,11b,11c,20a,20b,20cの作用によるものである。以下、その湿度抑制の現象を説明する。   The action of moisture fluctuation suppression by the water vapor movement control of the small humidity fluctuation suppressor 11 and the middle and lower middle-sized humidity fluctuation suppression devices L and M is the same as that of the waterproof permeable membranes 11a, 11b, 11c, 20a, 20b and 20c. This is due to action. Hereinafter, the phenomenon of humidity suppression will be described.

中空管内と外気とを連通する通気路においてこれら3種類の防水性透過膜の移動境界面から2小室に区分され、これらの空間の間で熱交換が行われる。移動現象が膜によって制限され、等圧変化傾向で、移動境界面の熱交換が移動方向に行われる。この経過で移動エネルギーの伝搬ロスが発生する。
この熱伝達は逆方向でも同様であるが、大気側は図9に示したように容積に制限はないので、圧力変化は発生しない。そこで、中空管側から大気側への移動には、中空管内と大気間の水蒸気圧差で移動が発生し、大気側と中空管内の水蒸気圧が等しくなるまで移動が継続しやすく、大気方向へ移動し易い。
同様に、外気側の方が中空管内に比べて水蒸気圧が高い場合には、中空管方向への水蒸気の移動が発生する。しかし、この移動方向では、結果的に中空管内部の圧力上昇をまねき、明らかな仕事量を必要とする。また中空管内圧及び中間の透過膜から他の透過膜への圧力上昇のための仕事量が必要となるが、熱エネルギーの伝搬ロスがあるため抑制される。これらの結果、中空管内は、中空管内部よりも高い外気側の水蒸気圧量にはなりにくく、圧力差の矛盾は、水蒸気の移動が抑制されるかわりに、空気が移動して安定する。この現象は、結果的には逆浸透現象に類似する。
具体的な水蒸気の移動経過では、中空管内部空間からの熱伝播は、外気方向への水蒸気の浮力によって、最上部にある上部湿度変動抑制装置の小型湿度抑制器11の集合体から、熱的には並列回路として排出される。
下方又は中間の湿度変動抑制装置L,Mでは、外気からの水蒸気の保護空間への移動を妨げる効果を期待するので、膜部の補強を行う。この結果、除湿された空気が、保護空間に流入するとともに、外気流の異物の侵入を妨げる。
An air passage that communicates the inside of the hollow tube with the outside air is divided into two small chambers from the moving boundary surfaces of these three types of waterproof permeable membranes, and heat exchange is performed between these spaces. The movement phenomenon is limited by the film, and the heat exchange at the movement boundary surface is performed in the movement direction with a tendency to change the isobaric pressure. In this process, a propagation loss of kinetic energy occurs.
This heat transfer is the same in the reverse direction, but the pressure on the atmosphere side does not change because the volume is not limited as shown in FIG. Therefore, the movement from the hollow tube side to the atmosphere side is caused by the difference in water vapor pressure between the hollow tube and the atmosphere, and the movement is likely to continue until the water vapor pressure in the atmosphere side and the hollow tube becomes equal, and the movement toward the atmosphere. Easy to move.
Similarly, when the water vapor pressure is higher on the outside air side than in the hollow tube, the water vapor moves toward the hollow tube. However, this moving direction results in an increase in pressure inside the hollow tube and requires a clear amount of work. In addition, the work pressure for increasing the pressure inside the hollow tube and the pressure from the intermediate permeable membrane to another permeable membrane is required, but it is suppressed because there is a propagation loss of thermal energy. As a result, the inside of the hollow tube is less likely to have a higher water vapor pressure on the outside air side than the inside of the hollow tube, and the contradiction in the pressure difference is stabilized by the movement of the air instead of the movement of the water vapor. This phenomenon is similar to the reverse osmosis phenomenon as a result.
In the specific progress of the movement of water vapor, the heat propagation from the hollow tube internal space is caused by the buoyancy of the water vapor in the direction of the outside air from the assembly of the small humidity suppressors 11 of the upper humidity fluctuation suppressing device at the top. It is discharged as a parallel circuit.
In the lower or middle humidity fluctuation suppression devices L and M, the effect of hindering the movement of water vapor from the outside air to the protection space is expected, so the membrane portion is reinforced. As a result, the dehumidified air flows into the protection space and prevents the entry of foreign matter in the external airflow.

水蒸気移動量の差を形成する境界面の移動量を説明するため、図8,9に通気路の透過膜の透過量の比率で示す模式図を示している。
更に水蒸気の移動量を求めるために、中空管内側の圧力を1として、等温等圧下での水蒸気の移動量を精密測定した結果をもとに、時間経過に伴って変化させた水蒸気の移動質量図8の上3本を、理論的に組み合わせた場合を仮定して、透過量を単純に比率計算して求める。
図10に、膜の不織布から撥水面方向の透過質量を示している。この結果は、不織布から撥水面方向への水蒸気の透過質量を示す。逆方向の移動量の変化は、膜では、表面積が大きい不織布の方が外気側を向いている場合の方が移動速度は速くなるが、温度の影響は大きくなりやすい。
しかし、概ね、水蒸気の不織布から撥水面方向への移動量と、撥水面から不織布面への移動量はほぼ等しいものとして差し支えない。これらの方向性は、膜の表面汚損や表面の温度変化を考慮して配置することが望ましい。
In order to explain the amount of movement of the boundary surface that forms the difference in the amount of water vapor movement, FIGS. 8 and 9 are schematic views showing the ratio of the amount of permeation of the permeable membrane in the air passage.
In addition, in order to determine the amount of water vapor movement, the pressure inside the hollow tube is set to 1, and the water vapor movement changed over time based on the result of precise measurement of the amount of water vapor movement under isothermal isobaric pressure. Assuming the case where the top three of the mass diagram 8 are theoretically combined, the transmission amount is obtained by simply calculating the ratio.
In FIG. 10, the permeation | transmission mass of the water-repellent surface direction from the nonwoven fabric of a film | membrane is shown. This result shows the permeation | transmission mass of the water vapor | steam from a nonwoven fabric to a water-repellent surface direction. As for the change in the amount of movement in the reverse direction, in the case of the membrane, the nonwoven fabric having a larger surface area faces the outside air, the movement speed becomes faster, but the influence of temperature tends to increase.
However, in general, the amount of movement of water vapor from the nonwoven fabric in the direction of the water-repellent surface and the amount of movement from the water-repellent surface to the nonwoven fabric surface may be substantially equal. It is desirable to arrange these directions in consideration of the surface contamination of the film and the temperature change of the surface.

特に、本実施例の上部湿度変動抑制装置Wは、キャップ体の内径が300mmに対し、小型湿度変動抑制器11の内径が32mmで約1/10の径で、面積にして1/100程となるので、透過膜の圧力に対する耐圧性は全く問題なく使用できる。   In particular, in the upper humidity fluctuation suppressing device W of the present embodiment, the inner diameter of the cap body is 300 mm, the inner diameter of the small humidity fluctuation suppressor 11 is 32 mm, about 1/10 of the diameter, and about 1/100 in area. Therefore, the pressure resistance against the pressure of the permeable membrane can be used without any problem.

以上のように、本実施例の装置なしでは、鉄塔内の中間管1内の湿度が90%RH以上から40%RH以下の湿度変動を一日一サイクルで生じる場合でも、湿度を80%RH以下で低い方も50%RH近くにまでできて湿度変動幅を大きく低減し、中空管内の結露の発生を抑え、管路内の表面汚損を予防して、中空管の内部の錆・腐食を少なくして、寿命を長くできるものとした。   As described above, without the apparatus of the present embodiment, even when the humidity in the intermediate pipe 1 in the steel tower changes from 90% RH to 40% RH in one cycle per day, the humidity is 80% RH. The lower one can also be close to 50% RH, greatly reducing the humidity fluctuation range, suppressing the occurrence of condensation in the hollow tube, preventing surface contamination in the pipe, and rusting and corrosion inside the hollow tube The lifespan can be extended by reducing

本発明は、屋外の橋・建物の主柱の中空管の他、建物内に設置した垂直なパイプ内の湿度による劣化にも使用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for deterioration due to humidity in a vertical pipe installed in a building as well as a hollow pipe of a main pillar of an outdoor bridge / building.

T 主柱
W 上部湿度変動抑制装置
L 下部湿度変動抑制装置
M 中間湿度変動抑制装置
1 中空管
d 間隙
1a,1b フランジ部
1c 内部空間
2 コンクリート基礎
10 キャップ体
10a フランジ部
10b 小孔
10c ボルト孔
10d パッキン
10e ネジ孔
10f 内部空間
11 小型湿度変動抑制器
11a,11b,11c 防水性透過膜
11d 連通筒
11e メッシュ
11f 外側小室
11g 内側小室
11h パッキン
12 固定板
12a 係止孔
12b 取付ネジ
12c スプリング
12d 連結ネジ
12e スペーサ
13 メッシュネット
14 外套
14a 取付ネジ
14b 断熱材
15a,15b,15c 通気路
17 水切り板
18a,18b,18c アース線
19 補助傾斜リング
20a,20b,20c 防水性透過膜
20d 連通筒
20e メッシュ
20f 外側小室
20g 内側小室
20h 連通管
20i 排水体
20k 排水路
T Main pillar W Upper humidity fluctuation suppression device L Lower humidity fluctuation suppression device M Intermediate humidity fluctuation suppression device 1 Hollow tube d Gap 1a, 1b Flange 1c Internal space 2 Concrete foundation 10 Cap body 10a Flange 10b Small hole 10c Bolt hole 10d Packing 10e Screw hole 10f Inner space 11 Small humidity fluctuation suppressor 11a, 11b, 11c Waterproof permeable membrane 11d Communication cylinder 11e Mesh 11f Outer small chamber 11g Inner small chamber 11h Packing 12 Fixing plate 12a Locking hole 12b Mounting screw 12c Spring 12d Screw 12e Spacer 13 Mesh net 14 Mantle 14a Mounting screw 14b Heat insulating material 15a, 15b, 15c Air passage 17 Drain plate 18a, 18b, 18c Ground wire 19 Auxiliary inclined ring 20a, 20b, 20c Waterproof permeable membrane 20d Passing tube 20e meshes 20f outer chamber 20g inner chamber 20h communicating pipe 20i drainage body 20k drainage

Claims (3)

屋外で垂直又は斜めに設置された非開放の長尺中空管の内部空間の湿度調整装置であって、中空管の管内部と外気とを連通するように形成した通気路に複数の防水性水蒸気透過膜を所定間隔離して配置して膜特性によって管内の湿度変動を抑止する上部湿度変動抑制装置を中空管の最上端に設け、同上部湿度変動抑制装置を除いて中空管内部を気密化し、最下端に管内の水を毛細管現象によって外部に排水する非通気性のフェルト製排水体を設けて非通気の排水路を形成し、中空管内部を上部湿度変動抑制装置の水蒸気透過膜と排水体とで大気の粉塵・雨水及び虫の進入を防止するとともに中空管内部の湿度の大きな変動を抑制して中空管の湿度変動による劣化を抑えて中空管の耐久性を高める、長尺中空管の内部空間の湿度調整装置。   A humidity control device for the internal space of a non-open long hollow tube installed vertically or obliquely outdoors, and a plurality of waterproofs in an air passage formed to communicate the inside of the hollow tube with the outside air An upper humidity fluctuation suppression device is installed at the uppermost end of the hollow tube to suppress humidity fluctuations in the tube according to the membrane characteristics by separating the water vapor permeable membrane by a predetermined distance, and inside the hollow tube except for the upper humidity fluctuation suppression device The bottom end is provided with a non-breathable felt drainage body that drains the water in the pipe to the outside by capillary action to form a non-ventilated drainage channel. The permeation membrane and drainage body prevent atmospheric dust, rainwater and insects from entering, and suppress large fluctuations in the humidity inside the hollow tube, thereby suppressing deterioration due to humidity fluctuations in the hollow tube and durability of the hollow tube Increase the humidity of the internal space of the long hollow tube. 中空管の最下端にも、外気と連通する通気路に複数の防水性水蒸気透過膜を所定間隔離して配置して膜特性によって管内の湿度変動を抑える下部湿度変動抑制装置を設け、同下部湿度変動抑制装置内部に非通気性のフェルト製排水体を設けて非通気の排水路を形成した、請求項1記載の長尺中空管の内部空間の湿度調整装置。   The lower end of the hollow tube is also provided with a lower humidity fluctuation suppression device that arranges a plurality of waterproof water vapor permeable membranes at predetermined intervals in an air passage communicating with the outside air to suppress humidity fluctuations in the tube according to the membrane characteristics. The humidity adjusting device for an internal space of a long hollow tube according to claim 1, wherein a non-breathable felt drainage body is provided inside the humidity fluctuation suppressing device to form a non-ventilated drainage channel. 最上端の上部湿度変動抑制装置が、中空管の最上端の管開口に取り付けられる中空の有蓋筒状キャップ体の外周面に多数の小径の連通孔を設け、同連通孔に一端が接続され他端が大気と連通するように設けた小径の連通筒の内部の通気路に所定間隔離して複数の防水性水蒸気透過膜を設けた小型湿度変動抑制器を各連通孔それぞれに気密状に且つ水平に取り付け、更に同小型湿度変動抑制器の外側に直接風雨水が接触しないようにするメッシュネットを有蓋筒外側に設け、更にその外側を通気空間のある外套で保護した構造とした、請求項1又は2記載の長尺中空管の内部空間の湿度調整装置。   The uppermost upper humidity fluctuation suppressing device is provided with many small-diameter communication holes on the outer peripheral surface of a hollow covered cylindrical cap body attached to the uppermost tube opening of the hollow tube, and one end is connected to the communication hole. A small humidity fluctuation suppressor provided with a plurality of waterproof water vapor permeable membranes separated from each other by a predetermined distance in an air passage inside a small-diameter communication tube provided so that the other end communicates with the atmosphere is airtight in each communication hole and A structure in which the mesh net is installed on the outer side of the covered cylinder and is further protected by a mantle having a ventilation space. The humidity adjusting device for the internal space of the long hollow tube according to 1 or 2.
JP2009054306A 2009-03-07 2009-03-07 Device for regulating humidity of internal space of long hollow pipe Pending JP2010209532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054306A JP2010209532A (en) 2009-03-07 2009-03-07 Device for regulating humidity of internal space of long hollow pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054306A JP2010209532A (en) 2009-03-07 2009-03-07 Device for regulating humidity of internal space of long hollow pipe

Publications (1)

Publication Number Publication Date
JP2010209532A true JP2010209532A (en) 2010-09-24

Family

ID=42969972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054306A Pending JP2010209532A (en) 2009-03-07 2009-03-07 Device for regulating humidity of internal space of long hollow pipe

Country Status (1)

Country Link
JP (1) JP2010209532A (en)

Similar Documents

Publication Publication Date Title
KR0181303B1 (en) Passive containment cooling system
EP2635869A2 (en) Air introduction system and method for cooling towers
JP4467620B2 (en) Corrosion prevention system for structures with stay cables
US10420288B2 (en) Crop irrigation and thermal-protection system
JP2010209532A (en) Device for regulating humidity of internal space of long hollow pipe
US11993454B2 (en) Vent assembly
WO1999009346A1 (en) A thermally insulating cover structure, a pipeline using said cover structure and a method for providing a pipeline with said cover structure
US10955377B2 (en) Gas sensors with structure to resist signal losses due to condensation
JP2010234307A (en) Humidity adjustment device
US10378693B2 (en) Condensate drain
CN101044358B (en) Insulation system with condensate wicking for vertical applications
KR101755891B1 (en) Humidifier for fuel cell
US20210123555A1 (en) Ventilation system for insulated pipe
KR101595089B1 (en) Insulation and waterproof system for rooftop of building
KR102303853B1 (en) Valve Room with Porous Heat Transfer Unit
CN104145164B (en) Drive away the multi-functional valve device and method of building structure moisture and saturated steam
CN207920216U (en) It is a kind of for the thermal imaging detection of forest fire protection and the protective device of pre-warning facility
CN1097190C (en) Thermally insulating cover structure, pipeline using said cover structure and method for providing pipeline with said cover structure
JP3219367B2 (en) Dehumidifier
KR102247060B1 (en) Rooftop slab structure capable of draining water and degassing moisture
CN210151576U (en) Anchor protection device for inhaul cable and suspender
KR102515347B1 (en) Apparatus for reducing pressure of water supply
WO2012071415A2 (en) Surface film distribution system and method thereof
WO2023286912A1 (en) Anti-condensation valve chamber
JP2739901B2 (en) Drainage equipment