JP2010234188A - Sludge dewatering method - Google Patents

Sludge dewatering method Download PDF

Info

Publication number
JP2010234188A
JP2010234188A JP2009082568A JP2009082568A JP2010234188A JP 2010234188 A JP2010234188 A JP 2010234188A JP 2009082568 A JP2009082568 A JP 2009082568A JP 2009082568 A JP2009082568 A JP 2009082568A JP 2010234188 A JP2010234188 A JP 2010234188A
Authority
JP
Japan
Prior art keywords
sludge
dewatering
treatment
concentrated salt
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009082568A
Other languages
Japanese (ja)
Other versions
JP5402157B2 (en
Inventor
Takaaki Masui
孝明 増井
Toru Masaoka
融 正岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2009082568A priority Critical patent/JP5402157B2/en
Priority to CN2010800131614A priority patent/CN102361829B/en
Priority to KR1020117019008A priority patent/KR20120022706A/en
Priority to PCT/JP2010/055525 priority patent/WO2010113846A1/en
Priority to TW099109624A priority patent/TWI534100B/en
Publication of JP2010234188A publication Critical patent/JP2010234188A/en
Application granted granted Critical
Publication of JP5402157B2 publication Critical patent/JP5402157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress chemical cost when carrying out the dewatering treatment of sludge generated in a biological treatment process and the like of various kinds of industrial wastewater using an electroosmotic dewatering device, and to carry out efficient electroosmosis dewatering treatment without requiring additional equipment, such as a dissolving tank and heating equipment, and additional energy. <P>SOLUTION: After a concentrated salt discharged from wastewater treatment equipment is added to the sludge, the sludge is subjected to the dewatering treatment in the electroosmotic dewatering device. The addition of the concentrated salt discharged from the wastewater treatment equipment which has been conventionally treated as industrial waste to the sludge subjected to electroosmotic dewatering increases the electric conductivity of the sludge and increases the dewatering efficiency by the electroosmotic dewatering device, whereby the water content of the obtained dewatered sludge can be reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、各種産業排水の生物処理過程等で発生する汚泥を電気浸透脱水装置で脱水する方法に係り、特に、電気浸透脱水前の汚泥の調質に、従来廃棄処分されていた濃縮塩を用いることにより、含水率の低い脱水汚泥を工業的に有利に得る方法に関する。   The present invention relates to a method of dewatering sludge generated in biological treatment processes of various industrial wastewater with an electroosmotic dehydrator, and in particular, concentrated salt that has been disposed of in the past for tempering sludge before electroosmotic dehydration. The present invention relates to a method for industrially advantageously obtaining dehydrated sludge having a low moisture content.

各種産業排水の生物処理過程で発生する汚泥は多くの水分を含んでいるため、脱水処理した後、廃棄物として処分されている。従来、汚泥の脱水には、ベルトプレスやフィルタープレス等の加圧式脱水機や遠心脱水機などの機械的脱水装置が用いられてきたが、これらの脱水装置では、一部の汚泥(繊維質や砂分といった脱水し易い成分が多く含まれている汚泥)を除き、含水率を十分に低くすることはできず、得られる脱水汚泥の含水率は80%程度が限度である。   Sludge generated in the biological treatment process of various industrial effluents contains a lot of moisture, and is disposed of as waste after dehydration. Conventionally, mechanical dehydration devices such as pressure dehydrators such as belt presses and filter presses and centrifugal dehydrators have been used for sludge dewatering. However, some of these sludges (fibers and Except for sludge containing a lot of easily dehydrated components such as sand, the water content cannot be lowered sufficiently, and the water content of the obtained dehydrated sludge is limited to about 80%.

これに対して、電気浸透脱水装置による電気浸透脱水処理であれば、被処理汚泥に電極を挿入して通電し、電気浸透作用によりマイナス荷電した汚泥を陽極側に引き寄せ、一方、汚泥の間隙水を陰極側に移動させて分離させながら加圧力をかけて脱水するため、機械的脱水処理の場合に比べて、脱水効率が高く、汚泥の含水率を更に低減することが可能である。
即ち、汚泥粒子の表面は−10〜−20mVに帯電しており、その周囲の水は電気二重層を形成しプラスに帯電している。従って、陽極と陰極に挟まれた汚泥に直流電源を印加すると、プラスに帯電した水が陰極側に引き寄せられる。この状態で圧力を加えると、水は陰極側から濾液として排出され、汚泥の含水率が低下する。
なお、この際、陰極では還元反応が起きるため、脱水濾液はアルカリ性になる。
On the other hand, in the case of electroosmosis dehydration treatment by an electroosmosis dehydrator, an electrode is inserted into the treated sludge and energized, and the negatively charged sludge is drawn to the anode side by electroosmosis, while the sludge pore water Since dehydration is performed by applying pressure while separating the particles by moving them to the cathode side, dehydration efficiency is higher than in the case of mechanical dehydration, and the moisture content of sludge can be further reduced.
That is, the surface of the sludge particles is charged to −10 to −20 mV, and the surrounding water forms an electric double layer and is charged positively. Therefore, when a DC power source is applied to the sludge sandwiched between the anode and the cathode, positively charged water is drawn to the cathode side. When pressure is applied in this state, water is discharged as a filtrate from the cathode side, and the moisture content of the sludge decreases.
At this time, since a reduction reaction occurs at the cathode, the dehydrated filtrate becomes alkaline.

このような電気浸透脱水処理において、脱水量は通電量に比例するため、汚泥の電気伝導率を上げると通電量が増加して脱水ケーキの含水率は下がりやすい。
従来、汚泥の電気伝導率を上げる手段として、(1)硫酸ナトリウムや炭酸ナトリウムなどの電解質を添加する方法(特開平3−262818号公報、特公平7−73646号公報)、(2)汚泥を加温する方法(特許第3576269号公報)が採られている。
In such electroosmotic dehydration treatment, the amount of dewatering is proportional to the amount of energization. Therefore, when the electrical conductivity of the sludge is increased, the amount of energization increases and the moisture content of the dewatered cake tends to decrease.
Conventionally, as means for increasing the electrical conductivity of sludge, (1) a method of adding an electrolyte such as sodium sulfate or sodium carbonate (JP-A-3-262818, JP-B-7-73646), (2) sludge A method of heating (Japanese Patent No. 3576269) is employed.

ところで、各種の排水処理設備には、排水中の塩類を濃縮分離する濃縮設備が設けられているものがある。例えば、有機系排水の処理設備では、排水を活性汚泥処理等により生物処理し、得られた生物処理水を超純水として再利用するために逆浸透膜分離装置又はエバポレーター(蒸発濃縮機)等の濃縮設備で処理して、含有される生物代謝物やpH調整用水酸化ナトリウム、ポリ硫酸第二鉄等に由来する硫酸ナトリウム、硝酸ナトリウム、塩化ナトリウム等の塩類を濃縮分離し、濃縮塩は、産業廃棄物(産廃)として系外へ排出して処分し、分離水を処理水として取り出すことが行われている。   By the way, some waste water treatment facilities are provided with a concentration facility for concentrating and separating salts in the waste water. For example, in an organic wastewater treatment facility, the wastewater is biologically treated by activated sludge treatment or the like, and a reverse osmosis membrane separation device or an evaporator (evaporator / concentrator) is used to reuse the obtained biologically treated water as ultrapure water. To concentrate and separate salts such as sodium sulfate, sodium nitrate and sodium chloride derived from biological metabolites, sodium hydroxide for pH adjustment, polyferric sulfate, etc. As industrial waste (industrial waste), it is discharged outside the system and disposed of, and the separated water is taken out as treated water.

特開平3−262818号公報JP-A-3-262818 特公平7−73646号公報Japanese Patent Publication No.7-73646 特許第3576269号公報Japanese Patent No. 3576269

しかしながら、(1)硫酸ナトリウムや炭酸ナトリウムなどの電解質を汚泥に添加する方法では、薬品コストが増大する上に、次のような問題がある。
・電解質を汚泥に均一に分散させるため、汚泥への添加に先立ち、電解質を水に溶解させる必要があり、電解質溶解槽が必要となる。
・電解質の添加により、電気浸透脱水により排出される脱水濾液には、電解質が含まれることとなる。この脱水濾液は排水処理設備へ送られるが、排水中の電解質を濃縮して産廃処分するような設備では、電解質添加により産廃量が増大する結果となる。
However, (1) the method of adding an electrolyte such as sodium sulfate or sodium carbonate to sludge increases the chemical cost and has the following problems.
In order to disperse the electrolyte uniformly in the sludge, it is necessary to dissolve the electrolyte in water prior to addition to the sludge, and an electrolyte dissolution tank is required.
-The electrolyte is contained in the dehydrated filtrate discharged | emitted by electroosmosis dehydration by addition of electrolyte. This dehydrated filtrate is sent to a wastewater treatment facility, but in a facility where the electrolyte in the wastewater is concentrated and disposed of as industrial waste, the amount of industrial waste increases due to the addition of electrolyte.

一方、(2)汚泥を加温する方法では、汚泥に熱を加える必要があるため、加温設備が必要な上、加温のためのエネルギーも必要となる。   On the other hand, in (2) the method of heating sludge, it is necessary to add heat to the sludge, so heating equipment is required and energy for heating is also required.

本発明は上記従来の問題点を解決し、各種産業排水の生物処理過程等で発生する汚泥を電気浸透脱水装置により脱水処理するに当たり、薬剤コストを抑え、また、溶解槽や加温設備等の付加設備や付加エネルギーを必要とすることなく、効率的な電気浸透脱水処理を行う方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, reduces the cost of chemicals when dewatering sludge generated in the biological treatment process of various industrial wastewater with an electroosmotic dehydrator, and also provides a dissolution tank, a heating facility, etc. It is an object of the present invention to provide a method for performing an efficient electroosmotic dehydration treatment without requiring additional equipment or additional energy.

本発明(請求項1)の汚泥脱水方法は、汚泥を電気浸透脱水装置で脱水処理する方法において、排水処理設備から排出される濃縮塩を該汚泥に添加した後、該電気浸透脱水装置で脱水処理することを特徴とする。   The sludge dewatering method of the present invention (Claim 1) is a method of dewatering sludge with an electroosmotic dehydrator, and after adding concentrated salt discharged from a wastewater treatment facility to the sludge, dewatering with the electroosmotic dewaterer. It is characterized by processing.

請求項2の汚泥脱水方法は、請求項1において、前記汚泥に対する前記濃縮塩の添加量が1重量%以上であることを特徴とする。   The sludge dewatering method according to claim 2 is characterized in that, in claim 1, the amount of the concentrated salt added to the sludge is 1% by weight or more.

請求項3の汚泥脱水方法は、請求項1又は2において、前記汚泥を電気浸透脱水装置で脱水処理するに先立ち機械的脱水処理し、得られた脱水ケーキに前記濃縮塩を添加して電気浸透脱水装置で脱水処理することを特徴とする。   The sludge dewatering method according to claim 3 is the method according to claim 1 or 2, wherein the sludge is mechanically dehydrated prior to dehydration with an electroosmotic dehydrator, and the concentrated salt is added to the obtained dehydrated cake to perform electroosmosis. It is characterized by dehydrating with a dehydrator.

請求項4の汚泥脱水方法は、請求項3において、前記脱水ケーキの含水率が70〜90%であることを特徴とする。   The sludge dewatering method according to claim 4 is characterized in that, in claim 3, the water content of the dewatered cake is 70 to 90%.

請求項5の汚泥脱水方法は、請求項1ないし4のいずれか1項において、前記濃縮塩が、排水の生物処理水を逆浸透膜分離処理又は蒸発濃縮により濃縮して得られる濃縮塩であることを特徴とする。   The sludge dewatering method according to claim 5 is the concentrated salt obtained in any one of claims 1 to 4, wherein the concentrated salt is obtained by concentrating biological treated water of wastewater by reverse osmosis membrane separation treatment or evaporation concentration. It is characterized by that.

請求項6の汚泥脱水方法は、請求項5において、前記電気浸透脱水装置による脱水処理で得られる脱水濾液を前記排水の生物処理槽に返送して処理することを特徴とする。   The sludge dewatering method according to a sixth aspect is characterized in that, in the fifth aspect, the dehydrated filtrate obtained by the dewatering treatment by the electroosmotic dewatering device is returned to the biological treatment tank for the waste water to be treated.

本発明の汚泥脱水方法によれば、電気浸透脱水に供される汚泥に、従来、産廃処分されていた排水処理設備から排出される濃縮塩を添加することにより、汚泥の電気伝導率を高め、通電効率を向上させて電気浸透脱水装置による脱水効率を高め、得られる脱水汚泥の含水率を低減することができる。   According to the sludge dewatering method of the present invention, by adding concentrated salt discharged from wastewater treatment equipment that has been conventionally disposed of to the sludge to be subjected to electroosmosis dehydration, the electrical conductivity of the sludge is increased, It is possible to improve the energization efficiency, increase the dewatering efficiency by the electroosmosis dewatering device, and reduce the water content of the resulting dewatered sludge.

この濃縮塩は、排水処理設備で発生し、従来は産廃処分されていたものであり、この濃縮塩を汚泥に添加することによる新たな薬剤コストの増加の問題はない。しかも、濃縮塩の有効利用で産業廃棄物量を減らすことも可能である。
また、この濃縮塩は、スラリー状であるため、汚泥に直接添加しても均一に分散させることができ、従来の電解質添加の場合のような溶解槽が不要である。もちろん、加温設備や加温エネルギーも不要である。
This concentrated salt is generated in a wastewater treatment facility and has been conventionally disposed of as industrial waste, and there is no problem of a new increase in chemical cost due to the addition of this concentrated salt to sludge. Moreover, it is possible to reduce the amount of industrial waste by effectively using concentrated salt.
Further, since this concentrated salt is in the form of a slurry, it can be uniformly dispersed even if it is directly added to sludge, and a dissolution tank as in the case of conventional electrolyte addition is unnecessary. Of course, neither heating equipment nor heating energy is required.

汚泥に対する濃縮塩の添加量は、濃縮塩の電解質濃度にもよるが1重量%以上とすることが好ましい(請求項2)。   The amount of the concentrated salt added to the sludge is preferably 1% by weight or more although it depends on the electrolyte concentration of the concentrated salt.

また、汚泥は、電気浸透脱水処理に先立ち機械的脱水処理することが、脱水効率の面で好ましく(請求項3)、この場合、機械的脱水処理で含水率70〜90%の脱水ケーキを得、この脱水ケーキを電気浸透脱水処理することが好ましい(請求項4)。   The sludge is preferably mechanically dehydrated prior to electroosmotic dehydration in terms of dewatering efficiency (Claim 3). In this case, a dehydrated cake having a moisture content of 70 to 90% is obtained by mechanical dehydration. The dehydrated cake is preferably subjected to electroosmotic dehydration treatment (claim 4).

また、濃縮塩としては、排水の生物処理水を逆浸透膜分離処理又は蒸発濃縮により濃縮して得られる濃縮塩が好適である(請求項5)。   Further, as the concentrated salt, a concentrated salt obtained by concentrating the biologically treated water of the wastewater by reverse osmosis membrane separation processing or evaporation concentration is preferred (Claim 5).

この場合、電気浸透脱水装置による脱水処理で得られるアルカリ性の脱水濾液は、排水の生物処理槽に返送して処理することが好ましく、これにより、脱水濾液の処理と共に、生物処理槽にpH調整剤として添加する水酸化ナトリウム等のアルカリの添加量の低減を図ることができる(請求項6)。   In this case, it is preferable that the alkaline dehydrated filtrate obtained by the dehydration treatment by the electroosmosis dehydrator is returned to the biological treatment tank of the wastewater for treatment, whereby the pH adjusting agent is added to the biological treatment tank along with the treatment of the dehydrated filtrate. It is possible to reduce the amount of alkali such as sodium hydroxide added as (Claim 6).

本発明の汚泥脱水方法の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the sludge dehydration method of this invention.

以下に本発明の汚泥脱水方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the sludge dewatering method of the present invention will be described in detail.

本発明の汚泥脱水方法は、電気浸透脱水処理に供される汚泥に、予め排水処理設備から排出される濃縮塩を添加することを特徴とする。   The sludge dewatering method of the present invention is characterized in that a concentrated salt discharged from a wastewater treatment facility is added in advance to sludge to be subjected to electroosmotic dewatering.

本発明で用いる濃縮塩としては排水処理設備から排出される濃縮塩であれば特に制限はないが、例えば、次の(1)〜(5)に挙げるようなものを用いることができる。   The concentrated salt used in the present invention is not particularly limited as long as it is a concentrated salt discharged from a wastewater treatment facility. For example, the following (1) to (5) can be used.

(1) 有機系排水を回収・再利用するための生物処理設備の処理水中の塩類を濃縮するための逆浸透膜分離装置又はエバポレーターから排出される濃縮塩
(2) 海水を淡水化処理する上水処理設備の処理水中の塩類を濃縮するための逆浸透膜分離装置又はエバポレーターから排出される濃縮塩
(3) 市水を脱塩処理する超純水製造設備の濃縮水中の塩類を濃縮するための逆浸透膜分離装置から排出される濃縮塩
(1) Concentrated salt discharged from reverse osmosis membrane separators or evaporators for concentrating salts in treated water of biological treatment facilities for collecting and reusing organic wastewater (2) Desalination of seawater Concentrated salt discharged from reverse osmosis membrane separator or evaporator for concentrating salts in treated water of water treatment facility (3) To concentrate salts in concentrated water of ultrapure water production facility for desalinating city water Salt discharged from the reverse osmosis membrane separator

このような濃縮塩の電解質濃度には特に制限はないが、これらの濃縮塩は通常電解質濃度0.1〜24.5重量%程度、電気伝導率0.1〜120mS/cm程度のスラリーとして排出される。   There is no particular limitation on the electrolyte concentration of such a concentrated salt, but these concentrated salts are usually discharged as a slurry having an electrolyte concentration of about 0.1 to 24.5% by weight and an electric conductivity of about 0.1 to 120 mS / cm. Is done.

本発明においては、このようなスラリー状の濃縮塩を、脱水処理に供する汚泥に添加する。汚泥への濃縮塩の添加量は過度に少ないと濃縮塩の添加による脱水効率の向上効果を十分に得ることができず、過度に多くてもそれに見合う効果は得られず、処理量が増大する。従って、濃縮塩の添加量は、濃縮塩の電解質濃度にもよるが、汚泥に対して1重量%以上、特に5〜15重量%程度とし、電解質換算の添加量として汚泥に対して0.05〜0.15重量%程度の濃縮塩を添加することが好ましい。   In the present invention, such a slurry-like concentrated salt is added to sludge used for dehydration. If the amount of concentrated salt added to sludge is excessively small, the effect of improving the dehydration efficiency due to the addition of concentrated salt cannot be obtained sufficiently. . Therefore, although the amount of concentrated salt added depends on the electrolyte concentration of the concentrated salt, it is 1% by weight or more, particularly about 5 to 15% by weight with respect to sludge. It is preferable to add about -0.15% by weight of concentrated salt.

なお、汚泥は、電気浸透脱水処理に先立ち、ベルトプレスやフィルタープレス等の加圧式脱水機や遠心脱水機などの機械的脱水装置で機械的脱水処理して含水率70〜90%程度の脱水ケーキを得、この脱水ケーキに、脱水前の汚泥に対する添加量が前述の割合となるように濃縮塩を添加して電気浸透脱水処理することが好ましく、このように機械的脱水処理と電気浸透脱水処理とを組み合わせることにより、より一層効率的な脱水処理を行える。   Prior to electroosmotic dehydration, sludge is dehydrated cake with a moisture content of about 70 to 90% by mechanical dehydration using a mechanical dehydrator such as a pressure dehydrator such as a belt press or filter press or a centrifugal dehydrator. It is preferable to add the concentrated salt to the dehydrated cake so that the amount added to the sludge before dehydration is in the above-described ratio, and to perform electroosmotic dehydration treatment. Thus, mechanical dehydration treatment and electroosmosis dehydration treatment are performed. Can be combined to make a more efficient dehydration process.

この機械的脱水処理に際しては、従来公知の無機凝集剤や高分子凝集剤を添加しても良く、この場合、無機凝集剤としては、硫酸第二鉄(ポリ硫酸第二鉄を含む)、硫酸第一鉄、塩化第二鉄、塩化第一鉄、鉄−シリカ無機高分子凝集剤等の鉄系無機凝集剤の1種又は2種以上を用いることができる。汚泥への鉄系無機凝集剤の添加量は、多過ぎても少な過ぎても、含水率の十分に低い脱水汚泥を得ることができないため、脱水処理する汚泥のSSに対するFe換算の添加量として5〜20重量%、特に7〜15重量%とすることが好ましい。   In the mechanical dehydration treatment, a conventionally known inorganic flocculant or polymer flocculant may be added. In this case, examples of the inorganic flocculant include ferric sulfate (including polyferric sulfate), sulfuric acid One or more of iron-based inorganic flocculants such as ferrous chloride, ferric chloride, ferrous chloride, and iron-silica inorganic polymer flocculants can be used. The amount of iron-based inorganic flocculant added to the sludge can be either too much or too little to obtain dehydrated sludge with a sufficiently low water content. It is preferably 5 to 20% by weight, particularly 7 to 15% by weight.

また、鉄系無機凝集剤と共に高分子凝集剤を添加しても良く、この場合、高分子凝集剤としては、特に限定されるものではないが、両性高分子凝集剤(両性ポリマー)を用いることが好ましい。両性高分子凝集剤としては、アミノ基若しくはアンモニウム塩基を有するモノマー、(メタ)アクリルアミド及び(メタ)アクリル酸若しくはその塩の共重合体が好ましく、アミノ基又はアンモニウム塩基を有するモノマーとしては、例えば、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウムクロライド、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルトリメチルアンモニウムクロライドなどの(メタ)アクリロイルオキシアルキル4級アンモニウム塩、(メタ)アクリロイルオキシエチルジメチルアミン硫酸塩又は塩酸塩、(メタ)アクリロイルオキシプロピルジメチルアミン塩酸塩などの(メタ)アクリロイルオキシアルキル3級アミン塩、(メタ)アクリロイルアミノプロピルトリメチルアンモニウムクロライド、(メタ)アクリロイルアミノプロピルトリメチルアンモニウムメチルサルフェートなどの(メタ)アクリロイルアミノアルキル4級アンモニウム塩などを挙げることができる(ここで、「(メタ)アクリル」とは「アクリル及び/又はメタクリル」を意味する。「(メタ)アクリロイル」についても同様である。)。これらのモノマーは、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。これらの中で、(メタ)アクリロイルオキシアルキル4級アンモニウム塩は脱水効果に優れるので好適に用いることができ、アクリロイルオキシエチルトリメチルアンモニウムクロライド及びメタアクリロイルオキシエチルトリメチルアンモニウムクロライドを特に好適に用いることができる。   Further, a polymer flocculant may be added together with the iron-based inorganic flocculant. In this case, the polymer flocculant is not particularly limited, but an amphoteric polymer flocculant (amphoteric polymer) is used. Is preferred. As the amphoteric polymer flocculant, a monomer having an amino group or an ammonium base, a copolymer of (meth) acrylamide and (meth) acrylic acid or a salt thereof is preferable, and as a monomer having an amino group or an ammonium base, for example, (Meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, (meth) acryloyloxy-2-hydroxypropyltrimethylammonium chloride and other (meth) acryloyloxyalkyl quaternary ammonium salts, (meth) (Meth) acryloyloxyalkyl tertiary amine salts such as acryloyloxyethyldimethylamine sulfate or hydrochloride, (meth) acryloyloxypropyldimethylamine hydrochloride, (meth) acryloyl (Meth) acryloylaminoalkyl quaternary ammonium salts such as nopropyltrimethylammonium chloride and (meth) acryloylaminopropyltrimethylammonium methyl sulfate can be mentioned (here, “(meth) acryl” means “acrylic and / or Or “methacryl”, and the same applies to “(meth) acryloyl”. These monomers can be used individually by 1 type, or can also be used in combination of 2 or more type. Among these, (meth) acryloyloxyalkyl quaternary ammonium salts are excellent in the dehydration effect and can be preferably used, and acryloyloxyethyltrimethylammonium chloride and methacryloyloxyethyltrimethylammonium chloride can be particularly preferably used. .

また、(メタ)アクリル酸又はその塩としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸アンモニウム、(メタ)アクリル酸カルシウムなどを挙げることができる。これらの中で、アクリル酸及びアクリル酸ナトリウムを特に好適に用いることができる。   Examples of (meth) acrylic acid or a salt thereof include (meth) acrylic acid, sodium (meth) acrylate, ammonium (meth) acrylate, calcium (meth) acrylate, and the like. Among these, acrylic acid and sodium acrylate can be particularly preferably used.

両性高分子凝集剤には、さらに他のコモノマーを共重合することができる。他のコモノマーとしては、例えば、ビニルピロリドン、マレイン酸、アクリル酸メチルなどを挙げることができる。これらのコモノマーの共重合量は、通常20モル%以下であることが好ましく、10モル%以下であることがより好ましい。   The amphoteric polymer flocculant can be copolymerized with another comonomer. Examples of other comonomers include vinyl pyrrolidone, maleic acid, and methyl acrylate. The copolymerization amount of these comonomers is usually preferably 20 mol% or less, and more preferably 10 mol% or less.

これらの両性高分子凝集剤は、1種を単独で用いてもよく、2種以上を併用してもよい。   These amphoteric polymer flocculants may be used alone or in combination of two or more.

このような高分子凝集剤を併用し、鉄系無機凝集剤添加後の汚泥に高分子凝集剤を添加することにより、強固な汚泥フロックを形成することができ、より一層の含水率の低減を図ることができる。   By using such a polymer flocculant in combination and adding the polymer flocculant to the sludge after the addition of the iron-based inorganic flocculant, a strong sludge floc can be formed, and the water content can be further reduced. Can be planned.

このような高分子凝集剤の添加量は、脱水処理する汚泥のSSに対して0.2〜1重量%程度とすることが好ましい。   The amount of the polymer flocculant added is preferably about 0.2 to 1% by weight with respect to SS of sludge to be dehydrated.

なお、機械的脱水処理に先立ち、汚泥にこれらの凝集剤を添加する場合は、好ましくは、汚泥に鉄系無機凝集剤を添加して、急速攪拌槽で滞留時間1〜5分で処理することが好ましく、また、高分子凝集剤添加においては、緩速攪拌槽で滞留時間1〜10分で処理することが好ましい。   In addition, when adding these flocculants to sludge prior to mechanical dehydration, it is preferable to add an iron-based inorganic flocculant to sludge and treat it in a rapid stirring tank with a residence time of 1 to 5 minutes. In addition, in the addition of the polymer flocculant, it is preferable to treat in a slow stirring tank with a residence time of 1 to 10 minutes.

このようにして、必要に応じて凝集剤を添加して汚泥を機械的脱水処理した後は、濃縮塩を添加して電気浸透脱水装置で電気浸透脱水処理する。
一般的に市販されている電気浸透脱水装置は、機械的脱水部と電気浸透脱水部とを有する型式のものもあるため、通常の電気浸透脱水装置を用いて機械的脱水及び電気浸透脱水処理を行い、機械的脱水部と電気浸透脱水部との間で濃縮塩の添加を行うことができる。
Thus, after adding a flocculant as needed and carrying out the mechanical dehydration process of sludge, a concentrated salt is added and an electroosmosis dehydration process is carried out with an electroosmosis dehydration apparatus.
Some electroosmotic dehydration devices that are generally available on the market have a mechanical dehydration unit and an electroosmosis dehydration unit. The concentrated salt can be added between the mechanical dehydration unit and the electroosmosis dehydration unit.

この機械的脱水及び電気浸透脱水の処理条件には特に制限はないが、例えば次のような条件を採用することができる。   There are no particular restrictions on the processing conditions for the mechanical dehydration and electroosmosis dehydration, but the following conditions can be employed, for example.

<機械的脱水処理条件>
加圧式脱水の場合の加圧力:50〜1000kPa
遠心脱水の場合の遠心力:1000〜2500G
脱水時間:1〜60分
<電気浸透脱水処理条件>
加圧力:0.1〜200kPa
通電量:DC20〜100V
脱水時間:5〜60分
<Mechanical dehydration conditions>
Applied pressure in the case of pressure-type dehydration: 50 to 1000 kPa
Centrifugal force for centrifugal dehydration: 1000-2500G
Dehydration time: 1 to 60 minutes <Electroosmotic dehydration conditions>
Applied pressure: 0.1 to 200 kPa
Energization amount: DC20-100V
Dehydration time: 5-60 minutes

本発明によれば、このような脱水処理により、含水率70%以下、例えば含水率50〜70%程度の低含水率の脱水ケーキを得ることができる。   According to the present invention, by such a dehydration treatment, a dehydrated cake having a moisture content of 70% or less, such as a moisture content of about 50 to 70%, can be obtained.

なお、本発明の汚泥脱水方法で脱水処理する汚泥としては特に制限はなく、本発明は、各種産業排水の生物処理過程等で発生する汚泥や、その他自動車排水の加圧浮上汚泥などのあらゆる汚泥に適用可能である。   The sludge to be dewatered by the sludge dewatering method of the present invention is not particularly limited, and the present invention is not limited to sludge generated in the biological treatment process of various industrial wastewater, and other sludge such as pressurized floating sludge of automobile wastewater. It is applicable to.

ところで、本発明における脱水処理では、汚泥が濃縮塩を含むことにより、pH12(通常pH10〜13)程度のアルカリ性の脱水濾液が発生する。この脱水濾液は、排水の生物処理槽に投入して処理することが好ましく、これにより、脱水濾液の処理と共に生物処理槽にpH調整剤として添加される水酸化ナトリウム等のアルカリの添加量を低減することができ、好ましい。特に、このように生物処理槽に脱水濾液を投入して処理する場合、濃縮塩の発生源である排水処理設備の生物処理槽に返送することが有利である。   By the way, in the dehydration process in the present invention, an alkaline dehydrated filtrate having a pH of about 12 (usually pH 10 to 13) is generated when the sludge contains a concentrated salt. This dehydrated filtrate is preferably put into a biological wastewater treatment tank for treatment, thereby reducing the amount of alkali hydroxide such as sodium hydroxide added as a pH adjuster to the biological treatment tank along with the treatment of the dehydrated filtrate. Can be preferred. In particular, when the dehydrated filtrate is introduced into the biological treatment tank for treatment, it is advantageous to return it to the biological treatment tank of the wastewater treatment facility that is the source of concentrated salt.

図1は、このように電気浸透脱水装置の脱水濾液を濃縮塩の発生源である排水処理設備の生物処理槽に返送して処理する場合を示す系統図であり、原水は、生物処理槽1で生物処理され、生物処理水は濃縮設備2で処理され、塩類が濃縮除去された処理水は系外へ排出される。一方、濃縮塩は、一部が産廃処分され、残部は電気浸透脱水設備3に送給される汚泥又は脱水ケーキに添加される。濃縮塩が添加された汚泥又は脱水ケーキは電気浸透脱水設備3で電気浸透脱水処理され、得られた脱水ケーキは系外へ排出されて処分される。一方、脱水濾液は生物処理槽1に返送されて処理される。   FIG. 1 is a system diagram showing the case where the dehydrated filtrate of the electroosmosis dehydrator is returned to the biological treatment tank of the wastewater treatment facility that is the source of concentrated salt, and the raw water is the biological treatment tank 1. The biologically treated water is treated in the concentration facility 2 and the treated water from which the salts have been concentrated is discharged out of the system. On the other hand, a part of the concentrated salt is disposed of as industrial waste, and the remaining part is added to sludge or dewatered cake supplied to the electroosmotic dewatering equipment 3. The sludge or dehydrated cake to which the concentrated salt has been added is subjected to electroosmotic dehydration in the electroosmotic dehydration equipment 3, and the obtained dehydrated cake is discharged out of the system and disposed of. On the other hand, the dehydrated filtrate is returned to the biological treatment tank 1 for processing.

このように脱水濾液を生物処理槽1に返送することにより、より一層の効率化を図ることができる。   By returning the dehydrated filtrate to the biological treatment tank 1 in this way, it is possible to further improve the efficiency.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

<実施例1>
有機系排水の余剰汚泥(MLSS8,000mg/L)にポリマーを添加して機械的脱水処理して、含水率82%の脱水ケーキを得、この脱水ケーキに、下記の濃縮塩を、脱水前の汚泥に対して10重量%添加して電気浸透脱水処理した。
このとき、機械的脱水処理及び電気浸透脱水処理の処理条件は以下の通りとした。
<Example 1>
Polymer is added to excess sludge (MLSS 8,000 mg / L) of organic waste water and mechanically dehydrated to obtain a dehydrated cake with a moisture content of 82%. The following concentrated salt is added to this dehydrated cake before dehydration. The electroosmotic dehydration treatment was performed by adding 10% by weight to the sludge.
At this time, the processing conditions of the mechanical dehydration process and the electroosmotic dehydration process were as follows.

<濃縮塩>
有機系排水を活性汚泥法により生物処理し、生物処理水を膜により濃縮して電解質を濃縮分離する逆浸透膜分離設備から排出される濃縮塩スラリー。電解質濃度:1.3〜1.5重量%、電気伝導率:15〜17mS/cm
<Concentrated salt>
Concentrated salt slurry discharged from reverse osmosis membrane separation equipment that biologically treats organic wastewater by the activated sludge process, concentrates the biologically treated water with a membrane, and concentrates and separates the electrolyte. Electrolyte concentration: 1.3 to 1.5% by weight, electric conductivity: 15 to 17 mS / cm

<機械的脱水(遠心脱水)処理条件>
回転数:2000/min
遠心効果:1000G
脱水時間:5m/hr(SS8,000mg/Lの余剰汚泥を5m/hrで脱
水)
ポリマー添加量:1重量%対SS
<電気浸透脱水処理条件>
加圧力:0.16kgf/cm(15.7kPa)
通電量:DC60V
脱水時間:10分
<Mechanical dehydration (centrifugal dehydration) treatment conditions>
Rotational speed: 2000 / min
Centrifugal effect: 1000G
Dehydration time: 5 m 3 / hr (SS 8,000 mg / L of excess sludge is removed at 5 m 3 / hr
water)
Polymer addition amount: 1% by weight vs. SS
<Electroosmotic dehydration conditions>
Applied pressure: 0.16 kgf / cm 2 (15.7 kPa)
Energization amount: DC60V
Dehydration time: 10 minutes

得られた脱水ケーキの含水率は65%であった。   The moisture content of the obtained dehydrated cake was 65%.

<比較例1>
実施例1において、濃縮塩の代りに、硫酸ナトリウムを10重量%の水溶液として、脱水ケーキ中のSSに対する硫酸ナトリウム添加量が1.4重量%となるように添加したこと以外は同様にして脱水処理を行ったところ、得られた脱水ケーキの含水率は67%であった。
<Comparative Example 1>
In Example 1, instead of the concentrated salt, dehydration was performed in the same manner except that sodium sulfate was added as a 10 wt% aqueous solution so that the amount of sodium sulfate added to SS in the dehydrated cake was 1.4 wt%. When the treatment was performed, the water content of the obtained dehydrated cake was 67%.

<比較例2>
実施例1において、濃縮塩を添加しなかったこと以外は同様にして脱水処理を行ったところ、得られた脱水ケーキの含水率は73%であった。
<Comparative example 2>
In Example 1, when the dehydration treatment was performed in the same manner except that the concentrated salt was not added, the water content of the obtained dehydrated cake was 73%.

以上の結果から、本発明によれば、従来産廃処分されていた排水処理設備から排出される濃縮塩を有効利用して、電気浸透脱水処理における脱水効率を大幅に改善することができることが分かる。   From the above results, it can be seen that according to the present invention, the concentrated salt discharged from the wastewater treatment facility that has been disposed of in the past can be effectively used to greatly improve the dewatering efficiency in the electroosmotic dewatering process.

1 生物処理槽
2 濃縮設備
3 電気浸透脱水設備
1 biological treatment tank 2 concentration equipment 3 electroosmotic dehydration equipment

Claims (6)

汚泥を電気浸透脱水装置で脱水処理する方法において、排水処理設備から排出される濃縮塩を該汚泥に添加した後、該電気浸透脱水装置で脱水処理することを特徴とする汚泥脱水方法。   A method for dewatering sludge with an electroosmosis dehydrator, wherein a concentrated salt discharged from a wastewater treatment facility is added to the sludge and then dewatered with the electroosmosis dewaterer. 請求項1において、前記汚泥に対する前記濃縮塩の添加量が1重量%以上であることを特徴とする汚泥脱水方法。   2. The sludge dewatering method according to claim 1, wherein the amount of the concentrated salt added to the sludge is 1% by weight or more. 請求項1又は2において、前記汚泥を電気浸透脱水装置で脱水処理するに先立ち機械的脱水処理し、得られた脱水ケーキに前記濃縮塩を添加して電気浸透脱水装置で脱水処理することを特徴とする汚泥脱水方法。   3. The method according to claim 1, wherein the sludge is mechanically dehydrated prior to being dehydrated by an electroosmotic dehydrator, and the concentrated salt is added to the obtained dehydrated cake and dehydrated by an electroosmotic dehydrator. Sludge dewatering method. 請求項3において、前記脱水ケーキの含水率が70〜90%であることを特徴とする汚泥脱水方法。   4. The sludge dewatering method according to claim 3, wherein the moisture content of the dewatered cake is 70 to 90%. 請求項1ないし4のいずれか1項において、前記濃縮塩が、排水の生物処理水を逆浸透膜分離処理又は蒸発濃縮により濃縮して得られる濃縮塩であることを特徴とする汚泥脱水方法。   The sludge dewatering method according to any one of claims 1 to 4, wherein the concentrated salt is a concentrated salt obtained by concentrating biological treated water as wastewater by reverse osmosis membrane separation treatment or evaporation concentration. 請求項5において、前記電気浸透脱水装置による脱水処理で得られる脱水濾液を前記排水の生物処理槽に返送して処理することを特徴とする汚泥脱水方法。   6. The sludge dewatering method according to claim 5, wherein the dehydrated filtrate obtained by the dewatering treatment by the electroosmosis dewatering device is returned to the biological treatment tank for the wastewater for treatment.
JP2009082568A 2009-03-30 2009-03-30 Sludge dewatering method Active JP5402157B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009082568A JP5402157B2 (en) 2009-03-30 2009-03-30 Sludge dewatering method
CN2010800131614A CN102361829B (en) 2009-03-30 2010-03-29 Method for dewatering sludge and method and device for electroosmotic dewatering
KR1020117019008A KR20120022706A (en) 2009-03-30 2010-03-29 Method for dewatering sludge and method and device for electroosmotic dewatering
PCT/JP2010/055525 WO2010113846A1 (en) 2009-03-30 2010-03-29 Method for dewatering sludge and method and device for electroosmotic dewatering
TW099109624A TWI534100B (en) 2009-03-30 2010-03-30 Sludge dewatering method, electrical infiltration dewatering method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082568A JP5402157B2 (en) 2009-03-30 2009-03-30 Sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2010234188A true JP2010234188A (en) 2010-10-21
JP5402157B2 JP5402157B2 (en) 2014-01-29

Family

ID=43089067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082568A Active JP5402157B2 (en) 2009-03-30 2009-03-30 Sludge dewatering method

Country Status (1)

Country Link
JP (1) JP5402157B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005413A (en) * 2009-06-25 2011-01-13 Daiki Ataka Engineering Co Ltd Method for operating electro-osmosis dehydrator
JP2018192383A (en) * 2017-05-12 2018-12-06 征八朗 三浦 Parlor waste water processing method and parlor waste water processing equipment
JP2022031943A (en) * 2017-05-12 2022-02-22 征八朗 三浦 Treatment method for parlor wastewater and its wastewater treatment apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122085A (en) * 1982-01-13 1983-07-20 Mitsubishi Heavy Ind Ltd Dehydrating method
JPS60114315A (en) * 1983-11-26 1985-06-20 Shinko Fuaudoraa Kk Dehydrating method of organic sludge
JPS61136500A (en) * 1984-12-05 1986-06-24 Shinko Fuaudoraa Kk Dehydration of sludge by electroosmosis
JPS61259800A (en) * 1985-05-14 1986-11-18 Fuji Electric Co Ltd System for dehydration treatment of sludge
JPH01189311A (en) * 1988-01-25 1989-07-28 Fuji Electric Co Ltd Electroosmotic dehydrator
JPH10156398A (en) * 1996-11-29 1998-06-16 Shinko Pantec Co Ltd Water treatment and water treating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122085A (en) * 1982-01-13 1983-07-20 Mitsubishi Heavy Ind Ltd Dehydrating method
JPS60114315A (en) * 1983-11-26 1985-06-20 Shinko Fuaudoraa Kk Dehydrating method of organic sludge
JPS61136500A (en) * 1984-12-05 1986-06-24 Shinko Fuaudoraa Kk Dehydration of sludge by electroosmosis
JPS61259800A (en) * 1985-05-14 1986-11-18 Fuji Electric Co Ltd System for dehydration treatment of sludge
JPH01189311A (en) * 1988-01-25 1989-07-28 Fuji Electric Co Ltd Electroosmotic dehydrator
JPH10156398A (en) * 1996-11-29 1998-06-16 Shinko Pantec Co Ltd Water treatment and water treating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011005413A (en) * 2009-06-25 2011-01-13 Daiki Ataka Engineering Co Ltd Method for operating electro-osmosis dehydrator
JP2018192383A (en) * 2017-05-12 2018-12-06 征八朗 三浦 Parlor waste water processing method and parlor waste water processing equipment
JP6996866B2 (en) 2017-05-12 2022-01-17 征八朗 三浦 Parlor wastewater treatment method and its wastewater treatment equipment
JP2022031943A (en) * 2017-05-12 2022-02-22 征八朗 三浦 Treatment method for parlor wastewater and its wastewater treatment apparatus
JP7246462B2 (en) 2017-05-12 2023-03-27 征八朗 三浦 Parlor wastewater treatment method and its wastewater treatment equipment

Also Published As

Publication number Publication date
JP5402157B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5369399B2 (en) Sludge dewatering method
WO2010113846A1 (en) Method for dewatering sludge and method and device for electroosmotic dewatering
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
CN103979729A (en) Desulfurization waste water recycling and zero discharge system and method
Katsoyiannis et al. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent
JP3477526B2 (en) Wastewater recovery equipment
US5601725A (en) Hydrophobically modified polymers for sludge dewatering
JP5402157B2 (en) Sludge dewatering method
CN203360192U (en) Treatment device for difficultly degradable industrial wastewater
CN104591456A (en) High salinity ammonia nitrogen wastewater treatment method
JP5239167B2 (en) Concentration method of sludge
CN105668942B (en) A kind for the treatment of process of high concentration and refractory organic wastewater
JPH1128500A (en) Sludge treating device
KR20100009128A (en) Waste water recycling apparatus
JPH10249400A (en) Method for dehydrating sludge
JPH04284900A (en) Dewatering method of organic sludge
CN106145532B (en) Biochemical and evaporation combined treatment system and technology for landfill leachate
JP5593786B2 (en) Electroosmotic dehydration method
JPH06226290A (en) Treatment of night soil and septic tank sludge
KR101065940B1 (en) Treatment and reuse system for wastewater containing high concentrations of hydrofluoric acid, phosphoric acid and nitric acid
JPH10249399A (en) Method for dehydrating sludge
CN105254100A (en) System and method for treating sewage containing salt
JP3714283B2 (en) Sludge dewatering method
JP2005007246A (en) Treatment method for organic waste water
JP2938270B2 (en) Waste paper pulp wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250