JP2010233085A - Transparent antenna, glass-sealed transparent antenna and method of manufacturing the same - Google Patents

Transparent antenna, glass-sealed transparent antenna and method of manufacturing the same Download PDF

Info

Publication number
JP2010233085A
JP2010233085A JP2009080084A JP2009080084A JP2010233085A JP 2010233085 A JP2010233085 A JP 2010233085A JP 2009080084 A JP2009080084 A JP 2009080084A JP 2009080084 A JP2009080084 A JP 2009080084A JP 2010233085 A JP2010233085 A JP 2010233085A
Authority
JP
Japan
Prior art keywords
transparent antenna
glass
antenna
transparent
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009080084A
Other languages
Japanese (ja)
Inventor
Toshiyuki Horikoshi
稔之 堀越
Shinsuke Murano
慎介 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009080084A priority Critical patent/JP2010233085A/en
Publication of JP2010233085A publication Critical patent/JP2010233085A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent antenna with reduced visibility and improved transmitting/receiving characteristics. <P>SOLUTION: The transparent antenna is formed from: a radiation element 3 including a plurality of linear conductors 2 arrayed in parallel; a pair of visible light transmissive insulator films 4, 4 with the radiation element held therebetween; and a resin film 5 that is formed in an outer layer of one insulator film 4, is softened by heat and includes adhesiveness. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、VHF帯、UHF帯等を受信する無線通信用のアンテナに係り、特に、アンテナの視認性を低減した透明アンテナおよびガラス封入型透明アンテナとその製造方法に関するものである。   The present invention relates to an antenna for wireless communication that receives a VHF band, a UHF band, and the like, and more particularly to a transparent antenna and a glass-enclosed transparent antenna with reduced visibility of the antenna and a method for manufacturing the same.

従来、VHF帯(30〜300MHz)、UHF帯(300MHz〜3GHz)を送受信するアンテナ素子として、半波長ダイポールアンテナを考えた場合、図6に示すような一対の導体板61,61とその導体板61,61に電気的に接続される給電部62とでダイポールアンテナ63が構成される。   Conventionally, when a half-wave dipole antenna is considered as an antenna element that transmits and receives a VHF band (30 to 300 MHz) and a UHF band (300 MHz to 3 GHz), a pair of conductor plates 61 and 61 and their conductor plates as shown in FIG. The dipole antenna 63 is configured by the power feeding unit 62 electrically connected to 61 and 61.

一対の導体板61,61の長さLは様々だが、もっとも原理的なものは波長の1/2で、例えば500MHzでは、波長が600mmのため、L=約300mmとなる。   The length L of the pair of conductor plates 61, 61 varies, but the most fundamental one is half the wavelength. For example, at 500 MHz, since the wavelength is 600 mm, L = about 300 mm.

この場合、導体板61,61の幅Wは、給電部62とのインピーダンス整合をとるための抵抗値で決定されるが、実用的な寸法としては、抵抗率の低い銅線を使用しても、数mm以上の幅を必要とするのが一般的である。   In this case, the width W of the conductor plates 61 and 61 is determined by a resistance value for impedance matching with the power feeding portion 62. However, as a practical dimension, a copper wire having a low resistivity may be used. Generally, a width of several mm or more is required.

よって、従来のアンテナ素子は、導体板61の幅Wは数mmで長さLが約300mmと大きいため可視状態となり、例えば、車両の窓や車内、または、テレビ受信機の周辺などの場所にアンテナを設置する場合には、車内からの外観の視認性低下による安全性、または、全体のデザインの調和上問題となることがある。   Therefore, the conventional antenna element becomes visible because the width W of the conductor plate 61 is several mm and the length L is as large as about 300 mm. For example, the antenna element is visible in a window of a vehicle, in a vehicle, or around a television receiver. When an antenna is installed, there may be a problem in terms of safety due to a decrease in visibility of the appearance from the inside of the vehicle or harmony of the overall design.

ここで視認性を低減するために、導体板61,61が導電性ペーストによる印刷や線状導体で構成されるフィルム状のアンテナがある。   Here, in order to reduce the visibility, there is a film-like antenna in which the conductor plates 61 and 61 are formed by printing with a conductive paste or a linear conductor.

これらの視認性を低減したアンテナは以下のような方法で製造していた。   These antennas with reduced visibility were manufactured by the following method.

(1)導電性の細線を専用ツール(ノズル)に通し、細線を吐出させながらその専用ツールの軌道を移動させて粘着シート上に細線を貼り付けることによりICカード用のアンテナとする(描画方式、例えば特許文献1)。   (1) A conductive thin wire is passed through a dedicated tool (nozzle), and the track of the dedicated tool is moved while discharging the thin wire, and the thin wire is pasted on the adhesive sheet to form an antenna for an IC card (drawing method) For example, Patent Document 1).

(2)基材を用意し、メッシュ版を用いて導電インキをスクリーン印刷し、これを乾燥・硬化することによりICメディア等のアンテナを形成する(ペイント方式、例えば特許文献2)。   (2) A base material is prepared, screen-printed with conductive ink using a mesh plate, and dried and cured to form an antenna such as an IC medium (Paint method, for example, Patent Document 2).

(3)導電体として金属箔を用い、アンテナとして残したい部分をマスキングして、その残したい部分以外の部分をエッチングにより除去してICカード用のコイルとする(エッチング方式、例えば特許文献3)。   (3) Using a metal foil as a conductor, masking a portion to be left as an antenna, and removing a portion other than the portion to be left by etching to form a coil for an IC card (etching method, for example, Patent Document 3) .

これらの方法は、ICカードなどに搭載される小型アンテナを製造するにはよいが、車両に搭載されるような大型アンテナ(上述のダイポールアンテナ)を製造するにはコストの増大などを招くため適さない。   These methods are suitable for manufacturing a small antenna mounted on an IC card or the like, but are suitable for manufacturing a large antenna (the above-mentioned dipole antenna) mounted on a vehicle because it causes an increase in cost. Absent.

そこで、本出願人は、図7(a)、(b)に示すように、2枚の絶縁体フィルム71,71の間に複数本の線状導体72を並列して挟み込んだ構造体をアンテナ素子73とし、一方の絶縁体フィルム71の上に金属板74を貼り付け、その金属板74を給電部としてケーブル75と電気的に接続するアンテナ76を提案した(特許文献4)。   Therefore, the applicant of the present invention has a structure in which a plurality of linear conductors 72 are sandwiched in parallel between two insulating films 71 and 71 as shown in FIGS. As the element 73, a metal plate 74 is pasted on one insulator film 71, and an antenna 76 that electrically connects to the cable 75 using the metal plate 74 as a power feeding portion has been proposed (Patent Document 4).

このアンテナ76の製造方法によれば、予め製造した長尺のアンテナ素子73を所望の長さに切断し、これを折り曲げることで大量のアンテナを製造することができると共に、アンテナ76は、無視認性に優れており、また、大型アンテナにも適応できる。   According to the manufacturing method of the antenna 76, a long antenna element 73 manufactured in advance is cut into a desired length, and a large number of antennas can be manufactured by bending the long antenna element 73. It can be applied to large antennas.

特開2000−76398号公報JP 2000-76398 A 特開2001−102745号公報JP 2001-102745 A 特開2001−101371号公報JP 2001-101371 A 特開2007−116665号公報JP 2007-116665 A

ところで、このアンテナ76を自動車のガラス等に貼り付け、車両用TV等のアンテナとして用いる場合、図8に示すように、アンテナ76は、車の内側からフロントガラス81に貼り付け、ケーブル75を通じて車内の機器と接続される。   By the way, when this antenna 76 is attached to a glass of an automobile and used as an antenna for a vehicle TV or the like, as shown in FIG. Connected to other devices.

しかし、フロントガラス81の内側にアンテナ76を貼り付ける方法では、アンテナ76とフロントガラス81の部分に段差が生じるため、意匠の低下およびフロントガラス81を清掃するときの障害となる。   However, in the method of attaching the antenna 76 to the inside of the windshield 81, a step is generated between the antenna 76 and the windshield 81, so that the design is deteriorated and the windshield 81 is cleaned.

そこで、その段差をなくすために図9、10に示すようにフロントガラス81を形成する内側と外側のガラス板91,91間にアンテナ素子73を封入することが考えられる。   In order to eliminate the step, it is conceivable to enclose the antenna element 73 between the inner and outer glass plates 91 and 91 forming the windshield 81 as shown in FIGS.

ここで、図9は、フロントガラスの構造とアンテナ素子の封入方法を示す全体構造図であり、図10は、その断面図である。   Here, FIG. 9 is an overall structural view showing the structure of the windshield and the method of enclosing the antenna element, and FIG. 10 is a cross-sectional view thereof.

この車両のフロントガラス81は、安全性の点から、ガラス板91,91の間に樹脂性(例えば、ポリビニルブチラール)の中間膜92を挟み込み、これらを熱圧着してガラス板91,91と中間膜92とを接着させた合わせガラス構造になっており、これにより、中間膜92がガラス板91,91と密着するので、ガラス破損時のガラス片の飛散を防止できると共に、中間膜92で紫外線カットも行えるものである。   The front windshield 81 of this vehicle has a resinous (for example, polyvinyl butyral) intermediate film 92 sandwiched between glass plates 91 and 91 from the viewpoint of safety, and these are thermocompression-bonded to the intermediate between the glass plates 91 and 91. Since the intermediate film 92 adheres to the glass plates 91 and 91 with the film 92 bonded to the film 92, the glass film 91 can be prevented from being scattered when the glass breaks, and the intermediate film 92 is made of ultraviolet rays. It can also be cut.

この合わせガラスに対して、中間膜92と一緒にガラス板91,91の間に図7に示したアンテナ素子73を挟み込んだ場合、アンテナ素子73と一方のガラス板91が接触している部分はガラス板91が接着されていない状態となる。   When the antenna element 73 shown in FIG. 7 is sandwiched between the glass plates 91 and 91 together with the intermediate film 92 with respect to this laminated glass, the portion where the antenna element 73 and one glass plate 91 are in contact with each other is The glass plate 91 is not bonded.

そのため、中間膜92とは接着されていないアンテナ素子73と接したガラス板91の一部分が、ガラス破損時に飛散してしまい、保安上の問題が生じる可能性がある。   Therefore, a part of the glass plate 91 that is in contact with the antenna element 73 that is not bonded to the intermediate film 92 is scattered when the glass is broken, which may cause a security problem.

そこで、図11に示すように、2枚の中間膜92,92の間にアンテナ素子73を挟む方法が考えられる。しかし、この方法では、中間膜92の使用量が倍増するのに加え、合わせガラスの製造工程が増えるため、原材料費の増加および製造効率の低下によりコストの増加を生じることになる。   Therefore, as shown in FIG. 11, a method of sandwiching the antenna element 73 between the two intermediate films 92 and 92 can be considered. However, in this method, in addition to doubling the amount of use of the intermediate film 92, the number of steps for manufacturing laminated glass increases, so that costs increase due to an increase in raw material costs and a decrease in manufacturing efficiency.

その他の方法として、線状導体72を、ガラス板91と接着性のある樹脂膜に対し直接配線し、これを中間膜92と共にガラス板91,91で挟み込む構造が考えられるが、樹脂膜は中間膜92と同素材でなければならないため、適切な構造ではない。なぜならば、中間膜92は、合わせガラスの工程で熱圧着する時に流動し、同様に同じ材質である樹脂膜も流動し、線状導体72の保持ができなくなり、配線パターンの変形や線状導体72の断線を生じてしまう問題がある。   As another method, a structure in which the linear conductor 72 is directly wired to the glass plate 91 and an adhesive resin film and sandwiched between the glass plate 91 and 91 together with the intermediate film 92 is conceivable. Since the material must be the same as that of the film 92, the structure is not appropriate. This is because the intermediate film 92 flows when thermocompression bonding is performed in the laminated glass process, and the resin film made of the same material also flows, so that the linear conductor 72 cannot be held, and the wiring pattern is deformed or the linear conductor There is a problem that the disconnection 72 occurs.

また、挟み込んだアンテナ素子73と直接給電して安定した送受信特性を得る方法としては、フロントガラス81の端からアンテナ素子73の一方の端を露出させ、露出させた端から給電通電する方法がある。   Further, as a method of obtaining stable transmission / reception characteristics by directly feeding power to the sandwiched antenna element 73, there is a method of exposing one end of the antenna element 73 from the end of the windshield 81 and feeding power from the exposed end. .

しかし、この場合、車両にフロントガラス81を取り付ける時に、その作業性を阻害し、また、アンテナ素子73自体が破損する危険性が高くなるので好ましくない。   However, in this case, when the windshield 81 is attached to the vehicle, the workability is hindered, and the risk of the antenna element 73 itself being damaged increases, which is not preferable.

そこで、本発明の目的は、上記課題を解決し、視認性を低減でき、かつ送受信特性に優れた透明アンテナおよびガラス封入型透明アンテナとその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a transparent antenna, a glass-enclosed transparent antenna, and a method for manufacturing the same that can solve the above-described problems, can reduce visibility, and have excellent transmission and reception characteristics.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、並列配列された複数本の線状導体からなる放射素子と、その放射素子を挟み込む一対の可視光透過性の絶縁体フィルムと、一方の絶縁体フィルムの外層に形成され、熱によって軟化し、かつ接着性を有する樹脂膜とで形成された透明アンテナである。   The present invention has been devised to achieve the above object, and the invention of claim 1 is directed to a radiation element composed of a plurality of linear conductors arranged in parallel and a pair of visible light transmissions sandwiching the radiation element. The transparent antenna is formed of a conductive insulator film and a resin film formed on the outer layer of one of the insulator films, softened by heat, and having adhesiveness.

請求項2の発明は、前記線状導体と電気的に接続されると共に、面状の形状を有する給電素子を、前記一対の絶縁体フィルムに挟み込んでいる請求項1に記載の透明アンテナである。   The invention according to claim 2 is the transparent antenna according to claim 1, wherein a feeding element having a planar shape is sandwiched between the pair of insulator films while being electrically connected to the linear conductor. .

請求項3の発明は、前記給電素子は、低融点金属からなる接合層と、接合層よりも高融点の金属からなる面状導体層とが積層されてなり、前記接合層を溶融することにより前記線状導体と前記面状導体層とが金属的に接合されている請求項2に記載の透明アンテナである。   According to a third aspect of the present invention, the feeding element is formed by laminating a joining layer made of a low melting point metal and a planar conductor layer made of a metal having a melting point higher than that of the joining layer, and melting the joining layer. The transparent antenna according to claim 2, wherein the linear conductor and the planar conductor layer are metallically joined.

請求項4の発明は、請求項1〜3のいずれかに記載の透明アンテナが、樹脂性の中間膜と共に一対の可視光透過性のガラス板によって前記樹脂膜側の面が前記ガラス板に面接触するように挟み込まれ、前記給電素子/前記線状導体と静電結合する給電電極が前記ガラス板の一方の表面に設けられたことを特徴とするガラス封入型透明アンテナである。   According to a fourth aspect of the present invention, in the transparent antenna according to any one of the first to third aspects, the resin film side surface faces the glass plate by a pair of visible light transmissive glass plates together with the resinous intermediate film. A glass-enclosed transparent antenna, wherein a power supply electrode sandwiched so as to be in contact and electrostatically coupled to the power supply element / the linear conductor is provided on one surface of the glass plate.

請求項5の発明は、請求項2または3に記載の透明アンテナを、車両のフロントガラスに封入し、前記フロントガラスの車内側の面に、前記給電素子と静電結合する給電電極を設けて構成されるガラス封入型透明アンテナである。   According to a fifth aspect of the present invention, the transparent antenna according to the second or third aspect is enclosed in a windshield of a vehicle, and a power feeding electrode that is electrostatically coupled to the power feeding element is provided on an inner surface of the windshield. A glass-enclosed transparent antenna constructed.

請求項6の発明は、前記フロントガラスは、複数枚のガラス板を樹脂からなる中間膜を介して張り合わせて形成され、前記透明アンテナは、その樹脂膜側の面が前記ガラス板に面接触するように前記ガラス板と前記中間膜との間に封入される請求項5に記載のガラス封入型透明アンテナである。   According to a sixth aspect of the present invention, the windshield is formed by bonding a plurality of glass plates through an intermediate film made of resin, and the surface of the transparent antenna is in surface contact with the glass plate. The glass-enclosed transparent antenna according to claim 5, wherein the glass-enclosed transparent antenna is encapsulated between the glass plate and the intermediate film.

請求項7の発明は、線状導体の複数本を、線状導体同士の間隔が線状導体の幅の10倍以上で整列させ、線状導体の視認性を低減させた状態で連続して送り出し、同時に、送り出された前記複数本の線状導体を挟み込むように一対の可視光透過性の絶縁体フィルムを送り出すと共に、樹脂膜を一方の絶縁体フィルムの外層に送り出し、これらを熱圧着して透明アンテナを製造する透明アンテナの製造方法である。   According to the seventh aspect of the present invention, a plurality of linear conductors are continuously aligned so that the distance between the linear conductors is 10 times or more the width of the linear conductors, and the visibility of the linear conductors is reduced. At the same time, a pair of visible light transmitting insulator films are sent out so as to sandwich the sent out plurality of linear conductors, and a resin film is sent out to the outer layer of one insulator film, and these are thermocompression bonded. And a transparent antenna manufacturing method for manufacturing a transparent antenna.

本発明によれば、視認性が困難で、かつ送受信特性に優れた透明アンテナを提供できる。   According to the present invention, it is possible to provide a transparent antenna that is difficult to view and has excellent transmission / reception characteristics.

本発明の透明アンテナを封入したフロントガラスの断面図である。It is sectional drawing of the windshield which enclosed the transparent antenna of this invention. 本発明の透明アンテナの給電部構造を示す図である。It is a figure which shows the electric power feeding part structure of the transparent antenna of this invention. 図3(a)は、本発明の透明アンテナの製造装置の正面図であり、図3(b)は、その平面図である。FIG. 3A is a front view of the transparent antenna manufacturing apparatus of the present invention, and FIG. 3B is a plan view thereof. 本発明の透明アンテナの他の実施の形態を示す図である。It is a figure which shows other embodiment of the transparent antenna of this invention. 本発明の透明アンテナ及び従来の透明アンテナについて、アンテナ特性(リターンロス)を比較した図である。It is the figure which compared the antenna characteristic (return loss) about the transparent antenna of this invention, and the conventional transparent antenna. 従来のダイポールアンテナを示す図である。It is a figure which shows the conventional dipole antenna. 図7(a)は、従来の透明アンテナの給電部の外観を示す図であり、図7(b)は、その断面構造を示す図である。Fig.7 (a) is a figure which shows the external appearance of the electric power feeding part of the conventional transparent antenna, FIG.7 (b) is a figure which shows the cross-sectional structure. 従来のアンテナの車両のフロントガラスへの取付け方法を示す図である。It is a figure which shows the attachment method to the windshield of the vehicle of the conventional antenna. 車両のフロントガラスの合わせガラス構造にアンテナ素子を封入した全体構造図である。It is the whole structure figure which enclosed an antenna element in the laminated glass structure of the windshield of vehicles. 図9のフロントガラスの要部断面図である。It is principal part sectional drawing of the windshield of FIG. 従来のアンテナの合わせガラスへの他の封入方法を示す図である。It is a figure which shows the other sealing method to the laminated glass of the conventional antenna.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の透明アンテナは、車両のフロントガラス等に封入され、VHF帯、UHF帯等を送受信するためのものである。   The transparent antenna of the present invention is sealed in a vehicle windshield or the like, and is used for transmitting and receiving a VHF band, a UHF band, and the like.

図1は、本発明の透明アンテナを封入したフロントガラスの断面図であり、図2は、本発明の透明アンテナの給電部構造を示す図である。   FIG. 1 is a cross-sectional view of a windshield enclosing a transparent antenna of the present invention, and FIG.

図1、2に示すように、本発明の透明アンテナ1は、並列配列された複数本の線状導体2からなる放射素子3と、その放射素子3を挟み込む一対の可視光透過性の絶縁体フィルム4,4と、一方の絶縁体フィルム4の外層に形成された樹脂膜5とでアンテナ素子6が構成され、そのアンテナ素子6の放射素子3に給電すべくアンテナ素子6の端部の線状導体2の全てと電気的に接続するように、その各線状導体2と接触するように、面状の形状を有する給電素子7を設けて構成される。   As shown in FIGS. 1 and 2, a transparent antenna 1 of the present invention includes a radiating element 3 composed of a plurality of linear conductors 2 arranged in parallel, and a pair of visible light transmissive insulators sandwiching the radiating element 3. The antenna elements 6 are constituted by the films 4 and 4 and the resin film 5 formed on the outer layer of one of the insulator films 4, and a wire at the end of the antenna element 6 to feed power to the radiating element 3 of the antenna element 6. A feed element 7 having a planar shape is provided so as to be in contact with each of the linear conductors 2 so as to be electrically connected to all of the linear conductors 2.

この透明アンテナ1を、図8、9に示したフロントガラス81のガラス板91,91間に中間膜92と共に封入し、車内側(図の上側)のガラス板91に、給電素子7と静電結合する給電電極12を設けたものが本発明のガラス封入型透明アンテナ11である。給電電極12は、給電素子7と対向した位置に設けられ、また、給電電極12には、ケーブル13が接続される。   The transparent antenna 1 is enclosed between the glass plates 91 and 91 of the windshield 81 shown in FIGS. 8 and 9 together with the intermediate film 92, and the feeder element 7 and the electrostatic device are placed on the glass plate 91 on the vehicle interior side (upper side in the figure). The glass-enclosed transparent antenna 11 of the present invention is provided with the feeding electrode 12 to be coupled. The feeding electrode 12 is provided at a position facing the feeding element 7, and a cable 13 is connected to the feeding electrode 12.

一般的な裸眼での視認能力では、距離250mmから離れて線状導体2をみれば、一般的な視力の指標(分数視力)で2.0の時、約φ0.04mmが視認の限界であるため、導体径はφ0.04mm以下、好ましくはφ0.02mm以下になれば導体の可視が困難となる。   When viewing the linear conductor 2 away from a distance of 250 mm, when the general visual acuity (2.0 fractional visual acuity) is 2.0, a visual limit of about 0.04 mm is the limit for visual recognition with a general naked eye. For this reason, if the conductor diameter is φ0.04 mm or less, preferably φ0.02 mm or less, it becomes difficult to see the conductor.

また、線状導体2間の間隔は導体径の10倍以上であれば、線状導体2により遮断される領域が10%以下になり、アンテナの透過性への影響が小さくアンテナの背景の視認性を十分に得ることができるため、線状導体2と線状導体2の間隔は導体径の10倍以上が望ましい。   Further, if the distance between the linear conductors 2 is 10 times or more the conductor diameter, the area blocked by the linear conductors 2 is 10% or less, and the influence on the antenna transparency is small and the background of the antenna is visually recognized. Therefore, the distance between the linear conductor 2 and the linear conductor 2 is preferably 10 times or more the conductor diameter.

線状導体2の表面は、視認性を困難にするために銅や黄銅等の色彩が濃く光沢があるよりも錫や銀等の色彩が淡く無光沢であることが望ましい。   In order to make the surface of the linear conductor 2 difficult to see, it is desirable that the color of tin, silver, etc. is light and matte rather than the color of copper, brass, etc. dark and glossy.

絶縁体フィルム4としては、アクリルやポリ塩化ビニルを用いるとよく、樹脂膜5としては、熱によって軟化し、かつ接着性を有する材料、例えば、ポリビニルブチラールを用いるとよい。   As the insulator film 4, acrylic or polyvinyl chloride may be used, and as the resin film 5, a material that is softened by heat and has adhesive properties, such as polyvinyl butyral, may be used.

この樹脂膜5は、中間膜92と同じ材料で形成され、ガラス板91,91の間に中間膜92と透明アンテナ1を挟み込んで熱圧着したときに、中間膜92と共にガラス板91,91に接着されるようにするためのものである。   The resin film 5 is formed of the same material as that of the intermediate film 92. When the intermediate film 92 and the transparent antenna 1 are sandwiched between the glass plates 91 and 91 and thermocompression bonded, the resin film 5 is formed on the glass plates 91 and 91 together with the intermediate film 92. It is for making it adhere | attach.

フロントガラス81に透明アンテナ1を封入する際には、中間膜92上に透明アンテナ1の樹脂膜5が上面になるように重ね、その上下からガラス板91,91で挟んで熱圧着することにより、中間膜92が融解して透明アンテナ1が、図1に示すように中間膜92内に埋め込まれた状態でガラス板91に透明アンテナ1の樹脂膜5と中間膜92とが一体となって接着するようになる。これにより、ガラス破損時にガラス片が飛散するのを防止できる。   When encapsulating the transparent antenna 1 in the windshield 81, the resin film 5 of the transparent antenna 1 is placed on the intermediate film 92 so as to be on the upper surface, and is sandwiched between the glass plates 91 and 91 from above and below and thermocompression bonded. The resin film 5 and the intermediate film 92 of the transparent antenna 1 are integrated with the glass plate 91 in a state where the intermediate film 92 is melted and the transparent antenna 1 is embedded in the intermediate film 92 as shown in FIG. It comes to adhere. Thereby, it can prevent that a glass piece disperses at the time of glass breakage.

以上において、透明アンテナ1の線状導体2の1本毎に電流が誘起され、給電電極12と給電電極12に接続されたケーブル13を通して受信電力が得られる。   In the above, a current is induced for each of the linear conductors 2 of the transparent antenna 1, and received power is obtained through the feeding electrode 12 and the cable 13 connected to the feeding electrode 12.

複数の線状導体2は同じ長さのため、給電電極12では各々の線状導体2からの受信電力が同位相で合成される。   Since the plurality of linear conductors 2 have the same length, received power from the respective linear conductors 2 is synthesized in the same phase at the feeding electrode 12.

線状導体2は、細いことから高い抵抗値を持つが、前述の理由により並列回路となり、本数Nが十分大きければアンテナの抵抗値が1/Nとなり、抵抗損失を低減することができ、インピーダンス整合を容易にとることが可能となる。   The linear conductor 2 has a high resistance value due to its thinness. However, for the reason described above, it becomes a parallel circuit. If the number N is sufficiently large, the resistance value of the antenna becomes 1 / N, and the resistance loss can be reduced. Matching can be easily performed.

例えば、直径0.02mmの抵抗値1.5×10-8Ωの銀めっき銅合金線を用いて、500MHz(波長600mm)用のL=波長/2=300mmのダイポールアンテナを考えた場合、L部の高周波抵抗は、単線では約150Ωになり、アンテナの放射抵抗73.13Ωよりはるかに大きな値のため、熱損失が大きくなる。 For example, when using silver-plated copper alloy wire of the resistance value 1.5 × 10 -8 Ω diameter 0.02 mm, considering a dipole antenna of 500MHz for (wavelength 600 mm) L = wavelength / 2 = 300 mm, L The high-frequency resistance of the part is about 150Ω for a single wire, and is much larger than the radiation resistance 73.13Ω of the antenna, so that the heat loss becomes large.

しかし、線状導体2の本数Nを50とすると、高周波抵抗は約3Ωと小さくなり熱損失は無視できるレベルとなる。この時、線状導体2の間隔を導体径の10倍の0.2mmとすると線状導体2が配線された部分が占める幅は約10mmとなり、一般的なアンテナの寸法になり、かつ無視認性を得ることができる。   However, when the number N of the linear conductors 2 is 50, the high-frequency resistance is as small as about 3Ω, and the heat loss is negligible. At this time, if the distance between the linear conductors 2 is 0.2 mm, which is 10 times the conductor diameter, the width occupied by the portion where the linear conductors 2 are wired is about 10 mm, which is a general antenna size and is not visually recognized. Sex can be obtained.

以上要するに、本発明の透明アンテナ1によれば、線状導体2を並列に配列することで抵抗を低減できるため、細い線状導体2を用いることができる。このため、視認性を低減できる。また、面状の形状の給電素子7を設けることで、優れた送受信特性を得られる。   In short, according to the transparent antenna 1 of the present invention, since the resistance can be reduced by arranging the linear conductors 2 in parallel, the thin linear conductor 2 can be used. For this reason, visibility can be reduced. Further, by providing the planar power supply element 7, excellent transmission / reception characteristics can be obtained.

さらに、線状導体2を格子状、または、網目状にすることで、視認困難な透明の電磁波遮断フィルムとして適用することもできる。これにより、家屋の窓ガラスやブラウン管表面への貼り付け、顔面を保護するカバーに適用することで、視認性を損なうことなく電磁波を遮断することができる。   Furthermore, the linear conductor 2 can be applied as a transparent electromagnetic wave shielding film that is difficult to view by making it into a lattice shape or a mesh shape. Thereby, electromagnetic waves can be blocked without impairing visibility by applying to a window glass or cathode ray tube surface of a house or a cover for protecting the face.

また、本発明の透明アンテナ1をフロントガラス81に封入してガラス封入型透明アンテナ11とすれば、ガラス板91に透明アンテナ1の樹脂膜5と中間膜92とが一体となって接着するため、ガラス破損時にガラス片が飛散するのを防止できる。   In addition, when the transparent antenna 1 of the present invention is enclosed in the windshield 81 to form the glass-enclosed transparent antenna 11, the resin film 5 and the intermediate film 92 of the transparent antenna 1 are integrally bonded to the glass plate 91. It is possible to prevent the glass pieces from scattering when the glass is broken.

以上の点から、本発明は、アンテナ特性および保安上において、従来技術に対し優位である。   From the above points, the present invention is superior to the prior art in terms of antenna characteristics and security.

なお、給電素子7がなくてもアンテナとして機能するが、給電素子7があると以下の利点がある。   In addition, although it functions as an antenna even if there is no feed element 7, if there is the feed element 7, there are the following advantages.

図1、2に示すように、給電素子7は、面状の形状であるので、給電電極12と給電素子7を静電結合する面積が、線状導体2のみの場合に比べて大きくなる。そのため、静電結合が強くなり、アンテナの送受信特性が安定する。   As shown in FIGS. 1 and 2, since the power feeding element 7 has a planar shape, the area where the power feeding electrode 12 and the power feeding element 7 are electrostatically coupled becomes larger than the case where only the linear conductor 2 is used. Therefore, electrostatic coupling becomes strong and the transmission / reception characteristics of the antenna are stabilized.

給電素子7としては、銅箔などの面状導体を用いるとよく、より好ましくは、低融点金属(例えば、はんだ)からなる接合層と、接合層よりも高融点の金属(例えば、銅箔)からなる面状導体層とを積層した2層構造とし、低融点金属からなる接合層を線状導体2と接触するように設ける。   As the power feeding element 7, a planar conductor such as a copper foil may be used, and more preferably, a bonding layer made of a low melting point metal (for example, solder) and a metal having a higher melting point than the bonding layer (for example, a copper foil). A planar conductor layer made of two layers is laminated, and a bonding layer made of a low melting point metal is provided in contact with the linear conductor 2.

このような2層構造とすることにより、絶縁体フィルム4,4で線状導体2と接合層と面状導体層からなる給電素子7を挟んで加熱することで接合層が融解して、図4に示すように、線状導体2と面状導体層41の接合層42となるため、電気的接続が確実となり、抵抗を低減することができる。   By adopting such a two-layer structure, the bonding layer is melted by heating with the insulator films 4 and 4 sandwiching the power supply element 7 composed of the linear conductor 2, the bonding layer, and the planar conductor layer. As shown in FIG. 4, since it becomes the joining layer 42 of the linear conductor 2 and the planar conductor layer 41, electrical connection is ensured and resistance can be reduced.

給電素子7の大きさは、大きい方が、電流損失が少なく有効であるが、大き過ぎると視認性の障害となるため、小さい方が望ましい。そこで、後述する実施例における十分な大きさは、幅20mm、高さ20mmとなった。この大きさは、ガラスの厚さなど他の条件に依存するため、この大きさに限るものではない。   A larger size of the feeding element 7 is effective with less current loss. However, if the size is too large, it becomes an obstacle to visibility, so a smaller size is desirable. Therefore, a sufficient size in Examples described later is 20 mm in width and 20 mm in height. This size is not limited to this size because it depends on other conditions such as the thickness of the glass.

次に、透明アンテナ1の製造方法を説明する。   Next, a method for manufacturing the transparent antenna 1 will be described.

図3(a)は、本発明の透明アンテナの製造に用いる製造装置の正面図であり、図3(b)は、その平面図である。   Fig.3 (a) is a front view of the manufacturing apparatus used for manufacture of the transparent antenna of this invention, FIG.3 (b) is the top view.

図3に示すように、複数本の線状導体2をガイドプーリ31で整列させて連続で送り出しながら、同時にボビン32,32に巻いてある一対の可視光透過性の絶縁体フィルム4を線状導体2を挟み込むように送り出すと共に、ボビン33に巻いてある樹脂膜5を一方の絶縁体フィルムの外層に送り出し、これらを熱間圧延ロール34で熱圧着(例えば、熱間圧延温度120℃)して得られたテープ状のアンテナ素材を巻取りボビン35で巻き取る。   As shown in FIG. 3, while a plurality of linear conductors 2 are aligned by a guide pulley 31 and continuously sent out, a pair of visible light transmissive insulator films 4 wound around bobbins 32 and 32 are linearly formed. While sending out the conductor 2, the resin film 5 wound around the bobbin 33 is sent to the outer layer of one insulator film, and these are hot-pressed (for example, hot rolling temperature 120 ° C.) with a hot rolling roll 34. The tape-shaped antenna material obtained in this way is wound up by a winding bobbin 35.

その後、テープ状のアンテナ素材を、送受信する電波や設置場所に適応するように適当な長さに切断してアンテナ素子6とし、最後に切断したアンテナ素子6の端部の絶縁体フィルム4,4を剥がし、線状導体2の全てと接触するように給電素子7を挟み込むと透明アンテナ1を得られる。   Thereafter, the tape-shaped antenna material is cut to an appropriate length so as to be adapted to the radio wave to be transmitted and received and the installation location to form the antenna element 6, and the insulator films 4 and 4 at the end of the antenna element 6 finally cut. Is peeled off, and the feed element 7 is sandwiched so as to be in contact with all of the linear conductors 2, whereby the transparent antenna 1 can be obtained.

本発明の透明アンテナ1の製造方法によれば、フロントガラスに封入したとき、ガラス破損時のガラス片の飛散を防止し、さらに視認性を低減し、かつ送受信特性に優れる透明アンテナ1を得られる。   According to the method for manufacturing a transparent antenna 1 of the present invention, when encapsulated in a windshield, it is possible to obtain a transparent antenna 1 that prevents scattering of glass pieces when the glass breaks, further reduces visibility, and has excellent transmission / reception characteristics. .

(実施例1)
直径φ0.02mmの12本の線状導体2(無光沢銀めっき銅合金導体)を等間隔1.5mmで平行に配列し、2枚の可視光透過性のある絶縁体フィルム4(例えば、アクリルやポリ塩化ビニル)で線状導体2を挟み、同時に、厚さ0.3mmの樹脂膜5(ポリビニルブチラール)と120℃の熱を加え圧着することでアンテナ素子6を形成した。
Example 1
Twelve linear conductors 2 (matte silver-plated copper alloy conductors) having a diameter of φ 0.02 mm are arranged in parallel at equal intervals of 1.5 mm, and two sheets of insulating film 4 having visible light transmittance (for example, acrylic The antenna element 6 was formed by sandwiching the linear conductor 2 between the resin film 5 (polyvinyl butyral) having a thickness of 0.3 mm and applying heat at 120 ° C. for pressure bonding.

また、アンテナ素子6の長さは140mmになるようにし、給電部分には、幅20mm、高さ20mm、厚さ0.05mmの給電素子7(銅箔)を12本の線状導体2全てに接触するように挟み込んだ。   The length of the antenna element 6 is set to 140 mm, and a feeding element 7 (copper foil) having a width of 20 mm, a height of 20 mm, and a thickness of 0.05 mm is provided on all twelve linear conductors 2 in the feeding portion. It was pinched so that it might contact.

その後、図1に示すように、厚さ2mmのガラス板91に、厚さ0.75mmの中間膜92(ポリビニルブチラール)と共に挟み、温度140℃、圧力150MPaで熱圧着を行った。   Thereafter, as shown in FIG. 1, the glass plate 91 having a thickness of 2 mm was sandwiched with an intermediate film 92 (polyvinyl butyral) having a thickness of 0.75 mm, and thermocompression bonding was performed at a temperature of 140 ° C. and a pressure of 150 MPa.

更に、ガラス板91の表面から、同じ大きさの給電電極12(銅板)を貼り付け、給電素子7と静電結合させ給電部とした。   Furthermore, a feeding electrode 12 (copper plate) of the same size was attached from the surface of the glass plate 91 and electrostatically coupled to the feeding element 7 to form a feeding unit.

(実施例2)
直径φ0.02mmの12本の線状導体2(無光沢銀めっき銅合金導体)を等間隔1.5mmで平行に配列し、2枚の可視光透過性のある絶縁体フィルム4(例えば、アクリルやポリ塩化ビニル)で線状導体2を挟み、同時に、厚さ0.75mmの樹脂膜5(ポリビニルブチラール)と120℃の熱を加え圧着することでアンテナ素子6を形成した。
(Example 2)
Twelve linear conductors 2 (matte silver-plated copper alloy conductors) having a diameter of φ 0.02 mm are arranged in parallel at equal intervals of 1.5 mm, and two sheets of insulating film 4 having visible light transmittance (for example, acrylic The antenna element 6 was formed by sandwiching the linear conductor 2 between the resin film 5 (polyvinyl butyral) having a thickness of 0.75 mm and applying heat at 120 ° C. for pressure bonding.

また、アンテナ素子6の長さは140mmになるようにし、給電部分には、幅20mm、高さ20mm、厚さ0.05mmの給電素子7(銅箔)を12本の線状導体2全てに接触するように挟み込んだ。   The length of the antenna element 6 is set to 140 mm, and a feeding element 7 (copper foil) having a width of 20 mm, a height of 20 mm, and a thickness of 0.05 mm is provided on all twelve linear conductors 2 in the feeding portion. It was pinched so that it might contact.

その後、図1に示すように、厚さ2mmのガラス板91に、厚さ0.75mmの中間膜92(ポリビニルブチラール)と共に挟み、温度140℃、圧力150MPaで熱圧着を行った。   Thereafter, as shown in FIG. 1, the glass plate 91 having a thickness of 2 mm was sandwiched with an intermediate film 92 (polyvinyl butyral) having a thickness of 0.75 mm, and thermocompression bonding was performed at a temperature of 140 ° C. and a pressure of 150 MPa.

更に、ガラス板91の表面から、同じ大きさの給電電極12(銅板)を貼り付け、給電素子7と静電結合させ給電部とした。   Furthermore, a feeding electrode 12 (copper plate) of the same size was attached from the surface of the glass plate 91 and electrostatically coupled to the feeding element 7 to form a feeding unit.

(比較例1)
直径φ0.02mmの12本の線状導体2(無光沢銀めっき銅合金導体)を等間隔1.5mmで平行に配列し、2枚の可視光透過性のある絶縁体フィルム4(例えば、アクリルやポリ塩化ビニル)で120℃の熱を加え圧着することでアンテナ素子を形成した。
(Comparative Example 1)
Twelve linear conductors 2 (matte silver-plated copper alloy conductors) having a diameter of φ 0.02 mm are arranged in parallel at equal intervals of 1.5 mm, and two sheets of insulating film 4 having visible light transmittance (for example, acrylic The antenna element was formed by applying heat at 120 ° C. and crimping with polyvinyl chloride).

また、アンテナ素子の長さは140mmになるようにし、給電部分には、幅20mm、高さ20mm、厚さ0.05mmの給電素子7(銅箔)を12本の線状導体2全てに接触するように挟み込んだ。   The length of the antenna element is set to 140 mm, and a power feeding element 7 (copper foil) having a width of 20 mm, a height of 20 mm, and a thickness of 0.05 mm is brought into contact with all twelve linear conductors 2 at the power feeding portion. I caught it like that.

その後、厚さ2mmのガラス板91に、厚さ0.75mmの中間膜92(ポリビニルブチラール)と共に挟み、温度140℃、圧力150MPaで熱圧着を行った。   Thereafter, the glass film 91 having a thickness of 2 mm was sandwiched with an intermediate film 92 (polyvinyl butyral) having a thickness of 0.75 mm, and thermocompression bonding was performed at a temperature of 140 ° C. and a pressure of 150 MPa.

更に、ガラス板91の表面から、同じ大きさの給電電極12(銅板)を貼り付け、給電素子7と静電結合させ給電部とした。   Furthermore, a feeding electrode 12 (copper plate) of the same size was attached from the surface of the glass plate 91 and electrostatically coupled to the feeding element 7 to form a feeding unit.

(比較例2)
直径φ0.02mmの12本の線状導体2(無光沢銀めっき銅合金導体)を等間隔1.5mmで平行に配列し、2枚の可視光透過性のある絶縁体フィルム4(例えば、アクリルやポリ塩化ビニル)で120℃の熱を加え圧着することでアンテナ素子を形成した。
(Comparative Example 2)
Twelve linear conductors 2 (matte silver-plated copper alloy conductors) having a diameter of φ 0.02 mm are arranged in parallel at equal intervals of 1.5 mm, and two sheets of insulating film 4 having visible light transmittance (for example, acrylic The antenna element was formed by applying heat at 120 ° C. and crimping with polyvinyl chloride).

また、アンテナ素子の長さは140mmになるようにし、その後、厚さ2mmのガラス板91に、厚さ0.75mmの中間膜92(ポリビニルブチラール)と共に挟み、温度140℃、圧力150MPaで熱圧着を行った。   The length of the antenna element is 140 mm, and then sandwiched between 2 mm thick glass plate 91 together with 0.75 mm thick intermediate film 92 (polyvinyl butyral), and thermocompression bonded at a temperature of 140 ° C. and a pressure of 150 MPa. Went.

更に、ガラス板91の表面から、幅20mm、高さ20mmの給電電極12(銅板)を貼り付け、線状導体2と静電結合させ給電部とした。   Further, a feeding electrode 12 (copper plate) having a width of 20 mm and a height of 20 mm was attached from the surface of the glass plate 91 and electrostatically coupled to the linear conductor 2 to form a feeding portion.

上記の各実施例1、2と比較例1、2について、透明アンテナのリターンロス特性を評価した。また、ガラス板91に衝撃を与え、ガラス板91を破損させた時のガラス片の飛散状況を確認した。   For each of the above Examples 1 and 2 and Comparative Examples 1 and 2, the return loss characteristics of the transparent antenna were evaluated. Moreover, the glass plate 91 was impacted and the scattering state of the glass piece when the glass plate 91 was damaged was confirmed.

図5に各実施例1、2と比較例1、2ついて、アンテナ特性(リターンロス特性)を評価した結果を示す。   FIG. 5 shows the results of evaluating the antenna characteristics (return loss characteristics) for each of Examples 1 and 2 and Comparative Examples 1 and 2.

図5に示すように、各実施例1、2は、比較例1に比べて給電部の静電結合の距離が長くなるため、リターンロスのピークレベルは低下するが、例えば、デジタルTVの周波数帯域(470MHz〜770MHz)において、リターンロス(−4dB以下)を満足し、実用的に十分な特性を満足している。また、比較例2と比べると、各実施例1、2は、給電部に給電素子7(銅箔)を挟むことで損失が低減したため、リターンロスが向上している。以上の結果から、本発明は有効であることがわかる。   As shown in FIG. 5, in each of the first and second embodiments, the distance of electrostatic coupling of the power feeding unit is longer than that in the first comparative example, so that the peak level of return loss is reduced. In the band (470 MHz to 770 MHz), the return loss (−4 dB or less) is satisfied, and practically sufficient characteristics are satisfied. Moreover, compared with the comparative example 2, since each Example 1 and 2 reduced the loss by inserting the electric power feeding element 7 (copper foil) in the electric power feeding part, the return loss has improved. From the above results, it can be seen that the present invention is effective.

また、表1に、ガラス板91が破損した時の飛散状況について評価した結果を示す。   Table 1 shows the results of evaluation of the scattering situation when the glass plate 91 is broken.

Figure 2010233085
Figure 2010233085

実施例1、2とも、ガラス板91が破損してもガラス片が中間膜92と接着しているために飛散はしなかった。しかし、比較例1、2では、ガラス板91が破損した場合、ガラス片が飛散する結果となった。   In both Examples 1 and 2, even if the glass plate 91 was broken, the glass pieces were adhered to the intermediate film 92, so that the glass plate 91 was not scattered. However, in Comparative Examples 1 and 2, when the glass plate 91 was damaged, the glass pieces were scattered.

線状導体2の径は実施例に限定されず、視認性が困難であれば構わない。また、線状導体2およびめっきの材料は、実施例に限定されず、視認性が困難で十分な給電が得られれば実施例に示す以外でも構わない。   The diameter of the linear conductor 2 is not limited to an Example, What is necessary is that visibility is difficult. Moreover, the material of the linear conductor 2 and plating is not limited to an Example, It may be other than shown in an Example, if visibility is difficult and sufficient electric power feeding is obtained.

さらに、線状導体2の本数は、実施例に限定されず、十分な給電が得られれば実施例に示す本数以上でも以下でも構わない。また、線状導体2の間隔は等間隔に限定されず、各々が異なった間隔でも構わない。   Further, the number of the linear conductors 2 is not limited to the example, and may be more or less than the number shown in the example as long as sufficient power feeding is obtained. Further, the intervals between the linear conductors 2 are not limited to equal intervals, but may be different intervals.

絶縁体フィルム4の材質および絶縁体フィルム4に対する粘着または接着層の有無は、2枚の絶縁体フィルム4の接着性および透明性が確保できれば実施例に限定されない。   The material of the insulator film 4 and the presence or absence of an adhesive or adhesive layer on the insulator film 4 are not limited to the examples as long as the adhesiveness and transparency of the two insulator films 4 can be secured.

また、絶縁体フィルム4の外層に設ける樹脂膜5の厚さや材質は、実施例に限定されず、合わせガラスに用いる中間膜92に応じて適宜選択できる。   Moreover, the thickness and material of the resin film 5 provided in the outer layer of the insulator film 4 are not limited to an Example, It can select suitably according to the intermediate film 92 used for a laminated glass.

1 透明アンテナ
2 線状導体
3 放射素子
4 絶縁体フィルム
5 樹脂膜
7 給電素子
11 ガラス封入型透明アンテナ
12 給電電極
13 ケーブル
91 ガラス板
92 中間膜
DESCRIPTION OF SYMBOLS 1 Transparent antenna 2 Linear conductor 3 Radiating element 4 Insulator film 5 Resin film 7 Feeding element 11 Glass-enclosed transparent antenna 12 Feeding electrode 13 Cable 91 Glass plate 92 Intermediate film

Claims (7)

並列配列された複数本の線状導体からなる放射素子と、その放射素子を挟み込む一対の可視光透過性の絶縁体フィルムと、一方の絶縁体フィルムの外層に形成され、熱によって軟化し、かつ接着性を有する樹脂膜とで形成されたことを特徴とする透明アンテナ。   A radiating element composed of a plurality of linear conductors arranged in parallel, a pair of visible light transmissive insulator films sandwiching the radiating element, formed on the outer layer of one of the insulator films, softened by heat, and A transparent antenna formed of an adhesive resin film. 前記線状導体と電気的に接続されると共に、面状の形状を有する給電素子を、前記一対の絶縁体フィルムに挟み込んでいる請求項1に記載の透明アンテナ。   The transparent antenna according to claim 1, wherein a power feeding element that is electrically connected to the linear conductor and has a planar shape is sandwiched between the pair of insulator films. 前記給電素子は、低融点金属からなる接合層と、接合層よりも高融点の金属からなる面状導体層とが積層されてなり、前記接合層を溶融することにより前記線状導体と前記面状導体層とが金属的に接合されている請求項2に記載の透明アンテナ。   The power feeding element is formed by laminating a joining layer made of a low melting point metal and a planar conductor layer made of a metal having a melting point higher than that of the joining layer, and the linear conductor and the face are formed by melting the joining layer. The transparent antenna according to claim 2, wherein the conductor layer is metallicly joined to the transparent conductor layer. 請求項1〜3のいずれかに記載の透明アンテナが、樹脂性の中間膜と共に一対の可視光透過性のガラス板によって前記樹脂膜側の面が前記ガラス板に面接触するように挟み込まれ、前記給電素子/前記線状導体と静電結合する給電電極が前記ガラス板の一方の表面に設けられたことを特徴とするガラス封入型透明アンテナ。   The transparent antenna according to any one of claims 1 to 3 is sandwiched so that the resin film side surface is in surface contact with the glass plate by a pair of visible light transmissive glass plates together with a resinous intermediate film, A glass-enclosed transparent antenna, wherein a power supply electrode electrostatically coupled to the power supply element / the linear conductor is provided on one surface of the glass plate. 請求項2または3に記載の透明アンテナを、車両のフロントガラスに封入し、前記フロントガラスの車内側の面に、前記給電素子と静電結合する給電電極を設けて構成されるガラス封入型透明アンテナ。   A glass-enclosed transparent device comprising: a transparent antenna according to claim 2 or 3 enclosed in a windshield of a vehicle; and a feed electrode that is electrostatically coupled to the feed element is provided on an inner surface of the windshield. antenna. 前記フロントガラスは、複数枚のガラス板を樹脂からなる中間膜を介して張り合わせて形成され、前記透明アンテナは、その樹脂膜側の面が前記ガラス板に面接触するように前記ガラス板と前記中間膜との間に封入される請求項5に記載のガラス封入型透明アンテナ。   The windshield is formed by laminating a plurality of glass plates through an intermediate film made of resin, and the transparent antenna has the glass plate and the glass plate so that the resin film side surface is in surface contact with the glass plate. 6. The glass-enclosed transparent antenna according to claim 5, which is enclosed between the intermediate film. 線状導体の複数本を、線状導体同士の間隔が線状導体の幅の10倍以上で整列させ、線状導体の視認性を低減させた状態で連続して送り出し、同時に、送り出された前記複数本の線状導体を挟み込むように一対の可視光透過性の絶縁体フィルムを送り出すと共に、樹脂膜を一方の絶縁体フィルムの外層に送り出し、これらを熱圧着して透明アンテナを製造することを特徴とする透明アンテナの製造方法。   A plurality of linear conductors were continuously sent out in a state where the distance between the linear conductors was aligned at least 10 times the width of the linear conductors, and the visibility of the linear conductors was reduced. A pair of visible light transmissive insulator films are sent out so as to sandwich the plurality of linear conductors, and a resin film is sent out to the outer layer of one insulator film, and these are thermocompressed to produce a transparent antenna. A method for manufacturing a transparent antenna.
JP2009080084A 2009-03-27 2009-03-27 Transparent antenna, glass-sealed transparent antenna and method of manufacturing the same Pending JP2010233085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080084A JP2010233085A (en) 2009-03-27 2009-03-27 Transparent antenna, glass-sealed transparent antenna and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080084A JP2010233085A (en) 2009-03-27 2009-03-27 Transparent antenna, glass-sealed transparent antenna and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010233085A true JP2010233085A (en) 2010-10-14

Family

ID=43048461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080084A Pending JP2010233085A (en) 2009-03-27 2009-03-27 Transparent antenna, glass-sealed transparent antenna and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010233085A (en)

Similar Documents

Publication Publication Date Title
JP5399256B2 (en) Antenna connector
JP6338780B2 (en) Electrically heatable antenna plate material and manufacturing method thereof
US8563899B2 (en) Heated vehicle window
JP5662470B2 (en) Vehicle glazing with slot antenna
JP4872304B2 (en) Method for manufacturing antenna encapsulated laminated glass
EP2936609B1 (en) Laminated glazing with first and second antennas
EP3455900B1 (en) Connector for antennas, a glazing comprising the connector and an antenna system comprising the connector
US9564674B2 (en) Window antenna connector with impedance matching
CN110466323A (en) Glass for vehicle window and vehicle
JP5067289B2 (en) Transparent antenna for vehicles
JP4775301B2 (en) Transparent antenna
JP4788333B2 (en) Glass antenna for vehicles
JP2010045572A (en) Method of manufacturing on-vehicle transparent antenna, and the on-vehicle transparent antenna
US7773047B2 (en) Antenna and method of making the same
EP2926407B1 (en) Laminated glazing with first and second antennas
JP2010233085A (en) Transparent antenna, glass-sealed transparent antenna and method of manufacturing the same
JP4826770B2 (en) Antenna and manufacturing method thereof
JP4770497B2 (en) antenna
JP2011172281A (en) Component for forming vehicular glass antenna
WO2023080252A1 (en) Module, laminate for image display device, image display device, module manufacturing method, and wiring board
US20230413420A1 (en) Laminated assembly comprising radio-frequency interface board
CN116470281A (en) Feed switching device for connection to an antenna
JP2004120725A (en) Film antenna and manufacturing method