JP2010232613A - Superconducting magnet device capable of monitoring internal temperature abnormality - Google Patents

Superconducting magnet device capable of monitoring internal temperature abnormality Download PDF

Info

Publication number
JP2010232613A
JP2010232613A JP2009081510A JP2009081510A JP2010232613A JP 2010232613 A JP2010232613 A JP 2010232613A JP 2009081510 A JP2009081510 A JP 2009081510A JP 2009081510 A JP2009081510 A JP 2009081510A JP 2010232613 A JP2010232613 A JP 2010232613A
Authority
JP
Japan
Prior art keywords
superconducting magnet
optical fiber
magnet device
temperature sensor
internal temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009081510A
Other languages
Japanese (ja)
Inventor
Yoshichika Tanaka
芳親 田中
Masaru Nagashima
賢 長嶋
Hisao Agawa
久夫 阿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Yokogawa Electric Corp
Original Assignee
Railway Technical Research Institute
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Yokogawa Electric Corp filed Critical Railway Technical Research Institute
Priority to JP2009081510A priority Critical patent/JP2010232613A/en
Publication of JP2010232613A publication Critical patent/JP2010232613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting magnet device that monitors an internal temperature abnormality without being affected by a magnetic field, with a small increase in mass and a small amount of heat intrusion without the necessity for an installation space. <P>SOLUTION: In the superconducting magnet device of helium immersion cooling system, which monitors an internal temperature abnormality, an optical fiber temperature sensor 11 is provided with: load support heat insulators 2; a power lead 3; a coolant pipe 5; an internal tank container 7; and radiation shields 8 and 9. The optical fiber temperature sensor 11 is connected to a measuring device 12 so as to monitor the temperature abnormality in the superconducting magnet device. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内部の温度異常を監視可能とする超電導磁石装置に係り、特に、浮上式鉄道や医療機器、電力貯蔵などに利用する超電導磁石について内部の発熱や熱侵入を監視できるようにしたものである。   The present invention relates to a superconducting magnet device that can monitor internal temperature abnormalities, and in particular, it is possible to monitor internal heat generation and heat penetration of superconducting magnets used for floating railways, medical equipment, power storage, etc. It is.

従来、超電導磁石は、超電導コイルの異常な内部発熱、冷媒の循環不良や断熱不良などによる熱侵入増大があると、超電導コイルの局部または全体が臨界温度以上に上昇し、超電導状態を維持できなくなってクエンチする。クエンチが発生すると超電導磁石としての機能を失うだけでなく、クエンチ発生箇所やその周囲が焼損し修理が必要となるなど影響が大きい。   Conventionally, when there is an increase in heat penetration due to abnormal internal heat generation of the superconducting coil, poor circulation of the refrigerant, poor heat insulation, etc., the superconducting magnet will not be able to maintain the superconducting state because the superconducting coil partly or entirely rises above the critical temperature. Quench. When a quench occurs, it not only loses its function as a superconducting magnet, but also has a significant impact, such as the location where the quench occurs and its surroundings are burnt out and require repairs.

このため、クエンチの予兆となる超電導磁石内部の温度上昇を事前に捉える必要があるが、温度を測定すべき箇所は超電導コイル、冷媒容器、冷媒配管、断熱材取付部など多岐にわたり、かつこれらを分布的に測定する必要がある。しかし、従来の一般的な温度センサである熱電対や抵抗式温度計でこのような温度分布を測定する場合、センサや計測配線の数が膨大になり、設置のためのスペースや質量が増すだけでなく、励消磁時における発生電圧に対する絶縁の考慮や計測配線からの熱侵入増大などの課題があった。このため、設置スペースを要さず、質量増加も小さく、熱侵入量の小さく、かつ磁界の影響を受けない、温度分布測定の方法が必要になっていた。   For this reason, it is necessary to capture in advance the temperature rise inside the superconducting magnet, which is a sign of quenching, but there are a wide variety of locations where the temperature should be measured, such as superconducting coils, refrigerant containers, refrigerant piping, and heat insulating material mounting parts. It is necessary to measure in a distributed manner. However, when measuring such a temperature distribution with a thermocouple or resistance thermometer, which is a conventional general temperature sensor, the number of sensors and measurement wiring becomes enormous, which only increases the space and mass for installation. In addition, there were problems such as consideration of insulation against the generated voltage during excitation and demagnetization, and increased heat penetration from the measurement wiring. Therefore, there is a need for a temperature distribution measurement method that does not require installation space, has a small increase in mass, has a small amount of heat penetration, and is not affected by a magnetic field.

このような状況下で、内部の超電導線の温度上昇を検知できる超電導機器が提案されており(下記特許文献1参照)、その超電導機器は以下のような特徴を有している。   Under such circumstances, a superconducting device capable of detecting the temperature rise of the internal superconducting wire has been proposed (see Patent Document 1 below), and the superconducting device has the following characteristics.

(1)超電導機器内部の超電導線付近に光ファイバーを設置して、内部の温度分布をブリルアン散乱光により測定・監視する。   (1) An optical fiber is installed near the superconducting wire inside the superconducting device, and the internal temperature distribution is measured and monitored with Brillouin scattered light.

(2)光ファイバーは1本又は2本を超電導線に共巻きする。   (2) One or two optical fibers are wound around a superconducting wire.

(3)光ファイバーを超電導コイルの隙間に配置する。   (3) An optical fiber is disposed in the gap between the superconducting coils.

FBG(Fiber Bragg Grating)方式については、本発明者らは、FBG方式で8K程度まで、BOTDR方式、BOCDA方式で50K程度まで測定が可能で、磁界の影響を受けないという確認を行った。FBG方式のファイバーに改良を加えることにより、15K程度まで分解能を高く測定でき、磁界の影響を受けないという実験結果がある(下記非特許文献1参照)。   Regarding the FBG (Fiber Bragg Grating) method, the present inventors have confirmed that the FBG method can measure up to about 8K, the BOTDR method and the BOCDA method can measure up to about 50K, and is not affected by the magnetic field. By improving the FBG fiber, there is an experimental result that the resolution can be measured high up to about 15K and it is not affected by the magnetic field (see Non-Patent Document 1 below).

FBG方式は、英国の物理学者であるブラッグ氏によるブラッグの法則によっている。つまり、入射光が反射、散乱する際、互いに干渉し合って位相が合った特定の方向の反射波は強度が高く、位相を打ち消す方向の反射線は強度が小さい。ブラッグの法則は、格子間隔、光の入射角、波長の関係で成り立っている。光ファイバーに一定の周期の格子(グレーティング)を加工しておき、光を入射させると特定波長の反射光が戻ってくることを利用している。光ファイバーの温度伸縮により格子間隔が変化すると反射光の波長が変化するので、波長の変動を測定することにより温度に換算できる。このFBG方式を他の光ファイバー測定方式であるBOTDR方式やBOCDA方式と比較した場合の利点は、測定分解能が高く、測定時間が短い、測定器が安価であることである。ただし、多点測定であり分布的な測定はできない。同時に測定可能な点数は、現状では最大30〜40点程度となっている。   The FBG method is based on Bragg's law by Mr. Bragg, a British physicist. That is, when incident light is reflected and scattered, reflected waves in a specific direction that interfere with each other and in phase have high intensity, and reflected lines in a direction that cancels the phase have low intensity. Bragg's law is based on the relationship between the lattice spacing, the incident angle of light, and the wavelength. It utilizes the fact that a grating (grating) with a fixed period is processed in an optical fiber, and reflected light of a specific wavelength returns when light is incident. Since the wavelength of reflected light changes when the lattice spacing changes due to the temperature expansion and contraction of the optical fiber, it can be converted into temperature by measuring the wavelength variation. Advantages of comparing this FBG method with the BOTDR method and BOCDA method, which are other optical fiber measurement methods, are that the measurement resolution is high, the measurement time is short, and the measuring instrument is inexpensive. However, it is a multipoint measurement and cannot be distributed. The maximum number of points that can be measured simultaneously is about 30 to 40 at present.

これに対して、分布型であるBOTDR(Brillouin Optical Time Domain Reflectometry)方式は、光ファイバーに光を通すと、微弱な散乱光が発生して戻ってくる性質がある。その中のブリルアン散乱光は、光ファイバーの歪みまたは温度伸縮に比例して周波数が変化する。この周波数の変化を測定することにより温度に換算できる。   On the other hand, a distributed BOTDR (Brillouin Optical Time Domain Reflectometry) system has a characteristic that weak scattered light is generated and returned when light is passed through an optical fiber. The Brillouin scattered light therein has a frequency that changes in proportion to the strain or temperature expansion / contraction of the optical fiber. By measuring the change in frequency, it can be converted into temperature.

また、入射させた光に対するブリルアン散乱光の反射時間により、測定結果に対する位置を把握することができる。位置は連続的に測定できるため、温度を分布的に測定することが可能になる。   Moreover, the position with respect to a measurement result can be grasped | ascertained by the reflection time of the Brillouin scattered light with respect to the incident light. Since the position can be measured continuously, the temperature can be measured in a distributed manner.

BOCDA(Brillouin Optical Correlation Domain Analysis)方式は、BOTDR方式と同様、温度変化に応じたブリルアン散乱光の周波数変化を測定する。光ファイバーの両端から予めブリルアン周波数に相当する周波数差の連続光を対向伝搬させ、誘導効果を生じさせることでブリルアン散乱を増強し、BOTDR方式に比べ測定精度を高め、測定時間を短縮できる方式である。また、連続光の発振周波数を変調することで、誘導されるブリルアン散乱光が局在的に発生するため、連続光の変調周波数変化で位置を掃引することが可能であり、このため温度を分布的に測定することが可能となる。   The BOCDA (Brillouin Optical Correlation Domain Analysis) method measures the frequency change of the Brillouin scattered light according to the temperature change in the same manner as the BOTDR method. It is a system that can increase the measurement accuracy and shorten the measurement time compared with the BOTDR method by continuously propagating the continuous light of the frequency difference corresponding to the Brillouin frequency in advance from both ends of the optical fiber and enhancing the Brillouin scattering by generating the induction effect. . In addition, by modulating the oscillation frequency of continuous light, the induced Brillouin scattered light is generated locally, so it is possible to sweep the position by changing the modulation frequency of continuous light, thus distributing the temperature Can be measured automatically.

特開2007−141713号公報JP 2007-141713 A

Ranji−Kumar,M.Suesser,K.G.Narayankhedkar,G.Krieg,M.D.Atrey,“Performance of metal−coated fiber Bragg grating sensors for sensing cryogenic temperature”,Cryogenics 48,(2008),pp.142−147Ranji-Kumar, M .; Suesser, K. et al. G. Narayankhedkar, G.M. Krieg, M .; D. Atrey, “Performance of metal-coated fiber Bragg grating sensors for sensing cryogenic temperature”, Cryogenics 48, (2008), pp. 228 142-147

しかしながら、超電導磁石装置の場合は、超電導磁石内部の超電導コイル、冷媒容器、冷媒配管、輻射シールド、断熱材取付部の温度を同時に分布的に測定・監視する必要がある。   However, in the case of a superconducting magnet device, it is necessary to simultaneously measure and monitor the temperatures of the superconducting coil, the refrigerant container, the refrigerant piping, the radiation shield, and the heat insulating material mounting portion inside the superconducting magnet.

本発明は、上記状況に鑑みて、温度分布測定の方法において、設置スペースを要さず、質量増加も小さく、熱侵入量の小さく、かつ磁界の影響を受けない、内部の温度異常を監視可能とする超電導磁石装置を提供することを目的とする。   In view of the above situation, the present invention can monitor an internal temperature abnormality that does not require an installation space, has a small increase in mass, has a small amount of heat penetration, and is not affected by a magnetic field in the temperature distribution measurement method. An object of the present invention is to provide a superconducting magnet device.

本発明は、上記目的を達成するために、
〔1〕内部の温度異常を監視可能とする超電導磁石装置において、ヘリウム浸漬冷却方式の超電導磁石装置内の荷重支持断熱材,パワーリード,ヘリウム冷媒配管,内槽容器及び輻射シールドに光ファイバー温度センサを敷設し、この光ファイバー温度センサを測定器に接続し、前記超電導磁石装置内部の温度異常を監視することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a superconducting magnet device capable of monitoring internal temperature abnormalities, an optical fiber temperature sensor is installed on the load supporting insulation, power lead, helium refrigerant piping, inner tank vessel and radiation shield in the helium immersion cooling superconducting magnet device. The optical fiber temperature sensor is laid and connected to a measuring instrument, and temperature abnormality inside the superconducting magnet device is monitored.

〔2〕内部の温度異常を監視可能とする超電導磁石装置において、直接冷却方式の超電導磁石装置内の荷重支持断熱材,パワーリード,輻射シールドに光ファイバー温度センサを敷設し、この光ファイバー温度センサを測定器に接続し、前記超電導磁石装置内部の温度異常を監視することを特徴とする。   [2] In a superconducting magnet device capable of monitoring internal temperature abnormalities, an optical fiber temperature sensor is installed on the load supporting insulation, power lead, and radiation shield in the direct cooling superconducting magnet device, and this optical fiber temperature sensor is measured. It is connected to a vessel, and temperature abnormality inside the superconducting magnet device is monitored.

〔3〕上記〔1〕又は〔2〕記載の内部の温度異常を監視可能とする超電導磁石装置において、前記光ファイバー温度センサがブリルアン散乱光を用いた分布型測定方式であるBOTDR方式、BOCDA方式であることを特徴とする。   [3] In the superconducting magnet device capable of monitoring the internal temperature abnormality described in [1] or [2] above, the optical fiber temperature sensor is a distributed measurement method using Brillouin scattered light, which is a BOTDR method or a BOCDA method. It is characterized by being.

〔4〕上記〔1〕又は〔2〕記載の内部の温度異常を監視可能とする超電導磁石装置において、前記光ファイバー温度センサが多点型測定方式であるFBG方式であることを特徴とする。   [4] In the superconducting magnet apparatus capable of monitoring an internal temperature abnormality as described in [1] or [2] above, the optical fiber temperature sensor is an FBG method which is a multipoint measurement method.

〔5〕上記〔2〕記載の内部の温度異常を監視可能とする超電導磁石装置において、前記光ファイバー温度センサの敷設箇所に超電導コイルを加え、この光ファイバー温度センサが多点型測定方式であるFBG方式であることを特徴とする。   [5] In the superconducting magnet device capable of monitoring an internal temperature abnormality as described in [2] above, a superconducting coil is added to the laying position of the optical fiber temperature sensor, and the optical fiber temperature sensor is a multipoint measurement method. It is characterized by being.

本発明によれば、超電導磁石装置内部の必要箇所の温度を分布的に測定・監視できる。これにより、超電導磁石のクエンチの発生を未然に防止でき、運用中の突発的な運転停止や超電導コイルの焼損による修理の発生頻度を低減することができる。また、超電導磁石装置を常時監視することにより、より短期間の異常温度上昇を検出することが可能となり、運用中の安全な運転休止や適切な点検、修理の判断を行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature of the required location inside a superconducting magnet apparatus can be distributed and measured. Thereby, the occurrence of quenching of the superconducting magnet can be prevented in advance, and the occurrence frequency of repairs due to sudden operation stop during operation or burning of the superconducting coil can be reduced. Further, by constantly monitoring the superconducting magnet device, it is possible to detect an abnormal temperature rise for a shorter period of time, and it is possible to make a safe operation stop during operation, and to make an appropriate check or repair decision.

本発明の第1実施例を示す内部の温度異常を監視可能とする超電導磁石装置の模式図である。1 is a schematic diagram of a superconducting magnet device capable of monitoring an internal temperature abnormality according to a first embodiment of the present invention. 本発明の第2実施例を示す内部の温度異常を監視可能とする超電導磁石装置の模式図である。It is a schematic diagram of the superconducting magnet apparatus which can monitor the internal temperature abnormality which shows 2nd Example of this invention. 本発明の第3実施例を示す内部の温度異常を監視可能とする超電導磁石装置の模式図である。It is a schematic diagram of the superconducting magnet apparatus which can monitor the internal temperature abnormality which shows 3rd Example of this invention. 本発明のFBG方式センサによる反射波波長変移との温度実測値との相関を示した特性図である。It is the characteristic view which showed the correlation with the temperature actual value with the reflected wave wavelength shift by the FBG system sensor of this invention. 本発明のBOCDA方式センサによるブリルアン散乱光の周波数シフトと温度実測値との相関を示した特性図である。It is the characteristic figure which showed the correlation with the frequency shift of the Brillouin scattered light by the BOCDA system sensor of this invention, and temperature measurement value.

本発明の内部の温度異常を監視可能とする超電導磁石装置は、装置内部の各構成部品に沿って光ファイバー温度センサを敷設し、この光ファイバー温度センサを測定器に接続し、前記超電導磁石装置内部の温度異常を監視する。   The superconducting magnet device capable of monitoring an internal temperature abnormality according to the present invention has an optical fiber temperature sensor laid along each component inside the device, and this optical fiber temperature sensor is connected to a measuring instrument. Monitor temperature abnormalities.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の第1実施例を示す内部の温度異常を監視可能とする超電導磁石装置の模式図である。   FIG. 1 is a schematic diagram of a superconducting magnet device capable of monitoring an internal temperature abnormality according to a first embodiment of the present invention.

この図において、1は超電導コイル、2は超電導コイル1の荷重支持断熱材、3は超電導コイル1に接続されるパワーリード、4はヘリウム冷却配管、5は超電導コイル1を冷却するヘリウム冷媒配管、6はヘリウム冷媒配管5のサービスポート、7は超電導コイル1の内槽容器、8は内槽容器7を覆う低温輻射シールド、9は低温輻射シールド8を覆う高温輻射シールド、10は低温輻射シールド8に接続される冷凍機、11は荷重支持断熱材2,パワーリード3,ヘリウム冷媒配管5,内槽容器7,低温輻射シールド8および高温輻射シールド9に沿って配置される光ファイバー温度センサ、12は光ファイバー温度センサ11に接続された温度異常を監視する測定器である。   In this figure, 1 is a superconducting coil, 2 is a load-supporting heat insulating material for the superconducting coil 1, 3 is a power lead connected to the superconducting coil 1, 4 is a helium cooling pipe, 5 is a helium refrigerant pipe for cooling the superconducting coil 1, 6 is a service port of the helium refrigerant pipe 5, 7 is an inner tank container of the superconducting coil 1, 8 is a low-temperature radiation shield covering the inner tank container 7, 9 is a high-temperature radiation shield covering the low-temperature radiation shield 8, and 10 is a low-temperature radiation shield 8 Refrigerator 11 connected to the load 11 is a load supporting heat insulating material 2, power lead 3, helium refrigerant pipe 5, inner tank container 7, low temperature radiation shield 8 and high temperature radiation shield 9. It is a measuring instrument that monitors a temperature abnormality connected to the optical fiber temperature sensor 11.

このように、光ファイバー温度センサ11を、ヘリウム浸漬冷却方式の超電導磁石装置の荷重支持断熱材2,パワーリード3,冷媒配管5,内槽容器7,低温輻射シールド8および高温輻射シールド9に沿って敷設し、その光ファイバー温度センサ11を測定器12に接続して、光ファイバー温度センサ11からの出力を測定器12で測定することにより、超電導磁石装置内部の温度異常を監視する。   In this way, the optical fiber temperature sensor 11 is moved along the load supporting heat insulating material 2, power lead 3, refrigerant pipe 5, inner tank container 7, low temperature radiation shield 8 and high temperature radiation shield 9 of the helium immersion cooling type superconducting magnet device. The optical fiber temperature sensor 11 is connected to the measuring device 12 and the output from the optical fiber temperature sensor 11 is measured by the measuring device 12 to monitor the temperature abnormality inside the superconducting magnet device.

光ファイバー温度センサ11としては、多点型測定方式の光ファイバー温度センサとしてのFBG方式または分布型光ファイバー温度センサとしてのBOTDR方式又はBOCDA方式が考えられる。多点型測定方式の光ファイバー温度センサの場合は、荷重支持断熱材2、ヘリウム冷媒配管5など温度を測定・監視する必要がある箇所に測定点が近接できるよう、光ファイバー温度センサ11にあらかじめ測定点を設定して敷設する。また、分布型測定方式の光ファイバー温度センサの場合、散乱光は極低温に適用できるブリルアン散乱光を利用した方式となる。   As the optical fiber temperature sensor 11, an FBG system as a multi-point measurement type optical fiber temperature sensor or a BOTDR system or a BOCDA system as a distributed optical fiber temperature sensor can be considered. In the case of a multi-point measurement type optical fiber temperature sensor, the measurement point is placed in advance on the optical fiber temperature sensor 11 so that the measurement point can be close to a place where the temperature needs to be measured and monitored, such as the load supporting insulation 2 and the helium refrigerant pipe 5. Set and lay. In the case of a distributed measurement type optical fiber temperature sensor, the scattered light is a system using Brillouin scattered light that can be applied to cryogenic temperatures.

この光ファイバー温度センサ11の端子は超電導磁石装置の外部に設置し、定期点検時に測定器12を接続することにより異常の有無の診断を行うか、または測定器12を常時接続することにより運用中常時測定箇所の異常な温度上昇を検出する。   The terminal of the optical fiber temperature sensor 11 is installed outside the superconducting magnet device and diagnoses whether there is an abnormality by connecting the measuring device 12 during regular inspection, or is always in operation by connecting the measuring device 12 at all times. Detects abnormal temperature rise at the measurement location.

この第1実施例は、図1に示すように、液体ヘリウム浸漬冷却方式の超電導磁石装置の温度監視の構成を示している。光ファイバー温度センサは、後述するように発明者らの実験によると8Kないし50K以上での分解能を有している。そこで、図1に示すように、超電導コイル1を冷却する冷媒配管5の漏洩や閉塞及び液量不足、断熱不良、輻射シールドやパワーリードなどの温度異常をFBG方式または分布型測定方式としてのBOTDR方式またはBOCDA方式光ファイバー温度センサ11によって検出することにより、超電導コイル1の冷却異常の兆候を監視するように構成した。   As shown in FIG. 1, the first embodiment shows a temperature monitoring configuration of a superconducting magnet apparatus of a liquid helium immersion cooling system. As will be described later, the optical fiber temperature sensor has a resolution of 8K to 50K or more according to experiments by the inventors. Therefore, as shown in FIG. 1, leakage or blockage of the refrigerant pipe 5 for cooling the superconducting coil 1 and insufficient amount of liquid, poor heat insulation, temperature abnormality such as radiation shield and power lead, etc. are used as the FBG method or BOTDR as a distributed measurement method. By detecting by a system or BOCDA system optical fiber temperature sensor 11, a sign of cooling abnormality of the superconducting coil 1 is monitored.

このため、内槽容器7の表面,荷重支持断熱材2の取付箇所,冷媒配管5,パワーリード冷却配管4,低温輻射シールド8及び高温輻射シールド9に沿って光ファイバー温度センサ11を敷設し、FBG方式光ファイバー温度センサの場合異常時に温度変化が顕著に現れる箇所を測定点として選択して(現状では最大30〜40点ほど)、温度変化を測定する。これらの測定値が通常時と変化があった場合に異常と判断する。   For this reason, the optical fiber temperature sensor 11 is laid along the surface of the inner tank container 7, the mounting location of the load supporting heat insulating material 2, the refrigerant pipe 5, the power lead cooling pipe 4, the low temperature radiation shield 8 and the high temperature radiation shield 9, and FBG In the case of a system optical fiber temperature sensor, the temperature change is measured by selecting a point where the temperature change is noticeable at the time of abnormality as a measurement point (currently about 30 to 40 points at the maximum). When these measured values are different from the normal values, it is judged as abnormal.

図2は本発明の第2実施例を示す内部の温度異常を監視可能とする超電導磁石装置の模式図である。   FIG. 2 is a schematic diagram of a superconducting magnet device capable of monitoring an internal temperature abnormality according to a second embodiment of the present invention.

この図において、21は超電導コイル、22は荷重支持断熱材、23はパワーリード、24は輻射シールド、25は冷凍機コールドヘッド25Aを超電導コイル21に接続した冷凍機、26は光ファイバー温度センサ、27はその光ファイバー温度センサ26に接続された測定器である。   In this figure, 21 is a superconducting coil, 22 is a load-supporting heat insulating material, 23 is a power lead, 24 is a radiation shield, 25 is a refrigerator in which a refrigerator cold head 25A is connected to the superconducting coil 21, 26 is an optical fiber temperature sensor, 27 Is a measuring instrument connected to the optical fiber temperature sensor 26.

この第2実施例では、冷凍機直接冷却方式の高温超電導材を利用した超電導磁石装置の温度監視の構成を示している。液体ヘリウムの浸漬冷却でなく、高温超電導線材を利用し、冷凍機25による直接伝導冷却により超電導状態を維持する超電導コイル21を用いた超電導磁石装置は、図1に示した液体ヘリウムの容器や配管等を省略できるが、冷凍機25の運転状況の変動等により、局所的に温度上昇してクエンチを起こす可能性が考えられる。このため、直接冷却方式の超電導磁石装置内の荷重支持断熱材22、パワーリード23、輻射シールド24に光ファイバー温度センサ26を敷設し、この光ファイバー温度センサ26を測定器27に接続し、超電導磁石装置内部の温度異常を監視する。   In the second embodiment, a temperature monitoring configuration of a superconducting magnet device using a high-temperature superconducting material of a refrigerator direct cooling system is shown. The superconducting magnet device using the superconducting coil 21 that uses a high-temperature superconducting wire instead of liquid helium immersion cooling and maintains the superconducting state by direct conduction cooling by the refrigerator 25 is the liquid helium container and piping shown in FIG. However, there is a possibility that the temperature rises locally due to fluctuations in the operating condition of the refrigerator 25 and causes quenching. For this reason, an optical fiber temperature sensor 26 is laid on the load supporting heat insulating material 22, the power lead 23, and the radiation shield 24 in the direct cooling type superconducting magnet device, and the optical fiber temperature sensor 26 is connected to the measuring device 27, thereby superconducting magnet device. Monitor internal temperature abnormalities.

光ファイバー温度センサ26としては、多点型測定方式の光ファイバー温度センサとしてのFBG方式または分布型測定方式の光ファイバー温度センサとしてのBOTDR方式又はBOCDA方式が考えられる。多点型測定方式の光ファイバー温度センサの場合は、荷重支持断熱材22、パワーリード23、輻射シールド24など温度を測定・監視する必要がある箇所に測定点が近接できるよう、光ファイバー温度センサ26にあらかじめ測定点を設定して敷設する。また、分布型測定方式の光ファイバー温度センサの場合、散乱光はブリルアン散乱光を利用した方式となる。   As the optical fiber temperature sensor 26, an FBG method as a multi-point measurement type optical fiber temperature sensor or a BOTDR method or a BOCDA method as a distributed measurement type optical fiber temperature sensor can be considered. In the case of a multi-point measurement type optical fiber temperature sensor, the optical fiber temperature sensor 26 is arranged so that the measurement point can be close to a place where the temperature needs to be measured and monitored, such as the load supporting heat insulating material 22, the power lead 23, and the radiation shield 24. Set the measurement points in advance and install them. In the case of a distributed measurement type optical fiber temperature sensor, the scattered light is a system using Brillouin scattered light.

図3は本発明の第3実施例を示す内部の温度異常を監視可能とする超電導磁石装置の模式図である。   FIG. 3 is a schematic diagram of a superconducting magnet device capable of monitoring an internal temperature abnormality according to a third embodiment of the present invention.

この図において、31は超電導コイル、32は荷重支持断熱材、33はパワーリード、34は輻射シールド、35は冷凍機コールドヘッド35Aを超電導コイル31に接続した冷凍機、36は光ファイバー温度センサ、37はその光ファイバー温度センサ36に接続された測定器である。   In this figure, 31 is a superconducting coil, 32 is a load supporting heat insulating material, 33 is a power lead, 34 is a radiation shield, 35 is a refrigerator having a refrigerator cold head 35A connected to the superconducting coil 31, 36 is an optical fiber temperature sensor, 37 Is a measuring instrument connected to the optical fiber temperature sensor 36.

この第3実施例では、冷凍機直接冷却方式の高温超電導材を利用した超電導磁石装置の温度監視の構成を示している。液体ヘリウムの浸漬冷却でなく、高温超電導線材を利用し、冷凍機35による直接伝導冷却により超電導状態を維持する超電導コイル31を用いた超電導磁石装置は、図1に示した液体ヘリウムの容器や配管等を省略できるが、冷凍機35の運転状況の変動等により、局所的に温度上昇してクエンチを起こす可能性が考えられる。このため、直接冷却方式の超電導磁石装置内の荷重支持断熱材32、パワーリード33、輻射シールド34、更には超電導コイル31に多点方式のFBG方式の光ファイバー温度センサ36を敷設し、この光ファイバー温度センサ36を測定器37に接続し、超電導コイル31および冷凍機コールドヘッド35Aの温度異常、断熱不良、輻射シールド34やパワーリード33などの温度異常を光ファイバー温度センサ36によって検出することにより、超電導コイル31の冷却異常の兆候を監視する。   In the third embodiment, a temperature monitoring configuration of a superconducting magnet apparatus using a high-temperature superconducting material of a refrigerator direct cooling system is shown. A superconducting magnet device using a superconducting coil 31 that uses a high-temperature superconducting wire instead of immersion cooling of liquid helium and maintains a superconducting state by direct conduction cooling by the refrigerator 35 is the liquid helium container and piping shown in FIG. However, there is a possibility that the temperature rises locally due to a change in the operating condition of the refrigerator 35 and quenching occurs. Therefore, a multipoint FBG type optical fiber temperature sensor 36 is laid on the load supporting heat insulating material 32, the power lead 33, the radiation shield 34, and the superconducting coil 31 in the direct cooling type superconducting magnet device. The sensor 36 is connected to the measuring device 37, and the temperature abnormality of the superconducting coil 31 and the refrigerator cold head 35A, the heat insulation failure, and the temperature abnormality such as the radiation shield 34 and the power lead 33 are detected by the optical fiber temperature sensor 36. Monitor 31 for signs of cooling failure.

このように、超電導コイル31の周囲、荷重支持断熱材32の取付箇所、冷凍機コールドヘッド35A、輻射シールド34,パワーリード33に多点方式のFBG方式の光ファイバー温度センサ36を敷設し、測定点を設定して、これらの温度の分布について測定・監視を行う。これらの測定値が通常時と変化があった場合に異常と判断する。   In this way, the multi-point FBG type optical fiber temperature sensor 36 is laid on the periphery of the superconducting coil 31, the location where the load supporting heat insulating material 32 is attached, the refrigerator cold head 35A, the radiation shield 34, and the power lead 33, and the measurement points. To measure and monitor these temperature distributions. When these measured values are different from the normal values, it is judged as abnormal.

図4は本発明のFBG方式センサによる反射波波長変移との温度実測値との相関を示した特性図、図5は本発明のBOCDA方式センサによるブリルアン散乱光の周波数シフトと温度実測値との相関を示した特性図である。また、どちらの図においても磁界を印加しない状態(0T)と、5Kまでの強磁界で測定した結果を併せて示している。   FIG. 4 is a characteristic diagram showing the correlation between the reflected wave wavelength shift by the FBG type sensor of the present invention and the measured temperature value, and FIG. 5 is the relationship between the frequency shift of the Brillouin scattered light and the measured temperature value by the BOCDA type sensor of the present invention. It is the characteristic view which showed the correlation. In both figures, the result of measurement with a magnetic field not applied (0T) and a strong magnetic field up to 5K is also shown.

図4によると、FBG方式のセンサでは、絶対温度約8Kから300Kまで、温度実測値とFBG方式反射波波長変移との相関が見られ、この温度範囲で超電導磁石装置内部の部位の温度異常を測定、監視することが可能であることがわかる。また、強磁界下における測定結果は、磁界のない状態と比較して変化はなく、強磁界による温度測定への影響がないことが確認できる。   According to FIG. 4, in the FBG type sensor, the correlation between the actually measured temperature and the FBG reflected wave wavelength shift is observed from the absolute temperature of about 8K to 300K, and the temperature abnormality of the part inside the superconducting magnet device is observed in this temperature range. It can be seen that measurement and monitoring are possible. In addition, the measurement result under a strong magnetic field does not change compared to a state without a magnetic field, and it can be confirmed that there is no influence on the temperature measurement by the strong magnetic field.

図5によると、BOCDA方式のセンサでは絶対温度約50Kから300Kまで、温度実測値とブリルアン散乱光の周波数シフトとの相関が見られ、ブリルアン散乱光を利用したBOTDR方式およびBOCDA方式のセンサでは、この温度範囲で超電導磁石装置内部の部位の温度異常を測定、監視することが可能であることがわかる。また、強磁界下における測定結果は、磁界のない状態と比較して変化はなくFBG方式と同様、強磁界による温度測定への影響がないことが確認できる。   According to FIG. 5, the BOCDA type sensor shows a correlation between the measured temperature and the frequency shift of the Brillouin scattered light from an absolute temperature of about 50 K to 300 K. In the BOTDR type and BOCDA type sensors using the Brillouin scattered light, It can be seen that it is possible to measure and monitor the temperature abnormality of the portion inside the superconducting magnet device in this temperature range. In addition, the measurement result under a strong magnetic field does not change compared to a state without a magnetic field, and it can be confirmed that there is no influence on temperature measurement by a strong magnetic field, as in the FBG method.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の超電導磁石装置は、超電導磁石装置内部の必要箇所の温度を分布的に測定・監視でき、安全に運用することができる超電導磁石装置として利用可能である。   The superconducting magnet device of the present invention can be used as a superconducting magnet device that can distributely measure and monitor the temperature of necessary portions inside the superconducting magnet device and can be operated safely.

1,21,31 超電導コイル
2,22,32 荷重支持断熱材
3,23,33 パワーリード
4 パワーリード冷却配管
5 冷媒配管(ヘリウム配管)
6 冷媒配管のサービスポート
7 内槽容器
8 低温輻射シールド
9 高温輻射シールド
10,25,35 冷凍機
11,26,36 光ファイバー温度センサ
12,27,37 測定器
24,34 輻射シールド
25A 冷凍機コールドヘッド
26 光ファイバー温度センサ
35A 冷凍機コールドヘッド
1,21,31 Superconducting coil 2,22,32 Load bearing insulation 3,23,33 Power lead 4 Power lead cooling piping 5 Refrigerant piping (helium piping)
6 Refrigerant piping service port 7 Inner tank container 8 Low temperature radiation shield 9 High temperature radiation shield 10, 25, 35 Refrigerator 11, 26, 36 Optical fiber temperature sensor 12, 27, 37 Measuring device 24, 34 Radiation shield 25A Refrigerator cold head 26 Optical fiber temperature sensor 35A Refrigerator cold head

Claims (5)

ヘリウム浸漬冷却方式の超電導磁石装置内の荷重支持断熱材,パワーリード,冷媒配管,内槽容器及び輻射シールドに光ファイバー温度センサを敷設し、該光ファイバー温度センサを測定器に接続し、前記超電導磁石装置内部の温度異常を監視することを特徴とする内部の温度異常を監視可能とする超電導磁石装置。   An optical fiber temperature sensor is laid on the load-supporting heat insulating material, power lead, refrigerant pipe, inner tank vessel and radiation shield in the helium immersion cooling superconducting magnet apparatus, and the optical fiber temperature sensor is connected to a measuring instrument. A superconducting magnet device capable of monitoring an internal temperature abnormality, characterized by monitoring an internal temperature abnormality. 直接冷却方式の超電導磁石装置内の荷重支持断熱材,パワーリード,輻射シールドに光ファイバー温度センサを敷設し、該光ファイバー温度センサを測定器に接続し、前記超電導磁石装置内部の温度異常を監視することを特徴とする内部の温度異常を監視可能とする超電導磁石装置。   An optical fiber temperature sensor is laid on the load supporting insulation, power lead, and radiation shield in the direct cooling superconducting magnet device, and the optical fiber temperature sensor is connected to a measuring instrument to monitor the temperature abnormality inside the superconducting magnet device. A superconducting magnet device that can monitor internal temperature abnormalities. 請求項1又は2記載の内部の温度異常を監視可能とする超電導磁石装置において、前記光ファイバー温度センサがブリルアン散乱光を用いた分布型測定方式であるBOTDR方式、BOCDA方式であることを特徴とする内部の温度異常を監視可能とする超電導磁石装置。   3. The superconducting magnet apparatus capable of monitoring an internal temperature abnormality according to claim 1 or 2, wherein the optical fiber temperature sensor is a BOTDR system or a BOCDA system which is a distributed measurement system using Brillouin scattered light. A superconducting magnet device that can monitor internal temperature abnormalities. 請求項1又は2記載の内部の温度異常を監視可能とする超電導磁石装置において、前記光ファイバー温度センサが多点型測定方式であるFBG方式であることを特徴とする内部の温度異常を監視可能とする超電導磁石装置。   3. The superconducting magnet apparatus capable of monitoring an internal temperature abnormality according to claim 1 or 2, wherein the optical fiber temperature sensor is an FBG method which is a multi-point measurement method, and can monitor an internal temperature abnormality. Superconducting magnet device. 請求項2記載の内部の温度異常を監視可能とする超電導磁石装置において、前記光ファイバー温度センサの敷設箇所に超電導コイルを加え、該光ファイバー温度センサが多点型測定方式であるFBG方式であることを特徴とする内部の温度異常を監視可能とする超電導磁石装置。   3. A superconducting magnet device capable of monitoring an internal temperature abnormality according to claim 2, wherein a superconducting coil is added to a position where the optical fiber temperature sensor is laid, and the optical fiber temperature sensor is an FBG method which is a multipoint measurement method. A superconducting magnet device that can monitor internal temperature abnormalities.
JP2009081510A 2009-03-30 2009-03-30 Superconducting magnet device capable of monitoring internal temperature abnormality Pending JP2010232613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081510A JP2010232613A (en) 2009-03-30 2009-03-30 Superconducting magnet device capable of monitoring internal temperature abnormality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081510A JP2010232613A (en) 2009-03-30 2009-03-30 Superconducting magnet device capable of monitoring internal temperature abnormality

Publications (1)

Publication Number Publication Date
JP2010232613A true JP2010232613A (en) 2010-10-14

Family

ID=43048114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081510A Pending JP2010232613A (en) 2009-03-30 2009-03-30 Superconducting magnet device capable of monitoring internal temperature abnormality

Country Status (1)

Country Link
JP (1) JP2010232613A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489405A (en) * 1987-09-30 1989-04-03 Toshiba Corp Heat insulating container
JPH04116907A (en) * 1990-09-07 1992-04-17 Toshiba Corp Superconductive cooling device
JPH06319254A (en) * 1993-05-06 1994-11-15 Toshiba Corp Superconducting rotor
JP2001012814A (en) * 1999-06-25 2001-01-19 Aisin Seiki Co Ltd Cooler
JP2002252380A (en) * 2001-02-27 2002-09-06 Sumitomo Heavy Ind Ltd Superconducting magnet device and monitoring method therefor
JP2003344183A (en) * 2002-05-27 2003-12-03 Ntt Advanced Technology Corp Fiber grating temperature sensor and temperature measurement system
JP2008197012A (en) * 2007-02-14 2008-08-28 Sumitomo Electric Ind Ltd Measuring apparatus, failure sensing device and failure sensing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489405A (en) * 1987-09-30 1989-04-03 Toshiba Corp Heat insulating container
JPH04116907A (en) * 1990-09-07 1992-04-17 Toshiba Corp Superconductive cooling device
JPH06319254A (en) * 1993-05-06 1994-11-15 Toshiba Corp Superconducting rotor
JP2001012814A (en) * 1999-06-25 2001-01-19 Aisin Seiki Co Ltd Cooler
JP2002252380A (en) * 2001-02-27 2002-09-06 Sumitomo Heavy Ind Ltd Superconducting magnet device and monitoring method therefor
JP2003344183A (en) * 2002-05-27 2003-12-03 Ntt Advanced Technology Corp Fiber grating temperature sensor and temperature measurement system
JP2008197012A (en) * 2007-02-14 2008-08-28 Sumitomo Electric Ind Ltd Measuring apparatus, failure sensing device and failure sensing method

Similar Documents

Publication Publication Date Title
Ukil et al. Distributed temperature sensing: Review of technology and applications
CN102313852B (en) Optical-fiber intelligent sensing power cable running state monitoring method and apparatus thereof
US9120286B2 (en) Fiber optic sensor thermally matched support tubes for distributed fiber optic sensing
JP6816969B2 (en) Methods and equipment for monitoring submarine cables
EP1527306B1 (en) Furnace, method and monitoring system for monitoring its condition
Zaynetdinov et al. A fiber Bragg grating temperature sensor for 2–400 K
Song et al. Online multi-parameter sensing and condition assessment technology for power cables: A review
WO2013077349A1 (en) Reactor water level measuring system
CN102507042B (en) Method for embedding optical fiber sensor in intelligent grid power cable
CN104198068A (en) Temperature monitoring device and temperature monitoring method for winding of oil immersed transformer
Boyd et al. Monitoring distributed temperatures along superconducting degaussing cables via Rayleigh backscattering in optical fibers
Liu et al. Feasibility study of fiber Bragg grating sensor for quench detection of high temperature superconductors
CN108181025A (en) A kind of optical fiber composite overhead ground wire thermal fault on-line monitoring method
Zheng et al. Review on thermal-related measurement methods for superconducting devices and prospect for high-speed maglev transportation application
Zhang et al. Real-time temperature monitoring system using FBG sensors on an oil-immersed power transformer
Badar et al. Monitoring internal power transformer temperature using distributed optical fiber sensors
JP6324058B2 (en) Strain measuring method and strain measuring apparatus
US20150323405A1 (en) A Method for Locally Resolved Pressure Measurement
JP2010232613A (en) Superconducting magnet device capable of monitoring internal temperature abnormality
JPWO2019012616A1 (en) Temperature measuring device, temperature measuring method and temperature measuring program
RU2675201C2 (en) Apparatus and method for monitoring a reactor surface
Anoop et al. Thermal stress monitoring and pre-fault detection system in power transformers using fibre optic technology
Cheng et al. Measurement Method for Temperature Sensitivity Coefficient of Embedded Optical Fiber in High-voltage XLPE Cable—Shorter Than Spatial Resolution of BOTDR
CN202403707U (en) Optical fiber sensor device with embedded intelligent electrical network power cable
CN112649114A (en) Cable protection system and method based on temperature along high-temperature superconducting cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218