JP2010232110A - Measurement method and measuring device capable of measuring electron density and/or electron collision frequency of high-pressure plasma - Google Patents

Measurement method and measuring device capable of measuring electron density and/or electron collision frequency of high-pressure plasma Download PDF

Info

Publication number
JP2010232110A
JP2010232110A JP2009080737A JP2009080737A JP2010232110A JP 2010232110 A JP2010232110 A JP 2010232110A JP 2009080737 A JP2009080737 A JP 2009080737A JP 2009080737 A JP2009080737 A JP 2009080737A JP 2010232110 A JP2010232110 A JP 2010232110A
Authority
JP
Japan
Prior art keywords
frequency
resonance
probe
plasma
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009080737A
Other languages
Japanese (ja)
Other versions
JP5478924B2 (en
Inventor
Keiji Nakamura
圭二 中村
Hideo Sugai
秀郎 菅井
Jinzhou Xu
金洲 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu University
Original Assignee
Chubu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu University filed Critical Chubu University
Priority to JP2009080737A priority Critical patent/JP5478924B2/en
Publication of JP2010232110A publication Critical patent/JP2010232110A/en
Application granted granted Critical
Publication of JP5478924B2 publication Critical patent/JP5478924B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measurement method and a measuring device capable of measuring the electron density and/or electron collision frequency of high-frequency plasma, without using an expensive measuring device. <P>SOLUTION: With the measurement method of electron density and electron collision frequency of high-pressure plasma and a plasma characteristics measurement device 1, a probe 10 is inserted into high-pressure plasma P and is supplied with high-frequency power, while the probe 10 sweeps high frequencies by a high-frequency oscillator 21. A spectrum of a reflection coefficient obtained from power reflected from the probe 10 is measured with a reflection coefficient spectrum display part 25 for detecting the resonance spectrum of the probe 10; a resonance frequency and a half-value width of resonance are calculated from the resonance spectrum; and based on the resonance frequency and the half-value width of resonance, the electron density and/or the electron collision frequency of the high-pressure plasma can be calculated at a plasma characteristics calculating part 26. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、圧力が1Torrを超える高圧力プラズマの電子密度および/または電子衝突周波数の測定方法及び測定装置に関する。 The present invention relates to a method and an apparatus for measuring electron density and / or electron collision frequency of high-pressure plasma having a pressure exceeding 1 Torr.

従来より、半導体装置の製造工程などにおいて、CVD(化学気相成長)やエッチングなどを行うプラズマ処理が広く行われている。プラズマパラメータの診断は、プラズマ処理をモニターするための基本的な要件の1つである。材料プロセスを決定づける活性粒子は主に中性粒子との電子衝突反応(たとえば励起、電離、解離など)により生成されることから、電子密度を測定し、その大きさや空間分布・経時変化を把握して制御することや電子衝突周波数を測定、把握することが重要である。低圧力の放電プラズマでは、各種電子密度解析ツールが開発されている。このような電子密度解析ツールとして、例えば、プラズマ中に金属プロープを直に晒した状態で設置しておき、金属プローブへ直流バイアス電圧、又は、高周波電圧を重畳させた直流バイアス電圧を印加した時に金属プローブに流れる電流値に基づいて電子密度を求めるラングミュアプローブ法が広く知られている。マイクロ波帯の共振周波数から電子密度を測定する各種プローブも提案されており、例えば、非特許文献1には、金属製アンテナによる、電磁波の共振現象を利用する電子密度測定法が開示されている。また、特許文献1には、プラズマ中を伝播する単色レーザ光などのマイクロ波と、大気中を伝播するマイクロ波との位相差に基づいて電子密度を求めるマイクロ波干渉法が開示されている。
R.B.Piejak,V.A.Godyak,R.Gamer and B.M.Alexandrovich,N.Stemberg,J.APPl.Phys.95,3785(2004) 特開平6−253871号公報
Conventionally, plasma processing for performing CVD (chemical vapor deposition), etching, and the like has been widely performed in manufacturing processes of semiconductor devices. Diagnosis of plasma parameters is one of the basic requirements for monitoring plasma processing. Active particles that determine material processes are mainly generated by electron impact reactions with neutral particles (for example, excitation, ionization, dissociation, etc.), so the electron density is measured, and the size, spatial distribution, and changes over time are ascertained. It is important to control and measure the electron collision frequency. For low-pressure discharge plasma, various electron density analysis tools have been developed. As such an electron density analysis tool, for example, when a metal probe is directly exposed to plasma and a DC bias voltage or a DC bias voltage superimposed with a high frequency voltage is applied to a metal probe, A Langmuir probe method for obtaining an electron density based on the value of a current flowing through a metal probe is widely known. Various probes for measuring the electron density from the resonance frequency of the microwave band have also been proposed. For example, Non-Patent Document 1 discloses an electron density measurement method using a resonance phenomenon of electromagnetic waves by a metal antenna. . Patent Document 1 discloses a microwave interference method for obtaining an electron density based on a phase difference between a microwave such as a monochromatic laser beam propagating in plasma and a microwave propagating in the atmosphere.
R. B. Piejak, V.M. A. Godyak, R .; Gamer and B.M. M.M. Alexandrovich, N .; Stemberg, J.M. APPl. Phys. 95,3785 (2004) Japanese Patent Laid-Open No. 6-253871

近年、大気圧プラズマなどの高圧力プラズマを用いたプラズマ処理が提案されている。例えば、大気圧プラズマによるプラズマ処理は、プラズマの生成、処理などを行うチャンバー内を高真空状態にする必要がないため、プラズマ処理装置の構成を簡略化することができ、製造コストを下げることができる。一方、このような高圧力プラズマは、アーク状のフィラメント放電に遷移しやすいなど、プラズマが不安定になりやすいので、所望の状態で維持するために電子密度などプラズマの状態を把握することが重要となる。しかし、ラングミュアプローブ法は、従来提唱されているプローブ理論の適用範囲を超えていたり、材料プロセスに用いるとプラズマによりプローブ表面に被膜が形成されて汚染される恐れがあるため、正確な電子密度測定には適用することが難しいという問題があった。マイクロ波帯の共振周波数を測定するプローブを用いた測定では、プラズマが1Torrを超える高圧力になると、共振スペクトルが拡がるために共振周波数の測定値の精度が下がったり、プラズマが30Torr以上になると、共振周波数がプラズマの電子密度に依存しなくなるため、高圧力プラズマの測定に適用できないという問題があった。マイクロ波干渉法は、マイクロ波を透過させるための大きな窓をチャンバーに設け、プラズマのサイズも大きい必要があること、また、空間分解能が乏しく、測定装置も高価である、などの問題があった。
その他の方法、例えば、レーザー・トムソン散乱法なども測定装置が高価であるという問題があった。
In recent years, plasma processing using high-pressure plasma such as atmospheric pressure plasma has been proposed. For example, plasma processing using atmospheric pressure plasma does not require a high vacuum state in a chamber in which plasma is generated and processed, so that the configuration of the plasma processing apparatus can be simplified and manufacturing costs can be reduced. it can. On the other hand, since such high-pressure plasma tends to become unstable because it tends to transition to arc-shaped filament discharge, it is important to grasp the state of plasma such as electron density in order to maintain it in a desired state. It becomes. However, the Langmuir probe method is beyond the scope of the probe theory that has been proposed in the past, and when used in a material process, there is a risk that the surface of the probe will be contaminated by the formation of plasma. Had a problem that it was difficult to apply. In the measurement using the probe for measuring the resonance frequency of the microwave band, when the plasma reaches a high pressure exceeding 1 Torr, the resonance spectrum expands, so that the accuracy of the measurement value of the resonance frequency decreases, or when the plasma exceeds 30 Torr, Since the resonance frequency does not depend on the electron density of the plasma, there is a problem that it cannot be applied to the measurement of high pressure plasma. Microwave interferometry has the following problems: a large window for transmitting microwaves must be provided in the chamber, the plasma size must be large, the spatial resolution is poor, and the measuring device is expensive. .
Other methods, such as the laser Thomson scattering method, have a problem that the measuring apparatus is expensive.

そこで、本発明は、高価な測定装置を用いることなく、高圧力プラズマの電子密度および/または電子衝突周波数測定が可能な測定方法及び測定装置を実現することを目的とする。 Therefore, an object of the present invention is to realize a measurement method and a measurement apparatus that can measure the electron density and / or electron collision frequency of high-pressure plasma without using an expensive measurement apparatus.

この発明は、上記目的を達成するため、請求項1に記載の発明では、高圧力プラズマの電子密度および/または電子衝突周波数の測定方法において、マイクロ波領域の共振アンテナとして作用するプローブをプラズマ内に挿入し、前記プローブに周波数を掃引しながら高周波パワーを供給し、前記プローブから反射されるパワーにより得られる反射係数のスペクトルから共振周波数と共振の半値幅とを測定し、当該共振周波数及び共振の半値幅に基づいて、高圧力プラズマの電子密度および/または電子衝突周波数を算出する、という技術的手段を用いる。 In order to achieve the above object, according to the first aspect of the present invention, in the method for measuring the electron density and / or electron collision frequency of high-pressure plasma, a probe acting as a resonant antenna in the microwave region is provided in the plasma. The high frequency power is supplied to the probe while sweeping the frequency, the resonance frequency and the half width of resonance are measured from the spectrum of the reflection coefficient obtained by the power reflected from the probe, and the resonance frequency and resonance are measured. The technical means of calculating the electron density and / or the electron collision frequency of the high-pressure plasma based on the half-value width is used.

請求項1に記載の発明によれば、マイクロ波領域の共振アンテナとして作用するプローブをプラズマ内に挿入し、プローブに周波数を掃引しながら高周波パワーを供給し、プローブから反射されるパワーにより得られる反射係数のスペクトルから共振周波数と共振の半値幅とを測定する。共振の半値幅は、高圧力プラズマの電子密度、電子衝突周波数に対して敏感に変化するため、当該共振周波数及び共振の半値幅に基づいて高圧力プラズマの電子密度、電子衝突周波数を精度よく測定することができる。プローブは、例えば、長さが数cm程度の金属線から形成することができるので小型であるとともに、空間分解能を有し、測定も例えば市販のネットワークアナライザにより簡便な操作で可能であるため、高価な大型測定装置を用いることなく、高圧力プラズマの電子密度、電子衝突周波数を測定することができる。ここで、高圧力プラズマとは、圧力が1Torr以上のプラズマを意味する。 According to the first aspect of the present invention, the probe acting as a resonance antenna in the microwave region is inserted into the plasma, and the high frequency power is supplied while sweeping the frequency to the probe, which is obtained by the power reflected from the probe. The resonance frequency and the half width of resonance are measured from the spectrum of the reflection coefficient. Since the half width of resonance changes sensitively to the electron density and electron collision frequency of high pressure plasma, the electron density and electron collision frequency of high pressure plasma are accurately measured based on the resonance frequency and half width of resonance. can do. The probe can be formed from a metal wire having a length of about several centimeters, for example, and is small in size, has a spatial resolution, and can be measured by a simple operation using, for example, a commercially available network analyzer. The electron density and electron collision frequency of high pressure plasma can be measured without using a large measuring device. Here, the high pressure plasma means plasma having a pressure of 1 Torr or more.

請求項2に記載の発明では、請求項1に記載の高圧力プラズマの電子密度および/または電子衝突周波数の測定方法において、プラズマが生成されていない場合の前記プローブの共振の半値幅と共振周波数との比により補正された、プラズマ内の前記プローブの共振の半値幅と共振周波数との比に基づいて電子密度を算出する、という技術的手段を用いる。 According to a second aspect of the present invention, in the method for measuring the electron density and / or electron collision frequency of the high-pressure plasma according to the first aspect, the half width of the resonance of the probe and the resonance frequency when no plasma is generated. A technical means is used in which the electron density is calculated based on the ratio of the half-value width of resonance of the probe in the plasma and the resonance frequency, corrected by the ratio.

測定された電子密度の誤差因子としてプローブからの電磁波の放射損失があり、プラズマがない場合でも半値幅がゼロにならないことが挙げられる。請求項2に記載の発明では、プラズマ内のプローブの共振スペクトルから求められる半値幅と共振周波数との比を、プラズマが生成されていない場合の半値幅と共振周波数との比により補正するため、上述の誤差因子を排除し、より正確な電子密度を測定することができる。 As an error factor of the measured electron density, there is radiation loss of electromagnetic waves from the probe, and the half width does not become zero even in the absence of plasma. In the invention according to claim 2, in order to correct the ratio between the half width obtained from the resonance spectrum of the probe in the plasma and the resonance frequency by the ratio between the half width when the plasma is not generated and the resonance frequency, The above-mentioned error factor is eliminated, and a more accurate electron density can be measured.

請求項3に記載の発明では、高圧力プラズマの電子密度および/または電子衝突周波数の測定方法において、マイクロ波領域の共振アンテナとして作用する、長さの異なる2本のプローブをプラズマ内に挿入し、前記各プローブに周波数を掃引しながら高周波パワーを供給し、前記各プローブから反射されるパワーにより得られるそれぞれの反射係数のスペクトルから、共振周波数と共振の半値幅とをそれぞれ測定し、当該共振周波数及び共振の半値幅に基づいて、高圧力プラズマの電子密度および/または電子衝突周波数を算出する、という技術的手段を用いる。 According to a third aspect of the present invention, in the method for measuring the electron density and / or electron collision frequency of high-pressure plasma, two probes having different lengths acting as resonant antennas in the microwave region are inserted into the plasma. The high frequency power is supplied to each probe while sweeping the frequency, and the resonance frequency and the half width of the resonance are measured from the spectrum of each reflection coefficient obtained by the power reflected from each probe. A technical means of calculating the electron density and / or the electron collision frequency of the high pressure plasma based on the frequency and the half width of the resonance is used.

請求項3に記載の発明によれば、請求項1に記載の発明と同様の効果を奏することができる。また、1本のプローブによる測定誤差はプラズマの圧力が高くなるほど増大するが、長さの異なる2本のプローブを用いることにより、測定精度を格段に向上させることができる。 According to the invention described in claim 3, the same effect as that of the invention described in claim 1 can be obtained. Further, the measurement error due to one probe increases as the plasma pressure increases, but the measurement accuracy can be remarkably improved by using two probes having different lengths.

請求項4に記載の発明では、高圧力プラズマの電子密度および/または電子衝突周波数の測定装置において、高圧力プラズマ雰囲気内に挿入され、マイクロ波領域の共振アンテナとして作用するプローブと、前記プローブに同軸ケーブルを介して電気的に接続され周波数を掃引しながら高周波パワーを供給する高周波発振器と、前記プローブから反射されるパワーにより得られる反射係数のスペクトルを測定し、前記プローブの共振特性を検出する共振スペクトル検出部と、前記共振スペクトル検出部において検出された共振特性から共振周波数及び共振の半値幅を算出し、当該共振周波数及び共振の半値幅に基づいて、高圧力プラズマの電子密度および/または電子衝突周波数を算出するプラズマ特性算出部と、を備えた、という技術的手段を用いる。 According to a fourth aspect of the present invention, in the apparatus for measuring electron density and / or electron collision frequency of high pressure plasma, a probe inserted in a high pressure plasma atmosphere and acting as a resonant antenna in a microwave region, A high-frequency oscillator that is electrically connected via a coaxial cable and supplies high-frequency power while sweeping the frequency, and a spectrum of a reflection coefficient obtained by the power reflected from the probe is measured to detect a resonance characteristic of the probe Resonance spectrum detection unit, and calculating resonance frequency and half width of resonance from resonance characteristics detected by resonance spectrum detection unit, and based on resonance frequency and half width of resonance, electron density of high pressure plasma and / or A technical feature that includes a plasma characteristic calculator for calculating the electron collision frequency. It is used.

請求項4に記載の発明によれば、マイクロ波領域の共振アンテナとして作用するプローブを高圧力プラズマ雰囲気内に挿入し、高周波発振器によりプローブに周波数を掃引しながら高周波パワーを供給し、共振スペクトル検出部により、プローブから反射されるパワーにより得られる反射係数のスペクトルを測定し、プローブの共振スペクトルを検出し、共振スペクトル検出部において、検出された共振特性から共振周波数及び共振の半値幅を算出し、プラズマ特性算出部において、当該共振周波数及び共振の半値幅に基づいて、高圧力プラズマの電子密度および/または電子衝突周波数を算出することができる。共振の半値幅は、高圧力プラズマの電子密度、電子衝突周波数に対して敏感に変化するため、当該共振周波数及び共振の半値幅に基づいて高圧力プラズマの電子密度、電子衝突周波数を精度よく測定することができる。プローブは、例えば、長さが数cm程度の金属線から形成することができるので小型であるとともに、空間分解能を有し、測定も例えば市販のネットワークアナライザにより簡便な操作で可能であるため、高価な大型測定装置を用いることなく、高圧力プラズマの電子密度、電子衝突周波数を測定することができる。ここで、高圧力プラズマとは、圧力が1Torr以上のプラズマを意味する。 According to the fourth aspect of the present invention, a probe that acts as a resonant antenna in the microwave region is inserted into a high-pressure plasma atmosphere, and a high-frequency power is supplied to the probe while sweeping the frequency by a high-frequency oscillator to detect a resonance spectrum. The spectrum of the reflection coefficient obtained by the power reflected from the probe is measured by the unit, the resonance spectrum of the probe is detected, and the resonance spectrum detection unit calculates the resonance frequency and the half width of the resonance from the detected resonance characteristics. The plasma characteristic calculation unit can calculate the electron density and / or the electron collision frequency of the high pressure plasma based on the resonance frequency and the half width of the resonance. Since the half width of resonance changes sensitively to the electron density and electron collision frequency of high pressure plasma, the electron density and electron collision frequency of high pressure plasma are accurately measured based on the resonance frequency and half width of resonance. can do. The probe can be formed from a metal wire having a length of about several centimeters, for example, and is small in size, has a spatial resolution, and can be measured by a simple operation using, for example, a commercially available network analyzer. The electron density and electron collision frequency of high pressure plasma can be measured without using a large measuring device. Here, the high pressure plasma means plasma having a pressure of 1 Torr or more.

請求項5に記載の発明では、請求項4に記載の高圧力プラズマの電子密度および/または電子衝突周波数の測定装置において、前記プローブは、U字型の金属導体により形成されている、という技術的手段を用いる。 According to a fifth aspect of the present invention, in the apparatus for measuring the electron density and / or electron collision frequency of the high pressure plasma according to the fourth aspect, the probe is formed of a U-shaped metal conductor. Use appropriate means.

請求項5に記載の発明によれば、プローブとしてU字型の金属導体により形成されたプローブを採用する。U字型のプローブは、T字型のプローブなどに比べ、プラズマが発生するチャンバーに挿入するためのポートを小さくすることができるため、好適に用いることができる。 According to the invention described in claim 5, a probe formed of a U-shaped metal conductor is employed as the probe. A U-shaped probe can be preferably used because a port for insertion into a chamber where plasma is generated can be made smaller than a T-shaped probe or the like.

請求項6に記載の発明では、請求項4または請求項5に記載の高圧力プラズマの電子密度および/または電子衝突周波数の測定装置において、長さの異なる2本のプローブを備えた、という技術的手段を用いる。 According to a sixth aspect of the present invention, the high pressure plasma electron density and / or electron collision frequency measuring device according to the fourth or fifth aspect is provided with two probes having different lengths. Use appropriate means.

請求項6に記載の発明によれば、長さの異なる2本のプローブを用いることにより、高圧力における測定誤差を、1本のプローブによる測定に比べて大幅に抑制することができる。 According to the invention described in claim 6, by using two probes having different lengths, a measurement error at a high pressure can be significantly suppressed as compared with the measurement using one probe.

本発明におけるプラズマ密度測定装置及びプラズマ密度測定方法について、図を参照して説明する。図1は、プラズマ処理装置及びプラズマ密度測定装置の概略図である。図2は、プローブの外形形状を示す説明図である。図3は、プローブと同軸ケーブルとの接続方法を示す説明図である。 A plasma density measuring apparatus and a plasma density measuring method according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a plasma processing apparatus and a plasma density measuring apparatus. FIG. 2 is an explanatory view showing the outer shape of the probe. FIG. 3 is an explanatory view showing a method of connecting the probe and the coaxial cable.

図1に示すように、プラズマ密度測定装置1は、プラズマ処理装置30のチャンバー31内部に取り付けられているプローブ10と、プローブ10と接続され、チャンバー31外部に配設されているプローブ制御装置20とを備えている。 As shown in FIG. 1, the plasma density measuring apparatus 1 includes a probe 10 attached inside a chamber 31 of a plasma processing apparatus 30, and a probe control apparatus 20 connected to the probe 10 and disposed outside the chamber 31. And.

プラズマ処理装置30は、高周波電源により生成されたプラズマPと被処理体を内部に有するチャンバー31と、高周波電力などプラズマ密度の制御因子を制御する制御部32とを備えている。 The plasma processing apparatus 30 includes a chamber 31 having a plasma P generated by a high frequency power source and an object to be processed therein, and a control unit 32 that controls a plasma density control factor such as high frequency power.

プローブ10は、チャンバー31内部に取り付けられており、後端が同軸ケーブルによりプローブ制御装置20に接続されている。具体的な構成については、後述する。 The probe 10 is attached to the inside of the chamber 31 and the rear end is connected to the probe control device 20 by a coaxial cable. A specific configuration will be described later.

プローブ制御装置20は、周波数掃引式の高周波発振器21と、方向性結合器22と、減衰器23と、フィルタ24と、反射係数スペクトル表示部25、プラズマ特性算出部26と、を備えており、それぞれが図1に示すように接続されている。 The probe control device 20 includes a frequency sweep type high frequency oscillator 21, a directional coupler 22, an attenuator 23, a filter 24, a reflection coefficient spectrum display unit 25, and a plasma characteristic calculation unit 26. Each is connected as shown in FIG.

高周波発振器21は、所定の周波数範囲、例えば、100kHzから3GHzまで、周波数を掃引しながらパワーを供給する。高周波発振器21により出力された高周波パワーは、方向性結合器22、減衰器23、フィルタ24を経て、プローブ10に印加される。高周波発振器21から出力される高周波パワーは反射係数スペクトル表示部25に送られ、その周波数はプラズマ特性算出部26に送出される。 The high frequency oscillator 21 supplies power while sweeping the frequency from a predetermined frequency range, for example, 100 kHz to 3 GHz. The high frequency power output from the high frequency oscillator 21 is applied to the probe 10 through the directional coupler 22, the attenuator 23, and the filter 24. The high frequency power output from the high frequency oscillator 21 is sent to the reflection coefficient spectrum display unit 25, and the frequency is sent to the plasma characteristic calculation unit 26.

方向性結合器22は、プローブ10から供給された高周波パワーのプラズマによる反射率の周波数変化を検出し、反射係数スペクトル表示部25へ出力する。 The directional coupler 22 detects a change in the reflectance frequency due to the high-frequency power plasma supplied from the probe 10 and outputs the change to the reflection coefficient spectrum display unit 25.

減衰器23は、プローブ10へ送り込む測定用高周波パワーの量を調整する。フィルタ24は、プローブ10を経由してプローブ制御部20へ混入してくるプラズマ励起用の高周波信号雑音を除去する。 The attenuator 23 adjusts the amount of high frequency power for measurement fed into the probe 10. The filter 24 removes high-frequency signal noise for plasma excitation mixed into the probe control unit 20 via the probe 10.

反射係数スペクトル表示部25は、プローブ10の反射率の周波数変化を共振スペクトルとして検出する。 The reflection coefficient spectrum display unit 25 detects a frequency change of the reflectance of the probe 10 as a resonance spectrum.

プラズマ特性算出部26は、反射係数スペクトル表示部25から送出された共振スペクトルに基づいて共振周波数及び共振の半値幅を求め、これらに基づいて、後述する測定原理により、電子密度、電子衝突周波数を算出する。 The plasma characteristic calculation unit 26 obtains the resonance frequency and the half-value width of resonance based on the resonance spectrum transmitted from the reflection coefficient spectrum display unit 25, and based on these, the electron density and the electron collision frequency are calculated based on the measurement principle described later. calculate.

プローブ10は、電磁波の共振現象を利用する金属製のアンテナを用いる。本実施形態では図2に示すように、直径2a、長さlの2本の金属線が距離dだけ離して平行に配置され一端でU字型に接続されたU字型プローブ(ヘアピンプローブ)を採用する。このようなU字形プローブは2つの平行長尺伝送線路(平行2線モデル)として扱うことができる。プローブ10は、例えば、ステンレス鋼で形成することができる。その他、金、白金、タングステン、モリブデン、タンタルなどの耐食性金属で形成すれば、プラズマによる腐食を受けにくく寿命を長くすることができる。プローブ10は、ガラス、セラミックスなどによりコーティングを施すこともできる。これにより、プラズマによる腐食を受けにくく寿命を長くすることができる。また、材料プロセスにおいては、プローブ10が金属不純物を放出し、プラズマ雰囲気を汚染することを防ぐことができる。 The probe 10 uses a metal antenna that utilizes the resonance phenomenon of electromagnetic waves. In this embodiment, as shown in FIG. 2, a U-shaped probe (hairpin probe) in which two metal wires having a diameter 2a and a length l are arranged in parallel with a distance d apart and connected in a U-shape at one end. Is adopted. Such a U-shaped probe can be handled as two parallel long transmission lines (parallel two-wire model). The probe 10 can be formed of, for example, stainless steel. In addition, if it is made of a corrosion-resistant metal such as gold, platinum, tungsten, molybdenum, and tantalum, it can hardly be corroded by plasma and can extend its life. The probe 10 can be coated with glass, ceramics, or the like. Thereby, it is hard to receive the corrosion by a plasma and can extend a lifetime. Further, in the material process, the probe 10 can be prevented from releasing metal impurities and contaminating the plasma atmosphere.

プローブ10において、2本の金属線の距離dは、プラズマ密度及び電子温度で決まるシース厚さより十分に大きく設定することが好ましい。また、金属線の長さlは、測定対象のプラズマ密度と、測定精度などの条件に基づいて設定される。 In the probe 10, the distance d between the two metal wires is preferably set sufficiently larger than the sheath thickness determined by the plasma density and the electron temperature. The length l of the metal wire is set based on conditions such as the plasma density to be measured and the measurement accuracy.

プローブ10は、同軸ケーブル11の芯導体11bの先端と、底部とが、円弧状リード線11aで接続されている。更に底部は同軸ケーブル11の外皮導体11cと接続されている。同軸ケーブル11の他端は、プローブ制御装置20に接続されている。 In the probe 10, the tip and the bottom of the core conductor 11b of the coaxial cable 11 are connected by an arc-shaped lead wire 11a. Furthermore, the bottom is connected to the outer conductor 11 c of the coaxial cable 11. The other end of the coaxial cable 11 is connected to the probe control device 20.

高周波発振器21により、周波数を掃引しながら高周波パワーをプローブ10に供給すると、円弧状リード線11aでプローブ10を励振するのに用いられ、電磁波が励起され、この励起された電磁波はプラズマPへ放射される。残りは反射パワーとして同軸ケーブル11からプローブ制御装置20に戻ってくる。 When high frequency power is supplied to the probe 10 while sweeping the frequency by the high frequency oscillator 21, it is used to excite the probe 10 with the arc-shaped lead wire 11 a, and electromagnetic waves are excited, and the excited electromagnetic waves are emitted to the plasma P. Is done. The rest returns from the coaxial cable 11 to the probe controller 20 as reflected power.

反射パワーは、方向性結合器22において、プローブ10から供給される高周波パワーのプラズマによる反射率の周波数変化にして検出され、反射係数スペクトル表示部25において、反射率の周波数変化を共振スペクトル(例えば、実施例の図4に示すような共振スペクトル)として検出する。 The reflected power is detected by the directional coupler 22 as a change in the frequency of the reflectance due to the high-frequency power plasma supplied from the probe 10, and the reflection coefficient spectrum display unit 25 detects the change in the frequency of the reflectance as a resonance spectrum (for example, The resonance spectrum is detected as shown in FIG.

そして、プラズマ特性算出部26において、反射パワーが共鳴的に減少する共振周波数frと、共振ピークの半値幅Δfと、を求め、これらに基づいて、プラズマ中の電子密度neまたは電子衝突周波数νmを算出する。なお、プラズマ中に負イオンが存在しない場合は、電子密度はプラズマ密度に等しい。 Then, in the plasma characteristic calculation unit 26, and the resonance frequency f r the reflected power decreases resonantly, seek, and half-value width Δf of the resonance peak, on the basis of these, the electron density n e or electron collision frequency in the plasma ν m is calculated. Note that when there are no negative ions in the plasma, the electron density is equal to the plasma density.

図2に示すU字型プローブを長さlの平行二線型伝送路とみなし、これを電子密度ne、電子衝突周波数νmのプラズマ中に挿入した場合に、半波長ダイポール共振を起こす共振周波数frと共振の半値幅Dfを求めると次の式1を得る。ここで、cは光速、ε0は真空の誘電率εprはプラズマの誘電率、ωpは電子密度で決まる電子プラズマ角周波数、νmは放電に用いたガス種と圧力および電子温度で決まる電子衝突周波数である。 When the U-shaped probe shown in FIG. 2 is regarded as a parallel two-wire transmission line having a length l and inserted into a plasma having an electron density ne and an electron collision frequency ν m , a resonance frequency f causing half-wave dipole resonance. When r and the half width Df of resonance are obtained, the following expression 1 is obtained. Where c is the speed of light, ε 0 is the dielectric constant of vacuum ε pr is the dielectric constant of the plasma, ω p is the electron plasma angular frequency determined by the electron density, and ν m is determined by the gas type, pressure and electron temperature used for the discharge. Electron collision frequency.

Figure 2010232110
Figure 2010232110

Figure 2010232110
Figure 2010232110

Figure 2010232110
Figure 2010232110

ここでc/4l=f0とおき、式1と式2より電子衝突周波数と電子プラズマ角周波数を求めて整理すると次の関係式を得る。 Here, c / 4l = f 0 is set , and when the electron collision frequency and the electron plasma angular frequency are obtained from Equation 1 and Equation 2 and arranged, the following relational expression is obtained.

Figure 2010232110
Figure 2010232110

Figure 2010232110
Figure 2010232110

共振スペクトルの測定からfr、f0、Δfの値を求め、式4に代入すると衝突周波数νmの値が決まる。それを式5に代入すればωp 2の値が決まる。さらに、この値を次の式6に代入することにより、MKS単位系を用いて電子密度ne(m-3)を求めることができる。[測定法A] When the values of f r , f 0 , and Δf are obtained from the measurement of the resonance spectrum and substituted into Equation 4, the value of the collision frequency ν m is determined. Substituting it into Equation 5, the value of ω p 2 is determined. Furthermore, by substituting this value into the following equation 6, the electron density ne (m −3 ) can be obtained using the MKS unit system. [Measurement method A]

Figure 2010232110
Figure 2010232110

上に述べた平行二線型伝送路モデルでは、その伝送路からの電磁波の放射が考慮されていない。実際に測定されたプローブの共振特性は、この放射損失による半値幅の広がりがあり、プラズマがない場合でも半値幅がゼロにならない。これを補正するため、プラズマ中で実測された半値幅Δfと共振周波数frの比から、プラズマがないときの半値幅Δfと共振周波数f0の比を差し引いた値を式7により定義する。 In the parallel two-wire transmission line model described above, the radiation of electromagnetic waves from the transmission line is not considered. The actually measured resonance characteristic of the probe has a half-width spread due to this radiation loss, and the half-width does not become zero even in the absence of plasma. In order to correct this, a value obtained by subtracting the ratio of the half-value width Δf and the resonance frequency f 0 when there is no plasma from the ratio of the half-value width Δf actually measured in the plasma and the resonance frequency f r is defined by Expression 7.

Figure 2010232110
Figure 2010232110

この値が伝送線路モデルで求めた式3の左辺の値と考えられるので、νmをGHz単位で、プローブ長lをmm単位で与え、電子密度(m-3)を求めると、式8が得られる。 Since this value is considered to be the value on the left side of Equation 3 obtained by the transmission line model, when ν m is given in GHz, the probe length l is given in mm, and the electron density (m −3 ) is obtained, Equation 8 is obtained. can get.

Figure 2010232110
Figure 2010232110

従って、あらかじめプラズマが生成されていない場合の半値幅と共振周波数との比Δf/f0を求めておき、これをプラズマ中での半値幅と共振周波数との比Δf/frから差し引くことにより、式8を用いてプラズマ密度を算出することができる。[測定法B] Therefore, the ratio Δf / f 0 between the half-value width and the resonance frequency when no plasma is generated in advance is obtained, and this is subtracted from the ratio Δf / f r between the half-value width and the resonance frequency in the plasma. The plasma density can be calculated using Equation 8. [Measurement method B]

なお、式8により電子密度を算出するには電子衝突周波数のデータが必要である。いくつかの代表的なガス種については、電子温度の関数としてそのデータが調べられている。そのようなデータベースがないガス種については、次の式9から電子衝突周波数を近似的に求めることができる。ここで、式9において、rはガス分子の半径を10-10mの単位で与え、電子温度TeはeV、圧力pはTorrの単位で与えている。 Note that the electron collision frequency data is required to calculate the electron density using Equation 8. For some representative gas species, the data is examined as a function of electron temperature. For gas types that do not have such a database, the electron collision frequency can be approximately calculated from the following equation (9). Here, in Equation 9, r is the radius of gas molecules given in units of 10 −10 m, the electron temperature Te is given in eV, and the pressure p is given in units of Torr.

Figure 2010232110
Figure 2010232110

プローブからの電磁波の放射損失は通常あまり大きくないので、式4を用いて電子衝突周波数を、共振スペクトルの測定値だけから算出することは可能である。しかし、10Torr以上の高圧力になると、共振周波数frはプラズマがない時の値f0に近づくため、測定誤差が大きくなる。そこで、長さの異なる2本のプローブを用いて、より高い精度で電子衝突周波数と電子密度を求める方法を以下に提案する。 Since the radiation loss of the electromagnetic wave from the probe is usually not so large, it is possible to calculate the electron collision frequency only from the measured value of the resonance spectrum using Equation 4. However, at a more high pressure 10 Torr, the resonance frequency f r is to approach the value f 0 in the absence of plasma, measurement error increases. Therefore, a method for obtaining the electron collision frequency and the electron density with higher accuracy by using two probes having different lengths is proposed below.

長さl1、l2の2本のプローブによって測定された共振周波数をそれぞれf1、f2、共振幅をΔf1、Δf2とすれば、前出の式1と式2より、次の2つの関係式を得る。 Assuming that the resonance frequencies measured by the two probes of lengths l 1 and l 2 are f 1 and f 2 and the resonance widths are Δf 1 and Δf 2 , respectively, Two relational expressions are obtained.

Figure 2010232110
Figure 2010232110

Figure 2010232110
Figure 2010232110

式10の右辺に実験値を代入して衝突周波数νmの値を求め、それを式11に代入すればωp 2の値が決まる。この値を上式6に代入することにより、電子密度を求めることができる。[測定法C] If the experimental value is substituted into the right side of Equation 10 to obtain the value of the collision frequency ν m and is substituted into Equation 11, the value of ω p 2 is determined. By substituting this value into Equation 6, the electron density can be obtained. [Measurement method C]

プラズマ特性算出部26は、プラズマ発生装置30の制御部32に接続されており、プラズマ密度算出部26において算出された電子密度は、制御部32に送出される。制御部32は測定されたプラズマ密度に基づいて、プラズマ生成用の高周波パワー(高周波電力)やガス圧などのプラズマ状態を支配する因子を制御することができる。 The plasma characteristic calculator 26 is connected to the controller 32 of the plasma generator 30, and the electron density calculated by the plasma density calculator 26 is sent to the controller 32. Based on the measured plasma density, the control unit 32 can control factors that dominate the plasma state, such as high-frequency power for plasma generation (high-frequency power) and gas pressure.

(実施例)
以上、マイクロ波共振を起こすプローブを平行二線伝送路とみなして解析し、その結果に基づいて、プローブの共振スペクトルの実測値から電子密度neや電子衝突周波数νm を求める3種類の測定法(A、B、C)を記した。この方法の妥当性を示すため、予め電子密度neと電子衝突周波数νmを与えて電磁界シミュレーションからプローブの共振特性を求め、伝送線路モデルによる予測とよく合うことを以下に説明する。なお、本発明の測定方法、測定条件などは、実施したシミュレーションの例に限定されない。
(Example)
As described above, the probe that causes microwave resonance is analyzed as a parallel two-wire transmission line, and based on the results, three types of measurements are performed to obtain the electron density ne and the electron collision frequency ν m from the measured values of the resonance spectrum of the probe. The law (A, B, C) is described. In order to show the validity of this method, it will be described below that the resonance characteristics of the probe are obtained from electromagnetic field simulation by giving the electron density ne and the electron collision frequency ν m in advance and are well matched with the prediction by the transmission line model. Note that the measurement method, measurement conditions, and the like of the present invention are not limited to the example of the simulation performed.

電磁界シミュレーションによって得られた共振スペクトルの例を示す。a=1mm、d=4mm、l=27mmのU字型プローブを用い、与えられた電子密度、電子温度およびアルゴンガスの圧力の均一プラズマの中に当該プローブをおいたときの、プローブの共振特性を電磁界シミュレーション行って調べた。シミュレーションにより得られた共振スペクトルの例を図4に示す。ここに、電子密度ne=3×1016-3、電子温度Te=0.5eV一定とし、圧力p(Torr)を変化させた場合の共振スペクトルを示す。 The example of the resonance spectrum obtained by the electromagnetic field simulation is shown. Resonance characteristics of a probe when a U-shaped probe of a = 1 mm, d = 4 mm, and l = 27 mm is used and the probe is placed in a uniform plasma having a given electron density, electron temperature, and argon gas pressure. Was investigated by performing electromagnetic field simulation. An example of the resonance spectrum obtained by the simulation is shown in FIG. Here, a resonance spectrum is shown when the electron density ne = 3 × 10 16 m −3 , the electron temperature Te = 0.5 eV is constant, and the pressure p (Torr) is changed.

共振スペクトルは、圧力が10Torr以下の低圧プラズマと、50Torr以上の高圧プラズマで挙動が異なっている。圧力が10Torr以下の低圧プラズマでは、共振周波数は約2.89GHzであり、圧力が高くなると共振スペクトルのピークがブロードになる傾向が認められた。一方、圧力が50Torr以上の高圧プラズマでは、共振周波数は約2.44GHzであり、圧力が高くなるとピークがシャープになる傾向が認められた。プラズマが生成されていない場合の共振周波数も約2.44GHzであり、共振スペクトルは大気圧プラズマ(760Torr)よりもシャープであるが、広がりは認められた。 The behavior of the resonance spectrum differs between low-pressure plasma having a pressure of 10 Torr or less and high-pressure plasma having a pressure of 50 Torr or more. In the low-pressure plasma having a pressure of 10 Torr or less, the resonance frequency is about 2.89 GHz, and the peak of the resonance spectrum tends to become broader as the pressure increases. On the other hand, in the high-pressure plasma having a pressure of 50 Torr or higher, the resonance frequency was about 2.44 GHz, and a tendency was found that the peak became sharper as the pressure increased. The resonance frequency when the plasma is not generated is about 2.44 GHz, and the resonance spectrum is sharper than that of the atmospheric pressure plasma (760 Torr), but a broadening is recognized.

図4に示された反射係数スペクトルから共振周波数と半値幅を求め、圧力を横軸にとって図5に示す。図5(a)の共振周波数の圧力に対する変化は、圧力が電子衝突周波数に正比例することを考慮すると、伝送線路モデルから予測された式1と合致している。すなわち、式1において、νm→∞(高圧力)の共振周波数はc/4l=f0となり、νm<<2πfr(低圧力)の共振周波数はfr=(c/4l)(1-ωp 2/(2πf1)2)-1/2となる。一方、図5(b)の半値幅は、式2の予測と合致している。すなわち、νm→∞(高圧力)ではΔf∝1/νm に従って半値幅が減少し、逆にνm→0(低圧力)ではΔf∝νmに従って半値幅が増大し、20Torr程度で最大値を示す。実際、アルゴンの衝突断面積データから電子衝突周波数を見積もって、最大の半値幅を示す圧力を式2から求めると約20Torrとなる。換言すれば、式6で示される電子密度の測定法Aの妥当性が実証された。 FIG. 5 shows the resonance frequency and half width from the reflection coefficient spectrum shown in FIG. The change of the resonance frequency in FIG. 5A with respect to the pressure agrees with Equation 1 predicted from the transmission line model, considering that the pressure is directly proportional to the electron collision frequency. That is, in Equation 1, the resonance frequency of ν m → ∞ (high pressure) is c / 4l = f 0 , and the resonance frequency of ν m << 2πf r (low pressure) is f r = (c / 4l) (1 -ω p 2 / (2πf 1 ) 2 ) -1/2 . On the other hand, the full width at half maximum in FIG. That is, at ν m → ∞ (high pressure), the full width at half maximum decreases according to Δf m1 / ν m , and conversely, at ν m → 0 (low pressure), the full width at half maximum increases according to Δf∝ν m and reaches a maximum at about 20 Torr. Indicates the value. Actually, when the electron collision frequency is estimated from the collision cross-section data of argon and the pressure indicating the maximum half-value width is obtained from Equation 2, it is about 20 Torr. In other words, the validity of the electron density measurement method A shown in Equation 6 was proved.

図6には、図4または図5(b)の共振スペクトルから求めた半値幅と共振周波数との比Δf/frと電子密度neとの関係を示す。圧力pは160Torr、760Torrの2水準、電子温度Teは0.5eV、1.0eVの2水準で、プラズマが生成されていない場合の半値幅と共振周波数との比Δf/f0をVacuum levelとして示した。いずれの条件においても、Δf/frは、Vacuum level Δf/f0を切片とし、電子密度に対して比例関係を有している。これにより、プラズマ密度が式8により算出できるという測定法Bの妥当性が確認された。 Figure 6 shows the relationship between the ratio Delta] f / f r and the electron density n e of the half width and the resonance frequency determined from the resonance spectrum of FIG. 4 or FIG. 5 (b). The pressure p is two levels of 160 Torr and 760 Torr, the electron temperature Te is two levels of 0.5 eV and 1.0 eV, and the ratio Δf / f 0 between the half-width and the resonance frequency when no plasma is generated is defined as Vacuum level. Indicated. In either condition, Delta] f / f r is the Vacuum level Δf / f 0 sectioned, has a proportional relationship with respect to the electron density. Thereby, the validity of the measurement method B that the plasma density can be calculated by Equation 8 was confirmed.

[最良の実施形態の効果]
(1)本発明の高圧力プラズマの電子密度、電子衝突周波数の測定方法及びプラズマ特性測定装置1によれば、マイクロ波領域の共振アンテナとして作用するプローブ10を高圧力プラズマPに挿入し、高周波発振器21によりプローブ10に周波数を掃引しながら高周波パワーを供給し、反射係数スペクトル表示部25により、プローブ10から反射されるパワーにより得られる反射係数のスペクトルを測定し、プローブ10の共振スペクトルを検出し、反射係数スペクトル表示部25において検出された共振特性から共振周波数及び共振の半値幅を算出し、プラズマ特性算出部26において、当該共振周波数及び共振の半値幅に基づいて、高圧力プラズマの電子密度、電子衝突周波数を算出することができる。共振の半値幅は、高圧力プラズマの電子密度、電子衝突周波数に対して敏感に変化するため、当該共振周波数及び共振の半値幅に基づいて高圧力プラズマの電子密度、電子衝突周波数を精度よく測定することができる。プローブ10は、例えば、長さが数cm程度の金属線から形成することができるので小型であるとともに、空間分解能を有し、測定も例えば市販のネットワークアナライザにより簡便な操作で可能であるため、高価な大型測定装置を用いることなく、圧力が1Torr以上の高圧力プラズマの電子密度、電子衝突周波数を測定することができる。また、プローブ10としてU字型の金属導体により形成されたプローブを採用すると、T字型のプローブなどに比べ、プラズマが発生するチャンバー31に挿入するためのポートを小さくすることができるため、好適に用いることができる。
[Effect of Best Embodiment]
(1) According to the method of measuring the electron density and electron collision frequency of the high pressure plasma and the plasma characteristic measuring apparatus 1 of the present invention, the probe 10 acting as a resonant antenna in the microwave region is inserted into the high pressure plasma P, and the high frequency plasma A high frequency power is supplied to the probe 10 while sweeping the frequency by the oscillator 21, a spectrum of a reflection coefficient obtained by the power reflected from the probe 10 is measured by the reflection coefficient spectrum display unit 25, and a resonance spectrum of the probe 10 is detected. Then, the resonance frequency and the half width of the resonance are calculated from the resonance characteristics detected by the reflection coefficient spectrum display unit 25, and the electrons of the high pressure plasma are calculated by the plasma characteristic calculation unit 26 based on the resonance frequency and the half width of the resonance. Density and electron collision frequency can be calculated. Since the half width of resonance changes sensitively to the electron density and electron collision frequency of high pressure plasma, the electron density and electron collision frequency of high pressure plasma are accurately measured based on the resonance frequency and half width of resonance. can do. The probe 10 can be formed from, for example, a metal wire having a length of about several centimeters, so that the probe 10 is small in size, has spatial resolution, and can be measured by a simple operation using, for example, a commercially available network analyzer. The electron density and electron collision frequency of high-pressure plasma having a pressure of 1 Torr or higher can be measured without using an expensive large-sized measuring device. Further, when a probe formed of a U-shaped metal conductor is adopted as the probe 10, a port for insertion into the chamber 31 in which plasma is generated can be made smaller than a T-shaped probe or the like, which is preferable. Can be used.

(2)測定法Bでは、共振スペクトルから求められる半値幅と共振周波数との比Δf/frを、プラズマが生成されていない場合の半値幅と共振周波数との比Δf/f0により補正するため、誤差因子を排除し、より正確な電子密度を測定することができる。 (2) In the measurement method B, and the ratio Delta] f / f r and half width and the resonance frequency obtained from the resonance spectrum is corrected by the ratio Delta] f / f 0 and the half-value width and resonance frequency when a plasma is not generated Therefore, an error factor can be eliminated and a more accurate electron density can be measured.

(3)測定法Cでは、長さの異なる2本のプローブ10を用いることにより、高圧力における測定誤差を、1本のプローブによる測定に比べて大幅に抑制することができるため、測定精度を格段に向上させることができる。 (3) In the measurement method C, the measurement error at high pressure can be significantly suppressed by using two probes 10 having different lengths compared to the measurement using a single probe. It can be improved significantly.

[その他の実施形態]
上述の実施形態では、プローブ10として、U字型のプローブを用いたが、これに限定されるものではなく、例えば、発明者らが開発したJP WO2007/026859号公報に記載の各種プローブを用いることができる。
[Other Embodiments]
In the above-described embodiment, a U-shaped probe is used as the probe 10. However, the present invention is not limited to this. For example, various probes described in JP WO2007 / 02659 developed by the inventors are used. be able to.

プラズマ処理装置及びプラズマ密度測定装置の概略図である。It is the schematic of a plasma processing apparatus and a plasma density measuring apparatus. プローブの外形形状を示す説明図である。It is explanatory drawing which shows the external shape of a probe. プローブと同軸ケーブルとの接続方法を示す説明図である。It is explanatory drawing which shows the connection method of a probe and a coaxial cable. 実施例における電磁界シミュレーションにより得られた共振スペクトルの例を示す説明図である。It is explanatory drawing which shows the example of the resonance spectrum obtained by the electromagnetic field simulation in an Example. 実施例における(a)共振周波数と(b)半値幅の圧力依存性を示す説明図である。It is explanatory drawing which shows the pressure dependence of (a) resonance frequency and (b) half value width in an Example. 実施例における共振スペクトルから求めた半値幅と共振周波数との比と電子密度との関係を示す説明図である。It is explanatory drawing which shows the relationship between the ratio of the half value width calculated | required from the resonance spectrum in an Example, and a resonance frequency, and an electron density.

1 プラズマ特性測定装置
10 プローブ
11 同軸ケーブル
20 プローブ制御装置
21 高周波発振器
22 方向性結合器
23 減衰器
24 フィルタ
25 反射係数スペクトル表示部
26 プラズマ特性算出部
30 プラズマ処理装置
31 チャンバー
32 制御部
DESCRIPTION OF SYMBOLS 1 Plasma characteristic measuring apparatus 10 Probe 11 Coaxial cable 20 Probe control apparatus 21 High frequency oscillator 22 Directional coupler 23 Attenuator 24 Filter 25 Reflection coefficient spectrum display part 26 Plasma characteristic calculation part 30 Plasma processing apparatus 31 Chamber 32 Control part

Claims (6)

マイクロ波領域の共振アンテナとして作用するプローブをプラズマ内に挿入し、
前記プローブに周波数を掃引しながら高周波パワーを供給し、前記プローブから反射されるパワーにより得られる反射係数のスペクトルから共振周波数と共振の半値幅とを測定し、当該共振周波数及び共振の半値幅に基づいて、高圧力プラズマの電子密度および/または電子衝突周波数を算出することを特徴とする高圧力プラズマの電子密度および/または電子衝突周波数の測定方法。
Insert a probe that acts as a resonant antenna in the microwave region into the plasma,
A high frequency power is supplied to the probe while sweeping the frequency, and a resonance frequency and a half width of the resonance are measured from a spectrum of a reflection coefficient obtained by the power reflected from the probe, and the resonance frequency and the half width of the resonance are obtained. A method for measuring an electron density and / or an electron collision frequency of a high pressure plasma, wherein the electron density and / or the electron collision frequency of the high pressure plasma is calculated based on the above.
プラズマが生成されていない場合の前記プローブの共振の半値幅と共振周波数との比により補正された、プラズマ内の前記プローブの共振の半値幅と共振周波数との比に基づいて電子密度を算出することを特徴とする請求項1に記載の高圧力プラズマの電子密度および/または電子衝突周波数の測定方法。 The electron density is calculated based on the ratio of the resonance half-width of the probe in the plasma and the resonance frequency, corrected by the ratio of the resonance half-width of the probe and the resonance frequency when no plasma is generated. The method for measuring electron density and / or electron collision frequency of high-pressure plasma according to claim 1. マイクロ波領域の共振アンテナとして作用する、長さの異なる2本のプローブをプラズマ内に挿入し、前記各プローブに周波数を掃引しながら高周波パワーを供給し、前記各プローブから反射されるパワーにより得られるそれぞれの反射係数のスペクトルから、共振周波数と共振の半値幅とをそれぞれ測定し、当該共振周波数及び共振の半値幅に基づいて、高圧力プラズマの電子密度および/または電子衝突周波数を算出することを特徴とする高圧力プラズマの電子密度および/または電子衝突周波数の測定方法。 Two probes with different lengths that act as resonant antennas in the microwave region are inserted into the plasma, high frequency power is supplied to each probe while sweeping the frequency, and the power reflected by each probe is obtained. Resonance frequency and half width of resonance are measured from the respective reflection coefficient spectra, and the electron density and / or electron collision frequency of high-pressure plasma is calculated based on the resonance frequency and half width of resonance. A method for measuring electron density and / or electron collision frequency of high-pressure plasma. 高圧力プラズマ雰囲気内に挿入され、マイクロ波領域の共振アンテナとして作用するプローブと、
前記プローブに同軸ケーブルを介して電気的に接続され周波数を掃引しながら高周波パワーを供給する高周波発振器と、
前記プローブから反射されるパワーにより得られる反射係数のスペクトルを測定し、前記プローブの共振特性を検出する共振スペクトル検出部と、
前記共振スペクトル検出部において検出された共振特性から共振周波数及び共振の半値幅を算出し、当該共振周波数及び共振の半値幅に基づいて、高圧力プラズマの電子密度および/または電子衝突周波数を算出するプラズマ特性算出部と、
を備えたことを特徴とする高圧力プラズマの電子密度および/または電子衝突周波数の測定装置。
A probe inserted into a high pressure plasma atmosphere and acting as a resonant antenna in the microwave region;
A high-frequency oscillator that is electrically connected to the probe via a coaxial cable and supplies high-frequency power while sweeping the frequency;
A spectrum of a reflection coefficient obtained by the power reflected from the probe, and a resonance spectrum detector for detecting a resonance characteristic of the probe;
A resonance frequency and a resonance half width are calculated from the resonance characteristics detected by the resonance spectrum detector, and an electron density and / or an electron collision frequency of high-pressure plasma are calculated based on the resonance frequency and the resonance half width. A plasma characteristic calculator,
An apparatus for measuring electron density and / or electron collision frequency of high-pressure plasma.
前記プローブは、U字型の金属導体により形成されていることを特徴とする請求項4に記載の高圧力プラズマの電子密度および/または電子衝突周波数の測定装置。 The said probe is formed of the U-shaped metal conductor, The measuring device of the electron density and / or electron collision frequency of the high pressure plasma of Claim 4 characterized by the above-mentioned. 長さの異なる2本のプローブを備えたことを特徴とする請求項4または請求項5に記載の高圧力プラズマの電子密度および/または電子衝突周波数の測定装置。 6. The apparatus for measuring electron density and / or electron collision frequency of high-pressure plasma according to claim 4 or 5, comprising two probes having different lengths.
JP2009080737A 2009-03-29 2009-03-29 Measuring method and measuring apparatus capable of measuring electron density and / or electron collision frequency of high pressure plasma Expired - Fee Related JP5478924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080737A JP5478924B2 (en) 2009-03-29 2009-03-29 Measuring method and measuring apparatus capable of measuring electron density and / or electron collision frequency of high pressure plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080737A JP5478924B2 (en) 2009-03-29 2009-03-29 Measuring method and measuring apparatus capable of measuring electron density and / or electron collision frequency of high pressure plasma

Publications (2)

Publication Number Publication Date
JP2010232110A true JP2010232110A (en) 2010-10-14
JP5478924B2 JP5478924B2 (en) 2014-04-23

Family

ID=43047732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080737A Expired - Fee Related JP5478924B2 (en) 2009-03-29 2009-03-29 Measuring method and measuring apparatus capable of measuring electron density and / or electron collision frequency of high pressure plasma

Country Status (1)

Country Link
JP (1) JP5478924B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310766B1 (en) 2012-03-21 2013-09-25 한국표준과학연구원 Process monitoring method and process monitoring apparatus
WO2016177740A1 (en) 2015-05-04 2016-11-10 ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE Method and device for determining plasma characteristics
US9754770B2 (en) 2013-03-11 2017-09-05 Samsung Electronics Co., Ltd. Method and apparatus of diagnosing plasma in plasma space
KR102200662B1 (en) * 2019-10-23 2021-01-12 충남대학교 산학협력단 Non-invasive plasma process diagnostic method and apparatus
CN113657593A (en) * 2021-07-30 2021-11-16 西安理工大学 BP neural network-based plasma parameter diagnosis method
WO2023014500A1 (en) * 2021-08-05 2023-02-09 Applied Materials, Inc. Microwave resonator array for plasma diagnostics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104615580B (en) * 2015-01-23 2017-06-27 中国航天空气动力技术研究院 A kind of recoverable capsule flow field peak electron density method for quick predicting

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100599A (en) * 1998-07-23 2000-04-07 Univ Nagoya Plasma density information measuring method, probe used for the measurement, and plasma density information measuring device
JP2002216998A (en) * 2001-01-23 2002-08-02 Nisshin:Kk Plasma density information measuring method and its equipment, and probe for plasma density information measurement, plasma processing method and its equipment
JP2003017296A (en) * 2001-07-05 2003-01-17 Nisshin:Kk Plasma density information measuring method and device therefor, as well as plasma density information measuring probe, its recording medium and plasma treatment device
JP2004055324A (en) * 2002-07-19 2004-02-19 Nisshin:Kk Plasma density information measuring method and device, as well as plasma density information monitoring method and device, as well as plasma treatment method and device
JP2005203124A (en) * 2004-01-13 2005-07-28 Nisshin:Kk Probe for plasma density information measurement, mounting fixture for plasma density information measurement, plasma density information measurement method, its device, plasma treatment method and its device
JP2005228727A (en) * 2003-04-24 2005-08-25 Tokyo Electron Ltd Plasma monitoring method, plasma monitoring device, and plasma treatment device
WO2007026859A1 (en) * 2005-08-31 2007-03-08 National University Corporation Nagoya University Planar resonant element for measuring electron density of plasma, and method and device for measuring electron density of plasma

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100599A (en) * 1998-07-23 2000-04-07 Univ Nagoya Plasma density information measuring method, probe used for the measurement, and plasma density information measuring device
JP2002216998A (en) * 2001-01-23 2002-08-02 Nisshin:Kk Plasma density information measuring method and its equipment, and probe for plasma density information measurement, plasma processing method and its equipment
JP2003017296A (en) * 2001-07-05 2003-01-17 Nisshin:Kk Plasma density information measuring method and device therefor, as well as plasma density information measuring probe, its recording medium and plasma treatment device
JP2004055324A (en) * 2002-07-19 2004-02-19 Nisshin:Kk Plasma density information measuring method and device, as well as plasma density information monitoring method and device, as well as plasma treatment method and device
JP2005228727A (en) * 2003-04-24 2005-08-25 Tokyo Electron Ltd Plasma monitoring method, plasma monitoring device, and plasma treatment device
JP2005203124A (en) * 2004-01-13 2005-07-28 Nisshin:Kk Probe for plasma density information measurement, mounting fixture for plasma density information measurement, plasma density information measurement method, its device, plasma treatment method and its device
WO2007026859A1 (en) * 2005-08-31 2007-03-08 National University Corporation Nagoya University Planar resonant element for measuring electron density of plasma, and method and device for measuring electron density of plasma

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310766B1 (en) 2012-03-21 2013-09-25 한국표준과학연구원 Process monitoring method and process monitoring apparatus
US9754770B2 (en) 2013-03-11 2017-09-05 Samsung Electronics Co., Ltd. Method and apparatus of diagnosing plasma in plasma space
WO2016177740A1 (en) 2015-05-04 2016-11-10 ECOLE POLYTECHNIQUE FéDéRALE DE LAUSANNE Method and device for determining plasma characteristics
KR102200662B1 (en) * 2019-10-23 2021-01-12 충남대학교 산학협력단 Non-invasive plasma process diagnostic method and apparatus
WO2021080089A1 (en) * 2019-10-23 2021-04-29 충남대학교산학협력단 Diagnostic method and apparatus for non-invasive plasma process
CN113657593A (en) * 2021-07-30 2021-11-16 西安理工大学 BP neural network-based plasma parameter diagnosis method
CN113657593B (en) * 2021-07-30 2024-02-02 西安理工大学 Plasma parameter diagnosis method based on BP neural network
WO2023014500A1 (en) * 2021-08-05 2023-02-09 Applied Materials, Inc. Microwave resonator array for plasma diagnostics
US12062529B2 (en) 2021-08-05 2024-08-13 Applied Materials, Inc. Microwave resonator array for plasma diagnostics

Also Published As

Publication number Publication date
JP5478924B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5478924B2 (en) Measuring method and measuring apparatus capable of measuring electron density and / or electron collision frequency of high pressure plasma
JP3497091B2 (en) Method for controlling high frequency power for plasma generation and plasma generator
US6771481B2 (en) Plasma processing apparatus for processing semiconductor wafer using plasma
US6339297B1 (en) Plasma density information measuring method, probe used for measuring plasma density information, and plasma density information measuring apparatus
Curley et al. Surface loss rates of H and Cl radicals in an inductively coupled plasma etcher derived from time-resolved electron density and optical emission measurements
JP3122175B2 (en) Plasma processing equipment
KR20100004065A (en) Plasma processing apparatus and plasma processing method
KR20010050312A (en) Plasma processing apparatus
Hebner et al. Characterization of electron and negative ion densities in fluorocarbon containing inductively driven plasmas
JP5686549B2 (en) Plasma electron density measuring probe and measuring apparatus
US20080000585A1 (en) Apparatus for monitoring electron density and electron temperature of plasma and method thereof
JP6097097B2 (en) Plasma state measuring probe and plasma state measuring apparatus
Schwabedissen et al. Comparison of electron density measurements in planar inductively coupled plasmas by means of the plasma oscillation method and Langmuir probes
JP2011014579A (en) Device and method of plasma processing
Sugai et al. Recent innovations in microwave probes for reactive plasma diagnostics
JP5618446B2 (en) Probe and apparatus for measuring plasma electron density and temperature
JP2006274420A (en) Plasma film deposition method, and plasma cvd apparatus
JP5511272B2 (en) Probe and apparatus for measuring plasma electron density and temperature
Pandey et al. Opto-curling probe for simultaneous monitoring of optical emission and electron density in reactive plasmas
Kim et al. Analysis of the uncertainty in the measurement of electron densities in plasmas using the wave cutoff method
RU2587468C2 (en) Method of measuring density of electrons in plasma by optical spectroscopy
Foissac et al. Electrical and spectroscopic characterizations of a low pressure argon discharge created by a broad-band helical coupling device
JP2004055324A (en) Plasma density information measuring method and device, as well as plasma density information monitoring method and device, as well as plasma treatment method and device
Mahony et al. Electrical characterization of radio frequency discharges
KR20090046583A (en) Process monitoring method and proces monitoring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5478924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees