JP2010231968A - Control device for secondary battery - Google Patents

Control device for secondary battery Download PDF

Info

Publication number
JP2010231968A
JP2010231968A JP2009077047A JP2009077047A JP2010231968A JP 2010231968 A JP2010231968 A JP 2010231968A JP 2009077047 A JP2009077047 A JP 2009077047A JP 2009077047 A JP2009077047 A JP 2009077047A JP 2010231968 A JP2010231968 A JP 2010231968A
Authority
JP
Japan
Prior art keywords
secondary battery
internal temperature
temperature
charge
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009077047A
Other languages
Japanese (ja)
Other versions
JP5470961B2 (en
Inventor
Naoki Baba
直樹 馬場
Hiroaki Yoshida
広顕 吉田
Makoto Nagaoka
真 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009077047A priority Critical patent/JP5470961B2/en
Publication of JP2010231968A publication Critical patent/JP2010231968A/en
Application granted granted Critical
Publication of JP5470961B2 publication Critical patent/JP5470961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control charge and discharge of a secondary battery with high reliability. <P>SOLUTION: A control device for the secondary battery includes detection means 20, 22 for detecting conditions of the secondary battery at every designated time interval Δt, a calorific value estimation means 26 for calculating a calorific value of the secondary battery from conditions of the detected secondary battery, and a future internal temperature estimation means 28 for estimating internal temperature of the secondary battery after passing the time interval Δt from the present time on the basis of the calculated calorific value. Conditions of the secondary battery can be detected by the detection means 20, 22 whenever the internal temperature of the secondary battery is estimated by the future internal temperature estimation means 28. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、充放電を安全に制御することを可能とする二次電池の制御装置に関する。   The present invention relates to a control apparatus for a secondary battery that enables safe control of charging and discharging.

電気機器への電力の供給のために充放電が可能な二次電池が広く使用されている。例えば、ハイブリッド自動車や電気自動車の電源システムにおいて、駆動力源として原動機を駆動するための二次電池が用いられている。   Secondary batteries that can be charged and discharged are widely used for supplying electric power to electrical devices. For example, in a power source system of a hybrid vehicle or an electric vehicle, a secondary battery for driving a prime mover is used as a driving force source.

特許文献1には、内部状態を予測可能な電池モデルに基づいて、電池内部での局所的劣化を防止した二次電池の充放電制御を行なう充放電制御装置が開示されている。この技術では、電子制御ユニット(ECU)は、二次電池の内部状態を動的に推定可能な電池モデルを用いて、電池内における内部状態予測値を算出する電池モデルを用いる。この内部状態予測値が局所的にも所定の管理範囲を外れることがないように、二次電池からの出力可能電力(放電電力上限値)および入力可能電力(充電電力上限値)を算出し、その入出力可能電力の範囲内に充放電を制限する。   Patent Document 1 discloses a charge / discharge control device that performs charge / discharge control of a secondary battery that prevents local deterioration inside the battery based on a battery model whose internal state can be predicted. In this technique, an electronic control unit (ECU) uses a battery model that calculates a predicted internal state value in a battery using a battery model that can dynamically estimate the internal state of a secondary battery. In order to prevent the predicted internal state value from locally deviating from the predetermined management range, the outputable power (discharge power upper limit value) and the input possible power (charge power upper limit value) from the secondary battery are calculated, Charge / discharge is limited within the range of power that can be input and output.

また、特許文献2には、二次電池の劣化を簡便かつ充分に抑制する保護制御システムが開示されている。この技術では、制御対象となる二次電池の端子間電圧及び充放電電流と抵抗の少なくとも一方を検出し、検出電圧値及び検出電流値と検出抵抗値の少なくとも一方とに基づいて二次電池が予め定められた劣化促進領域にあるかどうかの判断を行う。そして、二次電池が劣化促進領域にあると判断された場合、二次電池を劣化促進領域から回避させる。   Patent Document 2 discloses a protection control system that simply and sufficiently suppresses deterioration of a secondary battery. In this technique, at least one of the inter-terminal voltage, charge / discharge current, and resistance of the secondary battery to be controlled is detected, and the secondary battery is based on the detected voltage value, the detected current value, and at least one of the detected resistance value. It is determined whether or not it is in a predetermined deterioration promoting region. And when it is judged that a secondary battery exists in a deterioration promotion area | region, a secondary battery is avoided from a deterioration promotion area | region.

特開2007−141558号公報JP 2007-141558 A 特開2003−47159号公報JP 2003-47159 A

W.B.Gu and C.Y.Wang,THERMAL-ELECTROCHEMICAL COUPLED MODELING OF A LITHIUM-ION CELL、ECS Proceedings Vol.99-25 (1),2000,ECS (2000),pp 743-762W.B.Gu and C.Y.Wang, THERMAL-ELECTROCHEMICAL COUPLED MODELING OF A LITHIUM-ION CELL, ECS Proceedings Vol.99-25 (1), 2000, ECS (2000), pp 743-762

ところで、特許文献1のように、電池モデルを用いて、初期値から連続的に長時間に亘って電池内部の状態(イオン濃度、電位、温度等)を推定し、その推定値に基づいて制御を行う技術では、初期値を求めた時点から時間が経過するほど推定値の確度は低下する。したがって、二次電池の制御の判定に用いる判定基準値もかなりの安全率を見込んだ値を設定せざるを得ない。   By the way, as in Patent Document 1, a battery model is used to continuously estimate the internal state (ion concentration, potential, temperature, etc.) of the battery over a long period of time from the initial value, and control based on the estimated value. In the technique for performing the estimation, the accuracy of the estimated value decreases as time elapses from the time when the initial value is obtained. Therefore, the determination reference value used for determining the control of the secondary battery must be set to a value that allows for a considerable safety factor.

また、特許文献2のように、二次電池の状態の測定値から現時点の電池内部の状態を推定するのみで将来の二次電池の状態を推定しない技術では、将来の二次電池の状態の変化に対する余裕を見込んで二次電池の制御の判定に用いる判定基準値にかなりの安全率を見込まなければならない。   Further, as in Patent Document 2, in the technology that only estimates the current state of the battery from the measured value of the state of the secondary battery and does not estimate the state of the future secondary battery, the state of the future secondary battery Considering a margin for the change, a considerable safety factor must be expected in the determination reference value used for determining the control of the secondary battery.

例えば、二次電池の温度を制御する場合、実際の熱暴走開始温度に対してかなり低い温度を判定基準値として設定することになる。このため、まだ十分な放電容量が残されているにも関わらず、放電を抑制する制御を行わなければならず、二次電池を十分に利用できない可能性がある。   For example, when controlling the temperature of the secondary battery, a temperature considerably lower than the actual thermal runaway start temperature is set as the determination reference value. For this reason, although sufficient discharge capacity is still left, control for suppressing discharge must be performed, and the secondary battery may not be sufficiently utilized.

本発明は、上記課題を鑑み、高い信頼性で充放電を制御することを可能とする二次電池の制御装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a control apparatus for a secondary battery that can control charging and discharging with high reliability.

本発明の1つの態様は、二次電池の制御装置であって、所定の時間間隔Δt毎に二次電池の状態を検知する検知手段と、前記検知された二次電池の状態から二次電池での発熱量を算出する発熱量推定手段と、前記算出された発熱量に基づいて、現時点から時間間隔Δt経過後の二次電池の内部温度を推定する将来内部温度推定手段と、を備え、前記将来内部温度推定手段で二次電池の内部温度を推定する毎に前記検知手段で二次電池の状態を検出することを特徴とする。   One aspect of the present invention is a control device for a secondary battery, wherein the detection unit detects a state of the secondary battery at every predetermined time interval Δt, and the secondary battery is detected from the detected state of the secondary battery. A calorific value estimating means for calculating a calorific value at the time, and a future internal temperature estimating means for estimating the internal temperature of the secondary battery after the elapse of the time interval Δt from the present time based on the calculated calorific value, Each time the internal temperature of the secondary battery is estimated by the future internal temperature estimating means, the state of the secondary battery is detected by the detecting means.

ここで、前記検知手段は、所定の時間間隔Δt毎に少なくとも二次電池の外部温度を検知する温度検知手段を含み、予め求めた二次電池の外部温度と内部温度との対応関係を用いて、前記温度検知手段において検知された二次電池の外部温度から現時点の内部温度を推定する現時点内部温度推定手段を備えることが好適である。   Here, the detection means includes a temperature detection means for detecting at least the external temperature of the secondary battery every predetermined time interval Δt, and uses the correspondence relationship between the external temperature and the internal temperature of the secondary battery obtained in advance. It is preferable that a current internal temperature estimating means for estimating the current internal temperature from the external temperature of the secondary battery detected by the temperature detecting means is provided.

また、前記検知手段は、所定の時間間隔Δt毎に少なくとも二次電池の外部温度を検知する温度検知手段を含み、熱伝導方程式を用いて前記温度検知手段において検知された二次電池の外部温度から現時点の内部温度を推定する現時点内部温度推定手段を備えることも好適である。   The detection means includes temperature detection means for detecting at least the external temperature of the secondary battery at every predetermined time interval Δt, and the external temperature of the secondary battery detected by the temperature detection means using a heat conduction equation. It is also preferable to include a current internal temperature estimating means for estimating the current internal temperature from the current internal temperature.

また、前記検知手段は、充放電量を検知する充放電検知手段を含み、前記発熱量推定手段は、前記現時点内部温度推定手段において推定された現時点の二次電池の内部温度と前記充放電検知手段において検知された充放電量とに基づいて、二次電池での発熱量を算出することが好適である。   The detection means includes charge / discharge detection means for detecting a charge / discharge amount, and the heat generation amount estimation means includes the current internal temperature of the secondary battery estimated by the current internal temperature estimation means and the charge / discharge detection. It is preferable to calculate the amount of heat generated in the secondary battery based on the charge / discharge amount detected by the means.

また、前記現時点内部温度推定手段において推定された現時点の二次電池の内部温度と、時間間隔Δt前に検知された外部温度に基づいて推定された二次電池の将来内部温度と、の差が所定の許容温度差以上である場合、前記将来内部温度推定手段の処理を行うことなく二次電池が異常であると判定する前判定手段を備えることが好適である。   Further, the difference between the present internal temperature of the secondary battery estimated by the present internal temperature estimation means and the future internal temperature of the secondary battery estimated based on the external temperature detected before the time interval Δt is It is preferable to include a pre-determination unit that determines that the secondary battery is abnormal without performing the process of the future internal temperature estimation unit when the difference is equal to or greater than a predetermined allowable temperature difference.

また、前記将来内部温度推定手段で推定された将来の二次電池の内部温度に基づいて二次電池の安全性を判定する判定手段を備えることが好適である。   In addition, it is preferable to include a determination unit that determines the safety of the secondary battery based on the future internal temperature of the secondary battery estimated by the future internal temperature estimation unit.

本発明によれば、高い信頼性で二次電池の充放電を制御することが可能となる。   According to the present invention, it is possible to control charging / discharging of a secondary battery with high reliability.

本発明の実施形態に係る二次電池システムの構成図を示す図である。It is a figure which shows the block diagram of the secondary battery system which concerns on embodiment of this invention. 第1の実施の形態における二次電池の充放電制御処理のフローチャートである。It is a flowchart of the charging / discharging control process of the secondary battery in 1st Embodiment. 第2の実施の形態における二次電池の充放電制御処理のフローチャートである。It is a flowchart of the charging / discharging control process of the secondary battery in 2nd Embodiment. 本発明の実施形態に係る二次電池システムの構成図を示す図である。It is a figure which shows the block diagram of the secondary battery system which concerns on embodiment of this invention. 第2の実施の形態における二次電池の充放電制御処理のフローチャートである。It is a flowchart of the charging / discharging control process of the secondary battery in 2nd Embodiment.

本発明の第1の実施の形態における二次電池システム100は、図1に示すように、二次電池102、モータ・ジェネレータ104及び電子制御ユニット(ECU:Electronic Control Unit)106を含んで構成される。   As shown in FIG. 1, the secondary battery system 100 according to the first embodiment of the present invention includes a secondary battery 102, a motor / generator 104, and an electronic control unit (ECU) 106. The

二次電池102は、充電を行うことによりエネルギーを蓄えることが可能であり、充放電を繰り返し行うことができる電池である。二次電池102としては、例えば、ニッケル水素電池やリチウムイオン電池等が挙げられる。二次電池102は、その動作状態に応じて過充電や過放電等とならないように充放電の制御を行う必要がある。   The secondary battery 102 is a battery that can store energy by charging and can repeatedly charge and discharge. Examples of the secondary battery 102 include a nickel metal hydride battery and a lithium ion battery. The secondary battery 102 needs to perform charge / discharge control so as not to be overcharged or overdischarged according to its operating state.

二次電池102の出力はモータ・ジェネレータ104に接続される。モータ・ジェネレータ104は、二次電池102から出力を調整するためのインバータ等の制御回路を含んでもよい。二次電池102は、ECU106からの制御に応じて、モータ・ジェネレータ104へ電力を供給して駆動する。また、二次電池102は、ECU106からの制御に応じて、モータ・ジェネレータ104から回生電力を受けて充電される。なお、本実施の形態では、二次電池102の負荷をモータ・ジェネレータ104としたがこれに限定されるものではない。   The output of the secondary battery 102 is connected to the motor / generator 104. The motor / generator 104 may include a control circuit such as an inverter for adjusting the output from the secondary battery 102. The secondary battery 102 is driven by supplying electric power to the motor / generator 104 in accordance with control from the ECU 106. The secondary battery 102 is charged by receiving regenerative power from the motor / generator 104 in accordance with control from the ECU 106. In this embodiment, the load of the secondary battery 102 is the motor / generator 104. However, the present invention is not limited to this.

二次電池102には、二次電池102の筐体の外部の温度を測定するための温度センサが設けられる。温度センサは、例えば、熱電対10とすることができる。熱電対10は、二次電池システム100の制御での電池内部の温度を推定するために二次電池102の外部温度を測定するために用いられる。熱電対10の取付位置は、二次電池102の内部温度を測定するために適した位置、例えば、二次電池102の外部温度と内部温度との対応を示す温度マップを予め準備した際の外部温度を測定した位置に取り付けることが好適である。熱電対10の出力はECU106へ入力される。   The secondary battery 102 is provided with a temperature sensor for measuring the temperature outside the casing of the secondary battery 102. The temperature sensor can be, for example, a thermocouple 10. The thermocouple 10 is used to measure the external temperature of the secondary battery 102 in order to estimate the temperature inside the battery in the control of the secondary battery system 100. The attachment position of the thermocouple 10 is a position suitable for measuring the internal temperature of the secondary battery 102, for example, an external temperature when a temperature map indicating the correspondence between the external temperature and the internal temperature of the secondary battery 102 is prepared in advance. It is preferable to attach to the position where the temperature is measured. The output of the thermocouple 10 is input to the ECU 106.

また、二次電池102の入出力電流Iappを測定する電流センサ12が設けられる。また、二次電池102の出力端子間の出力電圧Vbを測定する電圧センサ14を設けてもよい。電流センサ12及び電圧センサ14の出力はECU106へ入力される。   Further, a current sensor 12 that measures the input / output current Iapp of the secondary battery 102 is provided. Further, a voltage sensor 14 that measures the output voltage Vb between the output terminals of the secondary battery 102 may be provided. Outputs from the current sensor 12 and the voltage sensor 14 are input to the ECU 106.

ECU106は、熱電対10並びに電流センサ12及び電圧センサ14からの出力を受けて、これらの信号に基づいて二次電池102の充放電を制御する。ECU106は、温度検知手段20、充放電検知手段22、現時点内部温度推定手段24、発熱量推定手段26、将来内部温度推定手段28及び判定手段30を含んで構成される。   ECU 106 receives outputs from thermocouple 10, current sensor 12, and voltage sensor 14, and controls charging / discharging of secondary battery 102 based on these signals. The ECU 106 includes a temperature detection unit 20, a charge / discharge detection unit 22, a current internal temperature estimation unit 24, a heat generation amount estimation unit 26, a future internal temperature estimation unit 28, and a determination unit 30.

なお、ECU106は、マイクロコンピュータを含んで構成することができる。この場合、ECU106に含まれる各手段は制御プログラムを実行することによって実現される。また、ECU106は、ロジック回路を含んで構成することができる。この場合、ECU106に含まれる各手段はロジック回路の組み合わせにより実現される。   The ECU 106 can be configured to include a microcomputer. In this case, each means included in the ECU 106 is realized by executing a control program. Further, the ECU 106 can be configured to include a logic circuit. In this case, each means included in the ECU 106 is realized by a combination of logic circuits.

以下、二次電池システム100における二次電池102の充放電制御について説明する。充放電制御処理は、図2に示すフローチャートに沿って実行される。充放電制御処理は、所定の時間間隔Δt毎に行われる。すなわち、時間間隔Δt毎に以下の処理を実行し、充放電制御を行う。   Hereinafter, charge / discharge control of the secondary battery 102 in the secondary battery system 100 will be described. The charge / discharge control process is executed according to the flowchart shown in FIG. The charge / discharge control process is performed every predetermined time interval Δt. That is, the following processing is executed at each time interval Δt to perform charge / discharge control.

ステップS10では、充放電レートIappを取得する。ステップS10の処理は充放電検知手段22に相当する。ECU106は、電流センサ12から現時点での入出力電流Iappを取得する。   In step S10, the charge / discharge rate Iapp is acquired. The process of step S10 corresponds to the charge / discharge detection means 22. The ECU 106 acquires the current input / output current Iapp from the current sensor 12.

ステップS12では、二次電池102の外部温度を取得する。ECU106は、熱電対10から二次電池102の電池スタック温度推定値Tstack,mes、すなわち外部温度(以下、Toutと表記する)を取得する。ステップS12の処理が温度検知手段20における処理に相当する。   In step S12, the external temperature of the secondary battery 102 is acquired. The ECU 106 acquires the battery stack temperature estimated value Tstack, mes of the secondary battery 102 from the thermocouple 10, that is, the external temperature (hereinafter referred to as Tout). The process of step S12 corresponds to the process in the temperature detection means 20.

ステップS14では、二次電池102の外部温度Toutに基づいて現時点(ステップ:N)における二次電池102の内部温度Tを推定する。ステップS14の処理が現時点内部温度推定手段24における処理に相当する。通常、市販の二次電池102の内部に熱電対等の温度センサを挿入することは不可能であり、二次電池102の内部温度Tは直接測定できないため、二次電池102の外部温度Toutから内部温度Tを推定するものである。 In step S14, the internal temperature TN of the secondary battery 102 at the present time (step: N) is estimated based on the external temperature Tout of the secondary battery 102. The processing in step S14 corresponds to the processing in the current internal temperature estimation means 24. Usually, it is impossible to insert a temperature sensor such as a thermocouple into the inside of the commercially available secondary battery 102, and the internal temperature TN of the secondary battery 102 cannot be directly measured. Therefore, from the external temperature Tout of the secondary battery 102 The internal temperature TN is estimated.

本実施の形態では、内部温度Tは、実装する二次電池102と同様の試験装置等において予め実測した二次電池102の外部温度Toutと二次電池102の内部温度Tとの対応関係を示すマップ(データ)を用いて、取得した二次電池102の外部温度Toutに対応する内部温度Tを求める。 In this embodiment, the internal temperature T N, the corresponding relationship between the internal temperature T N of the external temperature Tout and the secondary battery 102 of the previously measured in the same test apparatus and the like and the secondary battery 102 to implement the secondary battery 102 Is used to obtain an internal temperature TN corresponding to the acquired external temperature Tout of the secondary battery 102.

ステップS16では、充放電レートIappに基づいて充電状態SOC(SOC:State of Charge)を算出する。ステップS16の処理が発熱量推定手段26の一部に相当する。 In step S16, based on the charge and discharge rate Iapp state of charge SOC N: calculating the (SOC State of Charge). The process of step S16 corresponds to a part of the heat generation amount estimation means 26.

ECU106は、前回、時間間隔Δt前に測定された充放電レートIappと今回ステップS10で測定された充放電レートIappの差から時間間隔Δtに充放電された電流量を求め、その値から現時点(ステップ:N)における二次電池102の充電状態SOCを求める。充電状態SOCの算出には、二次電池102の外部温度Toutおよび出力電圧Vbの検出値を適宜反映させてもよい。 The ECU 106 obtains the amount of current charged / discharged at the time interval Δt from the difference between the charge / discharge rate Iapp previously measured before the time interval Δt and the charge / discharge rate Iapp measured at step S10 this time, and the current value ( Step: Obtain the state of charge SOC N of the secondary battery 102 in N). In calculating the state of charge SOC N , the detected values of the external temperature Tout and the output voltage Vb of the secondary battery 102 may be appropriately reflected.

ステップS18では、電池内部状態モデル式を用いて二次電池102の電位勾配及び濃度勾配を求める。ステップS18の処理が発熱量推定手段26の一部に相当する。   In step S18, the potential gradient and concentration gradient of the secondary battery 102 are obtained using the battery internal state model formula. The processing in step S18 corresponds to a part of the heat generation amount estimation means 26.

ECU106は、ステップS14で求めた二次電池102の内部温度TとステップS16で求めた二次電池102の充電状態SOCを電池内部状態モデル式に導入することによって電位勾配及び濃度勾配を求める。 The ECU 106 obtains the potential gradient and the concentration gradient by introducing the internal temperature TN of the secondary battery 102 obtained in step S14 and the state of charge SOC N of the secondary battery 102 obtained in step S16 into the battery internal state model equation. .

本発明の実施の形態における二次電池の制御装置では、以下に説明する電池モデル式M1〜M15を用いて、電池の内部状態分布を推定する。以下に、ECU106の電池モデル部で用いられる電池モデル式について説明する。また、表1に電池モデル式M1〜M15内で用いられる変数および定数の一覧表を示す。   In the secondary battery control device in the embodiment of the present invention, the internal state distribution of the battery is estimated using battery model equations M1 to M15 described below. The battery model formula used in the battery model unit of the ECU 106 will be described below. Table 1 shows a list of variables and constants used in the battery model equations M1 to M15.

Figure 2010231968
Figure 2010231968

Figure 2010231968
Figure 2010231968

式M1〜M3は、電極反応を示す式である(バトラーボルマーの式)。交換電流密度i0は、式M1で表され、活物質の界面におけるイオン濃度の関数で与えられる。式M1中のηは式M2により求められ、式M2中のUは式(M3)により求められる。

Figure 2010231968
Formulas M1 to M3 are formulas indicating an electrode reaction (Butler Volmer formula). The exchange current density i 0 is expressed by the formula M1, and is given as a function of the ion concentration at the interface of the active material. Η in the equation M1 is obtained by the equation M2, and U in the equation M2 is obtained by the equation (M3).
Figure 2010231968

式M4〜M6は、電界液中でのイオン保存則を示す。電界液中での実効拡散係数は式M5で表される。反応電流jLiは、式M6に示すように、電極の単位体積あたりの活物質表面積asと輸送電流密度/injとの積で与えられる。なお、反応電流jLiの電極全体での体積積分が充放電レートIappに対応する。

Figure 2010231968
Expressions M4 to M6 indicate the ion conservation law in the electrolysis solution. The effective diffusion coefficient in the electrolysis solution is expressed by Equation M5. Reaction current j Li, as shown in Equation M6, given by the product of active material surface area a s per unit electrode volume transport current density / i nj. The volume integral of the reaction current j Li over the entire electrode corresponds to the charge / discharge rate Iapp.
Figure 2010231968

式M7及びM8は、固相中でのイオン保存則を示す。式M7は、球体である活物質中での拡散方程式を示す。電極単位体積あたりの活物質表面積asは式M8で求められる。

Figure 2010231968
Formulas M7 and M8 show the ion conservation laws in the solid phase. Formula M7 represents a diffusion equation in an active material that is a sphere. The active material surface area a s per electrode unit volume is obtained by the equation M8.
Figure 2010231968

電界液中での電荷保存則に基づき、電界液中での電位を示す式M9〜M11が得られる。実効イオン伝導率κeffは式M10で求められる。また、拡散導電係数κD effは式M11で示される。

Figure 2010231968
Based on the law of conservation of electric charge in the electrolysis solution, equations M9 to M11 indicating the potential in the electrolysis solution are obtained. The effective ionic conductivity κ eff is obtained by the equation M10. Further, the diffusion conductivity coefficient κ D eff is expressed by the equation M11.
Figure 2010231968

活物質での電荷保存則に基づき、固相中での電位は式M12およびM13で表される。

Figure 2010231968
Based on the law of conservation of charge in the active material, the potential in the solid phase is expressed by the formulas M12 and M13.
Figure 2010231968

電池内部における熱エネルギー保存則は式M14およびM15で表される。これにより、充放電現象による二次電池の内部への局所的な温度変化を解析することが可能となる。   The thermal energy conservation law inside the battery is expressed by equations M14 and M15. Thereby, it becomes possible to analyze the local temperature change inside the secondary battery due to the charge / discharge phenomenon.

上記モデルに基づき、電極間距離x(例えば、負極端でx=0、正極端でx=L)および電極縦方向座標y(例えば、y=0〜y=H)の各点について、境界条件を適宜設定し、差分方程式として式M1〜M15の電池モデル式を逐次解くことができる。これにより、二次電池102の内部状態について位置的分布(電位の位置的な勾配及び濃度の位置的な勾配等)の時間推移を推定することができる。   Based on the above model, the boundary condition for each point of the interelectrode distance x (for example, x = 0 at the negative electrode end, x = L at the positive electrode end) and the electrode longitudinal coordinate y (for example, y = 0 to y = H). Is appropriately set, and the battery model equations of equations M1 to M15 can be sequentially solved as a difference equation. Thereby, it is possible to estimate the temporal transition of the positional distribution (such as the positional gradient of the potential and the positional gradient of the concentration) for the internal state of the secondary battery 102.

すなわち、式M1〜M15の電池モデル式を用いて、二次電池102の内部の各点における内部状態推定値を逐次算出できる。式M1〜M15に示されるように、推定される内部状態としては、体積で平均化されたイオン濃度cs(活物質内)及びce(電解液内)、電位分布ψe(電解液中)及びψs(活物質内)、絶対温度T、イオン生成量jLi等が挙げられる。また、局所的なイオン濃度ceと活物質の界面でのイオン濃度Cseとを求め、イオン濃度Cs,maxとの比Cse/Cs,maxを求めることにより、活物質界面での局所的な充電率SOCを求めることができる。このようにして二次電池102の内部状態を求める。 That is, the internal state estimated values at each point inside the secondary battery 102 can be sequentially calculated using the battery model expressions of the expressions M1 to M15. As shown in the equations M1 to M15, the estimated internal states include ion concentrations c s (in the active material) and c e (in the electrolyte) averaged by volume, potential distribution ψ e (in the electrolyte) ) And ψ s (within the active material), absolute temperature T, ion generation amount j Li and the like. Further, the local ion concentration c e and the ion concentration C se at the interface of the active material are obtained, and the ratio C se / C s, max to the ion concentration C s, max is obtained, so that The local charge rate SOC can be obtained. In this way, the internal state of the secondary battery 102 is obtained.

なお、活物質内でのイオン濃度は、活物質半径rの関数とされ、その周方向ではイオン濃度は一様なものとする。   The ion concentration in the active material is a function of the active material radius r, and the ion concentration is uniform in the circumferential direction.

なお、電池モデル式M1〜M15の詳細は非特許文献1に記載されており、詳細な説明は非特許文献1を援用する。なお、電池モデルは、上記同様の物理量(発電量)が算出できるものであれば、非特許文献1に限らず利用できる。   The details of the battery model formulas M1 to M15 are described in Non-Patent Document 1, and the detailed description uses Non-Patent Document 1. The battery model is not limited to Non-Patent Document 1 and can be used as long as the same physical quantity (power generation amount) can be calculated.

ステップS20では、現時点における二次電池102の発熱量Qを求める。発熱量Qは、ステップS18で求めた二次電池102内部の電位勾配及び濃度勾配から求められる。ステップS20は、発熱量推定手段26の一部に相当する。 In step S20, obtaining the calorific value Q N of the secondary battery 102 at the present time. Calorific value Q N is obtained from the secondary battery 102 inside the potential gradient and the concentration gradient calculated in step S18. Step S20 corresponds to part of the heat generation amount estimation means 26.

ステップS22では、二次電池102の内部温度の上昇値ΔTを推定する。ECU106は、ステップS20で算出した発熱量Qを数式M16に代入して二次電池102の内部温度の上昇値ΔTを推定する。ここで、ρは二次電池102の密度、Cpは二次電池102の定圧比熱である。ステップS22の処理は将来内部温度推定手段28の一部に相当する。

Figure 2010231968
In step S22, it estimates the increase value [Delta] T N of the internal temperature of the secondary battery 102. ECU106 is the calorific value Q N calculated in step S20 are substituted into Equation M16 estimates the increase value [Delta] T N of the internal temperature of the secondary battery 102. Here, ρ is the density of the secondary battery 102, and Cp is the constant pressure specific heat of the secondary battery 102. The process of step S22 corresponds to a part of the future internal temperature estimation means 28.
Figure 2010231968

ステップS24では、次の充放電制御処理の開始時刻、すなわち現時点から時間間隔Δt後の二次電池102の内部温度TN+1,predict(以下、TN+1とする)を推定する。ステップS24の処理は将来内部温度推定手段28の一部に相当する。ECU106は、ステップS22で推定した二次電池102の内部温度の上昇値ΔTを数式M17に代入して、現時点から時間間隔Δt後の二次電池102の内部温度TN+1を推定する。

Figure 2010231968
In step S24, the start time of the next charge / discharge control process, that is, the internal temperature T N + 1, predict (hereinafter referred to as T N + 1 ) of the secondary battery 102 after the time interval Δt from the present time is estimated. The process of step S24 corresponds to a part of the future internal temperature estimating means 28. ECU106 is the rise value [Delta] T N of the internal temperature of the secondary battery 102 estimated by substituting the equation M17 in step S22, estimates the internal temperature T N + 1 of the secondary battery 102 after a time interval Δt from the current time.
Figure 2010231968

ステップS26では、現時点から時間間隔Δt後の二次電池102の内部温度TN+1に基づいて二次電池102の充放電制御を行う。本実施の形態では、ECU106は、現時点から時間間隔Δt後の二次電池102の内部温度TN+1が予め定めた温度基準値Tthermal_runaway(以下、Tthとする)となった場合、二次電池102が熱暴走する可能性があるとして、ステップS28に処理を移行させて回避処理を行う。回避処理は、例えば、二次電池102の充放電を停止させる処理とすることができる。一方、内部温度TN+1が予め定めた温度基準値Tthより小さい場合、二次電池102は熱暴走する可能性が低いとして、時間間隔Δt後にステップS10へ戻って充放電制御処理を繰り返す。ステップS26の処理が判定手段30に相当する。 In step S26, charge / discharge control of the secondary battery 102 is performed based on the internal temperature TN + 1 of the secondary battery 102 after the time interval Δt from the current time. In the present embodiment, when the internal temperature T N + 1 of the secondary battery 102 after the time interval Δt from the current time reaches a predetermined temperature reference value T thermal_runaway (hereinafter referred to as T th ), the ECU 106 Assuming that there is a possibility that the thermal runaway 102 may occur, the process proceeds to step S28 to perform avoidance processing. The avoidance process can be, for example, a process of stopping charging / discharging of the secondary battery 102. On the other hand, if the internal temperature T N + 1 is smaller than the predetermined temperature reference value T th , it is assumed that the secondary battery 102 has a low possibility of thermal runaway, and after a time interval Δt, the process returns to step S10 and the charge / discharge control process is repeated. The process of step S26 corresponds to the determination unit 30.

なお、ステップS26における二次電池102に対する充放電制御はこれに限定されるものではなく、現時点から時間間隔Δt後の二次電池102の内部温度TN+1に基づいて行われるものであればよい。 Note that the charge / discharge control for the secondary battery 102 in step S26 is not limited to this, and may be performed based on the internal temperature TN + 1 of the secondary battery 102 after the time interval Δt from the present time.

<第2の実施の形態>
第2の実施の形態における二次電池102の充放電制御処理を図3のフローチャートとして示す。第2の実施の形態における二次電池102の充放電制御処理は、図3に示すように、第1の実施の形態における二次電池102の充放電制御処理に対してステップS14の処理をステップS14aの処理に置き換えたものである。他のステップの処理は第1の実施の形態における二次電池102の充放電制御処理と同様であるので説明を省略する。
<Second Embodiment>
The charging / discharging control process of the secondary battery 102 in 2nd Embodiment is shown as a flowchart of FIG. In the charge / discharge control process of the secondary battery 102 in the second embodiment, as shown in FIG. 3, the process of step S14 is performed with respect to the charge / discharge control process of the secondary battery 102 in the first embodiment. This is replaced with the processing of S14a. The processing of other steps is the same as the charging / discharging control processing of the secondary battery 102 in the first embodiment, and thus description thereof is omitted.

第1の実施の形態における充放電制御処理のステップS14では試験装置等において予め実測した二次電池102の外部温度Toutと内部温度Tとの対応関係を示すマップを用いて、実測した外部温度Toutに対応する内部温度Tを求めた。ステップS14aでは、実験式又は熱伝導方程式に基づいて実測した外部温度Toutから内部温度Tを算出する。 In step S14 of the charge / discharge control process in the first embodiment, the measured external temperature is measured using a map showing the correspondence between the external temperature Tout and the internal temperature TN of the secondary battery 102 measured in advance in a test apparatus or the like. The internal temperature TN corresponding to Tout was determined. In step S14a, the internal temperature TN is calculated from the external temperature Tout measured based on an empirical equation or a heat conduction equation.

実験式とは、実装する二次電池102と同様の試験装置等において予め実測した二次電池102の外部温度Toutと二次電池102の内部温度Tとの対応関係に基づいて、外部温度Toutを引数とした二次電池102の内部温度Tを示す近似関数を求めたものをいう。ステップS10において取得した二次電池102の外部温度Toutをこの実験式に導入することによって現時点の二次電池102の内部温度Tを求めることができる。 The empirical formula refers to the external temperature Tout based on the correspondence between the external temperature Tout of the secondary battery 102 and the internal temperature TN of the secondary battery 102 measured in advance in a test device similar to the mounted secondary battery 102. Is an approximate function that indicates the internal temperature TN of the secondary battery 102. By introducing the external temperature Tout of the secondary battery 102 acquired in step S10 into this empirical formula, the current internal temperature TN of the secondary battery 102 can be obtained.

また、熱伝導方程式は二次電池102の形状や各部の熱伝導特性に基づいて定められ、これにステップS10において取得した二次電池102の外部温度Toutを境界条件として導入することによって現時点の二次電池102の内部温度Tを求めることができる。 In addition, the heat conduction equation is determined based on the shape of the secondary battery 102 and the heat conduction characteristics of each part, and the current temperature is determined by introducing the external temperature Tout of the secondary battery 102 acquired in step S10 as a boundary condition. The internal temperature TN of the secondary battery 102 can be obtained.

<第3の実施の形態>
本発明の第3の実施の形態における二次電池システム110は、図4に示すように、二次電池102、モータ・ジェネレータ104及び電子制御ユニット(ECU:Electronic Control Unit)106aを含んで構成される。第3の実施の形態における二次電池システム110は、図4に示すように、第1の実施の形態における二次電池システム100のECU106をECU106aに置き換えたものである。他の構成については第1の実施の形態における二次電池システム100と同様であるので説明を省略する。
<Third Embodiment>
As shown in FIG. 4, the secondary battery system 110 according to the third embodiment of the present invention includes a secondary battery 102, a motor / generator 104, and an electronic control unit (ECU) 106 a. The As shown in FIG. 4, the secondary battery system 110 according to the third embodiment is obtained by replacing the ECU 106 of the secondary battery system 100 according to the first embodiment with an ECU 106a. Since other configurations are the same as those of the secondary battery system 100 in the first embodiment, description thereof will be omitted.

ECU106aは、熱電対10並びに電流センサ12及び電圧センサ14からの出力を受けて、これらの信号に基づいて二次電池102の充放電を制御する。ECU106aは、温度検知手段20、充放電検知手段22、現時点内部温度推定手段24、発熱量推定手段26、将来内部温度推定手段28、判定手段30及び前判定手段32を含んで構成される。前判定手段32以外の構成要素は第1の実施の形態におけるECU106と同様である。   The ECU 106a receives outputs from the thermocouple 10, current sensor 12, and voltage sensor 14, and controls charging / discharging of the secondary battery 102 based on these signals. The ECU 106a includes a temperature detection unit 20, a charge / discharge detection unit 22, a current internal temperature estimation unit 24, a heat generation amount estimation unit 26, a future internal temperature estimation unit 28, a determination unit 30 and a pre-determination unit 32. The components other than the pre-determination means 32 are the same as those of the ECU 106 in the first embodiment.

第3の実施の形態における二次電池102の充放電制御処理を図5のフローチャートとして示す。第3の実施の形態における二次電池102の充放電制御処理は、図5に示すように、第1の実施の形態における二次電池102の充放電制御処理に対してステップS30の処理をステップS14とS16の間に挿入したものである。他のステップの処理は第1の実施の形態における二次電池102の充放電制御処理と同様であるので説明を省略する。   The charging / discharging control process of the secondary battery 102 in 3rd Embodiment is shown as a flowchart of FIG. As shown in FIG. 5, the charge / discharge control process of the secondary battery 102 in the third embodiment is the same as the charge / discharge control process of the secondary battery 102 in the first embodiment. It is inserted between S14 and S16. The processing of other steps is the same as the charging / discharging control processing of the secondary battery 102 in the first embodiment, and thus description thereof is omitted.

ステップS30では、ステップS26における最終的な判定を行う前に前判定処理を行う。ステップS30の処理が前判定手段32に相当する。   In step S30, a pre-determination process is performed before the final determination in step S26. The process of step S30 corresponds to the pre-determination means 32.

ECU106aは、ステップS14において求めた現時点における二次電池102の内部温度Tに基づいて、二次電池102が正常であるか否かを判定する。例えば、ECU106aは、現時点の内部温度Tと現時点から時間間隔Δt前に開始されたステップN−1において求めた二次電池102の将来内部温度TN,predictとの差、すなわち現時点内部温度Tから将来内部温度TN,predictを引いた差が基準値ε以上である場合に二次電池102が異常であると判断し、ステップS32に処理を移行させ、二次電池102に対して異常回避処理を行う。一方、差が基準値εより小さい場合、前判定としては正常な状態にある可能性が高いものとして、ステップS16に処理を移行させる。 The ECU 106a determines whether or not the secondary battery 102 is normal based on the current internal temperature TN of the secondary battery 102 obtained in step S14. For example, ECU106a the future internal temperature T N of the secondary battery 102 calculated in the internal temperature T N and step N-1, which is started before the time interval Δt from the current time of current, the difference between the predict, i.e. current internal temperature T If the difference obtained by subtracting the future internal temperature T N, predict from N is equal to or greater than the reference value ε, it is determined that the secondary battery 102 is abnormal, the process proceeds to step S32, and the secondary battery 102 is abnormal. Perform avoidance processing. On the other hand, if the difference is smaller than the reference value ε, it is assumed that there is a high possibility of being in a normal state as a pre-determination, and the process proceeds to step S16.

過充電等に起因した二次電池102の熱暴走は、二次電池102の内部温度が徐々に上昇して、ある温度に達すると発生する。したがって、適切な充放電制御がなされていれば回避可能である。第1及び第2の実施の形態における充放電制御を適用すれば、従来の充放電制御よりも高い信頼度で熱暴走等の二次電池102の不具合に対応することができる。   The thermal runaway of the secondary battery 102 due to overcharge or the like occurs when the internal temperature of the secondary battery 102 gradually increases and reaches a certain temperature. Therefore, it can be avoided if appropriate charge / discharge control is performed. If the charge / discharge control in the first and second embodiments is applied, it is possible to cope with a failure of the secondary battery 102 such as thermal runaway with higher reliability than the conventional charge / discharge control.

しかし、二次電池102の内部温度が比較的低い状態であっても予期しない突然の熱暴走が起こり得る。例えば、リチウムイオン電池ではリチウム析出による部分的な短絡や製造工程において混入してしまった異物等又は外部から予期せずに加わる力による短絡に起因した異常発熱による熱暴走が起こり得る。   However, even if the internal temperature of the secondary battery 102 is relatively low, an unexpected sudden thermal runaway may occur. For example, in a lithium ion battery, thermal runaway due to abnormal heat generation due to a partial short circuit due to lithium deposition, foreign matters mixed in the manufacturing process, or a short circuit due to an unexpected force applied from the outside can occur.

第3の実施の形態における充放電制御では、ステップS30における前判定処理を行うことによって急激な温度変化があった場合に二次電池102に異常があったものとして迅速な対応処理を行うことが可能となる。   In the charge / discharge control according to the third embodiment, when the pre-determination process in step S30 is performed, when there is a sudden temperature change, it is assumed that the secondary battery 102 is abnormal and a quick response process is performed. It becomes possible.

以上のように、第1〜第3の実施の形態における二次電池の充放電制御では、所定の時間間隔Δt毎に二次電池の温度を求め、その温度に基づいて二次電池の内部状態を推定して制御を行う。したがって、従来のように一旦温度測定を行った後は時間的に連続して複数回の温度推定を行う制御に比べて、内部状態の推定値の確度を高めることができ、より信頼性の高い充放電制御が可能となる。   As described above, in the charge / discharge control of the secondary battery in the first to third embodiments, the temperature of the secondary battery is obtained every predetermined time interval Δt, and the internal state of the secondary battery is based on the temperature. Is estimated and controlled. Therefore, the accuracy of the estimated value of the internal state can be improved compared to the control in which the temperature estimation is performed once in a time sequence as in the prior art, and the reliability is more reliable. Charge / discharge control is possible.

また、現時点の二次電池の内部温度に基づいて将来の二次電池の内部温度を推定し、その値に基づいて制御を行うので、フィードバック制御のような時間的な遅れが発生しない点も利点である。   In addition, the internal temperature of the future secondary battery is estimated based on the current internal temperature of the secondary battery, and control is performed based on the estimated value. It is.

10 熱電対、12 電流センサ、14 電圧センサ、20 温度検知手段、22 充放電検知手段、24 現時点内部温度推定手段、26 発熱量推定手段、28 将来内部温度推定手段、30 判定手段、32 前判定手段、100,110 二次電池システム、102 二次電池、104 モータ・ジェネレータ、106,106a ECU。   DESCRIPTION OF SYMBOLS 10 Thermocouple, 12 Current sensor, 14 Voltage sensor, 20 Temperature detection means, 22 Charge / discharge detection means, 24 Current internal temperature estimation means, 26 Heat generation amount estimation means, 28 Future internal temperature estimation means, 30 Judgment means, 32 Pre-determination Means, 100, 110 Secondary battery system, 102 Secondary battery, 104 Motor generator, 106, 106a ECU.

Claims (6)

二次電池の制御装置であって、
所定の時間間隔Δt毎に二次電池の状態を検知する検知手段と、
前記検知された二次電池の状態から二次電池での発熱量を算出する発熱量推定手段と、
前記算出された発熱量に基づいて、現時点から時間間隔Δt経過後の二次電池の内部温度を推定する将来内部温度推定手段と、
を備え、
前記将来内部温度推定手段で二次電池の内部温度を推定する毎に前記検知手段で二次電池の状態を検出することを特徴とする二次電池の制御装置。
A control device for a secondary battery,
Detecting means for detecting the state of the secondary battery every predetermined time interval Δt;
A calorific value estimating means for calculating a calorific value in the secondary battery from the detected state of the secondary battery;
A future internal temperature estimating means for estimating the internal temperature of the secondary battery after the elapse of the time interval Δt from the current time, based on the calculated calorific value;
With
The secondary battery control device, wherein the detection means detects the state of the secondary battery every time the future internal temperature estimation means estimates the internal temperature of the secondary battery.
請求項1に記載の二次電池の制御装置であって、
前記検知手段は、所定の時間間隔Δt毎に少なくとも二次電池の外部温度を検知する温度検知手段を含み、
予め求めた二次電池の外部温度と内部温度との対応関係を用いて、前記温度検知手段において検知された二次電池の外部温度から現時点の内部温度を推定する現時点内部温度推定手段を備えることを特徴とする二次電池の制御装置。
The control apparatus for a secondary battery according to claim 1,
The detection means includes a temperature detection means for detecting at least an external temperature of the secondary battery every predetermined time interval Δt,
Provided with a current internal temperature estimation means for estimating the current internal temperature from the external temperature of the secondary battery detected by the temperature detection means, using the correspondence relationship between the external temperature and internal temperature of the secondary battery determined in advance. A control device for a secondary battery.
請求項1に記載の二次電池の制御装置であって、
前記検知手段は、所定の時間間隔Δt毎に少なくとも二次電池の外部温度を検知する温度検知手段を含み、
熱伝導方程式を用いて前記温度検知手段において検知された二次電池の外部温度から現時点の内部温度を推定する現時点内部温度推定手段を備えることを特徴とする二次電池の制御装置。
The control apparatus for a secondary battery according to claim 1,
The detection means includes a temperature detection means for detecting at least an external temperature of the secondary battery every predetermined time interval Δt,
An apparatus for controlling a secondary battery, comprising: current internal temperature estimation means for estimating a current internal temperature from an external temperature of the secondary battery detected by the temperature detection means using a heat conduction equation.
請求項2又は3に記載の二次電池の制御装置であって、
前記検知手段は、充放電量を検知する充放電検知手段を含み、
前記発熱量推定手段は、前記現時点内部温度推定手段において推定された現時点の二次電池の内部温度と前記充放電検知手段において検知された充放電量とに基づいて、二次電池での発熱量を算出することを特徴とする二次電池の制御装置。
A control device for a secondary battery according to claim 2 or 3,
The detection means includes charge / discharge detection means for detecting a charge / discharge amount,
The calorific value estimation unit is configured to generate a calorific value in the secondary battery based on the current internal temperature of the secondary battery estimated by the current internal temperature estimation unit and the charge / discharge amount detected by the charge / discharge detection unit. A control apparatus for a secondary battery, wherein
請求項2〜4のいずれか1つに記載の二次電池の制御装置であって、
前記現時点内部温度推定手段において推定された現時点の二次電池の内部温度と、時間間隔Δt前に検知された外部温度に基づいて推定された二次電池の将来内部温度と、の差が所定の許容温度差以上である場合、前記将来内部温度推定手段の処理を行うことなく二次電池が異常であると判定する前判定手段を備えることを特徴とする二次電池の制御装置。
A control device for a secondary battery according to any one of claims 2 to 4,
The difference between the current internal temperature of the secondary battery estimated by the current internal temperature estimation means and the future internal temperature of the secondary battery estimated based on the external temperature detected before the time interval Δt is a predetermined value. A control apparatus for a secondary battery, comprising: a pre-determination unit that determines that the secondary battery is abnormal without performing the process of the future internal temperature estimation unit when the difference is greater than an allowable temperature difference.
請求項1〜4のいずれか1つに記載の二次電池の制御装置であって、
前記将来内部温度推定手段で推定された将来の二次電池の内部温度に基づいて二次電池の安全性を判定する判定手段を備えることを特徴とする二次電池の制御装置。
The secondary battery control device according to any one of claims 1 to 4,
A control apparatus for a secondary battery, comprising: determination means for determining safety of the secondary battery based on a future internal temperature of the secondary battery estimated by the future internal temperature estimation means.
JP2009077047A 2009-03-26 2009-03-26 Secondary battery control device Expired - Fee Related JP5470961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077047A JP5470961B2 (en) 2009-03-26 2009-03-26 Secondary battery control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077047A JP5470961B2 (en) 2009-03-26 2009-03-26 Secondary battery control device

Publications (2)

Publication Number Publication Date
JP2010231968A true JP2010231968A (en) 2010-10-14
JP5470961B2 JP5470961B2 (en) 2014-04-16

Family

ID=43047611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077047A Expired - Fee Related JP5470961B2 (en) 2009-03-26 2009-03-26 Secondary battery control device

Country Status (1)

Country Link
JP (1) JP5470961B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154665A (en) * 2011-01-24 2012-08-16 Toyota Central R&D Labs Inc Simulation device of secondary battery
JP2013097901A (en) * 2011-10-28 2013-05-20 Makita Corp Temperature detection device and battery pack
JP2013118056A (en) * 2011-12-01 2013-06-13 Toyota Motor Corp Power storage system and temperature estimation method of storage element
JPWO2016038658A1 (en) * 2014-09-08 2017-04-27 株式会社東芝 Battery pack, control circuit, and control method
JP2018156739A (en) * 2017-03-15 2018-10-04 株式会社東芝 Battery safety evaluation device, battery control apparatus, battery safety evaluation method, program, control circuit, and power storage system
JP2019512089A (en) * 2016-02-16 2019-05-09 エクサ コーポレイション System and method for generation and use of an electrothermal battery model
JP2019149300A (en) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 Cell charge/discharge control method and cell system
US10962598B2 (en) 2016-08-05 2021-03-30 Gs Yuasa International Ltd. Energy storage device state estimation device and energy storage device state estimation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076769A (en) * 1999-09-06 2001-03-23 Toyota Motor Corp Intenal temperature detection device for battery
JP2001110459A (en) * 1999-10-06 2001-04-20 Nec Mobile Energy Kk Battery pack having capacity correcting function
JP2001339868A (en) * 2000-05-30 2001-12-07 Sanyo Electric Co Ltd Control method for charge/discharge of battery
JP2004311210A (en) * 2003-04-07 2004-11-04 Nidec Shibaura Corp Inspection device of battery
JP2007010664A (en) * 2005-06-30 2007-01-18 Lg Chem Ltd Method of estimating residual capacity of battery, and battery control system by the same
JP2008232758A (en) * 2007-03-19 2008-10-02 Nippon Soken Inc Detection device for internal state of secondary cell and neural network type estimation device for quantity of state

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076769A (en) * 1999-09-06 2001-03-23 Toyota Motor Corp Intenal temperature detection device for battery
JP2001110459A (en) * 1999-10-06 2001-04-20 Nec Mobile Energy Kk Battery pack having capacity correcting function
JP2001339868A (en) * 2000-05-30 2001-12-07 Sanyo Electric Co Ltd Control method for charge/discharge of battery
JP2004311210A (en) * 2003-04-07 2004-11-04 Nidec Shibaura Corp Inspection device of battery
JP2007010664A (en) * 2005-06-30 2007-01-18 Lg Chem Ltd Method of estimating residual capacity of battery, and battery control system by the same
JP2008232758A (en) * 2007-03-19 2008-10-02 Nippon Soken Inc Detection device for internal state of secondary cell and neural network type estimation device for quantity of state

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154665A (en) * 2011-01-24 2012-08-16 Toyota Central R&D Labs Inc Simulation device of secondary battery
JP2013097901A (en) * 2011-10-28 2013-05-20 Makita Corp Temperature detection device and battery pack
JP2013118056A (en) * 2011-12-01 2013-06-13 Toyota Motor Corp Power storage system and temperature estimation method of storage element
JPWO2016038658A1 (en) * 2014-09-08 2017-04-27 株式会社東芝 Battery pack, control circuit, and control method
JP2019512089A (en) * 2016-02-16 2019-05-09 エクサ コーポレイション System and method for generation and use of an electrothermal battery model
JP7069025B2 (en) 2016-02-16 2022-05-17 ダッソー システムズ シムリア コーポレイション Systems and methods for the generation and use of electric heating battery models
US10962598B2 (en) 2016-08-05 2021-03-30 Gs Yuasa International Ltd. Energy storage device state estimation device and energy storage device state estimation method
JP2018156739A (en) * 2017-03-15 2018-10-04 株式会社東芝 Battery safety evaluation device, battery control apparatus, battery safety evaluation method, program, control circuit, and power storage system
JP2019220471A (en) * 2017-03-15 2019-12-26 株式会社東芝 Battery safety evaluation device, battery control device, battery safety evaluation method, program, control circuit, and power storage system
JP2019149300A (en) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 Cell charge/discharge control method and cell system

Also Published As

Publication number Publication date
JP5470961B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5470961B2 (en) Secondary battery control device
US7646176B2 (en) Controller for rechargeable battery and temperature estimation method and deterioration determination method for rechargeable battery
EP2559095B1 (en) Degradation determination device and degradation determination method for lithium ion secondary battery
EP3096432B1 (en) Apparatus and method for controlling power for a secondary battery
US9843069B2 (en) Battery capacity degradation resolution methods and systems
JP5761378B2 (en) Secondary battery control device and control method
JP5916024B2 (en) Battery remaining capacity estimation apparatus and method
JP5321757B2 (en) Storage device control device and control method
JP6947014B2 (en) Rechargeable battery system and rechargeable battery control method
US20070262750A1 (en) Battery management system and method of operating same
JP6500789B2 (en) Control system of secondary battery
US20130294479A1 (en) Electric storage system
AU2016201173A1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
JP2009264962A (en) Method and apparatus for estimating remaining capacity of secondary battery
JP2017103077A (en) Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery
JP5849845B2 (en) Non-aqueous secondary battery control device and control method
US9551753B2 (en) Electric storage system determining operation of current breaker
JP2014157662A (en) Battery system
US11754631B2 (en) Chargeable battery temperature estimation apparatus and chargeable battery temperature estimation method
CN108649282B (en) Safety protection method and system for avoiding short circuit risk in lithium ion battery
JP6409272B2 (en) Charge state estimation device
WO2022224681A1 (en) Battery monitoring device and electric vehicle having same installed therein
Tripathy et al. Internal temperature prediction of Lithium-ion cell using differential voltage technique
EP2587622B1 (en) Charge capacity parameter estimation system of electric storage device
JP6708120B2 (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

LAPS Cancellation because of no payment of annual fees