JP2010231718A - Pressure regulating valve - Google Patents

Pressure regulating valve Download PDF

Info

Publication number
JP2010231718A
JP2010231718A JP2009081263A JP2009081263A JP2010231718A JP 2010231718 A JP2010231718 A JP 2010231718A JP 2009081263 A JP2009081263 A JP 2009081263A JP 2009081263 A JP2009081263 A JP 2009081263A JP 2010231718 A JP2010231718 A JP 2010231718A
Authority
JP
Japan
Prior art keywords
pressure
gas
supply system
gas supply
regulating valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009081263A
Other languages
Japanese (ja)
Inventor
Takehisa Tsubokawa
剛久 坪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009081263A priority Critical patent/JP2010231718A/en
Publication of JP2010231718A publication Critical patent/JP2010231718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Safety Valves (AREA)
  • Mechanically-Actuated Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate replacement work by reducing the pressure of gas remaining in a high-pressure tank or high-pressure gas supply system. <P>SOLUTION: The pressure regulating valve 50 includes a pressure control unit which adjusts the pressure of gas remaining within a high-pressure gas supply system 100 including high-pressure tanks 22 and 24 for storing high-pressure gas, and charging pipes 12 and 14 and supply pipes 16 and 18 connected to the high-pressure tank 22 and 24. The pressure control unit includes a manual pressure control handle for adjusting the discharge pressure of the residual gas. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、圧力調整弁に関し、特に高圧タンクを備える高圧ガス供給システム内に残存する残存ガスの圧力を低減させるための圧力調整弁に関する。   The present invention relates to a pressure regulating valve, and more particularly to a pressure regulating valve for reducing the pressure of residual gas remaining in a high pressure gas supply system including a high pressure tank.

燃料極に燃料ガスとしての水素を供給し、酸化剤極に酸化剤ガスとして空気を供給し、水素と空気中の酸素の電気化学反応によって発電すると共に酸化剤極に水を生成する燃料電池が知られている。一方、水素タンクなど、その内部に圧縮ガスや液化ガスなどの高圧ガスを貯留する高圧タンクが広く知られており、例えば上述した燃料電池の燃料極側に燃料ガスを供給するための燃料ガス供給源として、このような高圧水素タンクを備える高圧ガス供給システムを燃料電池とともに車両に搭載することについて検討されている(例えば、特許文献1)。   A fuel cell that supplies hydrogen as a fuel gas to a fuel electrode, supplies air as an oxidant gas to an oxidant electrode, generates electricity by an electrochemical reaction between hydrogen and oxygen in the air, and generates water at the oxidant electrode. Are known. On the other hand, high-pressure tanks that store high-pressure gas such as compressed gas or liquefied gas are widely known, such as hydrogen tanks. For example, fuel gas supply for supplying fuel gas to the fuel electrode side of the above-described fuel cell As a source, mounting a high-pressure gas supply system including such a high-pressure hydrogen tank in a vehicle together with a fuel cell has been studied (for example, Patent Document 1).

特開2006−336726号公報JP 2006-336726 A

図7は、高圧タンクを備える従来の高圧ガス供給システムの一例について示したものである。図7に示す高圧ガス供給システムでは、図示しない充填口から充填側マニホールド10に供給されたガスが、充填用配管12,14を介して高圧タンク22,24にそれぞれ充填される。高圧タンク22,24に充填された高圧ガスは、供給用配管16,18を介して供給側マニホールド20に集められた後、必要に応じて圧力調整され、例えば燃料電池の燃料極など、図示しない供給先に供給される。なお、図7に示す高圧ガス供給システムは、例示であって、場合によっては充填側マニホールド10を含む、図示しない充填口から充填用配管12,14までの充填系ラインを別構成とすることもでき、また高圧タンク22,24を1または3つ以上の構成とすることも可能である。   FIG. 7 shows an example of a conventional high-pressure gas supply system including a high-pressure tank. In the high-pressure gas supply system shown in FIG. 7, the gas supplied from the filling port (not shown) to the filling-side manifold 10 is filled into the high-pressure tanks 22 and 24 via the filling pipes 12 and 14, respectively. The high-pressure gas filled in the high-pressure tanks 22 and 24 is collected in the supply-side manifold 20 via the supply pipes 16 and 18 and then pressure-adjusted as necessary. For example, the fuel electrode of the fuel cell is not shown. Supplied to the supplier. The high-pressure gas supply system shown in FIG. 7 is an exemplification, and in some cases, the filling line from the filling port (not shown) to the filling pipes 12 and 14 including the filling-side manifold 10 may be configured separately. In addition, the high-pressure tanks 22 and 24 may have one or three or more configurations.

高圧タンクには一般に、充填するガスの種類やタンクの強度によっては繰り返し充填可能な回数や耐用年数が制限され、所定の期間ごとに高圧タンクおよび場合によっては高圧ガス供給システムの交換が必要となる場合がある。高圧タンク/高圧ガス供給システムの交換時には通常、安全性の観点から、高圧ガスの取り扱いが許可された専門施設に入庫させて作業を行うか、高圧タンクおよび高圧ガス供給システム内に残存する残存ガスを所定の圧力(例えば、1MPa(ゲージ圧))以下まで低減させることが要求される。このため、従来、車両等に搭載された高圧タンクおよび高圧ガス供給システムでは、残存ガスを所定の圧力以下まで低減させるには、専門施設での作業を除けば、車両等の走行により時間をかけてガスを消費するより他には適当な方法が無く、高圧タンク/高圧ガス供給システムの交換時には煩雑な手間を伴う場合があった。   High-pressure tanks generally have a limited number of refills and useful lives depending on the type of gas to be filled and the strength of the tank, and the high-pressure tank and, in some cases, the high-pressure gas supply system must be replaced every predetermined period. There is a case. When replacing the high-pressure tank / high-pressure gas supply system, usually, from the viewpoint of safety, work is carried out in a specialized facility that is permitted to handle high-pressure gas, or residual gas remaining in the high-pressure tank and high-pressure gas supply system Is required to be reduced to a predetermined pressure (for example, 1 MPa (gauge pressure)) or less. For this reason, in conventional high-pressure tanks and high-pressure gas supply systems installed in vehicles, in order to reduce the residual gas to a predetermined pressure or less, it takes time to travel the vehicle, etc., except for work in specialized facilities. There is no appropriate method other than consuming gas, and there are cases where complicated work is required when replacing the high-pressure tank / high-pressure gas supply system.

本発明は、残存ガスの圧力を容易に低減させることにより、高圧タンクまたは高圧ガス供給システムの交換時の手間を省くことを目的とする。   It is an object of the present invention to save time when replacing a high-pressure tank or a high-pressure gas supply system by easily reducing the pressure of the residual gas.

本発明の構成は以下のとおりである。   The configuration of the present invention is as follows.

(1)高圧ガスを貯留する高圧タンクと、前記高圧タンクに連結された配管とを備える高圧ガス供給システム内に残存する残存ガスの圧力を調節する調圧部を備え、前記調圧部が、前記残存ガスの圧力を調整可能な手動の調圧ハンドルを有する、圧力調整弁。   (1) A pressure adjusting unit that adjusts the pressure of the residual gas remaining in the high pressure gas supply system including a high pressure tank that stores the high pressure gas and a pipe connected to the high pressure tank, and the pressure adjusting unit includes: A pressure regulating valve having a manual pressure regulating handle capable of adjusting the pressure of the residual gas.

残存ガスの圧力を容易に低減させることができるため、高圧タンクまたは高圧ガス供給システムの交換時の手間を省くことができる。   Since the pressure of the residual gas can be easily reduced, it is possible to save time and labor when replacing the high pressure tank or the high pressure gas supply system.

本発明の実施の形態における圧力調整弁を備える高圧ガス供給システムの構成の概略を示す図である。It is a figure which shows the outline of a structure of the high pressure gas supply system provided with the pressure regulation valve in embodiment of this invention. 図1に示す圧力調整弁の要部の構成の概略を示す図である。It is a figure which shows the outline of a structure of the principal part of the pressure regulating valve shown in FIG. 図2に示す調圧ハンドルの操作に応じて連動する部分を側面視したA−A断面図である。It is AA sectional drawing which looked at the part which interlock | cooperates according to operation of the pressure regulation handle shown in FIG. 図2に示す圧力調整弁の閉鎖時の構成の概略を示す図である。It is a figure which shows the outline of a structure at the time of closing of the pressure regulation valve shown in FIG. 図2に示す圧力調整弁による圧力低減処理時(開放時)の構成の概略を示す図である。It is a figure which shows the outline of a structure at the time of the pressure reduction process by the pressure regulating valve shown in FIG. 2 (at the time of open | release). 直動型減圧弁の構成の概要と、その作動原理を説明するための図である。It is a figure for demonstrating the outline | summary of a structure of a direct acting pressure reduction valve, and the principle of operation. 従来の高圧ガス供給システムの構成の概略を示す図である。It is a figure which shows the outline of a structure of the conventional high pressure gas supply system.

以下、本発明の実施の形態について、図面を用いて説明する。なお、各図面において同じ構成については同じ符号を付し、その説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and the description thereof is omitted.

図1は、本発明の実施の形態における高圧ガス供給システムの構成の概略を示す図である。図1に示す高圧ガス供給システム100は、その下流側に圧力調整弁50が設けられていることを除き、図7に示す従来の高圧ガス供給システムとほぼ同様の構成を有している。   FIG. 1 is a diagram showing a schematic configuration of a high-pressure gas supply system according to an embodiment of the present invention. The high-pressure gas supply system 100 shown in FIG. 1 has substantially the same configuration as the conventional high-pressure gas supply system shown in FIG. 7 except that a pressure regulating valve 50 is provided on the downstream side.

減圧弁とは一般に、二次側(出口側)の流体圧力を、一次側(入口側)の流体圧力より低い所定の圧力またはそれ以下に保持する圧力調整弁のことである。JIS B8372−1982「空気圧用減圧弁」では、減圧弁の主な性能を示す特性として、圧力調整特性、流量特性、圧力特性、弁の漏れ、耐圧性、耐久性などを規定している。圧力調整特性は、調節ネジの回転角に対し設定圧力範囲内で連続かつ円滑に変化し得るか否かを示し、使用上圧力設定の容易さ、および設定可能圧力の最小幅を示す性能である。一方、流量特性は、二次側の流体流量に対し、減圧弁による圧力降下(設定圧力に対する二次側の流体圧力の変化量)の状態を示す性能である。   The pressure reducing valve is generally a pressure regulating valve that keeps the fluid pressure on the secondary side (outlet side) at or below a predetermined pressure lower than the fluid pressure on the primary side (inlet side). In JIS B8372-1982 “Pneumatic pressure reducing valve”, pressure adjusting characteristics, flow characteristics, pressure characteristics, valve leakage, pressure resistance, durability, and the like are defined as characteristics indicating the main performance of the pressure reducing valve. The pressure adjustment characteristic indicates whether the pressure can be continuously and smoothly changed within the set pressure range with respect to the rotation angle of the adjusting screw, and is a performance that indicates the ease of setting the pressure in use and the minimum width of the settable pressure. . On the other hand, the flow rate characteristic is a performance indicating a state of a pressure drop by the pressure reducing valve (a change amount of the secondary side fluid pressure with respect to the set pressure) with respect to the secondary side fluid flow rate.

図6は、減圧弁(直動型減圧弁)の一般的な構成の概要と、その作動原理を説明するための図である。図6において、弁体34が閉じた位置で減圧弁が平衡状態に達したとすると、一般に次式が成立する:   FIG. 6 is a diagram for explaining an outline of a general configuration of a pressure reducing valve (direct acting pressure reducing valve) and an operation principle thereof. In FIG. 6, if the pressure reducing valve reaches an equilibrium state at the position where the valve body 34 is closed, the following equation is generally established:

[数1]
1+S22=S12+S21+F2 (1)
[Equation 1]
F 1 + S 2 p 2 = S 1 p 2 + S 2 p 1 + F 2 (1)

この状態から、二次側圧力p2がある値Δp2だけ低下することにより弁体34が所定
の長さLだけ開放し、平衡に達したとすると、一般に次式が成立する:
From this state, assuming that the secondary pressure p 2 drops by a certain value Δp 2 to open the valve body 34 by a predetermined length L and reach equilibrium, the following equation is generally established:

[数2]
1−Lk1+S2(p2−Δp2)=S1(p2−Δp2)+S21+F2+Lk2
(2)
[Equation 2]
F 1 −Lk 1 + S 2 (p 2 −Δp 2 ) = S 1 (p 2 −Δp 2 ) + S 2 p 1 + F 2 + Lk 2
(2)

なお、式(1),(2)に示す各記号の定義は次の通りである:
1 一次側圧力、p2 二次側圧力、k1 調節バネ26,28のバネ定数、k2 弁バネ30,32のバネ定数、F1 二次側圧力設定時の調節バネ26,28の力、F2 弁体34が閉じた状態での弁バネ30,32の力、S1 ダイヤフラム36の有効受圧面積、S2 弁体34の受圧面積、L 弁体34の閉状態から移動した長さ(高さ)。
The definitions of the symbols shown in the formulas (1) and (2) are as follows:
p 1 primary side pressure, p 2 secondary side pressure, spring constant of k 1 adjustment springs 26 and 28, spring constant of k 2 valve springs 30 and 32, adjustment springs 26 and 28 at the time of setting F 1 secondary side pressure Force, force of the valve springs 30 and 32 when the F 2 valve body 34 is closed, effective pressure receiving area of the S 1 diaphragm 36, pressure receiving area of the S 2 valve body 34, and length moved from the closed state of the L valve body 34 (Height).

式(1),(2)から、次式に示す関係式が得られる:   From equations (1) and (2), the following relationship is obtained:

[数3]
L/Δp2=(S1−S2)/(k1+k2) (3)
[Equation 3]
L / Δp 2 = (S 1 −S 2 ) / (k 1 + k 2 ) (3)

上記式(3)から明らかなように、図6に示すダイヤフラム36と弁体34との受圧面積の差(S1−S2)が大きく、またバネ定数の和(k1+k2)が小さいほど、二次側圧力p2のある変化量Δp2に対する弁体34の開きLが大きくなり、流量特性が良好と
なることがわかる。
As apparent from the above equation (3), the difference (S 1 -S 2 ) in the pressure receiving area between the diaphragm 36 and the valve body 34 shown in FIG. 6 is large, and the sum (k 1 + k 2 ) of the spring constant is small. more open L of the valve body 34 is increased relative to the amount of change Delta] p 2 with the secondary pressure p 2, it can be seen that the flow characteristic is improved.

以下、本発明の実施の形態を、図2〜5を参照してさらに説明する。図2は、図1に示す圧力調整弁50の要部の構成の概略を示す図であり、図3は、図2に示すA−A断面を側面視したものである。   Hereinafter, embodiments of the present invention will be further described with reference to FIGS. 2 is a diagram showing an outline of the configuration of the main part of the pressure regulating valve 50 shown in FIG. 1, and FIG. 3 is a side view of the AA cross section shown in FIG.

図2に示す圧力調整弁50は、上下に移動可能なバネホルダ60と、バネホルダ60に支持され、バネホルダ60の上下動に伴い伸縮するバネ部材56,58(図6に示す調節バネ26,28に相当)と、バネ部材56,58の伸縮に応じてシート68と接離し、一次側である高圧ガス供給システム内に残存するガスの、圧力調整弁50内部への流入を調整するピン54(図6に示す弁体34に相当)と、流入するガスの圧力の程度に応じて変形するダイヤフラム52,53(図6に示すダイヤフラム36に相当)と、流入したガスを二次側である図示しない配管に排出するガス排出口70と、を備えており、図6に例示する減圧弁の基本構成を有している。   2 includes a spring holder 60 that can move up and down, and spring members 56 and 58 that are supported by the spring holder 60 and expand and contract as the spring holder 60 moves up and down (into the adjustment springs 26 and 28 shown in FIG. 6). Corresponding to the expansion and contraction of the spring members 56, 58, and a pin 54 that adjusts the inflow of the gas remaining in the high-pressure gas supply system that is the primary side into the pressure regulating valve 50. 6), diaphragms 52 and 53 (corresponding to the diaphragm 36 shown in FIG. 6) deforming according to the pressure level of the inflowing gas, and the inflowing gas on the secondary side (not shown) And a gas discharge port 70 for discharging to the pipe, and has a basic configuration of a pressure reducing valve illustrated in FIG.

また、図2に示す圧力調整弁50は、調圧ハンドル62と、調圧部材64と、調圧部材64を貫通する駆動軸66と、を備える。調圧部材64は、調圧ハンドル62の操作に連動して駆動軸66に沿って略水平方向に移動するように構成されている。実施形態では、駆動軸66は雄ネジ形状に、調圧部材64の内周面は、駆動軸66の形状に対応する雌ネジ形状に、それぞれ加工されており、調圧ハンドル62の回動に伴う駆動軸66の回動に応じて、調圧部材64を所望の箇所まで水平移動させることができる。   2 includes a pressure adjustment handle 62, a pressure adjustment member 64, and a drive shaft 66 that penetrates the pressure adjustment member 64. The pressure adjusting member 64 is configured to move in a substantially horizontal direction along the drive shaft 66 in conjunction with the operation of the pressure adjusting handle 62. In the embodiment, the drive shaft 66 is processed into a male screw shape, and the inner peripheral surface of the pressure adjusting member 64 is processed into a female screw shape corresponding to the shape of the drive shaft 66. The pressure adjusting member 64 can be moved horizontally to a desired location in accordance with the accompanying rotation of the drive shaft 66.

調圧部材64には、バネホルダ60の移動方向に所定の高さを有する第1の部分64aと、第1の部分64aよりも小さなバネホルダ60の移動方向高さを有する第2の部分64bとを備える。図3を参照すると、調圧部材64には、カバー74に設けられたガイドレール74aに沿ってスライドするフランジ64cが形成されており、フランジ64c、ガイドレール74aおよび駆動軸66により調圧部材64の姿勢を保持し、水平移動させることが可能となる。また、球形状のボール72が、バネホルダ60に設けられたボール溜まり60aと調圧部材64との間に挿入されており、駆動軸66に沿った調圧部材64の移動を円滑にするとともに、調圧部材64とバネホルダ60との間の押圧力を相互に伝達している。図3に示すように、必要に応じて、調圧部材64のボール72側に、ボール72の脱落を防止するためのボールガイド64dを形成させることも好適である。   The pressure adjusting member 64 includes a first portion 64a having a predetermined height in the moving direction of the spring holder 60 and a second portion 64b having a height in the moving direction of the spring holder 60 smaller than the first portion 64a. Prepare. Referring to FIG. 3, the pressure adjusting member 64 is formed with a flange 64 c that slides along a guide rail 74 a provided on the cover 74. It is possible to hold the posture and move horizontally. A spherical ball 72 is inserted between a ball reservoir 60 a provided in the spring holder 60 and the pressure adjusting member 64, and the movement of the pressure adjusting member 64 along the drive shaft 66 is smooth. The pressing force between the pressure adjusting member 64 and the spring holder 60 is transmitted to each other. As shown in FIG. 3, it is also preferable to form a ball guide 64d for preventing the ball 72 from dropping off on the ball 72 side of the pressure adjusting member 64 as necessary.

次に、図1に示す高圧ガス供給システム100における、圧力調整弁50による残留ガスの圧力の低減について、図4,5を参照して説明する。   Next, in the high-pressure gas supply system 100 shown in FIG. 1, reduction of the residual gas pressure by the pressure adjustment valve 50 will be described with reference to FIGS.

図4は、図2に示す圧力調整弁50の通常時の構成の概略を示す図である。バネホルダ60は、調圧部材64の第1の部分64aからの押圧力を、ボール72を介して受けており、このとき、ここでは図示しないピンおよびシートは互いに押圧接触し、一次側とのガスの流通は遮断されている(図2参照)。   FIG. 4 is a diagram showing an outline of a normal configuration of the pressure regulating valve 50 shown in FIG. The spring holder 60 receives a pressing force from the first portion 64a of the pressure adjusting member 64 via the ball 72. At this time, a pin and a sheet (not shown here) are in pressure contact with each other, and the gas with the primary side Is interrupted (see FIG. 2).

一方、図5は、図2に示す圧力調整弁50による圧力低減処理時の構成の概略を示す図である。調圧ハンドル62の操作に伴い、調圧部材64が図5に示すように平行移動する。このとき、調圧部材64の第1の部分64aと第2の部分64bとの間のバネホルダ60の移動方向高さの相違に基づき、バネホルダ60は、調圧部材64の第2の部分64bからの押圧力を、ボール72を介して受けるよう、ボール72とともに上方に移動することになる。バネホルダ60の移動に伴い、バネ部材56,58が受ける圧力は緩和されて低減する。この低減された圧力と、図1に示す高圧ガス供給システム100内の残存ガスの圧力に応じて、ここでは図示しないピン(図2参照)が開放し、図1に示す高圧ガス供給システム100内からガスが流入し、ガス排出口70を介して圧力調整弁50の外部に排出される。本実施の形態によれば、例えば図2に示す調圧部材64の形状やバネ部材56,58のバネ定数などを適宜調整することにより、図1に示す高圧ガス供給システム100内の残存ガスの圧力を、所定の圧力、またはそれ以下まで低減させることができる。そして、圧力センサ25により、高圧ガス供給システム100内の残存ガスの圧力が、所定の圧力またはそれ以下まで低減したことを検知した後に、減圧された残存ガスを適切に外部に排出することができる。   On the other hand, FIG. 5 is a diagram showing an outline of a configuration at the time of pressure reduction processing by the pressure regulating valve 50 shown in FIG. As the pressure adjusting handle 62 is operated, the pressure adjusting member 64 moves in parallel as shown in FIG. At this time, based on the difference in the moving direction height of the spring holder 60 between the first portion 64a and the second portion 64b of the pressure regulating member 64, the spring holder 60 is moved from the second portion 64b of the pressure regulating member 64. So as to be received through the ball 72, the ball 72 moves upward. As the spring holder 60 moves, the pressure received by the spring members 56 and 58 is relaxed and reduced. In accordance with the reduced pressure and the pressure of the residual gas in the high-pressure gas supply system 100 shown in FIG. 1, a pin (not shown) (see FIG. 2) is opened, and the inside of the high-pressure gas supply system 100 shown in FIG. The gas flows in through the gas discharge port 70 and is discharged to the outside of the pressure regulating valve 50. According to the present embodiment, for example, by appropriately adjusting the shape of the pressure adjusting member 64 shown in FIG. 2 and the spring constants of the spring members 56 and 58, the residual gas in the high pressure gas supply system 100 shown in FIG. The pressure can be reduced to a predetermined pressure or less. And after detecting that the pressure of the residual gas in the high-pressure gas supply system 100 has been reduced to a predetermined pressure or lower by the pressure sensor 25, the reduced residual gas can be appropriately discharged to the outside. .

本発明の実施の形態において、図2に示す調圧部材64は、調圧ハンドル62を介して手動で操作することができる。このため、図1に示す高圧ガス供給システム100が停止状態であっても、そのシステム内部に残存する残存ガスの圧力を容易に低減させることが可能である。また、他の実施の形態として、例えばバッテリなどの電源からの電力による電気的な操作も可能となるように構成することもできる。   In the embodiment of the present invention, the pressure adjusting member 64 shown in FIG. 2 can be manually operated via the pressure adjusting handle 62. For this reason, even if the high-pressure gas supply system 100 shown in FIG. 1 is in a stopped state, the pressure of the residual gas remaining in the system can be easily reduced. Further, as another embodiment, for example, an electric operation by electric power from a power source such as a battery can be configured.

本発明は、高圧タンクを備える高圧ガス供給システムに利用することが可能である。   The present invention can be used for a high-pressure gas supply system including a high-pressure tank.

10 充填側マニホールド、12,14 充填用配管、16,18 供給用配管、20 供給側マニホールド、22,24 高圧タンク、25 圧力センサ、26,28 調節バネ、30,32 弁バネ、34 弁体、36,52,53 ダイヤフラム、50 圧力調整弁、54 ピン、56,58 バネ部材、60 バネホルダ、60a ボール溜まり、62 調圧ハンドル、64 調圧部材、64a 第1の部分、64b 第2の部分、64c フランジ、64d ボールガイド、66 駆動軸、68 シート、70 ガス排出口、72 ボール、74 カバー、74a ガイドレール、100 高圧ガス供給システム。   10 Filling side manifold, 12, 14 Filling pipe, 16, 18 Supply pipe, 20 Supply side manifold, 22, 24 High pressure tank, 25 Pressure sensor, 26, 28 Adjustment spring, 30, 32 Valve spring, 34 Valve body, 36, 52, 53 Diaphragm, 50 Pressure regulating valve, 54 pins, 56, 58 Spring member, 60 Spring holder, 60a Ball reservoir, 62 Pressure regulating handle, 64 Pressure regulating member, 64a First part, 64b Second part, 64c flange, 64d ball guide, 66 drive shaft, 68 seats, 70 gas discharge port, 72 balls, 74 cover, 74a guide rail, 100 high pressure gas supply system.

Claims (1)

高圧ガスを貯留する高圧タンクと、前記高圧タンクに連結された配管とを備える高圧ガス供給システム内に残存する残存ガスの圧力を調節する調圧部を備え、
前記調圧部が、前記残存ガスの排出圧力を調整可能な手動の調圧ハンドルを有することを特徴とする圧力調整弁。
A pressure adjusting unit that adjusts the pressure of the residual gas remaining in the high-pressure gas supply system including a high-pressure tank for storing high-pressure gas and a pipe connected to the high-pressure tank;
The pressure regulating valve, wherein the pressure regulating unit has a manual pressure regulating handle capable of adjusting a discharge pressure of the residual gas.
JP2009081263A 2009-03-30 2009-03-30 Pressure regulating valve Pending JP2010231718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081263A JP2010231718A (en) 2009-03-30 2009-03-30 Pressure regulating valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081263A JP2010231718A (en) 2009-03-30 2009-03-30 Pressure regulating valve

Publications (1)

Publication Number Publication Date
JP2010231718A true JP2010231718A (en) 2010-10-14

Family

ID=43047435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081263A Pending JP2010231718A (en) 2009-03-30 2009-03-30 Pressure regulating valve

Country Status (1)

Country Link
JP (1) JP2010231718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146353A1 (en) * 2014-03-24 2015-10-01 カヤバ工業株式会社 Relief valve
CN116045204A (en) * 2023-01-03 2023-05-02 北京天玛智控科技股份有限公司 Vehicle-mounted hydrogen storage system and fault detection method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146353A1 (en) * 2014-03-24 2015-10-01 カヤバ工業株式会社 Relief valve
JP2015183765A (en) * 2014-03-24 2015-10-22 カヤバ工業株式会社 relief valve
CN105940250A (en) * 2014-03-24 2016-09-14 Kyb株式会社 Relief valve
CN116045204A (en) * 2023-01-03 2023-05-02 北京天玛智控科技股份有限公司 Vehicle-mounted hydrogen storage system and fault detection method thereof

Similar Documents

Publication Publication Date Title
KR101513121B1 (en) Pressurized fuel cell cartridges
JP4899474B2 (en) Fuel cell system
US8973624B2 (en) Compressed hydrogen fueling control valve
JP2007165237A (en) Fuel cell system and mobile body
JP5836913B2 (en) Fluid supply system
JP5378624B1 (en) High pressure hydrogen production system and method for operating high pressure hydrogen production system
US20090014089A1 (en) Valve, Valve Controller, and Fuel Cell System
JP5099285B2 (en) Fuel supply device
JP6077482B2 (en) High pressure hydrogen production system and method for operating high pressure hydrogen production system
CN101533918B (en) Multiple phase transfer valve for liquid hydrogen tank
JP2007149630A (en) Fuel cell system
US10788140B2 (en) Solenoid valve for controlling gas supply
JP2008140741A (en) Fuel cell system
JP2013089307A (en) Pressure-reducing valve with injector, and fuel cell system equipped with the same
JP2010231718A (en) Pressure regulating valve
WO2008062805A1 (en) Fuel supply system
JP4171391B2 (en) Shutoff valve open / close state determination system and shutoff valve open / close state determination method
JP6117551B2 (en) Pressure regulator and fuel cell system
JP6102006B2 (en) Gas filling system, gas filling method, and control device
KR102310549B1 (en) The fuel cell system in the hydrogen supplying system and control method thereof
JP2005282697A (en) Gas supply system
JP5153243B2 (en) Fuel cell device
JP5213355B2 (en) Fuel cell system and hydrogen supply device
JP2005226716A (en) Gas-filling system
JP2011094641A (en) Check valve mechanism for charging high-pressure gas