JP2010230623A - Optical film thickness measuring device and vacuum film forming apparatus including the same - Google Patents

Optical film thickness measuring device and vacuum film forming apparatus including the same Download PDF

Info

Publication number
JP2010230623A
JP2010230623A JP2009081161A JP2009081161A JP2010230623A JP 2010230623 A JP2010230623 A JP 2010230623A JP 2009081161 A JP2009081161 A JP 2009081161A JP 2009081161 A JP2009081161 A JP 2009081161A JP 2010230623 A JP2010230623 A JP 2010230623A
Authority
JP
Japan
Prior art keywords
light
film thickness
sample
light receiving
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009081161A
Other languages
Japanese (ja)
Other versions
JP5216657B2 (en
Inventor
Yasuhiro Koizumi
康浩 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP2009081161A priority Critical patent/JP5216657B2/en
Publication of JP2010230623A publication Critical patent/JP2010230623A/en
Application granted granted Critical
Publication of JP5216657B2 publication Critical patent/JP5216657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively suppress influence of stray light resulting from cover glass and improve the measurement accuracy in an optical film thickness measuring device of a constitution where a light projecting section is close to a light receiving section and the cover glass is disposed on the front side of these. <P>SOLUTION: The interval between a light projection surface 122a of the light projecting section 121a and a light receiving surface 122b of the light receiving section 121b is defined as d, the interval between the cover glass 14 and the light projection surface 122a and light receiving surface 122b is defined as L, the numerical aperture of the light projecting section 121a is defined as NA<SB>1</SB>, and the numerical aperture of the light projecting section 121b is defined as NA<SB>2</SB>. The cover glass 14 is disposed at a position establishing 0<L<d/(tanθ<SB>1</SB>+tanθ<SB>2</SB>). Here, θ<SB>1</SB>=sin<SP>-1</SP>(NA<SB>1</SB>), θ<SB>2</SB>=sin<SP>-1</SP>(NA<SB>2</SB>), and both of θ<SB>1</SB>and θ<SB>2</SB>are less than 90°. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、薄膜に照射した光の干渉による反射率の変化から膜厚を測定する光学式膜厚測定装置と、これを備える真空成膜装置とに関し、特に、光を投光する部位および反射光を受光する部位が互いに近接し、かつ、これら部位の前面に保護部材が設けられている光学式膜厚測定装置と、これを備える真空成膜装置とに関する。   The present invention relates to an optical film thickness measuring apparatus that measures a film thickness from a change in reflectance due to interference of light irradiated on a thin film, and a vacuum film forming apparatus including the optical film thickness measuring apparatus. The present invention relates to an optical film thickness measuring apparatus in which parts that receive light are close to each other and a protective member is provided on the front surface of these parts, and a vacuum film forming apparatus including the same.

基板上に各種の薄膜を形成する装置では、当該薄膜の膜厚を、各種の膜厚測定技術により測定する。代表的な膜厚測定技術としては、測定対象物(試料)に対して照射された光の干渉による反射率の変化から膜厚を決定する光学的手法が挙げられる。   In an apparatus for forming various thin films on a substrate, the film thickness of the thin film is measured by various film thickness measurement techniques. As a typical film thickness measurement technique, there is an optical method for determining a film thickness from a change in reflectance due to interference of light irradiated on a measurement object (sample).

近年では、薄膜形成技術の進歩に伴い、より膜厚の薄い薄膜を形成することが可能となっているため、膜厚測定技術においても、より膜厚の薄い薄膜を精度良く測定することが求められている。そこで、光学的手法による膜厚測定技術においては、従来から、反射光に関する様々な基準値を予め設定し、この基準値と実際に測定された値(実測値)とを利用して補正処理を行うことにより、測定精度を向上させる技術が知られている。   In recent years, with the advancement of thin film formation technology, it has become possible to form a thin film with a smaller thickness. Therefore, in the film thickness measurement technique, it is required to accurately measure a thin film with a smaller thickness. It has been. Therefore, in the film thickness measurement technique using an optical method, conventionally, various reference values regarding reflected light are set in advance, and correction processing is performed using this reference value and an actually measured value (actually measured value). A technique for improving the measurement accuracy by performing it is known.

例えば、特許文献1には、マイクロメーター以下の薄膜の測定において、予め、試料から理想分光反射率を計算し、この理想分光反射率の極大点列を結ぶ曲線と、極小点列を結ぶ曲線と、極大および極小の中間レベルの曲線とを計算し、実際の試料の分光反射率から、その反射率の極大点列を結ぶ曲線と、極小点列を結ぶ曲線と、極大および極小の中間レベルの曲線とを計算し、これら各曲線の関数から真の分光反射率を計算する技術が開示されている。   For example, in Patent Document 1, in measurement of a thin film of a micrometer or less, an ideal spectral reflectance is calculated in advance from a sample, and a curve connecting the maximum point sequence of the ideal spectral reflectance and a curve connecting the minimum point sequence are: The maximum and minimum intermediate level curves are calculated, and from the spectral reflectance of the actual sample, the curve connecting the maximum point sequence of the reflectance, the curve connecting the minimum point sequence, and the maximum and minimum intermediate level curves are calculated. A technique for calculating a curve and calculating a true spectral reflectance from a function of each curve is disclosed.

また、基板上の薄膜の膜厚を測定する技術ではないが、特許文献2には、シリコンウエハの厚さを測定する技術として、基準ウエハおよび測定ウエハを透過した光の透過後スペクトルを測定し、透過前のスペクトルと、基準ウエハの透過後スペクトルと、測定ウエハの透過後スペクトルと基準ウエハの厚さとから仮の差吸光度スペクトルを複数求め、この仮の差吸光度スペクトルにおいて、フォノン吸収に基づくピークが消えるときの厚みを、測定ウエハの厚みとして測定する技術が開示されている。   Further, although it is not a technique for measuring the thickness of a thin film on a substrate, Patent Document 2 discloses a technique for measuring the thickness of a silicon wafer by measuring a spectrum after transmission of light transmitted through a reference wafer and a measurement wafer. A plurality of provisional difference absorbance spectra are obtained from the spectrum before transmission, the spectrum after transmission of the reference wafer, the spectrum after transmission of the measurement wafer, and the thickness of the reference wafer. In this provisional difference absorbance spectrum, a peak based on phonon absorption is obtained. A technique for measuring the thickness when the light disappears as the thickness of the measurement wafer is disclosed.

ところで、光学的手法による膜厚測定技術においては、試料に光を投光する部位(投光部)と反射光を受光する部位(受光部)とを近接させる構成の光学式膜厚測定装置が知られている。このような構成であれば、投光部および受光部の設置面積が小さくなるため、薄膜を形成する設備に対して測定装置を設置しやすくなり、例えばインラインでの膜厚の測定に好ましく用いることができる。   By the way, in the film thickness measurement technique based on the optical method, there is an optical film thickness measurement apparatus configured to bring a part that projects light onto a sample (light projecting part) and a part that receives reflected light (light receiving part) close to each other. Are known. With such a configuration, since the installation area of the light projecting unit and the light receiving unit is reduced, it is easy to install a measuring device for the equipment for forming a thin film, and it is preferably used for, for example, in-line film thickness measurement Can do.

前記構成の光学式膜厚測定装置では、投光部および受光部の前側にカバーガラス等の保護部材が設けられることが多い。これは、薄膜を形成する処理空間に投光部および受光部が露出していると、投光部および受光部が汚れたり処理雰囲気により腐食したりする可能性があるためである。   In the optical film thickness measuring apparatus having the above configuration, a protective member such as a cover glass is often provided on the front side of the light projecting unit and the light receiving unit. This is because if the light projecting unit and the light receiving unit are exposed in the processing space where the thin film is formed, the light projecting unit and the light receiving unit may be contaminated or corroded by the processing atmosphere.

例えば、特許文献3には、投光側光ファイバーの出射端と受光側光ファイバーの受光端とが隣接して配置され、両光ファイバーの先端部の前方には、窓材が、投光される白色光の光軸に対して傾斜させて配置されている構成の測定装置が開示されている。窓材の傾斜角度αは、使用する光ファイバー固有の開口数により定まる照射光の広がり角Θか、分光器の許容入射角のうちの、小さい方を基準として、それより大きな角度となるように設定されている。   For example, in Patent Document 3, the emission end of the light projecting side optical fiber and the light receiving end of the light receiving side optical fiber are disposed adjacent to each other, and a window material is projected in front of the front ends of both optical fibers. A measuring device having a configuration arranged to be inclined with respect to the optical axis is disclosed. The inclination angle α of the window material is set to be larger than the smaller one of the spread angle Θ of the irradiated light determined by the numerical aperture specific to the optical fiber used or the allowable incident angle of the spectrometer. Has been.

特開昭62−127605号公報Japanese Patent Laid-Open No. 62-127605 特開平8−105716号公報JP-A-8-105716 特開2008−268093号公報JP 2008-268093 A

ここで、前記構成の光学式膜厚測定装置においては、投光部および受光部の前側に保護部材が設けられると、保護部材に起因する迷光によって測定精度が低下するという問題が生じる。すなわち、投光部および受光部の前側に保護部材が設けられると、投光部から投光される光が保護部材の表面で反射し、受光部に迷光として入射する。このような迷光が受光部で受光されると、検出される反射率に誤差が生じ、測定精度が低下する。   Here, in the optical film thickness measuring apparatus having the above-described configuration, when a protective member is provided on the front side of the light projecting unit and the light receiving unit, there arises a problem that measurement accuracy decreases due to stray light caused by the protective member. That is, when the protective member is provided in front of the light projecting unit and the light receiving unit, the light projected from the light projecting unit is reflected by the surface of the protective member and enters the light receiving unit as stray light. When such stray light is received by the light receiving unit, an error occurs in the detected reflectance, and the measurement accuracy decreases.

特許文献3においては、前記のとおり、投光される白色光の光軸に対して窓材を傾斜させ、窓材からの反射光を受光側光ファイバーに入射させない構成が開示されている。しかしながら、本来は水平に配置すればよい窓材を敢えて傾斜させているため、窓材を傾斜固定するための特別な部材や構成が必要となる。それゆえ、光学式膜厚測定装置の構成そのものが複雑化することに加え、窓材(保護部材)の設置の自由度も低下する。   In Patent Document 3, as described above, a configuration is disclosed in which the window material is inclined with respect to the optical axis of the white light to be projected, and the reflected light from the window material is not incident on the light receiving side optical fiber. However, since the window material that should originally be arranged horizontally is intentionally inclined, a special member or configuration for inclining and fixing the window material is required. Therefore, the configuration itself of the optical film thickness measuring device is complicated, and the degree of freedom in installing the window material (protective member) is also reduced.

また、迷光の影響を回避するためには、投光部および受光部のそれぞれに対して別個に保護部材を設けることが考えられる。つまり、投光部には投光部専用の保護部材が設けられ、受光部には受光部専用の保護部材が設けられ、投光部専用の保護部材で生じた迷光が受光部に入射しないように構成すればよい。ところが、この構成では、二つの保護部材が必要になり、かつ、迷光の入射を防止する構成も別途必要になるので、部材点数が増加し構成も複雑化する。しかも、投光部および受光部を近接させ過ぎると、二つの保護部材の設置スペースが十分に確保できなくなるので、投光部および受光部の設置面積が小さくできるという利点が得難くなる。   In order to avoid the influence of stray light, it is conceivable to provide a protective member separately for each of the light projecting unit and the light receiving unit. That is, the light projecting unit is provided with a protective member dedicated to the light projecting unit, the light receiving unit is provided with a protective member dedicated to the light receiving unit, and stray light generated by the protective member dedicated to the light projecting unit is prevented from entering the light receiving unit. What is necessary is just to comprise. However, in this configuration, two protective members are required, and a configuration for preventing the incidence of stray light is also required, which increases the number of members and complicates the configuration. In addition, if the light projecting unit and the light receiving unit are too close to each other, a sufficient installation space for the two protection members cannot be secured, so that it is difficult to obtain the advantage that the installation area of the light projecting unit and the light receiving unit can be reduced.

さらに、保護部材により生ずる迷光の影響は一様ではないので、特許文献1または2に開示されるような、反射光に関する基準値を設定する補正処理のみでは、迷光の影響を十分に抑制することはできない。   Furthermore, since the influence of the stray light generated by the protective member is not uniform, the correction process for setting the reference value related to the reflected light as disclosed in Patent Document 1 or 2 can sufficiently suppress the influence of the stray light. I can't.

本発明はこのような課題を解決するためになされたものであって、光学式膜厚測定装置において、投光部および受光部が近接し、かつ、これらの前側に保護部材が設けられている構成を有しているときに、保護部材に起因する迷光の影響を有効に抑制し、測定精度を向上させることを目的とする。   The present invention has been made to solve such problems, and in the optical film thickness measurement apparatus, the light projecting unit and the light receiving unit are close to each other, and a protective member is provided on the front side thereof. An object of the present invention is to effectively suppress the influence of stray light caused by a protective member and improve the measurement accuracy when having a configuration.

本発明に係る光学式膜厚測定装置は、前記の課題を解決するために、先端面から光を投光する投光部と、前記投光部に並設され、先端面で光を受光する受光部と、前記投光部および前記受光部のそれぞれの前記先端面の前方に、当該各先端面に対して平行となるよう配置され、光を透過する保護部材と、を備え、前記投光部および前記受光部の前記先端面同士の間隔をd、前記投光部の前記先端面と前記保護部材との間隔をL、前記投光部の開口数をNA1 、前記受光部の開口数をNA2 と定義すれば、前記保護部材は、次の式
0<L<d/(tanθ1 +tanθ2
(但し、θ1 =sin-1 (NA1 )であり、θ2 =sin-1 (NA2 )であり、θ1 およびθ2 はいずれも90°未満である。)
を満たす位置に設けられ、前記受光部の前記先端面と前記保護部材との間隔は、前記間隔Lと等しいか、前記間隔L未満となるよう設定されている。
In order to solve the above problems, an optical film thickness measuring apparatus according to the present invention is arranged in parallel with a light projecting unit that projects light from a front end surface, and receives light at the front end surface. A light receiving portion; and a light-transmitting portion and a light-transmitting portion disposed in front of the front end surfaces of the light projecting portion and the light receiving portion so as to be parallel to the front end surfaces and transmitting light. D and the distance between the tip surfaces of the light projecting part and the protective member L, the numerical aperture of the light projecting part NA 1 , and the numerical aperture of the light receiving part Is defined as NA 2 , the protective member is represented by the following formula: 0 <L <d / (tan θ 1 + tan θ 2 )
(However, θ 1 = sin −1 (NA 1 ), θ 2 = sin −1 (NA 2 ), and θ 1 and θ 2 are both less than 90 °.)
The distance between the tip surface of the light receiving unit and the protection member is set to be equal to or less than the distance L.

前記構成によれば、投光部および受光部に対する保護部材の位置を、前記式を満たすような位置関係で設定することで、保護部材に起因する迷光の影響を有効に抑制することができる。それゆえ、光の干渉による反射率の変化を用いた膜厚測定の精度が向上する。   According to the said structure, the influence of the stray light resulting from a protection member can be effectively suppressed by setting the position of the protection member with respect to a light projection part and a light-receiving part by the positional relationship which satisfy | fills the said Formula. Therefore, the accuracy of film thickness measurement using the change in reflectance due to light interference is improved.

前記光学式膜厚測定装置においては、前記構成に加えて、薄膜が形成された試料を、前記投光部からの光が投光される位置に固定する試料固定部材と、前記受光部で受光した光を電気信号に変換することにより、前記受光した光の光強度情報を生成する光電変換器と、前記光電変換器で生成された前記光強度情報から前記試料に形成された前記薄膜の膜厚を算出する膜厚算出器と、記憶器と、を備え、前記膜厚算出器は、前記試料固定部材により前記試料が固定されていない状態で、前記投光部から光が投光されているときには、前記光電変換器で生成された前記光強度情報を、背景光強度情報として前記記憶器に記憶させるとともに、前記試料固定部材により前記試料が固定され、当該試料に対して前記投光部から光が投光されているときには、前記光電変換器で生成された前記光強度情報から、前記記憶器に記憶されている前記背景光強度情報を差し引いた補正光強度情報を生成し、当該補正光強度情報から前記薄膜の膜厚を算出するよう構成されていることが好ましい。   In the optical film thickness measuring apparatus, in addition to the above configuration, a sample on which a thin film is formed is fixed at a position where light from the light projecting unit is projected, and received by the light receiving unit. A photoelectric converter that generates light intensity information of the received light by converting the received light into an electrical signal, and the thin film formed on the sample from the light intensity information generated by the photoelectric converter A film thickness calculator that calculates a thickness; and a storage device, wherein the film thickness calculator is configured to receive light from the light projecting unit in a state where the sample is not fixed by the sample fixing member. The light intensity information generated by the photoelectric converter is stored in the storage as background light intensity information, and the sample is fixed by the sample fixing member, and the light projecting unit is attached to the sample. When light is emitted from Generates corrected light intensity information obtained by subtracting the background light intensity information stored in the storage device from the light intensity information generated by the photoelectric converter, and the film of the thin film is generated from the corrected light intensity information. It is preferably configured to calculate the thickness.

前記構成によれば、前記保護部材の位置を設定する構成に加えて、背景光の影響を低減するデータ補正を行う構成を組み合わせることになる。これにより、保護部材に起因する迷光の影響をより一層抑制することができる。   According to the said structure, in addition to the structure which sets the position of the said protection member, the structure which performs the data correction which reduces the influence of background light will be combined. Thereby, the influence of the stray light resulting from a protection member can be suppressed further.

前記光学式膜厚測定装置においては、前記構成に加えて、前記投光部および前記受光部が光ファイバーであり、前記保護部材がカバーガラスであることが好ましい。   In the optical film thickness measurement apparatus, in addition to the above configuration, the light projecting unit and the light receiving unit are preferably optical fibers, and the protective member is a cover glass.

また、本発明に係る真空成膜装置は、前記構成の光学式膜厚測定装置を備えている。   The vacuum film forming apparatus according to the present invention includes the optical film thickness measuring apparatus having the above-described configuration.

以上のように、本発明によれば、光学式膜厚測定装置の構成が、投光部および受光部が近接し、かつ、これらの前側に保護部材が設けられている構成であるときに、保護部材に起因する迷光の影響を有効に抑制し、測定精度を向上させることができるという効果を奏する。   As described above, according to the present invention, when the configuration of the optical film thickness measuring device is a configuration in which the light projecting unit and the light receiving unit are close to each other and a protective member is provided on the front side thereof, It is possible to effectively suppress the influence of stray light caused by the protective member and improve the measurement accuracy.

本発明の実施の形態1に係る光学式膜厚測定装置の概略構成の一例を示す模式図である。It is a schematic diagram which shows an example of schematic structure of the optical film thickness measuring apparatus which concerns on Embodiment 1 of this invention. 図1に示す光学式膜厚測定装置の投光部および受光部、並びにカバー部材の位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of the light projection part of the optical film thickness measuring apparatus shown in FIG. 1, a light-receiving part, and a cover member. 本発明の実施の形態2に係る光学式膜厚測定装置の概略構成の一例を示す模式図である。It is a schematic diagram which shows an example of schematic structure of the optical film thickness measuring apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る真空成膜装置の概略構成の一例を示す模式図である。It is a schematic diagram which shows an example of schematic structure of the vacuum film-forming apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態1に係る光学式膜厚測定装置を用いて窒化ケイ素薄膜の光反射スペクトルを測定した実施例1の結果を示す光スペクトルチャートである。It is an optical spectrum chart which shows the result of Example 1 which measured the light reflection spectrum of the silicon nitride thin film using the optical film thickness measuring apparatus which concerns on Embodiment 1 of this invention. 図5に示す実施例1に対する比較例1の結果を示す光スペクトルチャートである。It is an optical spectrum chart which shows the result of the comparative example 1 with respect to Example 1 shown in FIG. 図5に示す実施例1および図6に示す比較例1に対する参考例1の結果を示す光スペクトルチャートである。7 is an optical spectrum chart showing the results of Reference Example 1 with respect to Example 1 shown in FIG. 5 and Comparative Example 1 shown in FIG. 6. 本発明の実施の形態1に係る光学式膜厚測定装置を用いて二酸化チタン薄膜の光反射スペクトルを測定した実施例2の結果を示す光スペクトルチャートである。It is an optical spectrum chart which shows the result of Example 2 which measured the light reflection spectrum of the titanium dioxide thin film using the optical film thickness measuring apparatus which concerns on Embodiment 1 of this invention. 図8に示す実施例2に対する比較例2の結果を示す光スペクトルチャートである。It is an optical spectrum chart which shows the result of the comparative example 2 with respect to Example 2 shown in FIG. 図8に示す実施例2および図9に示す比較例2に対する参考例2の結果を示す光スペクトルチャートである。10 is an optical spectrum chart showing the results of Reference Example 2 with respect to Example 2 shown in FIG. 8 and Comparative Example 2 shown in FIG. 9.

以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.

(実施の形態1)
[光学式膜厚測定装置の構成]
まず、本実施の形態に係る光学式膜厚測定装置の構成について、図1および図2に基づいて説明する。図1は本発明の実施の形態1に係る測定装置の概略構成の一例を示す模式図であり、図2は、図1に示す測定装置の投光部および受光部、並びにカバー部材の位置関係を示す模式図である。
(Embodiment 1)
[Configuration of optical film thickness measuring device]
First, the configuration of the optical film thickness measuring apparatus according to the present embodiment will be described with reference to FIG. 1 and FIG. FIG. 1 is a schematic diagram illustrating an example of a schematic configuration of a measurement apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a positional relationship between a light projecting unit and a light receiving unit, and a cover member of the measurement apparatus illustrated in FIG. It is a schematic diagram which shows.

本実施の形態に係る光学式膜厚測定装置10は、図1に示すように、光源11、Y型光ファイバー12、測定プローブ13、カバーガラス14、分光器15、光電変換部16、試料固定部材17、および解析部21を備えている。試料固定部材17は、測定対象物である試料40を固定しており、試料40は、基板41の表面に薄膜42が形成されている。   As shown in FIG. 1, an optical film thickness measurement apparatus 10 according to the present embodiment includes a light source 11, a Y-type optical fiber 12, a measurement probe 13, a cover glass 14, a spectrometer 15, a photoelectric conversion unit 16, and a sample fixing member. 17 and an analysis unit 21. The sample fixing member 17 fixes a sample 40 that is an object to be measured, and the sample 40 has a thin film 42 formed on the surface of a substrate 41.

光源11は、膜厚を測定するために試料40に対して投光される光(測定光)を発する。光源11の種類は特に限定されないが、測定光としては、一般的に白色光が用いられるので、本実施の形態では、タングステンハロゲンランプが光源11として用いられる。あるいは、白熱電球またはキセノンランプ等も好適に用いられる。   The light source 11 emits light (measurement light) projected onto the sample 40 in order to measure the film thickness. The type of the light source 11 is not particularly limited, but white light is generally used as the measurement light. Therefore, a tungsten halogen lamp is used as the light source 11 in the present embodiment. Alternatively, an incandescent bulb or a xenon lamp is also preferably used.

Y型光ファイバー12は、投光側光ファイバー12aと受光側光ファイバー12bとが、それぞれ一方の端部側で1本にまとめられ、途中で分岐して「Y」字形状となるように構成されている。投光側光ファイバー12aは、光源11が発する測定光を測定プローブ13に伝達する投光側の導光部材である。測定プローブ13からは測定光が試料40に投光され、当該測定光は、試料40で反射され反射光として測定プローブ13で受光されるが、受光側光ファイバー12bは、受光された反射光を分光器15に伝達する受光側の導光部材である。   The Y-type optical fiber 12 is configured such that the light-projecting-side optical fiber 12a and the light-receiving-side optical fiber 12b are combined into one on one end side and branched in the middle to form a “Y” shape. . The light projecting side optical fiber 12 a is a light guiding member on the light projecting side that transmits the measurement light emitted from the light source 11 to the measurement probe 13. Measurement light is projected from the measurement probe 13 onto the sample 40, and the measurement light is reflected by the sample 40 and received by the measurement probe 13 as reflected light, but the light-receiving-side optical fiber 12 b splits the received reflected light. It is a light guide member on the light receiving side that is transmitted to the container 15.

測定プローブ13は、投光側光ファイバー12aから伝達された測定光を、試料40に向けて投光するとともに、試料40からの反射光を受光する。より具体的には、例えば、図2に示すように、投光側光ファイバー12aの先端が投光部121aとなり、この投光部121aの先端面である投光面122aから測定光が試料40に向かって投光される。また、受光側光ファイバー12bの先端が受光部121bとなり、この受光部121bの先端面である受光面122bで、試料40からの反射光が受光される。投光部121aおよび受光部121bは、図2に示すように、投光面122aおよび受光面122bが所定の間隔dを形成するように、隣接して配置される。また、投光面122aと受光面122とは、実質的に1つの平面上に位置するように配置される。   The measurement probe 13 projects the measurement light transmitted from the light projecting side optical fiber 12 a toward the sample 40 and receives the reflected light from the sample 40. More specifically, for example, as shown in FIG. 2, the tip of the light projecting side optical fiber 12 a becomes the light projecting unit 121 a, and the measurement light is transmitted to the sample 40 from the light projecting surface 122 a that is the tip surface of the light projecting unit 121 a. It is projected toward. Further, the tip of the light receiving side optical fiber 12b becomes the light receiving portion 121b, and the light reflected from the sample 40 is received by the light receiving surface 122b which is the tip surface of the light receiving portion 121b. As shown in FIG. 2, the light projecting unit 121a and the light receiving unit 121b are disposed adjacent to each other so that the light projecting surface 122a and the light receiving surface 122b form a predetermined distance d. The light projecting surface 122a and the light receiving surface 122 are arranged so as to be substantially located on one plane.

さらに、図2においては図示されないが、本実施の形態では、投光部121aおよび受光部121bは各種の保護部材および間隔保持部材によって、前記間隔dが維持された上で、一つの測定プローブ13としてまとめられている。この構成において、図2に部分的に示すように、投光部121aおよび受光部121bは、それぞれを構成する光ファイバーの端面122a,122bが同一平面となるようにまとめられているが、同一平面になくてもよい。すなわち、測定プローブ13においては、投光面122aおよび受光面122bが間隔dを確保するようにまとめられていればよく、測定プローブ13の全体的な構成は特に限定されない。   Further, although not shown in FIG. 2, in the present embodiment, the light projecting unit 121 a and the light receiving unit 121 b have one measuring probe 13 while the distance d is maintained by various protective members and interval holding members. It is summarized as. In this configuration, as shown partially in FIG. 2, the light projecting unit 121a and the light receiving unit 121b are grouped so that the end faces 122a and 122b of the optical fibers constituting each are in the same plane. It does not have to be. That is, in the measurement probe 13, the light projecting surface 122 a and the light receiving surface 122 b may be combined so as to ensure the distance d, and the overall configuration of the measurement probe 13 is not particularly limited.

カバーガラス14は、測定プローブ13の先端、すなわち、投光側光ファイバー12aの投光面122aおよび受光側光ファイバー12bの受光面122bを保護するために設けられる板状の保護部材である。特に、半導体装置の製造時において、半導体基板上に各種薄膜が形成される過程で、当該薄膜の膜厚をインラインで測定する場合には、薄膜を形成する処理に伴って投光面122aおよび受光面122bが汚れたり傷ついたりするおそれがある。このような汚れ等は測定精度を低下させるため、カバーガラス14は、投光面122aおよび受光面122bの汚れ等を防止する汚れ防止カバーとして設けられる。カバーガラス14は、少なくとも、測定光である白色光を透過する材質で形成されていればよく、インラインでの膜厚測定に用いられる場合には、各種薄膜形成処理に耐え得る耐久性を有していればよい。本実施の形態では、公知の光学用ガラスが用いられている。また、カバーガラス14のサイズも特に限定されず、本実施の形態では、投光面122aおよび受光面122bを確実に覆うことができる程度の面積があればよい。なお、図2においては、説明の便宜上、カバーガラス14を断面で図示している。   The cover glass 14 is a plate-like protective member provided to protect the tip of the measurement probe 13, that is, the light projecting surface 122a of the light projecting side optical fiber 12a and the light receiving surface 122b of the light receiving side optical fiber 12b. In particular, when various thin films are formed on a semiconductor substrate during the manufacture of a semiconductor device, when the thickness of the thin film is measured in-line, the light projecting surface 122a and the light reception are accompanied with the process of forming the thin film. The surface 122b may be dirty or damaged. Since such dirt or the like lowers the measurement accuracy, the cover glass 14 is provided as a dirt prevention cover that prevents dirt or the like on the light projecting surface 122a and the light receiving surface 122b. The cover glass 14 only needs to be formed of a material that transmits at least white light as measurement light. When used for in-line film thickness measurement, the cover glass 14 has durability capable of withstanding various thin film forming processes. It only has to be. In this embodiment, a known optical glass is used. Further, the size of the cover glass 14 is not particularly limited, and in the present embodiment, it is sufficient that there is an area that can reliably cover the light projecting surface 122a and the light receiving surface 122b. In FIG. 2, for convenience of explanation, the cover glass 14 is shown in cross section.

分光器15は、本実施の形態では、受光側光ファイバー12bにおいて、投光側光ファイバー12aとの分岐点から光電変換部16までの間に介在され、受光した反射光が、光電変換部16に入力される前に、予め設定された所定の波長別に分光する。分光器15としては、本実施の形態では、例えば回折格子が用いられるが、これに限定されず、試料40の種類や反射光として想定される光の波長域等の条件に応じて、適切な分光器を選択して用いることができる。   In the present embodiment, the spectroscope 15 is interposed in the light receiving side optical fiber 12b between the branch point with the light projecting side optical fiber 12a and the photoelectric conversion unit 16, and the received reflected light is input to the photoelectric conversion unit 16. Before being performed, the light is dispersed for each predetermined wavelength. In the present embodiment, for example, a diffraction grating is used as the spectroscope 15. However, the spectroscope 15 is not limited to this, and is appropriate according to conditions such as the type of the sample 40 and the wavelength range of light assumed as reflected light. A spectroscope can be selected and used.

光電変換部16は、分光器15で分光された反射光を電気信号に変換する。変換された電気信号は、反射光の光強度情報として解析部21に入力される 光電変換部16の具体的構成は特に限定されないが、本実施の形態では、電荷結合素子(CCD)アレイが用いられる。なお、本実施の形態では、図1に示すように、分光器15と光電変換部16とは、受光側光ファイバー12bを介して互いに分離しているが、これに限定されず、一体化された光電変換ユニットとして構成されてもよい。   The photoelectric conversion unit 16 converts the reflected light dispersed by the spectroscope 15 into an electric signal. The converted electrical signal is input to the analysis unit 21 as the light intensity information of the reflected light. The specific configuration of the photoelectric conversion unit 16 is not particularly limited, but in this embodiment, a charge coupled device (CCD) array is used. It is done. In this embodiment, as shown in FIG. 1, the spectroscope 15 and the photoelectric conversion unit 16 are separated from each other via the light-receiving side optical fiber 12b. However, the present invention is not limited to this and is integrated. It may be configured as a photoelectric conversion unit.

解析部21は、光電変換部16からの電気信号を解析して、薄膜42の膜厚を算出する。本実施の形態では、測定プローブ13で受光された試料40からの反射光は、前記のとおり分光器15で分光されて光電変換部16に入力されることで、各波長別の光の干渉情報として解析部21に出力される。解析部21では、この干渉情報に基づいて、試料40の薄膜42の膜厚を解析する。解析部21の具体的構成は特に限定されず、本実施の形態では、パーソナルコンピュータが用いられる。解析部21による膜厚の算出手法は特に限定されず、公知の手法を用いることができる。例えば、光電変換部16で生成された反射光の光強度情報における強度分布波形から、理論上の分布波形と対比することで膜厚を算出すればよい。なお、解析部21としては、前記パーソナルコンピュータのような独立した解析装置ではなく、マイクロコンピュータが用いられ、光電変換ユニットと一体化される構成であってもよい。   The analysis unit 21 analyzes the electrical signal from the photoelectric conversion unit 16 and calculates the film thickness of the thin film 42. In the present embodiment, the reflected light from the sample 40 received by the measurement probe 13 is split by the spectroscope 15 and input to the photoelectric conversion unit 16 as described above, so that light interference information for each wavelength is obtained. Is output to the analysis unit 21. The analysis unit 21 analyzes the film thickness of the thin film 42 of the sample 40 based on this interference information. The specific configuration of the analysis unit 21 is not particularly limited, and a personal computer is used in the present embodiment. The calculation method of the film thickness by the analysis part 21 is not specifically limited, A well-known method can be used. For example, the film thickness may be calculated by comparing with the theoretical distribution waveform from the intensity distribution waveform in the light intensity information of the reflected light generated by the photoelectric conversion unit 16. The analysis unit 21 may be configured to be integrated with a photoelectric conversion unit using a microcomputer instead of an independent analysis device such as the personal computer.

試料固定部材17は、測定対象物である試料40を、測定プローブ13からの測定光が投光される位置に固定するものであれば、その構成は特に限定されない。図1に示す例では、試料40が、透光性の基板41の表面に薄膜42が形成されている構成であり、測定光は基板41の裏面から投光されるので、試料固定部材17は、試料40を周囲から固定するような枠体となっている。なお、図1では、説明の便宜上、試料40および試料固定部材17は断面で図示している。   The configuration of the sample fixing member 17 is not particularly limited as long as the sample fixing member 17 fixes the sample 40 that is a measurement object at a position where the measurement light from the measurement probe 13 is projected. In the example shown in FIG. 1, the sample 40 has a configuration in which a thin film 42 is formed on the surface of a light-transmitting substrate 41, and the measurement light is projected from the back surface of the substrate 41. The frame is such that the sample 40 is fixed from the periphery. In FIG. 1, for convenience of explanation, the sample 40 and the sample fixing member 17 are shown in cross section.

前記構成の光学式膜厚測定装置における膜厚の測定方法について説明する。まず、試料40を試料固定部材17に固定する。測定プローブ13およびカバーガラス14は、図1には図示されないが、いずれも後述する所定の位置関係で固定されて配置されているので、光源11を発光させ、投光側光ファイバー12aを介して測定プローブ13の投光部から試料40に対して測定光を投光する。このとき、測定光は、大部分がカバーガラス14を透過するが、その一部は、後述するように、カバーガラス14の測定プローブ13側の表面で反射して迷光となる。なお、迷光に関しては、投光部、受光部およびカバーガラスの位置関係とともに説明する。   A method for measuring a film thickness in the optical film thickness measuring apparatus having the above configuration will be described. First, the sample 40 is fixed to the sample fixing member 17. Although the measurement probe 13 and the cover glass 14 are not shown in FIG. 1, both are fixed and arranged in a predetermined positional relationship, which will be described later, so that the light source 11 emits light and is measured via the light-projecting side optical fiber 12a. Measuring light is projected from the light projecting portion of the probe 13 onto the sample 40. At this time, most of the measurement light passes through the cover glass 14, but a part of the measurement light is reflected on the surface of the cover glass 14 on the measurement probe 13 side and becomes stray light. The stray light will be described together with the positional relationship between the light projecting unit, the light receiving unit, and the cover glass.

カバーガラス14を透過した測定光は、試料40で反射されて反射光となり、カバーガラス14を透過して測定プローブ13の受光部で受光される。受光された反射光は、受光側光ファイバー12bを介して分光器15に達する。この反射光はさまざまな波長の光を含む光反射スペクトルであるため、分光器15で所定の波長別に分光され、光電変換部16に入射される。光電変換部16では、波長別に光の強度を電気信号に変換し、光強度情報として生成する。生成した光強度情報は解析部21に入力され、解析部21では、前記のとおり、入力された光強度情報から薄膜41の膜厚を算出する。   The measurement light transmitted through the cover glass 14 is reflected by the sample 40 to become reflected light, passes through the cover glass 14, and is received by the light receiving portion of the measurement probe 13. The received reflected light reaches the spectroscope 15 via the light receiving side optical fiber 12b. Since the reflected light is a light reflection spectrum including light of various wavelengths, the spectroscope 15 separates the light for each predetermined wavelength and enters the photoelectric conversion unit 16. The photoelectric conversion unit 16 converts the light intensity for each wavelength into an electrical signal and generates light intensity information. The generated light intensity information is input to the analysis unit 21, and the analysis unit 21 calculates the film thickness of the thin film 41 from the input light intensity information as described above.

[投光部、受光部、カバーガラスの位置関係]
次に、本実施の形態に係る光学式膜厚測定装置において、測定精度を向上するために、投光部121aおよび受光部121b、並びにカバーガラス14の位置関係を最適化する構成について、図2に基づいて説明する。
[Positional relationship between light emitter, light receiver, and cover glass]
Next, in the optical film thickness measuring apparatus according to the present embodiment, a configuration for optimizing the positional relationship between the light projecting unit 121a and the light receiving unit 121b and the cover glass 14 in order to improve measurement accuracy is shown in FIG. Based on

図2に示すように、本実施の形態では、投光部121aおよび受光部121bは互いに近接して配置されている。このような構成で、投光面122aおよび受光面122bを1枚のカバーガラス14で保護しようとする場合、投光面122aから投光される測定光の一部が、カバーガラス14の表面で反射され、さらに散乱することで迷光となる。この迷光が受光面122bに入射すると、試料40からの反射光以外の雑光を受光することになるので、測定精度が低下する。そこで、本実施の形態では、迷光の影響を低減するために、測定プローブ13の先端面からカバーガラス14の表面までの距離を最適化する。   As shown in FIG. 2, in the present embodiment, the light projecting unit 121a and the light receiving unit 121b are arranged close to each other. With such a configuration, when it is intended to protect the light projecting surface 122a and the light receiving surface 122b with a single cover glass 14, a part of the measurement light projected from the light projecting surface 122a is on the surface of the cover glass 14. Reflected and further scattered, it becomes stray light. When this stray light is incident on the light receiving surface 122b, miscellaneous light other than the reflected light from the sample 40 is received, resulting in a decrease in measurement accuracy. Therefore, in this embodiment, in order to reduce the influence of stray light, the distance from the front end surface of the measurement probe 13 to the surface of the cover glass 14 is optimized.

具体的には、測定プローブ13の先端面は投光面122aおよび受光面122bとなるので、図2に示すように、カバーガラス14はその表面が投光面122aおよび受光面122b(換言すれば、投光面122aおよび受光面122bを含む平面)に実質的に平行になるように配置される。そして、これら投光面122aとカバーガラス14の表面との間隔をLと定めるとともに、投光面122aおよび受光面122bの間隔をdと定める。その上で、前記間隔Lを、投光部121aを構成する投光側光ファイバー12aの開口数(NA値)と、受光部121bを構成する受光側光ファイバー12bのNA値と、前記間隔dとに基づいて設定し、かつ、受光面122bとカバーガラス14との間隔も、前記間隔Lに設定する。   Specifically, since the distal end surface of the measurement probe 13 is a light projecting surface 122a and a light receiving surface 122b, the cover glass 14 has a light projecting surface 122a and a light receiving surface 122b (in other words, as shown in FIG. 2). , A plane including the light projecting surface 122a and the light receiving surface 122b). The distance between the light projecting surface 122a and the surface of the cover glass 14 is defined as L, and the distance between the light projecting surface 122a and the light receiving surface 122b is defined as d. In addition, the distance L is set to the numerical aperture (NA value) of the light projecting side optical fiber 12a constituting the light projecting part 121a, the NA value of the light receiving side optical fiber 12b constituting the light receiving part 121b, and the distance d. The distance between the light receiving surface 122b and the cover glass 14 is also set to the distance L.

まず、迷光の光路について見れば、投光部121aの投光面122aから測定光が出射し、この測定光は、理想的にはカバーガラス14を全て透過するが、現実には、その一部がカバーガラス14の表面で反射して、受光部121bの受光面122bに迷光として入射する。このとき、迷光の発生源である、カバーガラス14の表面における測定光の反射部位は、投光面122aと受光面122bとの間に対応する位置となる。   First, looking at the optical path of stray light, the measurement light is emitted from the light projecting surface 122a of the light projecting unit 121a, and this measurement light ideally transmits all of the cover glass 14, but in reality, a part thereof Is reflected on the surface of the cover glass 14 and enters the light receiving surface 122b of the light receiving portion 121b as stray light. At this time, the reflection part of the measurement light on the surface of the cover glass 14 which is a generation source of stray light is a position corresponding to between the light projecting surface 122a and the light receiving surface 122b.

ここで、投光側光ファイバー12aの開口数をNA1 とすれば、θ1 はNA1 の正弦逆関数より求められる。すなわちθ1 =sin-1 NA1 である。この角度θ1 は、図2に示すように、投光面122aの前側(カバーガラス14または試料40の側)に向かって、当該投光面122aから出射する測定光が広がる角度に対応する。また、受光側光ファイバー12bの開口数をNA2 とし、NA2 の正弦逆関数より求められる角度をθ2 とすれば(θ2 =sin-1 NA2 )、受光面122bの前側から当該受光面122bに入射する迷光を想定すると、角度θ2 は、当該想定光が前側から受光面122bに入射する限界の角度に対応する(図2参照)。 Here, if the numerical aperture of the light projecting side optical fiber 12a and NA 1, theta 1 is obtained from the sine inverse of NA 1. That is, θ 1 = sin −1 NA 1 . As shown in FIG. 2, the angle θ 1 corresponds to an angle at which the measurement light emitted from the light projecting surface 122a spreads toward the front side of the light projecting surface 122a (the cover glass 14 or the sample 40 side). If the numerical aperture of the light receiving side optical fiber 12b is NA 2 and the angle obtained from the inverse sine function of NA 2 is θ 22 = sin −1 NA 2 ), the light receiving surface from the front side of the light receiving surface 122b Assuming stray light incident on 122b, the angle θ 2 corresponds to a limit angle at which the assumed light enters the light receiving surface 122b from the front side (see FIG. 2).

それゆえ、投光面122aおよび受光面122bが同一平面上に含まれる構成、すなわち、投光面122aおよびカバーガラス14の間隔、並びに、受光面122bおよびカバーガラスの間隔が等しいとすれば、迷光が入射する状態では、投光面122aと受光面122bとの間隔dは、角度θ1 の正接tanθ1 と角度θ2 の正接tanθ2 との和に、投光面122aおよび受光面122bとカバーガラス14との間隔Lを乗算した値に等しくなる。したがって、迷光が入射しないのであれば、間隔dは、次の式(1)に示すような不等式で表すことができる。 Therefore, if the configuration in which the light projecting surface 122a and the light receiving surface 122b are included on the same plane, that is, the distance between the light projecting surface 122a and the cover glass 14, and the distance between the light receiving surface 122b and the cover glass are equal, stray light is assumed. cover state but the incident distance d between the light projecting surface 122a and the light-receiving surface 122b are the sum of the angle theta 1 of tangent tan .theta 1 and the angle theta 2 of the tangent tan .theta 2, a light projecting surface 122a and the light receiving surface 122b It is equal to a value obtained by multiplying the distance L from the glass 14. Therefore, if stray light is not incident, the distance d can be expressed by an inequality as shown in the following equation (1).

d<L(tanθ1 +tanθ2 ) ・・・ (1)
ここで、本実施の形態では、投光部121aおよび受光部121bは、測定プローブ13としてまとめられているので、事実上、間隔dは固定されていると見なすことができる。したがって、迷光の入射を回避するためには、間隔Lが次の式(2)を満たすように、カバーガラス14を測定プローブ13の先端面の前側に設置すればよい。これにより、カバーガラス14からの迷光の影響を大幅に低減することができるため、測定精度を向上することができる。
d <L (tan θ 1 + tan θ 2 ) (1)
Here, in the present embodiment, since the light projecting unit 121a and the light receiving unit 121b are combined as the measurement probe 13, it can be considered that the interval d is practically fixed. Therefore, in order to avoid the incidence of stray light, the cover glass 14 may be installed on the front side of the distal end surface of the measurement probe 13 so that the interval L satisfies the following formula (2). Thereby, since the influence of the stray light from the cover glass 14 can be reduced significantly, measurement accuracy can be improved.

0<L<d/(tanθ1 +tanθ2 ) ・・・ (2)
なお、式(2)において、間隔Lの上限は前記式(1)から明らかであるが、間隔Lの下限は、投光面122aおよび受光面122bにカバーガラス14を接触させず、必ず間隔を設けなければならないことに基づく。
0 <L <d / (tan θ 1 + tan θ 2 ) (2)
In Expression (2), the upper limit of the distance L is clear from Expression (1). However, the lower limit of the distance L is not to contact the cover glass 14 with the light projecting surface 122a and the light receiving surface 122b. Based on what must be provided.

[変形例]
前述した図2に示す構成においては、投光面122aおよび受光面122bとカバーガラス14との間隔は、いずれも等しい構成となっているが、本発明は、これに限定されず、受光面122bとカバーガラス14との間隔は、投光面122aとカバーガラス14との間隔よりも短くてもよい。すなわち、投光面122aとカバーガラス14との間隔をC1 と定義し、受光面122bとカバーガラス14との間隔をC2 と定義すれば、本発明においては、次の式が成立するような位置関係とすることで、迷光の影響を有効に回避することができる。
[Modification]
In the configuration shown in FIG. 2 described above, the intervals between the light projecting surface 122a and the light receiving surface 122b and the cover glass 14 are the same, but the present invention is not limited to this, and the light receiving surface 122b. The distance between the cover glass 14 and the cover glass 14 may be shorter than the distance between the light projecting surface 122 a and the cover glass 14. That is, if the distance between the light projecting surface 122a and the cover glass 14 is defined as C 1 and the distance between the light receiving surface 122b and the cover glass 14 is defined as C 2 , the following formula is established in the present invention. By adopting a simple positional relationship, the influence of stray light can be effectively avoided.

L=C1 >C2 ・・・ (3)
また、本実施の形態では、保護部材としてカバーガラス14が用いられているが、本発明はこれに限定されず、樹脂製のカバーが用いられてもよいし、その他の透光性材料から形成される保護部材が用いられてもよい。すなわち、保護部材は、測定光を透過する材料で形成されていればよい。
L = C 1 > C 2 (3)
Further, in the present embodiment, the cover glass 14 is used as the protective member, but the present invention is not limited to this, and a resin cover may be used, or the cover glass 14 may be formed from other translucent materials. A protective member may be used. That is, the protective member only needs to be formed of a material that transmits measurement light.

また、本実施の形態では、投光側光ファイバー12aおよび受光側光ファイバー12bは、本実施の形態では、いずれも1本の光ファイバーとして構成されているが、例えば複数本の光ファイバーを束ねて保護部材を被覆した光ケーブルとして構成されてもよい。あるいは、例えば受光側光ファイバー12bのみが光ケーブルに置き換えられるように構成されてもよい。また、導光部材の具体的構成は、本実施の形態で用いられるY型光ファイバー12に限定されない。例えば、投光側光ファイバー12aおよび受光側光ファイバー12bがそれぞれ1本ずつ独立した構成であってもよい。   In this embodiment, the light projecting side optical fiber 12a and the light receiving side optical fiber 12b are both configured as one optical fiber in this embodiment. However, for example, a plurality of optical fibers are bundled to provide a protective member. It may be configured as a coated optical cable. Alternatively, for example, only the light receiving side optical fiber 12b may be replaced with an optical cable. The specific configuration of the light guide member is not limited to the Y-type optical fiber 12 used in the present embodiment. For example, the light emitting side optical fiber 12a and the light receiving side optical fiber 12b may be independent from each other.

さらに、投光側光ファイバー12aの投光部121aと、受光側光ファイバー12bの受光部121bとは、単一の測定プローブ13として一体化されているが、これら投光部121aと受光部121bとがまとめられておらず、それぞれ分離していてもよい。この場合、Y型光ファイバー12に代えて、それぞれ独立した投光側光ファイバー12aおよび受光側光ファイバー12bが用いられることになる。さらに、投光部121aと受光部121bとがまとめられていない場合には、間隔Lではなく間隔dを調整することもできる。   Furthermore, the light projecting unit 121a of the light projecting side optical fiber 12a and the light receiving unit 121b of the light receiving side optical fiber 12b are integrated as a single measurement probe 13, but the light projecting unit 121a and the light receiving unit 121b are integrated. They are not summarized and may be separated from each other. In this case, instead of the Y-type optical fiber 12, independent light projecting side optical fibers 12 a and light receiving side optical fibers 12 b are used. Further, when the light projecting unit 121a and the light receiving unit 121b are not combined, the interval d can be adjusted instead of the interval L.

(実施の形態2)
前記実施の形態1では、測定プローブ13の先端部とカバーガラス14との間に形成される間隔Lを調整することで、投光部121a、受光部121b、およびカバーガラス14の位置関係を最適化していたが、本実施の形態では、この最適化に加えて、さらに、試料40が存在しない状態での光のスペクトルを、膜厚測定時の光のスペクトルから差し引く構成を組み合わせることにより、迷光の影響を低減する。図3は、本実施の形態に係る光学式膜厚測定装置10bの概略構成の一例を示す模式図である、
図3に示すように、本実施の形態に係る光学式膜厚測定装置10bは、基本的には、前記実施の形態1に係る光学式膜厚測定装置10aと同じ構成であるが、解析部21は、演算部22、I/O回路23、および記憶部24を備えている。
(Embodiment 2)
In the first embodiment, the positional relationship between the light projecting unit 121a, the light receiving unit 121b, and the cover glass 14 is optimized by adjusting the distance L formed between the tip of the measurement probe 13 and the cover glass 14. In this embodiment, in addition to this optimization, stray light is further combined by combining a structure in which the light spectrum in the absence of the sample 40 is subtracted from the light spectrum at the time of film thickness measurement. To reduce the impact. FIG. 3 is a schematic diagram illustrating an example of a schematic configuration of the optical film thickness measuring apparatus 10b according to the present embodiment.
As shown in FIG. 3, the optical film thickness measuring apparatus 10b according to the present embodiment has basically the same configuration as the optical film thickness measuring apparatus 10a according to the first embodiment, but the analysis unit 21 includes a calculation unit 22, an I / O circuit 23, and a storage unit 24.

演算部22は、例えば、マイクロコンピュータのCPUで構成され、解析部21の動作に関する各種の演算を行う。この演算には、光電変換部16で生成した電気信号から試料40に形成された薄膜42の膜厚を算出する演算が含まれる。したがって、光学式膜厚測定装置10bにおいては、演算部22は膜厚算出器として機能する。I/O回路23は、演算部22に接続され、光電変換部16で生成された電気信号(光強度情報)を演算部22に入力する。なお、光学式膜厚測定装置10bの具体的な構成に応じて、演算部22から光電変換部16に対して制御信号が出力されるよう構成されてもよい。I/O回路34は、例えば、マイクロコンピュータのI/O入出力回路で構成される。   The calculation unit 22 is constituted by a CPU of a microcomputer, for example, and performs various calculations related to the operation of the analysis unit 21. This calculation includes calculation for calculating the film thickness of the thin film 42 formed on the sample 40 from the electrical signal generated by the photoelectric conversion unit 16. Therefore, in the optical film thickness measurement apparatus 10b, the calculation unit 22 functions as a film thickness calculator. The I / O circuit 23 is connected to the calculation unit 22 and inputs an electric signal (light intensity information) generated by the photoelectric conversion unit 16 to the calculation unit 22. In addition, according to the specific structure of the optical film thickness measuring apparatus 10b, you may be comprised so that a control signal may be output with respect to the photoelectric conversion part 16 from the calculating part 22. FIG. The I / O circuit 34 is constituted by, for example, an I / O input / output circuit of a microcomputer.

記憶部24は、解析部21の動作に関する各種情報を記憶するものである。本実施の形態では、記憶部24には、光電変換部16で生成された光強度情報が少なくとも記憶される。記憶部24の具体的構成としては、例えば、マイクロコンピュータの内部メモリとして構成されてもよいし、独立したメモリとして構成されてもよい。また、記憶部24は、単一である必要はなく、複数の記憶装置(例えば、内部メモリと外付け型のハードディスクドライブ)として構成されてもよい。   The storage unit 24 stores various information related to the operation of the analysis unit 21. In the present embodiment, the storage unit 24 stores at least light intensity information generated by the photoelectric conversion unit 16. The specific configuration of the storage unit 24 may be configured as, for example, an internal memory of a microcomputer, or may be configured as an independent memory. The storage unit 24 does not have to be a single unit, and may be configured as a plurality of storage devices (for example, an internal memory and an external hard disk drive).

本実施の形態に係る光学式膜厚測定装置10bでは、測定プローブ13およびカバーガラス14の位置関係は、前記実施の形態1で説明したとおり、式(2)を満たすように、投光面122aおよび受光面122bとカバーガラス14との間隔Lが設定されるが、さらに、試料が存在しない状態での光強度情報を背景光強度情報として予め取得して記憶部24に記憶させ、その後、試料が存在する状態での光強度情報を取得し、この光強度情報から背景光強度情報を差し引くことで、迷光の影響を低減させている。つまり、本実施の形態では、前記間隔Lを好適な範囲に設定するとともに、検出された反射光から背景光を差し引くデータ補正を行っている。   In the optical film thickness measuring apparatus 10b according to the present embodiment, the light projection surface 122a is such that the positional relationship between the measurement probe 13 and the cover glass 14 satisfies the formula (2) as described in the first embodiment. The distance L between the light receiving surface 122b and the cover glass 14 is set. Further, the light intensity information in a state where no sample exists is acquired in advance as background light intensity information and stored in the storage unit 24, and then the sample The light intensity information in the presence of the light is acquired, and the background light intensity information is subtracted from the light intensity information, thereby reducing the influence of stray light. That is, in the present embodiment, the interval L is set to a suitable range, and data correction is performed by subtracting background light from the detected reflected light.

具体的には、本実施の形態では、背景光検出段階とその後の実測段階との2段階で測定が行われる。まず、背景光検出段階について説明する。   Specifically, in the present embodiment, measurement is performed in two stages, a background light detection stage and a subsequent actual measurement stage. First, the background light detection stage will be described.

背景光検出段階では、試料固定部材17に試料40が固定される前に、測定プローブ13の投光部121aから、試料40が固定される位置に測定光が投光される。この状態では、測定プローブ13の受光部121bに試料40からの反射光を受光することはないが、カバーガラスやその周囲の部材により測定光が散乱することで散乱光が生じ、これが迷光として受光部121bに入射する。この散乱光は、無視できる場合も多いが、膜厚が薄い場合、あるいはより高い精度で膜厚を測定したい場合には、この散乱光が迷光として受光されることは好ましくない。そこで、予め散乱光の光強度を検出しておく。   In the background light detection stage, before the sample 40 is fixed to the sample fixing member 17, measurement light is projected from the light projecting unit 121 a of the measurement probe 13 to a position where the sample 40 is fixed. In this state, the light receiving unit 121b of the measurement probe 13 does not receive the reflected light from the sample 40. However, the measurement light is scattered by the cover glass and its surrounding members, so that scattered light is generated and received as stray light. Incident on the part 121b. In many cases, this scattered light can be ignored, but when the film thickness is thin or when it is desired to measure the film thickness with higher accuracy, it is not preferable that the scattered light is received as stray light. Therefore, the light intensity of the scattered light is detected in advance.

受光部121bで散乱光を受光すれば、前述したとおり、分光器15で所定の波長別に分光され、光電変換部16に入射される。光電変換部16では、波長別に光の強度を電気信号に変換し、光強度情報として生成する。この光強度情報は、I/O回路23を介して演算部22に入力される。ここで、生成される光強度情報は、試料40が存在しない状態での散乱光についての光強度情報であるため、演算部22は、この光強度情報から膜厚を算出する演算を行わず、背景光強度情報として記憶部24に記憶させる。これで背景光検出段階が終了する。   If the scattered light is received by the light receiving unit 121b, as described above, the light is separated by the spectroscope 15 for each predetermined wavelength and is incident on the photoelectric conversion unit 16. The photoelectric conversion unit 16 converts the light intensity for each wavelength into an electrical signal and generates light intensity information. This light intensity information is input to the calculation unit 22 via the I / O circuit 23. Here, since the generated light intensity information is the light intensity information on the scattered light in the state where the sample 40 does not exist, the calculation unit 22 does not perform the calculation of calculating the film thickness from the light intensity information, The information is stored in the storage unit 24 as background light intensity information. This completes the background light detection stage.

次に、実測段階について説明する。背景光検出段階が終了し、背景光強度情報が記憶部24に記憶された後に、試料固定部材17に試料40が固定されれば、改めて、測定プローブ13の投光部121aから試料40に対して測定光が投光される。測定光は試料40で反射されて光反射スペクトルとして測定プローブ13の受光部121bで受光される。このとき、前記散乱光も、迷光として受光部121bで受光されているので、受光部121bで実際に受光される光は、反射光および散乱光のスペクトルとなっている。なお、説明の便宜上、実際に受光された前記光スペクトルを、実測光と称する。   Next, the actual measurement stage will be described. If the sample 40 is fixed to the sample fixing member 17 after the background light detection stage is completed and the background light intensity information is stored in the storage unit 24, the light projecting unit 121a of the measurement probe 13 again applies to the sample 40. Measuring light is emitted. The measurement light is reflected by the sample 40 and received by the light receiving part 121b of the measurement probe 13 as a light reflection spectrum. At this time, since the scattered light is also received by the light receiving unit 121b as stray light, the light actually received by the light receiving unit 121b has a spectrum of reflected light and scattered light. For convenience of explanation, the optical spectrum actually received is referred to as actually measured light.

前記実測光は、前記と同様に分光器15で分光され、光電変換部16で所定の波長別に光強度情報として生成され、演算部22に入力される。入力された実測光の光強度情報には、膜厚測定に用いる反射光の光強度情報以外に、迷光である散乱光の光強度情報も含まれる。そこで、演算部22は、まず、実測光の光強度情報から、記憶部24に記憶されている背景光強度情報を差し引いて補正光強度情報を生成し、その後、補正光強度情報から薄膜42の膜厚を算出する。このようなデータ補正を行うことにより、カバーガラス14からの反射光だけでなく散乱光の影響が抑制できるので、迷光が膜厚測定に与える影響がより一層低減され、測定精度が向上する。   The measured light is split by the spectroscope 15 as described above, is generated as light intensity information for each predetermined wavelength by the photoelectric conversion unit 16, and is input to the calculation unit 22. The input light intensity information of the actually measured light includes light intensity information of scattered light that is stray light in addition to the light intensity information of reflected light used for film thickness measurement. Therefore, the calculation unit 22 first generates corrected light intensity information by subtracting the background light intensity information stored in the storage unit 24 from the light intensity information of the actually measured light, and then generates the corrected light intensity information from the corrected light intensity information. The film thickness is calculated. By performing such data correction, the influence of not only the reflected light from the cover glass 14 but also the scattered light can be suppressed, so that the influence of stray light on the film thickness measurement is further reduced, and the measurement accuracy is improved.

なお、本実施の形態に係る光学式膜厚測定装置10bにおいては、背景光検出段階が使用者による手動で行われるよう構成されてもよいし、試料固定部材17に試料40が固定されているか否かを検知する試料センサ、制御部、表示部等を備えることで、背景光検出段階が自動で行われるよう構成されてもよい。   In the optical film thickness measuring apparatus 10b according to the present embodiment, the background light detection step may be configured to be performed manually by the user, or is the sample 40 fixed to the sample fixing member 17? By providing a sample sensor that detects whether or not, a control unit, a display unit, and the like, the background light detection step may be automatically performed.

(実施の形態3)
前記実施の形態1および2においては、光学式膜厚測定装置10aまたは10bの要部の構成のみについて説明したが、本実施の形態では、真空成膜装置のインラインでの膜厚測定を行うために、光学式膜厚測定装置が真空成膜装置に含まれている構成について説明する。図4は、本実施の形態に係る真空成膜装置の構成の一例を示す模式図である。
(Embodiment 3)
In the first and second embodiments, only the configuration of the main part of the optical film thickness measuring apparatus 10a or 10b has been described. However, in the present embodiment, the film thickness measurement is performed in-line in the vacuum film forming apparatus. Next, a configuration in which the optical film thickness measuring apparatus is included in the vacuum film forming apparatus will be described. FIG. 4 is a schematic diagram showing an example of the configuration of the vacuum film forming apparatus according to the present embodiment.

図4に示すように、本実施の形態に係る真空成膜装置20は、膜厚測定部10cおよび真空チャンバ18を備え、さらに、膜厚測定部10cが備える測定プローブ13は、その先端が真空チャンバ18内の上方に挿入されている。真空チャンバ18内の上方には、測定プローブ13の先端にカバーガラス14が配置され、測定プローブ13の先端から測定光が投光可能な位置に試料固定部材17が設けられ、試料40が固定されている。また、真空チャンバ18内の下方には、試料40の表面に形成される薄膜の原材料(成膜材料)を蒸発させる蒸発源43が配置されている。   As shown in FIG. 4, the vacuum film forming apparatus 20 according to the present embodiment includes a film thickness measuring unit 10c and a vacuum chamber 18, and the tip of the measurement probe 13 included in the film thickness measuring unit 10c is vacuum. It is inserted above the chamber 18. Above the inside of the vacuum chamber 18, a cover glass 14 is disposed at the tip of the measurement probe 13, a sample fixing member 17 is provided at a position where measurement light can be projected from the tip of the measurement probe 13, and the sample 40 is fixed. ing. Further, an evaporation source 43 for evaporating a raw material (film forming material) of a thin film formed on the surface of the sample 40 is disposed below the vacuum chamber 18.

真空成膜装置20の具体的構成は特に限定されず、真空チャンバ18内で試料40の表面に薄膜を形成する構成であればよい。具体的には、例えば、物理的気相成長法(PVD)を用いる構成であってもよいし、化学的気相成長法(CVD)を用いる構成であってもよい。本実施の形態では、図4には詳細に図示されないが、真空成膜装置20は、PVDの一種である、イオンプレーティング法を用いた構成となっている。具体的には、真空チャンバ18の下方に配置される蒸発源43は、例えば、抵抗加熱により成膜材料を真空チャンバ18内に蒸発させる公知の構成となっている。蒸発源43から蒸発した成膜材料は、真空チャンバ18内に形成された高周波電界によってプラズマ化され、このプラズマ化した成膜材料による膜が試料40に形成される。   The specific configuration of the vacuum film forming apparatus 20 is not particularly limited as long as the thin film is formed on the surface of the sample 40 in the vacuum chamber 18. Specifically, for example, a configuration using physical vapor deposition (PVD) or a configuration using chemical vapor deposition (CVD) may be used. In the present embodiment, although not shown in detail in FIG. 4, the vacuum film forming apparatus 20 has a configuration using an ion plating method which is a kind of PVD. Specifically, the evaporation source 43 disposed below the vacuum chamber 18 has a known configuration for evaporating the film forming material into the vacuum chamber 18 by resistance heating, for example. The film forming material evaporated from the evaporation source 43 is turned into plasma by a high frequency electric field formed in the vacuum chamber 18, and a film made of the plasma formed film forming material is formed on the sample 40.

膜厚測定部10cの具体的構成は、前述した光学式膜厚測定装置10a(実施の形態1)または光学式膜厚測定装置10b(実施の形態2)と同様の構成となっている。また、本実施の形態では、測定プローブ13は、真空チャンバ18内に先端のみが挿入されているが、これに限定されず、測定プローブ13全体が真空チャンバ内に配置されてもよい。   The specific configuration of the film thickness measuring unit 10c is the same as that of the optical film thickness measuring apparatus 10a (Embodiment 1) or the optical film thickness measuring apparatus 10b (Embodiment 2) described above. In the present embodiment, only the tip of the measurement probe 13 is inserted into the vacuum chamber 18, but the present invention is not limited to this, and the entire measurement probe 13 may be arranged in the vacuum chamber.

一般に、真空成膜装置においては、成膜の過程で、製品に形成されている薄膜の膜厚を測定することが広く行われている。例えば、オフライン測定、すなわち、成膜の各工程で製品を抜き取り、真空成膜装置が設置されている場所から離れたところ(例えば測定室)まで運び、そこに設置される膜厚測定装置で膜厚を測定するということが行われている。   In general, in a vacuum film forming apparatus, it is widely performed to measure the film thickness of a thin film formed on a product during the film forming process. For example, off-line measurement, that is, a product is extracted in each film forming process, transported to a place (for example, a measurement chamber) away from a place where a vacuum film forming apparatus is installed, and a film is measured by a film thickness measuring apparatus installed there. Measuring thickness is done.

ここで、測定した膜厚が許容範囲から外れていた場合には、成膜の諸条件を調整し、膜厚を許容範囲内に収める必要がある。前記オフライン測定では、測定した膜厚情報を真空成膜装置20の運転にフィードバックするまでに時間を要することになる。また、前記オフライン測定では、抜き取りを行っていない製品に形成されている薄膜が、許容範囲に入っているか否かの確認も行うことができないので、歩留まりを低下させるおそれもある。それゆえ、真空成膜装置においては、インライン測定、すなわち、製品の製造ラインのうち、成膜中または成膜の直後に光学式膜厚測定装置を組み込むことで、製品の抜き取りを行うことなく、理想的には全製品の膜厚を測定することが広く試みられている。   Here, when the measured film thickness is out of the allowable range, it is necessary to adjust the film forming conditions so that the film thickness falls within the allowable range. In the off-line measurement, it takes time to feed back the measured film thickness information to the operation of the vacuum film forming apparatus 20. Further, in the off-line measurement, since it is impossible to confirm whether or not the thin film formed on the product that has not been extracted is within the allowable range, the yield may be lowered. Therefore, in the vacuum film forming apparatus, in-line measurement, that is, without incorporating the optical film thickness measuring apparatus during or immediately after film formation in the product production line, without removing the product, Ideally, it has been widely attempted to measure the film thickness of all products.

前記真空成膜装置では、成膜の過程で、真空チャンバ内の空間に成膜材料の原料物質を蒸発させている。そのため、インライン測定を行う光学式膜厚測定装置においては、受光面に成膜材料が直接付着することを防止するため、カバーガラス等の保護部材を受光部の前面に設けることが必須となる。ただし、保護部材を単に設けるだけでは、投光部からの測定光が保護部材の表面で反射し、迷光となって受光部に入射するため、測定精度が低下する。   In the vacuum film forming apparatus, the raw material material of the film forming material is evaporated in the space in the vacuum chamber during the film forming process. Therefore, in an optical film thickness measurement apparatus that performs in-line measurement, it is essential to provide a protective member such as a cover glass on the front surface of the light receiving unit in order to prevent the film forming material from directly attaching to the light receiving surface. However, if the protective member is simply provided, the measurement light from the light projecting part is reflected on the surface of the protective member and enters the light receiving part as stray light, so that the measurement accuracy is lowered.

これに対して、本実施の形態では、膜厚測定部10cが真空成膜装置20に含まれる構成となっているので、成膜の過程で試料40に形成された薄膜の膜厚をインラインで測定することができる。しかも、前記実施の形態1で説明したように、カバーガラス14と測定プローブ13の投光部および受光部の位置関係が、前記式(2)を満たすように設定されている(図2参照)ため、カバーガラス14の表面で生じる反射光が迷光となって測定結果に影響を及ぼすことを抑制できる。さらに、前記実施の形態2で説明したように、背景光強度情報を予め取得して、実測光の光強度情報から差し引いて補正光強度情報を生成し、これから膜厚を算出することで、前記反射光だけでなく、散乱光が迷光となって測定結果に影響を及ぼすことを抑制できる。   On the other hand, in the present embodiment, since the film thickness measuring unit 10c is included in the vacuum film forming apparatus 20, the film thickness of the thin film formed on the sample 40 during the film forming process is in-line. Can be measured. Moreover, as described in the first embodiment, the positional relationship between the light projecting part and the light receiving part of the cover glass 14 and the measurement probe 13 is set so as to satisfy the formula (2) (see FIG. 2). Therefore, it is possible to suppress the reflected light generated on the surface of the cover glass 14 from becoming stray light and affecting the measurement result. Furthermore, as described in the second embodiment, the background light intensity information is acquired in advance, and the corrected light intensity information is generated by subtracting from the light intensity information of the actually measured light. It is possible to suppress not only reflected light but also scattered light from becoming stray light and affecting measurement results.

(実施例)
本発明について、実施例、比較例および参考例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。なお、以下の実施例、比較例および参考例における薄膜の「基準値」および「対照値」の測定は次のように行った。
(Example)
The present invention will be described more specifically based on examples, comparative examples, and reference examples, but the present invention is not limited thereto. Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present invention. The “reference value” and “control value” of the thin films in the following examples, comparative examples and reference examples were measured as follows.

[基準値の測定]
実施例、比較例または参考例で測定対象となる試料について、事前に、分光光度計(日立製作所製、製品番号U−4100)を用いて、当該試料に形成された薄膜の光反射スペクトルを測定した。この測定では、本発明に係る光学式膜厚測定装置を用いずに、市販の分光光度計を用いて、前記薄膜の基準となる光反射スペクトルを測定することを目的としているので、この測定結果を「基準値」と称する。
[Measurement of reference value]
For a sample to be measured in Examples, Comparative Examples or Reference Examples, a light reflection spectrum of a thin film formed on the sample is measured in advance using a spectrophotometer (manufactured by Hitachi, product number U-4100). did. This measurement is intended to measure the light reflection spectrum serving as a reference for the thin film using a commercially available spectrophotometer without using the optical film thickness measuring apparatus according to the present invention. Is referred to as a “reference value”.

[対照値の測定]
まず、実施例、比較例または参考例で用いられる光学式膜厚測定装置において、カバーガラスを設けないもの(便宜上、カバー無し測定装置と称する。)を準備した。次に、カバー無し測定装置を用いて、実施例、比較例または参考例で測定対象となる試料について、事前に、当該試料に形成された薄膜の光反射スペクトルを測定した。この測定では、カバーガラスを設置しない状態、すなわち迷光が発生しない状態で、前記薄膜の光反射スペクトルを測定し、カバーガラスを設置した状態での測定結果と比較対照し、カバーガラス以外に測定装置の構成上、測定結果に与える影響を確認することを目的としているので、この測定結果を「対照値」と称する。
[Measurement of control value]
First, an optical film thickness measuring apparatus used in Examples, Comparative Examples, or Reference Examples was prepared without a cover glass (referred to as a coverless measuring apparatus for convenience). Next, the light reflection spectrum of the thin film formed on the sample was measured in advance for the sample to be measured in the example, the comparative example, or the reference example, using a measurement apparatus without a cover. In this measurement, the light reflection spectrum of the thin film is measured in a state where the cover glass is not installed, that is, in the state where stray light is not generated, and is compared with the measurement result in the state where the cover glass is installed. Since the purpose is to confirm the influence on the measurement result, the measurement result is referred to as “control value”.

[実施例1]
本実施例を含む以下の全ての実施例、比較例および参考例では、図1に示す構成の光学式膜厚測定装置10aを用いた。まず、試料として、膜厚107nmの窒化ケイ素(Si3N4 )薄膜が形成されたテストガラスを準備し、前記のとおり、窒化ケイ素薄膜の基準値を測定した。また、光学式膜厚測定装置10aにおいてカバーガラス14を設けないカバー無し測定装置を準備し、前記のとおり、窒化ケイ素薄膜の対照値を測定した。
[Example 1]
In all the following examples, comparative examples and reference examples including this example, the optical film thickness measuring apparatus 10a having the configuration shown in FIG. 1 was used. First, as a sample, a test glass on which a silicon nitride (Si3N4) thin film having a thickness of 107 nm was formed was prepared, and the reference value of the silicon nitride thin film was measured as described above. Moreover, in the optical film thickness measuring apparatus 10a, a coverless measuring apparatus without the cover glass 14 was prepared, and the control value of the silicon nitride thin film was measured as described above.

次に、図1に示す構成の光学式膜厚測定装置10aを用いて窒化ケイ素薄膜の光反射スペクトルを測定した。なお、本実施例で用いた光学式膜厚測定装置10aにおいては、投光面122aおよび受光面122bの間隔d=3mmである。また、投光部121aの開口数NA1 =0.3であり、受光部121bの開口数NA2 =0.3であるので、θ1 =17.5°となり、θ2 =17.5°となる。この条件で、測定プローブ13の前面に設置されたカバーガラス14と投光面122aおよび受光面122bと間隔Lについては、前記式(2)を満たすように、L=3mmと設定した(図2参照)。この測定結果を「測定値」と称する。 Next, the light reflection spectrum of the silicon nitride thin film was measured using the optical film thickness measuring apparatus 10a having the configuration shown in FIG. In the optical film thickness measuring apparatus 10a used in this example, the distance d between the light projecting surface 122a and the light receiving surface 122b is 3 mm. Since the numerical aperture NA 1 = 0.3 of the light projecting portion 121a and the numerical aperture NA 2 = 0.3 of the light receiving portion 121b, θ 1 = 17.5 ° and θ 2 = 17.5 ° It becomes. Under this condition, the cover glass 14 installed on the front surface of the measurement probe 13, the light projecting surface 122a and the light receiving surface 122b, and the distance L were set to L = 3 mm so as to satisfy the above equation (2) (FIG. 2). reference). This measurement result is referred to as “measurement value”.

前記基準値、対照値および測定値の比較結果を図5に示す。図5において、横軸は、光反射スペクトルの波長(nm)を示し、縦軸は、相対反射率(%)を示す。また、基準値は実線で示し、対照値は点線で示し、測定値は破線で示した。なお、同様の結果を示す図6ないし図10においても、横軸および縦軸、並びに、基準値、対照値および測定値の表示は、いずれも図5と同様である。   The comparison results of the reference value, the control value, and the measured value are shown in FIG. In FIG. 5, the horizontal axis indicates the wavelength (nm) of the light reflection spectrum, and the vertical axis indicates the relative reflectance (%). The reference value is indicated by a solid line, the control value is indicated by a dotted line, and the measured value is indicated by a broken line. 6 to 10 showing the same results, the horizontal axis and the vertical axis, and the display of the reference value, the reference value, and the measured value are the same as those in FIG.

図5に示すように、測定値は、基準値とほぼ重なっており、また、対照値も同様に基準値とほぼ重なっていることから、前記間隔Lを、式(2)を満たすように好適な値に設定することで、カバーガラス14に起因する迷光の影響を有効に低減できることがわかる。   As shown in FIG. 5, the measured value almost overlaps with the reference value, and the control value also overlaps with the reference value as well. Therefore, the interval L is preferably set so as to satisfy the expression (2). It can be seen that the influence of stray light caused by the cover glass 14 can be effectively reduced by setting to a small value.

[比較例1]
前記実施例1において、配置したカバーガラス14と投光面122aおよび受光面122bと間隔Lを、前記式(2)を満たさないように、L=10mmと設定した以外は、当該実施例1と同様にして、窒化ケイ素薄膜の測定値を測定し、基準値および対照値と比較した。比較結果を図6に示す。
[Comparative Example 1]
In Example 1, except that the disposed cover glass 14, the light projecting surface 122a, the light receiving surface 122b, and the distance L are set to L = 10 mm so as not to satisfy the formula (2). Similarly, the measured value of the silicon nitride thin film was measured and compared with the reference value and the control value. The comparison results are shown in FIG.

図6に示すように、本比較例の測定値は、全体的に基準値および対照値を下回っている。それゆえ、前記間隔Lを好適な値に設定しなければ、カバーガラス14に起因する迷光によって光反射スペクトルに大きなずれが生じていることがわかる。   As shown in FIG. 6, the measured value of this comparative example is entirely lower than the reference value and the control value. Therefore, it can be seen that if the distance L is not set to a suitable value, the light reflection spectrum is largely shifted due to stray light caused by the cover glass 14.

なお、前記実施例1で述べたように、対照値は基準値とほぼ重なっており、本比較例の測定値が基準値および対照値からずれていることから、光学式膜厚測定装置10aは、その構成上、カバーガラス14を除いて、窒化ケイ素薄膜の光反射スペクトルの測定に対して悪影響を与えないことがわかる。   As described in Example 1, the control value almost overlaps the reference value, and the measured value of this comparative example is deviated from the reference value and the control value. From the configuration, it can be seen that except for the cover glass 14, it does not adversely affect the measurement of the light reflection spectrum of the silicon nitride thin film.

[参考例1]
前記比較例1において、前記実施の形態2で説明したデータ補正を行った以外は、当該比較例1と同様にして、窒化ケイ素薄膜の測定値を測定し、基準値および対照値と比較した。比較結果を図7に示す。
[Reference Example 1]
In Comparative Example 1, the measured values of the silicon nitride thin film were measured and compared with the reference value and the reference value in the same manner as Comparative Example 1 except that the data correction described in the second embodiment was performed. The comparison results are shown in FIG.

図7に示すように、本参考例の測定値は、全体的に基準値および対照値を下回っているものの、比較例1の測定結果を比較すれば、基準値と測定値との差分は小さいものとなっている。このように、膜厚の測定に際して前記データ補正を行っただけは、ある程度の迷光の低減効果は得られるものの、前記実施例1に示すような顕著な迷光の低減効果は得られない。それゆえ、反射光に関する基準値を設定する補正処理のみでは、迷光の影響を十分に抑制することはできないことがわかる。   As shown in FIG. 7, the measurement value of this reference example is generally lower than the reference value and the control value, but if the measurement result of Comparative Example 1 is compared, the difference between the reference value and the measurement value is small. It has become a thing. Thus, although only a certain amount of stray light reduction effect can be obtained only by performing the data correction when measuring the film thickness, a remarkable stray light reduction effect as shown in the first embodiment cannot be obtained. Therefore, it can be seen that the influence of stray light cannot be sufficiently suppressed only by the correction processing for setting the reference value for the reflected light.

ただし、本参考例の結果から、前記データ補正単独でも、ある程度迷光の影響を低減できることがわかる。したがって、前記データ補正を間隔Lの設定と組み合わせることで、迷光の影響をより一層低減することが期待される。   However, from the result of this reference example, it can be seen that the influence of stray light can be reduced to some extent by the data correction alone. Therefore, it is expected that the influence of stray light is further reduced by combining the data correction with the setting of the interval L.

[実施例2]
試料として、膜厚280nmの二酸化チタン薄膜が形成されているテストガラスを用いた以外は、前記実施例1と同様にして、当該二酸化チタン薄膜の光反射スペクトルについて、基準値、対照値および測定値を測定した。これらの比較結果を図8に示す。
[Example 2]
A reference value, a reference value, and a measured value for the light reflection spectrum of the titanium dioxide thin film were obtained in the same manner as in Example 1 except that a test glass on which a titanium dioxide thin film having a thickness of 280 nm was used as a sample. Was measured. The comparison results are shown in FIG.

図8に示すように、測定値は、基準値とほぼ重なっており、また、対照値も同様に基準値とほぼ重なっていることから、前記間隔Lを好適な値に設定することで、カバーガラス14に起因する迷光の影響を有効に低減できることがわかる。   As shown in FIG. 8, the measured value almost overlaps with the reference value, and the control value also overlaps with the reference value in the same manner. Therefore, by setting the interval L to a suitable value, the cover value can be obtained. It turns out that the influence of the stray light resulting from the glass 14 can be reduced effectively.

[比較例2]
前記実施例2において、配置したカバーガラス14と投光面122aおよび受光面122bと間隔Lを、前記比較例1と同様に、式(2)を満たさない値に設定した以外は、当該実施例2と同様にして、二酸化チタン薄膜の測定値を測定し、基準値および対照値と比較した。これらの比較結果を図9に示す。
[Comparative Example 2]
In the second embodiment, the cover glass 14, the light projecting surface 122a and the light receiving surface 122b, and the distance L are set to values that do not satisfy the expression (2) as in the first comparative example. In the same manner as in 2, the measured value of the titanium dioxide thin film was measured and compared with the reference value and the control value. The comparison results are shown in FIG.

図9に示すように、本比較例の測定値は、光反射スペクトルにおける2箇所の極小値近傍の波長域(約470nm〜約490nmの波長域と約660nm〜約700nmの波長域)では、基準値および対照値とほぼ重なっているものの、それ以外の波長域では、基準値および対照値を下回っている。それゆえ、前記間隔Lを好適な値に設定しなければ、カバーガラス14に起因する迷光によって光反射スペクトルに大きなずれが生じることがわかる。   As shown in FIG. 9, the measured value of this comparative example is a reference in the wavelength range near the two minimum values in the light reflection spectrum (the wavelength range of about 470 nm to about 490 nm and the wavelength range of about 660 nm to about 700 nm). Although it almost overlaps with the value and the reference value, it is lower than the reference value and the reference value in other wavelength regions. Therefore, it can be seen that if the interval L is not set to a suitable value, stray light caused by the cover glass 14 causes a large shift in the light reflection spectrum.

なお、前記実施例2で述べたように、対照値は基準値とほぼ重なっており、本比較例の測定値が基準値および対照値からずれていることから、光学式膜厚測定装置10aは、その構成上、カバーガラス14を除いて、二酸化チタン薄膜の光反射スペクトルの測定に対して悪影響を与えないことがわかる。   As described in Example 2, the control value almost overlaps the reference value, and the measurement value of this comparative example is deviated from the reference value and the control value. From the configuration, it can be seen that except for the cover glass 14, it does not adversely affect the measurement of the light reflection spectrum of the titanium dioxide thin film.

[参考例2]
前記比較例2において、前記実施の形態2で説明したデータ補正を行った以外は、当該比較例2と同様にして、二酸化チタン薄膜の測定値を測定し、基準値および対照値と比較した。比較結果を図10に示す。
[Reference Example 2]
In the comparative example 2, the measured value of the titanium dioxide thin film was measured and compared with the reference value and the reference value in the same manner as the comparative example 2 except that the data correction described in the second embodiment was performed. The comparison results are shown in FIG.

図10に示すように、本参考例の測定値は、前記比較例2と同様に、2箇所の極小値近傍の波長域以外は、基準値および対照値を下回っているが、極大値(約560nm)近傍の波長域では、比較例2よりも、基準値と測定値との差分は小さいものとなっている。このように、膜厚の測定に際して前記データ補正を行っただけは、ある程度の迷光の低減効果は得られるものの、前記実施例2に示すような顕著な迷光の低減効果は得られない。それゆえ、反射光に関する基準値を設定する補正処理のみでは、迷光の影響を十分に抑制することはできないことがわかる。   As shown in FIG. 10, the measured value of this reference example is lower than the reference value and the reference value except for the wavelength range in the vicinity of the two minimum values, as in Comparative Example 2, but the maximum value (about In the wavelength region near 560 nm), the difference between the reference value and the measured value is smaller than in Comparative Example 2. Thus, although only a certain amount of stray light reduction effect can be obtained only by performing the data correction when measuring the film thickness, the remarkable stray light reduction effect as shown in the second embodiment cannot be obtained. Therefore, it can be seen that the influence of stray light cannot be sufficiently suppressed only by the correction processing for setting the reference value for the reflected light.

ただし、本参考例の結果から、前記データ補正単独でも、ある程度迷光の影響を低減できることがわかる。したがって、前記データ補正を間隔Lの設定と組み合わせることで、迷光の影響をより一層低減することが期待される。   However, from the result of this reference example, it can be seen that the influence of stray light can be reduced to some extent by the data correction alone. Therefore, it is expected that the influence of stray light is further reduced by combining the data correction with the setting of the interval L.

なお、本発明は前記各実施の形態や実施例等の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態または実施例や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the description of each of the embodiments and examples, and various modifications are possible within the scope shown in the claims, and different embodiments or examples and Embodiments obtained by appropriately combining technical means disclosed in a plurality of modified examples are also included in the technical scope of the present invention.

本発明は、光学式膜厚測定装置の分野全般に好適に用いることができることに加え、例えば、真空成膜装置の分野において、インラインの膜厚測定手段として好適に用いることができる。   The present invention can be suitably used as the in-line film thickness measuring means in the field of the vacuum film forming apparatus, for example, in addition to being able to be suitably used in the entire field of the optical film thickness measuring apparatus.

10a 光学式膜厚測定装置
10b 光学式膜厚測定装置
10c 膜厚測定部(光学式膜厚測定装置)
12 Y型光ファイバー
13 測定プローブ(プローブ)
14 カバーガラス(保護部材)
16 光電変換部(光電変換器)
17 試料固定部材
20 真空成膜装置
21 解析部
22 演算部(膜厚算出器)
24 記憶部(記憶器)
121a 投光部
121b 受光部
122a 投光面
122b 受光面
10a Optical film thickness measuring device 10b Optical film thickness measuring device 10c Film thickness measuring unit (optical film thickness measuring device)
12 Y-type optical fiber 13 Measurement probe (probe)
14 Cover glass (protective member)
16 Photoelectric converter (photoelectric converter)
17 Sample fixing member 20 Vacuum film forming apparatus 21 Analysis unit 22 Calculation unit (film thickness calculator)
24 Memory unit (memory device)
121a Light emitting part 121b Light receiving part 122a Light emitting surface 122b Light receiving surface

Claims (4)

先端面から光を投光する投光部と、
前記投光部に並設され、先端面で光を受光する受光部と、
前記投光部および前記受光部のそれぞれの前記先端面の前方に、当該各先端面に対して平行となるよう配置され、光を透過する保護部材と、を備え、
前記投光部および前記受光部の前記先端面同士の間隔をd、前記投光部の前記先端面と前記保護部材との間隔をL、前記投光部の開口数をNA1 、前記受光部の開口数をNA2 と定義すれば、前記保護部材は、次の式
0<L<d/(tanθ1 +tanθ2
(但し、θ1 =sin-1 (NA1 )であり、θ2 =sin-1 (NA2 )であり、θ1 およびθ2 はいずれも90°未満である。)
を満たす位置に設けられ、
前記受光部の前記先端面と前記保護部材との間隔は、前記間隔Lと等しいか、前記間隔L未満となるよう設定されている、光学式膜厚測定装置。
A light projecting unit that projects light from the tip surface;
A light receiving portion that is arranged in parallel to the light projecting portion and receives light at the tip surface;
A protective member that is disposed in front of the front end surfaces of the light projecting unit and the light receiving unit so as to be parallel to the front end surfaces, and transmits light;
The distance between the tip surfaces of the light projecting part and the light receiving part is d, the distance between the tip surface of the light projecting part and the protective member is L, the numerical aperture of the light projecting part is NA 1 , and the light receiving part. If the numerical aperture of NA is defined as NA 2 , the protective member has the following formula: 0 <L <d / (tan θ 1 + tan θ 2 )
(However, θ 1 = sin −1 (NA 1 ), θ 2 = sin −1 (NA 2 ), and θ 1 and θ 2 are both less than 90 °.)
Provided in a position that satisfies
The optical film thickness measuring apparatus, wherein an interval between the distal end surface of the light receiving unit and the protective member is set to be equal to or less than the interval L.
薄膜が形成された試料を、前記投光部からの光が投光される位置に固定する試料固定部材と、
前記受光部で受光した光を電気信号に変換することにより、前記受光した光の光強度情報を生成する光電変換器と、
前記光電変換器で生成された前記光強度情報から前記試料に形成された前記薄膜の膜厚を算出する膜厚算出器と、
記憶器と、を備え、
前記膜厚算出器は、前記試料固定部材により前記試料が固定されていない状態で、前記投光部から光が投光されているときには、前記光電変換器で生成された前記光強度情報を、背景光強度情報として前記記憶器に記憶させるとともに、
前記試料固定部材により前記試料が固定され、当該試料に対して前記投光部から光が投光されているときには、前記光電変換器で生成された前記光強度情報から、前記記憶器に記憶されている前記背景光強度情報を差し引いた補正光強度情報を生成し、当該補正光強度情報から前記薄膜の膜厚を算出するよう構成されている、請求項1に記載の光学式膜厚測定装置。
A sample fixing member for fixing a sample on which a thin film is formed at a position where light from the light projecting unit is projected;
A photoelectric converter that generates light intensity information of the received light by converting the light received by the light receiving unit into an electrical signal;
A film thickness calculator that calculates the film thickness of the thin film formed on the sample from the light intensity information generated by the photoelectric converter;
A storage device,
The film thickness calculator, when light is projected from the light projecting unit in a state where the sample is not fixed by the sample fixing member, the light intensity information generated by the photoelectric converter, While storing in the storage as background light intensity information,
When the sample is fixed by the sample fixing member and light is projected from the light projecting unit to the sample, the light intensity information generated by the photoelectric converter is stored in the storage device. 2. The optical film thickness measuring device according to claim 1, configured to generate corrected light intensity information obtained by subtracting the background light intensity information, and to calculate the film thickness of the thin film from the corrected light intensity information. .
前記投光部および前記受光部が光ファイバーであり、前記保護部材がカバーガラスである、請求項1又は2に記載の光学式膜厚測定装置。   The optical film thickness measuring device according to claim 1 or 2, wherein the light projecting unit and the light receiving unit are optical fibers, and the protective member is a cover glass. 請求項1から3のいずれか1項に記載の光学式膜厚測定装置を備えている、真空成膜装置。   The vacuum film-forming apparatus provided with the optical film thickness measuring apparatus of any one of Claim 1 to 3.
JP2009081161A 2009-03-30 2009-03-30 Optical film thickness measuring apparatus and vacuum film forming apparatus having the same Active JP5216657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081161A JP5216657B2 (en) 2009-03-30 2009-03-30 Optical film thickness measuring apparatus and vacuum film forming apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081161A JP5216657B2 (en) 2009-03-30 2009-03-30 Optical film thickness measuring apparatus and vacuum film forming apparatus having the same

Publications (2)

Publication Number Publication Date
JP2010230623A true JP2010230623A (en) 2010-10-14
JP5216657B2 JP5216657B2 (en) 2013-06-19

Family

ID=43046588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081161A Active JP5216657B2 (en) 2009-03-30 2009-03-30 Optical film thickness measuring apparatus and vacuum film forming apparatus having the same

Country Status (1)

Country Link
JP (1) JP5216657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216410A1 (en) * 2017-05-26 2018-11-29 コニカミノルタ株式会社 Measurement device
EP2628396B1 (en) 2010-10-13 2019-11-20 Cargill, Incorporated Powder mix

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352505A (en) * 1999-04-05 2000-12-19 Toshiba Corp Method and apparatus for measuring film thickness, thin film-processing apparatus and manufacture of semiconductor apparatus
JP2003097919A (en) * 2001-09-26 2003-04-03 Dainippon Screen Mfg Co Ltd Device for measuring thickness of film and system for processing substrate using the same
JP2003202211A (en) * 2002-01-04 2003-07-18 Furukawa Electric Co Ltd:The Method and device for film thickness monitor light wavelength determination, and program
JP2005301032A (en) * 2004-04-14 2005-10-27 Olympus Corp Optical thin film forming apparatus, optical thin film forming method and optical element
JP2008268093A (en) * 2007-04-24 2008-11-06 Yokogawa Electric Corp Apparatus for measuring film thickness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352505A (en) * 1999-04-05 2000-12-19 Toshiba Corp Method and apparatus for measuring film thickness, thin film-processing apparatus and manufacture of semiconductor apparatus
JP2003097919A (en) * 2001-09-26 2003-04-03 Dainippon Screen Mfg Co Ltd Device for measuring thickness of film and system for processing substrate using the same
JP2003202211A (en) * 2002-01-04 2003-07-18 Furukawa Electric Co Ltd:The Method and device for film thickness monitor light wavelength determination, and program
JP2005301032A (en) * 2004-04-14 2005-10-27 Olympus Corp Optical thin film forming apparatus, optical thin film forming method and optical element
JP2008268093A (en) * 2007-04-24 2008-11-06 Yokogawa Electric Corp Apparatus for measuring film thickness

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2628396B1 (en) 2010-10-13 2019-11-20 Cargill, Incorporated Powder mix
WO2018216410A1 (en) * 2017-05-26 2018-11-29 コニカミノルタ株式会社 Measurement device
JPWO2018216410A1 (en) * 2017-05-26 2020-03-26 コニカミノルタ株式会社 measuring device
EP3598060A4 (en) * 2017-05-26 2020-04-15 Konica Minolta, Inc. Measurement device

Also Published As

Publication number Publication date
JP5216657B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
US10522375B2 (en) Monitoring system for deposition and method of operation thereof
JP4482618B2 (en) Film thickness measuring apparatus and film thickness measuring method
WO2012036213A1 (en) Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
JP4898776B2 (en) Measuring device for optically monitoring a lamination process and method for optically monitoring a lamination process
US11735401B2 (en) In-situ optical chamber surface and process sensor
KR101890944B1 (en) Spectral characteristic measurement method and spectral characteristic measurement apparatus
JP5216657B2 (en) Optical film thickness measuring apparatus and vacuum film forming apparatus having the same
TWI639821B (en) Broadband spectrum optical measuring device and plasma processing device
US10072986B1 (en) Detector for low temperature transmission pyrometry
US10871396B2 (en) Optical emission spectroscopy calibration device and system including the same
US8197634B2 (en) Plasma processing apparatus
US10605729B2 (en) ATR-spectrometer
WO2020100808A1 (en) Optical ranging device and optical ranging method
US11499869B2 (en) Optical wall and process sensor with plasma facing sensor
CN115104000A (en) Film thickness measuring apparatus and film thickness measuring method
JP5163933B2 (en) Film thickness measuring device
TWI836157B (en) Optical sensor system, optical sensor, and plasma processing chamber
JP6273996B2 (en) Polychromator and analyzer equipped with the same
TW201819848A (en) Multi-wavelength optical measurement device and measurement method ensuring that at any stage of film growth the measurement of warpage is effective
KR20210048999A (en) Optical measurement apparatus and optical measurement method
WO2018193572A1 (en) Spectrophotometer
JP2020051759A (en) Foreign matter inspection device, exposure device, and article production method
JP2010002400A (en) Thermopile type infrared detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250