JP2010229846A - Rotary expander and fluid machine - Google Patents

Rotary expander and fluid machine Download PDF

Info

Publication number
JP2010229846A
JP2010229846A JP2009076388A JP2009076388A JP2010229846A JP 2010229846 A JP2010229846 A JP 2010229846A JP 2009076388 A JP2009076388 A JP 2009076388A JP 2009076388 A JP2009076388 A JP 2009076388A JP 2010229846 A JP2010229846 A JP 2010229846A
Authority
JP
Japan
Prior art keywords
expansion chamber
cylinder
rotor
rotary
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009076388A
Other languages
Japanese (ja)
Other versions
JP5173908B2 (en
Inventor
Takuya Hirayama
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2009076388A priority Critical patent/JP5173908B2/en
Publication of JP2010229846A publication Critical patent/JP2010229846A/en
Application granted granted Critical
Publication of JP5173908B2 publication Critical patent/JP5173908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary expander with a simplified structure reducing energy loss due to sliding between members during operation. <P>SOLUTION: The rotary expander 2 includes: a rotor 13 being in contact with the inner peripheral surface 10a of a cylinder 10 and revolving in an expansion chamber 17; a blade 14 pushed and urged to abut on the outer peripheral surface of the rotor 13, reciprocating corresponding to the revolution of the rotor 13, and dividing the expansion chamber 17 into a section into which high pressure gas flows and a section discharging the expanded low pressure gas; a reciprocating member 15 pushed and urged to abut on the outer peripheral surface of the rotor 13 and reciprocating corresponding to the revolution of the rotor 13; and a regulating means 16 for causing the high pressure gas to flow intermittently into the expansion chamber 17 by the reciprocating motion of the reciprocating member 15. Thus, the structure of the rotary expander 2 is made simple, and energy loss due to sliding between members during operation is reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ロータリ型膨張機及び流体機械に関し、特に、構造が簡単で部材間の摺動によるエネルギー損失が少ないロータリ型膨張機及びこのロータリ型膨張機を用いた流体機械に関する。   The present invention relates to a rotary expander and a fluid machine, and more particularly to a rotary expander having a simple structure and less energy loss due to sliding between members, and a fluid machine using the rotary expander.

従来、ロータリ型膨張機及びそのロータリ型膨張機を用いた流体機械の発明としては、例えば、下記特許文献1〜3に記載されたものが知られている。   Conventionally, as inventions of a rotary expander and a fluid machine using the rotary expander, for example, those described in the following Patent Documents 1 to 3 are known.

特許文献1に記載されたロータリ型膨張機は、両端面を閉塞部材により閉塞されたシリンダと、シリンダを貫通する回転軸と、回転軸の偏心部に嵌合されてシリンダ内に収納されることによりシリンダ内に膨張室を形成するロータと、回転軸の副偏心部に嵌合された公転部材とを備えている。公転部材と一方の閉塞部材とは対向する平面が接して摺動するように配置され、回転軸の回転に伴なって公転部材が公転した場合の特定のタイミングで、公転部材に形成された開口と閉塞部材に形成された吸入口とが連通され、膨張室内に高圧の冷媒が供給される。膨張室内に供給された高圧の冷媒は膨張室内で膨張し、膨張して低圧となった後に吐出される。   The rotary type expander described in Patent Document 1 is fitted into a cylinder whose both end faces are closed by a closing member, a rotating shaft that penetrates the cylinder, and an eccentric portion of the rotating shaft, and is accommodated in the cylinder. The rotor which forms an expansion chamber in a cylinder by this, and the revolution member fitted by the sub-eccentric part of the rotating shaft are provided. An opening formed in the revolution member at a specific timing when the revolution member revolves with the rotation of the rotation shaft. And a suction port formed in the closing member communicate with each other, and a high-pressure refrigerant is supplied into the expansion chamber. The high-pressure refrigerant supplied into the expansion chamber expands in the expansion chamber, and is discharged after being expanded to a low pressure.

特許文献2に記載されたロータリ型膨張機は、両端面を閉塞部材により閉塞されたシリンダと、シリンダを貫通する回転軸と、回転軸の偏心部に嵌合されてシリンダ内に収納されることによりシリンダ内に膨張室を形成するロータ(ピストン)と、偏心部に形成された連通路とを備えている。偏心部は、連通路が形成された面が一方の閉塞部材の面に接して摺動するように配置され、回転軸の回転角が所定範囲である間だけ、閉塞部材に形成された導入通路やロータの連通路を介して膨張室内に高圧の冷媒が供給される。膨張室内に供給された高圧の冷媒は膨張室内で膨張し、膨張して低圧となった後に吐出される。   The rotary expander described in Patent Document 2 is fitted into a cylinder whose both end faces are closed by a closing member, a rotating shaft that passes through the cylinder, and an eccentric portion of the rotating shaft, and is accommodated in the cylinder. Thus, a rotor (piston) that forms an expansion chamber in the cylinder and a communication path formed in the eccentric portion are provided. The eccentric portion is arranged such that the surface on which the communication passage is formed slides in contact with the surface of the one closing member, and the introduction passage is formed in the closing member only while the rotation angle of the rotation shaft is within a predetermined range. In addition, high-pressure refrigerant is supplied into the expansion chamber via the communication path of the rotor. The high-pressure refrigerant supplied into the expansion chamber expands in the expansion chamber, and is discharged after being expanded to a low pressure.

特許文献3に記載されたロータリ型膨張機は、両端面を閉塞部材により変速されたシリンダと、シリンダを貫通する回転軸と、回転軸の偏心部に嵌合されてシリンダ内に収納されることによりシリンダ内に膨張室を形成するロータ(ピストン)と、摺動可能な仕切ベーンと、摺動可能な閉じ込みベーンと、回転軸に連結されて閉じ込みベーンの摺動動作を規制するカムとを備えている。ロータの回転位置により閉止部材に形成されている冷媒の吸込穴が開閉され、吸込穴が開いたタイミングで高圧の冷媒が膨張室内に供給される。膨張室内に供給された冷媒は膨張室内で膨張し、低圧となった後に吐出される。   The rotary expander described in Patent Document 3 is fitted into a cylinder whose end faces are changed by a closing member, a rotating shaft that penetrates the cylinder, and an eccentric portion of the rotating shaft, and is accommodated in the cylinder. A rotor (piston) that forms an expansion chamber in the cylinder, a slidable partition vane, a slidable closing vane, and a cam that is connected to the rotating shaft and regulates the sliding movement of the closing vane. It has. The refrigerant suction hole formed in the closing member is opened and closed depending on the rotational position of the rotor, and the high-pressure refrigerant is supplied into the expansion chamber at the timing when the suction hole is opened. The refrigerant supplied into the expansion chamber expands in the expansion chamber and is discharged after reaching a low pressure.

特開2001−153077号公報JP 2001-153077 A 特開2004−44569号公報JP 2004-44569 A 特開2007−138728号公報JP 2007-138728 A

しかしながら、上述したロータリ型膨張機においては、以下の点について考慮されていない。   However, the following points are not considered in the rotary expander described above.

特許文献1に記載されたロータリ型膨張機では、回転軸に副偏心部を設ける必要があり、さらに、副偏心部に嵌合させた公転部材の自転を防止するためのオルダム機構を設ける必要があり、構造が複雑になって低コスト化を図ることが困難である。また、公転部材が閉塞部材と面接触した状態で公転しているため、その摺動部分でのエネルギー損失が大きくなっている。   In the rotary expander described in Patent Document 1, it is necessary to provide a sub-eccentric part on the rotating shaft, and it is also necessary to provide an Oldham mechanism for preventing the rotation of the revolving member fitted to the sub-eccentric part. In addition, the structure becomes complicated and it is difficult to reduce the cost. Further, since the revolving member revolves in a state where it is in surface contact with the closing member, energy loss at the sliding portion is increased.

特許文献2に記載されたロータリ型膨張機では、偏心部がその端面を閉塞部材に面接触させた状態で回転しているため、その摺動部分でのエネルギー損失が大きくなっている。さらに、偏心部に連通路を形成するためには、偏心部の偏心量を大きくする必要があり、設計的に制約が大きくなっている。   In the rotary type expander described in Patent Document 2, since the eccentric portion rotates in a state where the end surface thereof is in surface contact with the closing member, energy loss at the sliding portion is large. Furthermore, in order to form the communication path in the eccentric portion, it is necessary to increase the amount of eccentricity of the eccentric portion, and the design is greatly restricted.

特許文献3に記載されたロータリ型膨張機では、閉じ込みベーンを摺動させるためのカムが必要であり、構造が複雑になって低コスト化を図ることが困難である。また、閉じ込みベーンがロータに対して接触・非接触を繰り返すため、騒音が発生するという問題や、ロータや閉じ込みベーンが破損して信頼性が低下するという問題がある。   In the rotary type expander described in Patent Document 3, a cam for sliding the closing vane is necessary, and the structure becomes complicated and it is difficult to reduce the cost. In addition, since the closed vane repeats contact and non-contact with the rotor, there are problems that noise is generated, and that the reliability of the rotor and the closed vane is damaged and reliability is lowered.

本発明はこのような課題を解決するためになされたもので、その目的は、構造の簡単化を図るとともに、運転時における部材間の摺動によるエネルギー損失を低減させることができるロータリ型膨張機及び流体機械を提供することである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a rotary type expander capable of simplifying the structure and reducing energy loss due to sliding between members during operation. And providing a fluid machine.

本発明の実施の形態に係る第1の特徴は、ロータリ型膨張機において、内周面を有するシリンダと、前記シリンダ内を貫通して設けられた回転軸と、前記シリンダの両端面を閉塞して設けられ、前記シリンダ内に膨張室を形成する閉塞部材と、前記回転軸の偏心部に嵌合され、前記シリンダの内周面に接して前記膨張室内を公転するロータと、前記ロータの外周面に当接するように押圧付勢され、前記ロータの公転に対応して往復移動し、前記膨張室を高圧ガスが流入する側と膨張後の低圧ガスが吐出される側とに2分するブレードと、前記ロータの外周面に当接するように押圧付勢され、前記ロータの公転に対応して往復移動する往復移動部材と、前記往復移動部材の往復移動動作により前記膨張室への高圧ガスの流入を断続させる規制手段と、を備えることである。   A first feature according to an embodiment of the present invention is that in a rotary expander, a cylinder having an inner peripheral surface, a rotating shaft provided through the cylinder, and both end surfaces of the cylinder are closed. A closing member that forms an expansion chamber in the cylinder, a rotor that is fitted to an eccentric portion of the rotating shaft, revolves in the expansion chamber in contact with an inner peripheral surface of the cylinder, and an outer periphery of the rotor A blade that is pressed and urged to abut against the surface, reciprocates in response to the revolution of the rotor, and divides the expansion chamber into a side into which high-pressure gas flows and a side from which low-pressure gas after expansion is discharged A reciprocating member that is pressed and urged to contact the outer peripheral surface of the rotor and reciprocates in response to the revolution of the rotor, and a reciprocating operation of the reciprocating member causes the high-pressure gas to enter the expansion chamber. Regulators that interrupt the inflow And, it is by providing the.

本発明の実施の形態に係る第2の特徴は、流体機械において、第1の特徴に係るロータリ型膨張機と、前記回転軸を回転駆動させる電動機と、前記ロータリ型膨張機と前記電動機とから駆動力を伝達される圧縮機構部と、前記ロータリ型膨張機と前記電動機と前記圧縮機構部とを収納するケースと、を備えることである。   A second feature according to an embodiment of the present invention is that in a fluid machine, the rotary expander according to the first feature, an electric motor that rotationally drives the rotating shaft, the rotary expander, and the electric motor. And a compression mechanism portion to which a driving force is transmitted, and a case for housing the rotary expander, the electric motor, and the compression mechanism portion.

本発明によれば、構造が簡単化され、運転時における部材間の摺動によるエネルギー損失を低減させることができるロータリ型膨張機及び流体機械を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the structure can be simplified and the rotary type expander and fluid machine which can reduce the energy loss by sliding between the members at the time of a driving | operation can be provided.

本発明の一実施の形態の流体機械を示す縦断側面図である。It is a vertical side view which shows the fluid machine of one embodiment of this invention. 流体機械におけるロータリ型膨張機の部分を、図1とは異なる位置で断面にした縦断側面図である。It is the vertical side view which made the cross section the part of the rotary type expander in a fluid machine in the position different from FIG. ロータリ型膨張機の回転軸の回転角が0°(360°)、45°の場合の膨張動作図である。It is an expansion operation | movement figure in case the rotation angle of the rotating shaft of a rotary type expander is 0 degree (360 degrees) and 45 degrees. ロータリ型膨張機の回転軸の回転角が90°、135°の場合の膨張動作図である。It is an expansion operation | movement figure in case the rotation angle of the rotating shaft of a rotary type expander is 90 degrees and 135 degrees. ロータリ型膨張機の回転軸の回転角が180°、225°の場合の膨張動作図である。It is an expansion operation | movement figure in case the rotation angle of the rotating shaft of a rotary type expander is 180 degrees and 225 degrees. ロータリ型膨張機の回転軸の回転角が270°、315°の場合の膨張動作図である。It is an expansion operation | movement figure in case the rotation angle of the rotating shaft of a rotary type expander is 270 degrees and 315 degrees.

以下、本発明の一実施の形態を図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1に示す流体機械1は、冷凍装置の一部として用いられるもので、ロータリ型膨張機2と、電動機3と、圧縮機構部である圧縮機4と、これらのロータリ型膨張機2と電動機3と圧縮機4とを収納するケース5とを備えている。ケース5には、圧縮機4で圧縮された高温・高圧の冷媒が放熱器(図示せず)等に向けて吐出される吐出管6と、放熱器等で放熱された冷媒がロータリ型膨張機2に向けて流入する流入管7と、ロータリ型膨張機2で膨張された低温・低圧の冷媒が蒸発器(図示せず)に向けて吐出される吐出管8と、蒸発器で吸熱された冷媒が圧縮機4に向けて流入する流入管9とが設けられている。   A fluid machine 1 shown in FIG. 1 is used as a part of a refrigeration apparatus, and includes a rotary type expander 2, an electric motor 3, a compressor 4 as a compression mechanism, and these rotary type expander 2 and an electric motor. 3 and a case 5 for housing the compressor 4. The case 5 includes a discharge pipe 6 through which high-temperature and high-pressure refrigerant compressed by the compressor 4 is discharged toward a radiator (not shown), and the refrigerant radiated by the radiator etc. is a rotary expander. 2, an inflow pipe 7 that flows into the rotary expander 2, a low-temperature / low-pressure refrigerant expanded by the rotary expander 2 is discharged toward the evaporator (not shown), and the evaporator absorbs heat. An inflow pipe 9 through which the refrigerant flows toward the compressor 4 is provided.

ロータリ型膨張機2は、シリンダ10と、閉塞部材11a,11bと、回転軸12と、ロータ13と、ブレード14(図3〜図6参照)と、往復移動部材15と、規制手段16とを有している。   The rotary expander 2 includes a cylinder 10, closing members 11 a and 11 b, a rotating shaft 12, a rotor 13, a blade 14 (see FIGS. 3 to 6), a reciprocating member 15, and a regulating means 16. Have.

シリンダ10は、略円筒状に形成されて内周面10aを有しており、シリンダ10の一方の端面が閉塞部材11aで閉塞され、シリンダ10の他方の端面が閉塞部材11bで閉塞され、シリンダ10における閉塞部材11a,11bで閉塞された領域が膨張室17とされている。   The cylinder 10 is formed in a substantially cylindrical shape and has an inner peripheral surface 10a. One end face of the cylinder 10 is closed by a closing member 11a, and the other end face of the cylinder 10 is closed by a closing member 11b. An area closed by the closing members 11 a and 11 b in FIG.

回転軸12は、シリンダ10と閉塞部材11a,11bとをシリンダ10の中心軸方向に貫通して設けられており、回転軸12における膨張室17内に位置する部分に偏心部12aが形成され、この偏心部12aにロータ13が回転可能に嵌合されている。ロータ13は、回転軸12の回転に伴ない、シリンダ10の内周面10aに接しながら膨張室17内を公転する。   The rotary shaft 12 is provided through the cylinder 10 and the closing members 11a and 11b in the direction of the central axis of the cylinder 10, and an eccentric portion 12a is formed in a portion of the rotary shaft 12 located in the expansion chamber 17, The rotor 13 is rotatably fitted to the eccentric portion 12a. The rotor 13 revolves in the expansion chamber 17 while being in contact with the inner peripheral surface 10 a of the cylinder 10 as the rotary shaft 12 rotates.

ブレード14は、図3ないし図6に示すように、シリンダ10に形成された溝18内に摺動可能に収容され、摺動方向の一端をロータ13の外周面に当接するようにスプリング19により押圧付勢され、ロータ13の公転に対応して溝18内を往復移動する。ブレード14がロータ13の外周面に当接されることにより、膨張室17はロータ13とブレード14とにより二分され、一方は、流入管7とシリンダ10に形成された流入通路7a及び流入ガス導入通路23とを経由した高圧の冷媒が流入する流入側膨張室17aとされ、他方は、膨張後の低圧の冷媒がシリンダ10に形成された吐出通路20と吐出管8とを経由して吐出される吐出側膨張室17bとされている。   The blade 14 is slidably accommodated in a groove 18 formed in the cylinder 10 as shown in FIGS. 3 to 6, and is moved by a spring 19 so that one end in the sliding direction abuts on the outer peripheral surface of the rotor 13. It is pressed and urged to reciprocate in the groove 18 in response to the revolution of the rotor 13. When the blade 14 is brought into contact with the outer peripheral surface of the rotor 13, the expansion chamber 17 is divided into two parts by the rotor 13 and the blade 14, one of which is the inflow passage 7 a formed in the inflow pipe 7 and the cylinder 10 and the inflow gas introduction. The other side is an inflow side expansion chamber 17a into which high-pressure refrigerant flows via the passage 23, and the other is expanded low-pressure refrigerant discharged via the discharge passage 20 and the discharge pipe 8 formed in the cylinder 10. The discharge side expansion chamber 17b.

往復移動部材15は、図3ないし図6に示すように、シリンダ10に形成された溝21内に摺動可能に収容され、摺動方向の一端をロータ13の外周面に当接するようにスプリング22により押圧付勢され、ロータ13の公転に対応して溝21内を往復移動する。   The reciprocating member 15 is slidably accommodated in a groove 21 formed in the cylinder 10 as shown in FIGS. 3 to 6, and is a spring so that one end in the sliding direction abuts the outer peripheral surface of the rotor 13. It is urged by 22 and reciprocates in the groove 21 in response to the revolution of the rotor 13.

規制手段16は、往復移動部材15の往復移動動作により流入側膨張室17aへの高圧の冷媒の流入を断続させる機構であり、シリンダ10に形成された流入ガス導入通路23と、シリンダ10に流入ガス導入通路23と交差して設けられて往復移動部材15が摺動可能に収容される溝21と、往復移動部材15に設けられてこの往復移動部材15が所定の摺動範囲を摺動する場合に流入ガス導入通路23を連通状態とする連通路部24とを備えている。なお、往復移動部材15が所定の摺動範囲以外に位置する場合には、流入ガス導入通路23は往復移動部材15により遮断されている。また、連通路部24は、往復移動部材15が最も膨張室17内に入り込んだ場合においても膨張室17内に連通しない位置に形成されている。   The restricting means 16 is a mechanism that interrupts the flow of the high-pressure refrigerant into the inflow side expansion chamber 17 a by the reciprocating movement of the reciprocating member 15, and flows into the inflow gas introduction passage 23 formed in the cylinder 10 and the cylinder 10. A groove 21 that intersects with the gas introduction passage 23 and slidably accommodates the reciprocating member 15 and a reciprocating member 15 that is provided in the reciprocating member 15 slides within a predetermined sliding range. In this case, a communication passage portion 24 is provided for bringing the inflow gas introduction passage 23 into a communication state. When the reciprocating member 15 is located outside a predetermined sliding range, the inflow gas introduction passage 23 is blocked by the reciprocating member 15. Further, the communication passage portion 24 is formed at a position that does not communicate with the expansion chamber 17 even when the reciprocating member 15 enters the expansion chamber 17 most.

流入ガス導入通路23は、シリンダ10の端面に形成された凹状の溝25を、覆い部材である閉塞部材11aで覆うことにより形成されている。   The inflow gas introduction passage 23 is formed by covering a concave groove 25 formed on the end surface of the cylinder 10 with a closing member 11a which is a covering member.

電動機3は、回転軸12の外周面に固定された回転子26と、ケース5の内周部に固定されて回転子26の外周を囲む位置に配置された固定子27とを備えている。固定子27には巻線が巻かれており、この巻線に対して通電制御することにより回転軸12が軸心回りに回転する。   The electric motor 3 includes a rotor 26 fixed to the outer peripheral surface of the rotary shaft 12 and a stator 27 fixed to the inner peripheral portion of the case 5 and disposed at a position surrounding the outer periphery of the rotor 26. A winding is wound around the stator 27, and the rotating shaft 12 rotates around the axis by controlling energization of the winding.

圧縮機4は、内側に圧縮室28が形成されたシリンダ29、シリンダ29をその中心軸方向に貫通して設けられた回転軸12、回転軸12の偏心部12bに嵌合されて圧縮室28内で公転するローラ30等により構成されている。流入管9が圧縮室28の流入側に接続され、圧縮室28内で圧縮されて高温・高圧となった冷媒が吐出マフラ31からケース5内に吐出される。ケース5内に吐出された高温・高圧の冷媒は、吐出管6を経由して放熱器に向けて吐出される。   The compressor 4 is fitted into a cylinder 29 having a compression chamber 28 formed therein, a rotary shaft 12 provided through the cylinder 29 in the direction of its central axis, and an eccentric portion 12b of the rotary shaft 12 so as to be compressed. It is comprised by the roller 30 etc. which revolve inside. The inflow pipe 9 is connected to the inflow side of the compression chamber 28, and the refrigerant compressed in the compression chamber 28 and having a high temperature and high pressure is discharged from the discharge muffler 31 into the case 5. The high-temperature and high-pressure refrigerant discharged into the case 5 is discharged toward the radiator via the discharge pipe 6.

このような構成において、ロータリ型膨張機2の膨張動作を図3ないし図6に基づいて説明する。なお、回転軸12は矢印方向(反時計回り方向)に回転し、ロータ13はその回転方向と同じ方向(反時計回り方向)に公転している。   In such a configuration, the expansion operation of the rotary expander 2 will be described with reference to FIGS. The rotary shaft 12 rotates in the arrow direction (counterclockwise direction), and the rotor 13 revolves in the same direction (counterclockwise direction) as the rotation direction.

図3(a)に示すように、回転軸12の回転角度が略0°(360°)になった場合は、往復移動部材15が膨張室17から押し出される方向に移動し、往復移動部材15により遮断されていた流入ガス導入通路23が連通路部24を介して連通状態となり、高圧の冷媒が流入ガス導入通路23を経由して膨張室17内に流入可能となる。また、この場合には、膨張後の低圧の冷媒が収容されている吐出側膨張室17bが吐出通路20に連通され、吐出通路20と吐出管8とを経由して吐出側膨張室17b内の低圧の冷媒の吐出が開始される。   As shown in FIG. 3A, when the rotation angle of the rotary shaft 12 becomes approximately 0 ° (360 °), the reciprocating member 15 moves in the direction of being pushed out of the expansion chamber 17, and the reciprocating member 15 The inflow gas introduction passage 23 that has been blocked by the communication state is brought into a communication state via the communication passage portion 24, and high-pressure refrigerant can flow into the expansion chamber 17 through the inflow gas introduction passage 23. In this case, the discharge-side expansion chamber 17b in which the low-pressure refrigerant after expansion is accommodated communicates with the discharge passage 20 and passes through the discharge passage 20 and the discharge pipe 8 in the discharge-side expansion chamber 17b. The discharge of the low-pressure refrigerant is started.

図3(b)に示すように、回転軸12の回転角度が略45°になった場合には、流入ガス導入通路23が連通路部24を介して連通状態を維持されるとともに、ロータ13の公転に伴なって膨張室17内に流入側膨張室17aが生じ、流入側膨張室17aへの高圧の冷媒の流入が開始される。なお、流入側膨張室17aへの高圧の冷媒の流入は、図4(a)に示すように、回転軸12の回転角度が略90°になるまで継続される。   As shown in FIG. 3 (b), when the rotation angle of the rotary shaft 12 becomes approximately 45 °, the inflow gas introduction passage 23 is maintained in the communication state via the communication passage portion 24, and the rotor 13 With this revolution, the inflow side expansion chamber 17a is generated in the expansion chamber 17, and the high-pressure refrigerant starts to flow into the inflow side expansion chamber 17a. In addition, the inflow of the high-pressure refrigerant into the inflow side expansion chamber 17a is continued until the rotation angle of the rotating shaft 12 becomes approximately 90 ° as shown in FIG.

回転軸12の回転角度が90°を過ぎ、例えば、図4(b)に示すように135°になると、流入ガス導入通路23が往復移動部材15により遮断され、流入側膨張室17aへの高圧の冷媒の流入が終了する。図4(b)に示すように流入側膨張室17aへの高圧の冷媒の流入が終了した後は、図5及び図6に示すように回転軸12の回転に伴なって流入側膨張室17aの容積が次第に大きくなり、流入側膨張室17a内の冷媒が膨張し、次第に低圧になる。また、図3から図6に至るまでの間、吐出側膨張室17bは吐出通路20に連通した状態を維持され、吐出側膨張室17b内の低圧の冷媒は吐出通路20と吐出管8とを経由して吐出される。   When the rotation angle of the rotary shaft 12 exceeds 90 °, for example, 135 ° as shown in FIG. 4B, the inflow gas introduction passage 23 is blocked by the reciprocating member 15, and the high-pressure to the inflow side expansion chamber 17a. Inflow of the refrigerant ends. After the inflow of the high-pressure refrigerant into the inflow side expansion chamber 17a is completed as shown in FIG. 4B, the inflow side expansion chamber 17a is accompanied with the rotation of the rotary shaft 12 as shown in FIGS. Gradually increases, the refrigerant in the inflow side expansion chamber 17a expands, and gradually becomes a low pressure. 3 to FIG. 6, the discharge side expansion chamber 17 b is maintained in communication with the discharge passage 20, and the low-pressure refrigerant in the discharge side expansion chamber 17 b passes through the discharge passage 20 and the discharge pipe 8. It is discharged via.

そして、図6(b)の状態から図3(a)の状態に移行する間に、それまで流入側膨張室17aであった部分が吐出通路20に連通し、吐出側膨張室17bに切り換わり、流入側膨張室17aに流入して膨張された冷媒が、吐出通路20と吐出管8とを経由して吐出される。   Then, during the transition from the state of FIG. 6B to the state of FIG. 3A, the portion that has been the inflow side expansion chamber 17a until then communicates with the discharge passage 20 and switches to the discharge side expansion chamber 17b. Then, the refrigerant that has flowed into the inflow side expansion chamber 17 a and expanded is discharged through the discharge passage 20 and the discharge pipe 8.

ここで、このロータリ型膨張機2は、ロータ13の外周面にブレード14の一端と往復移動部材15の一端とを当接させ、ロータ13の公転に伴なってブレード14と往復移動部材15とを摺動させ、さらに、往復移動部材15の往復移動動作により規制手段16によって流入側膨張室17aへの高圧の冷媒の流入を断続させている。そして、規制手段16は、往復移動部材15に連通路部24を形成し、往復移動部材15が所定の摺動範囲を摺動する場合に連通路部24を介して流入ガス導入通路23を連通させ、往復移動部材15がその他の摺動範囲に位置する場合には流入ガス導入通路23を遮断する構成である。したがって、ロータリ型膨張機2の構造を簡単化することができる。また、ロータリ型膨張機2の運転時において、広い面積を接触させながら回転する部分がなく、部材間の摺動によるエネルギー損失を低減することができる。   Here, in the rotary expander 2, the one end of the blade 14 and one end of the reciprocating member 15 are brought into contact with the outer peripheral surface of the rotor 13, and the blade 14 and the reciprocating member 15 are Further, the flow of the high-pressure refrigerant into the inflow side expansion chamber 17a is intermittently interrupted by the restricting means 16 by the reciprocating motion of the reciprocating member 15. Then, the regulating means 16 forms the communication passage portion 24 in the reciprocating member 15, and communicates the inflow gas introduction passage 23 via the communication passage portion 24 when the reciprocating member 15 slides within a predetermined sliding range. The inflow gas introduction passage 23 is blocked when the reciprocating member 15 is located in another sliding range. Therefore, the structure of the rotary expander 2 can be simplified. Further, when the rotary expander 2 is operated, there is no portion that rotates while contacting a large area, and energy loss due to sliding between members can be reduced.

流入ガス導入通路23の形成は、シリンダ10の端面に凹状の溝25を形成し、この凹状の溝25を覆い部材である閉塞部材11aで覆った構造であるため、流入ガス導入通路23の形成を簡単に行なうことができる。   The inflow gas introduction passage 23 is formed by forming a concave groove 25 on the end face of the cylinder 10 and covering the concave groove 25 with a closing member 11a as a cover member. Can be done easily.

なお、凹状の溝25を覆う部材は、閉塞部材11aに限定されるものではなく、他の部材を用いてもよい。   In addition, the member which covers the concave groove | channel 25 is not limited to the obstruction | occlusion member 11a, You may use another member.

連通路部24の形成位置に関しては、往復移動部材15が最も膨張室17内に入り込んだ場合においても膨張室17内に連通しない位置とされている。このため、流入ガス導入通路23を遮断した往復移動部材15が最も膨張室17内に入り込んだ場合、例えば、図5(b)の場合においても、高圧の冷媒が残留している連通路部24が膨張工程にある流入側膨張室17aに連通せず、連通路部24内に残留している高圧の冷媒が流入側膨張室17a内に流入して連通路部24には低圧の冷媒が入り込むということが防止される。このため、次の工程で流入側膨張室17aに流入される冷媒の量が少なくなり、膨張効率が低下するということを防止することができる。この点は、連通路部24の容積が大きくなるにつれて重要になる。   The position where the communication passage portion 24 is formed is a position where the reciprocating member 15 does not communicate with the expansion chamber 17 even when the reciprocating member 15 enters the expansion chamber 17 most. Therefore, when the reciprocating member 15 that shuts off the inflow gas introduction passage 23 enters the expansion chamber 17 most, for example, in the case of FIG. 5B, the communication passage portion 24 in which the high-pressure refrigerant remains. Does not communicate with the inflow-side expansion chamber 17a in the expansion process, and the high-pressure refrigerant remaining in the communication passage portion 24 flows into the inflow-side expansion chamber 17a, and the low-pressure refrigerant enters the communication passage portion 24. This is prevented. For this reason, it can prevent that the quantity of the refrigerant | coolant which flows in into the inflow side expansion chamber 17a at the next process decreases, and expansion efficiency falls. This point becomes important as the volume of the communication path portion 24 increases.

この流体機械1では、ロータリ型膨張機2と圧縮機4とを同一のケース5内に収容し、ロータリ型膨張機2と圧縮機4とで回転軸12を共通に使用している。このため、ロータリ型膨張機2において流入側膨張室17a内と吐出側膨張室17bとの圧力差が回転軸12を回転させる駆動力として回転軸12に作用するので、その分回転軸12を回転させる電動機3の小型化を図ることができる。   In the fluid machine 1, the rotary type expander 2 and the compressor 4 are accommodated in the same case 5, and the rotary type expander 2 and the compressor 4 commonly use the rotary shaft 12. For this reason, in the rotary expander 2, the pressure difference between the inflow side expansion chamber 17 a and the discharge side expansion chamber 17 b acts on the rotation shaft 12 as a driving force for rotating the rotation shaft 12. The electric motor 3 to be made can be downsized.

なお、本実施の形態では、流入ガス導入通路23と往復移動部材15が摺動可能に収容される溝21とを略十字形に交差させた場合を例に挙げて説明したが、流入ガス導入通路23と溝21とが交差するということは、略十字形に交差する場合に限られるものではなく、V字形に交差する場合も含まれる。   In the present embodiment, the case where the inflow gas introduction passage 23 and the groove 21 in which the reciprocating member 15 is slidably accommodated is described as an example, but the inflow gas introduction is described. The fact that the passage 23 and the groove 21 intersect with each other is not limited to the case of intersecting with a substantially cross shape, but includes the case of intersecting with a V shape.

また、本実施の形態では、圧縮機構部として圧縮機4を使用した流体機械1を例に挙げて説明したが、圧縮機構部としてポンプを使用した流体機械においても本発明のロータリ型膨張機2を使用することができる。   In the present embodiment, the fluid machine 1 using the compressor 4 as the compression mechanism is described as an example. However, the rotary expander 2 of the present invention is also used in a fluid machine using a pump as the compression mechanism. Can be used.

1…流体機械、2…ロータリ型膨張機、3…電動機、4…圧縮機(圧縮機構部)、5…ケース、10…シリンダ、10a…内周面、11a,11b…閉塞部材、11a…閉塞部材(覆い部材)、12…回転軸、12a…偏心部、13…ロータ、14…ブレード、15…往復移動部材、16…規制手段、20…連通路部、21…溝、23…流入ガス導入通路、25…凹状の溝   DESCRIPTION OF SYMBOLS 1 ... Fluid machine, 2 ... Rotary type expander, 3 ... Electric motor, 4 ... Compressor (compression mechanism part), 5 ... Case, 10 ... Cylinder, 10a ... Inner peripheral surface, 11a, 11b ... Closure member, 11a ... Blockage Member (cover member), 12 ... rotating shaft, 12a ... eccentric part, 13 ... rotor, 14 ... blade, 15 ... reciprocating member, 16 ... restricting means, 20 ... communication path part, 21 ... groove, 23 ... inflow gas introduction Passage, 25 ... concave groove

Claims (5)

内周面を有するシリンダと、
前記シリンダ内を貫通して設けられた回転軸と、
前記シリンダの両端面を閉塞して設けられ、前記シリンダ内に膨張室を形成する閉塞部材と、
前記回転軸の偏心部に嵌合され、前記シリンダの内周面に接して前記膨張室内を公転するロータと、
前記ロータの外周面に当接するように押圧付勢され、前記ロータの公転に対応して往復移動し、前記膨張室を高圧ガスが流入する側と膨張後の低圧ガスが吐出される側とに2分するブレードと、
前記ロータの外周面に当接するように押圧付勢され、前記ロータの公転に対応して往復移動する往復移動部材と、
前記往復移動部材の往復移動動作により前記膨張室への高圧ガスの流入を断続させる規制手段と、
を備えることを特徴とするロータリ型膨張機。
A cylinder having an inner peripheral surface;
A rotating shaft provided penetrating through the cylinder;
A closing member provided by closing both end faces of the cylinder, and forming an expansion chamber in the cylinder;
A rotor that is fitted to an eccentric portion of the rotating shaft and revolves in the expansion chamber in contact with an inner peripheral surface of the cylinder;
Pressed and urged to contact the outer peripheral surface of the rotor, reciprocates in response to the revolution of the rotor, and into the side where the high-pressure gas flows into the expansion chamber and the side where the low-pressure gas after expansion is discharged A blade that bisects,
A reciprocating member that is pressed and urged to contact the outer peripheral surface of the rotor and reciprocates in response to the revolution of the rotor;
Restricting means for intermittently inflow of high-pressure gas into the expansion chamber by the reciprocating movement of the reciprocating member;
A rotary type expander comprising:
前記規制手段は、前記シリンダに設けられた流入ガス導入通路と、前記シリンダに前記流入ガス導入通路と交差して設けられて前記往復移動部材が摺動可能に収容される溝と、前記往復移動部材に設けられてこの往復移動部材が所定の摺動範囲を摺動する場合に前記流入ガス導入通路を連通状態とする連通路部とを備えることを特徴とする請求項1記載のロータリ型膨張機。   The restricting means includes an inflow gas introduction passage provided in the cylinder, a groove provided in the cylinder so as to cross the inflow gas introduction passage and in which the reciprocating member is slidably received, and the reciprocation The rotary expansion according to claim 1, further comprising a communication passage portion provided on the member and configured to communicate with the inflowing gas introduction passage when the reciprocating member slides within a predetermined sliding range. Machine. 前記流入ガス導入通路は、前記シリンダの端面に形成された凹状の溝を覆い部材で覆うことにより形成されていることを特徴とする請求項1又は2記載のロータリ型膨張機。   3. The rotary expander according to claim 1, wherein the inflow gas introduction passage is formed by covering a concave groove formed on an end surface of the cylinder with a covering member. 4. 前記連通路部は、前記往復移動部材が最も前記膨張室内に入り込んだ場合において前記膨張室内に連通しない位置に設けられていることを特徴とする請求項1ないし3のいずれか一項に記載のロータリ型膨張機。   The said communicating path part is provided in the position which is not connected in the said expansion chamber when the said reciprocating member enters the said expansion chamber most, The Claim 1 thru | or 3 characterized by the above-mentioned. Rotary type expander. 請求項1ないし4のいずれか一項に記載されたロータリ型膨張機と、
前記回転軸を回転駆動させる電動機と、
前記ロータリ型膨張機と前記電動機とから駆動力を伝達される圧縮機構部と、
前記ロータリ型膨張機と前記電動機と前記圧縮機構部とを収納するケースと、
を備えることを特徴とする流体機械。
A rotary expander according to any one of claims 1 to 4;
An electric motor for rotating the rotating shaft;
A compression mechanism that transmits driving force from the rotary expander and the electric motor;
A case that houses the rotary expander, the electric motor, and the compression mechanism;
A fluid machine comprising:
JP2009076388A 2009-03-26 2009-03-26 Rotary type expander and fluid machine Active JP5173908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076388A JP5173908B2 (en) 2009-03-26 2009-03-26 Rotary type expander and fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076388A JP5173908B2 (en) 2009-03-26 2009-03-26 Rotary type expander and fluid machine

Publications (2)

Publication Number Publication Date
JP2010229846A true JP2010229846A (en) 2010-10-14
JP5173908B2 JP5173908B2 (en) 2013-04-03

Family

ID=43045905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076388A Active JP5173908B2 (en) 2009-03-26 2009-03-26 Rotary type expander and fluid machine

Country Status (1)

Country Link
JP (1) JP5173908B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011055696A1 (en) 2010-11-30 2012-05-31 Denso Corporation Fluid machine, has supply or discharge channel connected with supply channel, and piston moved in opposing direction, where supply or discharge channel is connected with discharge channel
CN105386971A (en) * 2015-11-09 2016-03-09 上海理工大学 Pressure potential energy transmission device
CN112324509A (en) * 2020-11-13 2021-02-05 珠海格力电器股份有限公司 Expander and air conditioner
CN113202763A (en) * 2021-05-31 2021-08-03 珠海格力电器股份有限公司 Expansion machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397107A (en) * 1977-02-04 1978-08-25 Takahide Osada Rotary engine
JPH0249927A (en) * 1988-08-11 1990-02-20 Nobuyoshi Nakayama Rotary engine with cam
JPH0742502A (en) * 1993-02-08 1995-02-10 Hideo Okamoto Rotary steam engine
JPH1061402A (en) * 1996-08-21 1998-03-03 ▲高▼尾 彰 Seal device of complete round rotary machine
JP2001153077A (en) * 1999-11-25 2001-06-05 Daikin Ind Ltd Fluid machinery
JP2004044569A (en) * 2002-05-14 2004-02-12 Daikin Ind Ltd Rotary expander and fluid machine
JP2007009755A (en) * 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd Rotary expansion machine and fluid machine
JP2007138728A (en) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd Rotary expansion machine and fluid machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397107A (en) * 1977-02-04 1978-08-25 Takahide Osada Rotary engine
JPH0249927A (en) * 1988-08-11 1990-02-20 Nobuyoshi Nakayama Rotary engine with cam
JPH0742502A (en) * 1993-02-08 1995-02-10 Hideo Okamoto Rotary steam engine
JPH1061402A (en) * 1996-08-21 1998-03-03 ▲高▼尾 彰 Seal device of complete round rotary machine
JP2001153077A (en) * 1999-11-25 2001-06-05 Daikin Ind Ltd Fluid machinery
JP2004044569A (en) * 2002-05-14 2004-02-12 Daikin Ind Ltd Rotary expander and fluid machine
JP2007009755A (en) * 2005-06-29 2007-01-18 Matsushita Electric Ind Co Ltd Rotary expansion machine and fluid machine
JP2007138728A (en) * 2005-11-15 2007-06-07 Matsushita Electric Ind Co Ltd Rotary expansion machine and fluid machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011055696A1 (en) 2010-11-30 2012-05-31 Denso Corporation Fluid machine, has supply or discharge channel connected with supply channel, and piston moved in opposing direction, where supply or discharge channel is connected with discharge channel
CN105386971A (en) * 2015-11-09 2016-03-09 上海理工大学 Pressure potential energy transmission device
CN112324509A (en) * 2020-11-13 2021-02-05 珠海格力电器股份有限公司 Expander and air conditioner
CN113202763A (en) * 2021-05-31 2021-08-03 珠海格力电器股份有限公司 Expansion machine

Also Published As

Publication number Publication date
JP5173908B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP2011169199A (en) Vane rotary type fluid device and compressor
WO2004053298A1 (en) Volume expander and fluid machine
US20180156216A1 (en) Rotary compressor and refrigerating cycle device
EP3575603B1 (en) Scroll compressor having enhanced discharge structure
JP5173908B2 (en) Rotary type expander and fluid machine
JP5366884B2 (en) Vane rotary compressor
JP2004044569A (en) Rotary expander and fluid machine
JP3724495B1 (en) Rotary fluid machine
JP2010168977A (en) Sealed compressor
WO2016059772A1 (en) Compressor
KR20180085285A (en) Scroll compressor
JP2006046257A (en) Expansion equipment
JP2008190348A (en) Rotary compressor
US20120131949A1 (en) Fluid machine and refrigeration cycle apparatus
JP2013053579A (en) Rotary compressor
JP2007085311A (en) Expander
JP5534401B2 (en) Fluid machinery and refrigeration cycle apparatus
JP2006046223A (en) Scroll type expander
JP2013104368A (en) Rotary compressor
JP2005320928A (en) Rotary fluid machine
JP6256643B2 (en) Swing piston compressor
JP6627987B2 (en) Rotary compressor
JP2007138728A (en) Rotary expansion machine and fluid machine
JP2000283062A (en) Rotary compressor
JP2009156207A (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5173908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250