JP2010228798A - Heat insulating container, method for manufacturing heat insulating container, method for bonding molded article made of resin with high melting point, and molded article made of resin with high melting point - Google Patents

Heat insulating container, method for manufacturing heat insulating container, method for bonding molded article made of resin with high melting point, and molded article made of resin with high melting point Download PDF

Info

Publication number
JP2010228798A
JP2010228798A JP2009080675A JP2009080675A JP2010228798A JP 2010228798 A JP2010228798 A JP 2010228798A JP 2009080675 A JP2009080675 A JP 2009080675A JP 2009080675 A JP2009080675 A JP 2009080675A JP 2010228798 A JP2010228798 A JP 2010228798A
Authority
JP
Japan
Prior art keywords
melting point
high melting
joining
container
point resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009080675A
Other languages
Japanese (ja)
Inventor
Keiji Tsukahara
啓二 塚原
Takeshi Inagaki
剛 稲垣
Osamu Morikawa
修 森川
Toshihiko Kumasaka
敏彦 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2009080675A priority Critical patent/JP2010228798A/en
Publication of JP2010228798A publication Critical patent/JP2010228798A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Abstract

<P>PROBLEM TO BE SOLVED: To provide stably a heat insulating container achieving an internal container which has a small variation of strength and is highly reliable by applying an anti-oxidant on a bonding point in a non-contacting hot plate welding of a resin with a high melting point such as polyphthalamide resin to control thermal decomposition of the resin at a higher temperature than the melting point. <P>SOLUTION: In the heat insulating container 1 storing a liquid at a maintained temperature, the internal container 10 provided in the heat insulating container 1 to store the liquid forms a liquid storing space by jointing a jointing member made of polyphthalamide containing a glass fiber, and jointing of the jointing member is performed by jointing a jointing part coated with the anti-oxidant by the non-contacting hot plate welding method. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本願発明は、液体を保温貯留する断熱容器に関するものであり、特に車両用エンジンの冷却水を保温貯留する断熱容器およびその製造方法に関するものである。   The present invention relates to a heat insulating container that retains and retains liquid, and particularly relates to a heat insulating container that retains and retains coolant for a vehicle engine and a method for manufacturing the same.

近年、地球温暖化対策として車両用エンジンの低燃費化が強く求められている。特に、エンジン始動直後の暖機運転時の燃費を向上させることは大きな課題となっている。この、車両用エンジン始動直後の燃費を向上させることを目的として、車両用エンジンの冷却水(ロング・ライフ・クーラント:以下LLCと記す)を保温貯留し、エンジン始動時に保温されたLLCをエンジンに循環させてエンジンの暖機を促進するために必要な断熱容器として、液体を貯留する内部容器と、周囲をシート状の外装材で包み、その内部容器と外装材の間に真空状態の断熱空間を形成する断熱容器が知られている(特許文献1)。   In recent years, there has been a strong demand for lower fuel consumption of vehicle engines as a countermeasure against global warming. In particular, improving the fuel efficiency during warm-up operation immediately after engine startup has become a major issue. In order to improve the fuel efficiency immediately after the start of the vehicle engine, the coolant of the vehicle engine (long life coolant: hereinafter referred to as LLC) is kept warm and stored, and the LLC kept warm at the time of engine start is stored in the engine. As a heat insulating container necessary to circulate and promote engine warm-up, an inner container that stores liquid and a surrounding outer sheet is wrapped with a sheet-shaped outer packaging material, and a vacuum insulation space is provided between the inner container and the outer packaging material. There is known a heat insulating container that forms (Patent Document 1).

また、LLC貯留用内部容器の材質としては、軽量、高耐熱、高強度であり、更にLLC等の耐薬品性に優れたガラス繊維を含有したポリフタルアミド樹脂が用いられている。樹脂製の内部に空間を有する容器は、安価な射出成形法で得られた2パーツ以上の成形体を接合して作製されるが、LLC貯留用容器には、内部の圧力が大気圧以上に上昇するため、接合部には高い強度が要求されている。   In addition, as a material for the LLC storage inner container, a polyphthalamide resin containing glass fiber that is lightweight, has high heat resistance and high strength and has excellent chemical resistance such as LLC is used. A container having a space inside the resin is produced by joining two or more molded bodies obtained by an inexpensive injection molding method. However, in an LLC storage container, the internal pressure exceeds atmospheric pressure. Since it raises, high intensity | strength is requested | required of the junction part.

特開2008−105748号公報JP 2008-105748 A 特開平8−294970号公報JP-A-8-294970 特開2008−213430号公報JP 2008-213430 A 特開2006−123378号公報JP 2006-123378 A 特開2006−346944号公報JP 2006-346944 A

樹脂の高強度接合方法として、接合部を加熱溶融して接合する溶着が広く用いられており、使用する樹脂の種類、接合部品の形状等によって、「振動溶着」、「超音波溶着」、「電磁誘導加熱式溶着」、「非接触式熱板溶着」等さまざまな手法から選択される。次にガラス繊維を含有したポリフタルアミド樹脂を溶着した場合の問題点を列挙する。   As a high-strength bonding method for resin, welding to heat and melt the bonded portion is widely used. Depending on the type of resin used, the shape of the bonded part, etc., `` vibration welding '', `` ultrasonic welding '', `` It is selected from various methods such as “electromagnetic induction heating type welding” and “non-contact type hot plate welding”. Next, problems in the case of welding a polyphthalamide resin containing glass fibers are listed.

まず、「振動溶着」(特許文献2)を選定した場合、ポリフタルアミドが融点に達して完全に溶融する前に、樹脂が軟化した時点で含有されたガラス繊維が押出され脆弱なバリが発生する。容器外周部に発生したバリは容易に除去することができるが、容器内部に発生したバリは、完全に除去することは困難で、製品内部に残存しLLCに混入する可能性がある。   First, when “vibration welding” (Patent Document 2) is selected, before the polyphthalamide reaches the melting point and completely melts, the glass fiber contained when the resin is softened is extruded to generate brittle burrs. To do. Although the burr generated on the outer periphery of the container can be easily removed, it is difficult to completely remove the burr generated inside the container, and it may remain inside the product and be mixed into the LLC.

また、「超音波溶着」(特許文献3)では、溶着機は超音波振動を発生させる超音波発振器と発生した振動を増幅させるホーンからなる。このホーンは、ワーク形状、ワーク質量等により個別の形状設計が必要であり、短期間での形状変更、多品種の製造には適していない。また、エンジンルーム内に設置される断熱容器には、スペースの形状に合わせた複雑な容器形状に加え、容器内部に設けられた外壁とは厚さの異なる仕切り板も同時に接合する必要があるが、超音波振動を全接合面に均一に伝達することは難しい。   In “ultrasonic welding” (Patent Document 3), the welding machine includes an ultrasonic oscillator that generates ultrasonic vibrations and a horn that amplifies the generated vibrations. This horn requires an individual shape design depending on the workpiece shape, workpiece mass, etc., and is not suitable for changing the shape in a short period of time or manufacturing a variety of products. Moreover, in addition to the complicated container shape that matches the shape of the space, it is necessary to join a partition plate having a thickness different from that of the outer wall provided inside the container to the heat insulating container installed in the engine room at the same time. It is difficult to transmit ultrasonic vibrations uniformly to all the joint surfaces.

さらに、「電磁誘導加熱式溶着」(特許文献4)は、電磁誘導を用いてコイル中に配した非加熱物を加熱するため、被加熱物は導電体である必要がある。樹脂同士の溶着の場合、接合部に非加熱物となる金属線等を配する必要がある。これも、超音波溶着と同様に単純形状であれば問題なく均一に発熱することが可能であるが、複雑形状であり、かつ容器内部に設けられた外壁とは厚さの異なる仕切り板も同時に接合する必要がある、本願発明品への適用は難しい。   Furthermore, since “electromagnetic induction heating type welding” (Patent Document 4) heats a non-heated object arranged in a coil using electromagnetic induction, the object to be heated needs to be a conductor. In the case of welding between resins, it is necessary to arrange a metal wire or the like that becomes a non-heated material at the joint. Similarly to ultrasonic welding, if it is a simple shape, it can generate heat uniformly without any problems, but it is also a complicated shape and a partition plate with a different thickness from the outer wall provided inside the container can be used at the same time. It is difficult to apply to the invention of the present application that needs to be joined.

上述の問題点を鑑みると、本願発明品に最も適しているのは、「非接触式熱板溶着法」(特許文献5)である。
ここで、「非接触式熱板溶着法」とは、樹脂の接合部を対面させた状態で離間して配置し、その間に熱板を挿入し非接触で接合部を加熱溶融させた後、熱板を抜いて接合部同士を圧着する溶着方法である。この方法を用いると容易にポリフタルアミド樹脂の溶着を行うことができ、複雑形状への対応や、容器内部に設けられた外壁とは厚さの異なる仕切り板を同時に溶着することも問題なく行える。
In view of the above-mentioned problems, the “non-contact type hot plate welding method” (Patent Document 5) is most suitable for the present invention.
Here, the "non-contact type hot plate welding method" is arranged with the resin joints facing each other, and after inserting the hot plate between them and heating and melting the joints in a non-contact manner, This is a welding method in which the hot plate is removed and the joints are pressure-bonded. By using this method, polyphthalamide resin can be easily welded, and it is possible to cope with complex shapes and simultaneously weld partition plates having different thicknesses from the outer wall provided inside the container. .

但し、接合部の面積が増えると、部分的な強度バラツキが大きく発生し、安定した製造が困難であるという問題がある。これはポリフタルアミドの融点は約320℃であり、高融点樹脂は融点と熱分解温度の差が小さいことに起因する。確実な溶着を行うためには接合部の温度は融点に達していなければならず、融点以下であれば強度低下し、また、融点以上であれば熱分解するため強度低下を惹き起こす。接合部の面積が増えると、全て均一な温度に加熱することが難しいため、接合面の温度バラツキを生じ、部分的な強度低下を起こすものと考えられる。   However, when the area of the joint portion is increased, there is a problem that partial strength variation is greatly generated, and stable manufacturing is difficult. This is because polyphthalamide has a melting point of about 320 ° C., and a high melting point resin has a small difference between the melting point and the thermal decomposition temperature. In order to perform reliable welding, the temperature of the joint portion must reach the melting point, and if the melting point is lower than the melting point, the strength is lowered. If the area of the joint portion increases, it is difficult to heat all of the joint portions to a uniform temperature. Therefore, it is considered that the joint surface varies in temperature and causes a partial decrease in strength.

そこで、本願発明は上記の問題を鑑み、ポリフタルアミド樹脂等の高融点樹脂の非接触式熱板溶着において、接合部に老化防止剤を塗布することにより、融点を超えた温度における樹脂の熱分解を制御することで、強度バラツキの小さい高信頼性のある内部容器を実現し、断熱容器を安定して提供することを目的とする。   Therefore, in view of the above problems, the present invention is a non-contact type hot plate welding of a high melting point resin such as a polyphthalamide resin. By applying an anti-aging agent to the joint, the heat of the resin at a temperature exceeding the melting point is obtained. By controlling the decomposition, an object is to realize a highly reliable inner container with small variation in strength and to stably provide a heat insulating container.

上記目的を達成するために、第1の発明は、液体を保温貯留する断熱容器であって、液体を貯留するため断熱容器内部に設けられる内部容器は、補強繊維を含有した高融点樹脂製の接合部材を複数接合することによって液体貯留空間を形成するように構成されており、その接合部材の接合は、老化防止剤の塗布された接合部を非接触熱板溶着法で接合したものであることを特徴とした断熱容器である。
第2の発明は、前記接合部材の接合部には、内部容器の液体貯留空間を形成する外壁部分の他に、内部容器の内部を仕切るために設けられた仕切板部分も含まれることを特徴とした同断熱容器である。
第3の発明は、前記高融点樹脂が、ポリフタルアミド樹脂であることを特徴とした同断熱容器である。
第4の発明は、前記老化防止剤が、アミン−ケトン系、芳香族第二級アミン系、ベンツイミダゾール系、ジチオカルバミン酸塩系、亜リン酸系から選択され、熱分解温度が320℃以上であることを特徴とする同断熱容器である。
第5の発明は、液体を保温貯留する断熱容器の製造方法であって、液体を貯留するため断熱容器内部に設けられる内部容器が、複数の接合部材を接合することによって内部容器を構成する補強繊維を含有した高融点樹脂製の接合部材を成形し、その接合部材の接合部に老化防止剤を塗布した後、非接触熱板溶着法で接合することによって、液体貯留空間を備えた内部容器として作製されることを特徴とした断熱容器の製造方法である。
第6の発明は、前記老化防止剤の塗布が、有機溶剤を溶媒とした0.1〜5wt%の老化防止剤溶液に前記接合部を含浸させることを特徴とした同断熱容器の製造方法である。
In order to achieve the above object, the first invention is a heat insulating container for storing and storing a liquid, and the inner container provided inside the heat insulating container for storing the liquid is made of a high melting point resin containing reinforcing fibers. The liquid storage space is formed by joining a plurality of joining members. The joining of the joining members is obtained by joining the joints coated with the anti-aging agent by the non-contact hot plate welding method. It is the heat insulation container characterized by this.
According to a second aspect of the present invention, the joining portion of the joining member includes a partition plate portion provided for partitioning the inside of the inner container in addition to the outer wall portion that forms the liquid storage space of the inner container. It is the same insulated container.
A third invention is the heat insulating container, wherein the high melting point resin is a polyphthalamide resin.
According to a fourth aspect of the present invention, the anti-aging agent is selected from an amine-ketone system, an aromatic secondary amine system, a benzimidazole system, a dithiocarbamate system, and a phosphorous acid system, and the thermal decomposition temperature is 320 ° C. or higher. It is the heat insulation container characterized by having.
5th invention is the manufacturing method of the heat insulation container which heat-retains liquid, Comprising: The internal container provided in a heat insulation container in order to store a liquid reinforces an internal container by joining several joining members An inner container having a liquid storage space by molding a bonding member made of a high melting point resin containing fibers, applying an anti-aging agent to the bonding portion of the bonding member, and then bonding by a non-contact hot plate welding method It is produced as follows. It is the manufacturing method of the heat insulation container characterized by the above-mentioned.
A sixth invention is a method for producing the heat insulating container, wherein the anti-aging agent is applied by impregnating the joint with a 0.1 to 5 wt% anti-aging agent solution using an organic solvent as a solvent.

第7の発明は、補強繊維を含有した高融点樹脂製成形品の接合方法であって、補強繊維を含有した高融点樹脂製の接合部材の接合部に老化防止剤を塗布した後、非接触熱板溶着法で前記接合部材どうしを接合し、補強繊維を含有した高融点樹脂製成形品を得ることを特徴とした高融点樹脂製成形品の接合方法である。
第8の発明は、前記老化防止剤の塗布が、有機溶剤を溶媒とした0.1〜5wt%の老化防止剤溶液に前記接合部を含浸させたことを特徴とした同高融点樹脂製成形品の接合方法である。
第9の発明は、複数の接合部材を接合することによって構成される補強繊維を含有した高融点樹脂製成形品であって、その接合部材の接合は、老化防止剤の塗布された接合部を非接触熱板溶着法で接合したものであることを特徴とした高融点樹脂製成形品である。
第10の発明は、前記接合部材の接合部には、高融点樹脂製成形品の外部構造を形成する外側部分の他に、同内部構造を形成する内側部分も含まれることを特徴とした同高融点樹脂製成形品である。
第11の発明は、前記高融点樹脂が、ポリフタルアミド樹脂であることを特徴とした同高融点樹脂製成形品である。
第12の発明は、前記老化防止剤が、アミン−ケトン系、芳香族第二級アミン系、ベンツイミダゾール系、ジチオカルバミン酸塩系、亜リン酸系から選択され、熱分解温度が320℃以上であることを特徴とする同高融点樹脂製成形品である。
The seventh invention is a method for joining a molded article made of a high melting point resin containing reinforcing fibers, wherein an anti-aging agent is applied to the joined portion of a joining member made of a high melting point resin containing reinforcing fibers, and then contactless A joining method for high-melting-point resin molded products, characterized in that the joining members are joined together by a hot plate welding method to obtain a molded product made of high-melting-point resin containing reinforcing fibers.
According to an eighth aspect of the present invention, there is provided the molded article made of the high melting point resin, wherein the anti-aging agent is applied by impregnating the joint part with an anti-aging agent solution of 0.1 to 5 wt% using an organic solvent as a solvent. It is a joining method.
A ninth invention is a molded article made of a high melting point resin containing a reinforcing fiber constituted by joining a plurality of joining members, and joining of the joining members is performed by joining a joint portion to which an anti-aging agent is applied. It is a molded article made of a high melting point resin characterized by being joined by a non-contact hot plate welding method.
According to a tenth aspect of the present invention, in the joint portion of the joining member, in addition to an outer portion that forms an outer structure of a high melting point resin molded product, an inner portion that forms the inner structure is also included. It is a molded product made of high melting point resin.
An eleventh invention is the molded article made of the high melting point resin, wherein the high melting point resin is a polyphthalamide resin.
In a twelfth aspect of the invention, the anti-aging agent is selected from amine-ketones, aromatic secondary amines, benzimidazoles, dithiocarbamates, and phosphorous acids, and the thermal decomposition temperature is 320 ° C. or higher. This is a molded product made of the same high melting point resin.

なお、本願発明を「内部容器」に関する発明と捉えた場合、次のような発明も成り立つ。
(1)液体を保温貯留する断熱容器において、液体を貯留するため断熱容器内部に設けられる内部容器であって、その内部容器は、補強繊維を含有した高融点樹脂製の接合部材を複数接合することによって液体貯留空間を形成するように構成されており、その接合部材の接合は、老化防止剤の塗布された接合部を非接触熱板溶着法で接合したものであることを特徴とした内部容器である。
(2)前記接合部材の接合部には、内部容器の液体貯留空間を形成する外壁部分の他に、内部容器の内部を仕切るために設けられた仕切板部分も含まれることを特徴とした(1)記載の内部容器である。
(3)前記高融点樹脂が、ポリフタルアミド樹脂であることを特徴とした(1)又は(2)記載の内部容器である。
(4)前記老化防止剤が、アミン−ケトン系、芳香族第二級アミン系、ベンツイミダゾール系、ジチオカルバミン酸塩系、亜リン酸系から選択され、熱分解温度が320℃以上であることを特徴とする(1)から(3)のいずれかに記載の内部容器である。
(5)液体を保温貯留する断熱容器において、液体を貯留するため断熱容器内部に設けられる内部容器の製造方法であって、前記内部容器は、複数の部材を接合することによって内部容器を構成する補強繊維を含有した高融点樹脂製の接合部材を成形し、その接合部材の接合部に老化防止剤を塗布した後、非接触熱板溶着法で当該接合部を接合し、液体貯留空間を備えた内部容器を作製することを特徴としたものである。
(6)前記老化防止剤の塗布が、有機溶剤を溶媒とした0.1〜5wt%の老化防止剤溶液に前記接合部を含浸させたことを特徴とした(5)記載の断熱容器用内部容器の製造方法である。
In addition, when the present invention is regarded as an invention related to the “inner container”, the following invention is also established.
(1) In a heat insulating container that retains and retains liquid, it is an inner container provided inside the heat insulating container for storing liquid, and the inner container joins a plurality of joining members made of high melting point resin containing reinforcing fibers. The liquid storage space is formed by connecting the joint member with an anti-aging agent-coated joint by a non-contact hot plate welding method. It is a container.
(2) The joining portion of the joining member includes a partition plate portion provided to partition the inside of the inner container in addition to the outer wall portion that forms the liquid storage space of the inner container ( 1) It is an internal container as described.
(3) The internal container according to (1) or (2), wherein the high melting point resin is a polyphthalamide resin.
(4) The anti-aging agent is selected from amine-ketone, aromatic secondary amine, benzimidazole, dithiocarbamate, and phosphorous acid, and has a thermal decomposition temperature of 320 ° C. or higher. The internal container according to any one of (1) to (3).
(5) A heat insulating container that retains and retains liquid, and is a method of manufacturing an inner container that is provided inside a heat insulating container for storing liquid, and the inner container is configured by joining a plurality of members. After forming a joining member made of a high melting point resin containing reinforcing fibers and applying an anti-aging agent to the joining part of the joining member, the joining part is joined by a non-contact hot plate welding method, and a liquid storage space is provided. It is characterized by producing an inner container.
(6) The inner container for an insulated container according to (5), wherein the anti-aging agent is applied by impregnating the bonding portion with an anti-aging agent solution of 0.1 to 5 wt% using an organic solvent as a solvent. It is a manufacturing method.

本願発明によれば、以下のような効果を有する。
(1)ポリフタルアミド樹脂等の高融点樹脂の非接触熱板式溶着に老化防止剤を使用することにより、接合部の強度バラツキを抑えて、信頼性の高い内部容器を内包した断熱容器を安定供給することができる。
(2)強度バラツキを低減により、内部容器外壁の肉厚を薄くすることができ、樹脂の使用量を低減し、製造コストを低減することができる。
(3)また、非接触熱板式溶着によるポリフタルアミド樹脂等の高融点樹脂の確実な溶着が行えることで、複雑形状な内部容器の作製が可能になる。例えば、容器内部に仕切板等の複雑な構造を備えた内部容器の作製が可能になる。また、外形形状(外壁形状)が複雑な内部容器の作製も可能になる。
The present invention has the following effects.
(1) By using an anti-aging agent for non-contact hot plate welding of high melting point resin such as polyphthalamide resin, the strength variation of the joint is suppressed, and the heat insulating container containing the highly reliable inner container is stabilized. Can be supplied.
(2) By reducing the strength variation, the thickness of the outer wall of the inner container can be reduced, the amount of resin used can be reduced, and the manufacturing cost can be reduced.
(3) In addition, since it is possible to reliably weld a high melting point resin such as polyphthalamide resin by non-contact hot plate welding, it is possible to manufacture a complex-shaped inner container. For example, it becomes possible to produce an internal container having a complicated structure such as a partition plate inside the container. Further, it is possible to produce an inner container having a complicated outer shape (outer wall shape).

本願発明に係る断熱容器例を示す断面図Sectional drawing which shows the example of heat insulation container which concerns on this invention ポリフタルアミドの熱分析結果(大気中)Thermal analysis results of polyphthalamide (in air) ポリフタルアミドの熱分析結果(窒素雰囲気中)Thermal analysis result of polyphthalamide (in nitrogen atmosphere) 4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミンの構造図Structure diagram of 4,4'-bis (α, α-dimethylbenzyl) diphenylamine 内部容器作製の説明図(1)Explanatory drawing of inner container production (1) 内部容器作製の説明図(2)Explanatory drawing of inner container production (2) 内部容器作製の説明図(3)Explanatory drawing of inner container production (3) 内部容器作製の説明図(4)Explanatory drawing of inner container production (4) 外装材であるラミネートフィルムの断面図Cross-sectional view of laminate film as exterior material 非接触熱板式溶着の説明図Illustration of non-contact hot plate welding 引張強度測定結果(実施例)Tensile strength measurement results (Example) 引張強度測定結果(比較例)Tensile strength measurement results (comparative example)

本願発明の断熱容器例を図1に示す。本願発明では、液体の流入出口部13を備えた内部容器10の周囲に断熱材20、気体吸着材(ゲッター材)21を配し、シート状の外装材30で包み真空封止することにより、内部容器10の周囲を隙間なく真空断熱材で被い、高性能な断熱容器1としている。また、内部容器10は樹脂製で、射出成形法で作製することに加え、シート状の外装材には柔軟性があるため、多種多様の形状に対応できる利点も備えている。   An example of a heat insulating container of the present invention is shown in FIG. In the present invention, a heat insulating material 20 and a gas adsorbing material (getter material) 21 are arranged around the inner container 10 provided with the liquid inflow / outlet portion 13, wrapped in a sheet-shaped exterior material 30 and vacuum-sealed, The inner container 10 is covered with a vacuum heat insulating material without any gaps to provide a high performance heat insulating container 1. Further, the inner container 10 is made of resin, and in addition to being manufactured by an injection molding method, the sheet-like exterior material is flexible, and therefore has an advantage that it can cope with various shapes.

ここで、内部容器10の材質としては、高耐熱、高強度、かつLLC等の耐薬品性に優れたポリフタルアミド樹脂(PPA)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミド66(PA66)、ポリエチレンテレフタレート(PET)といった融点が250〜340℃である高融点樹脂が好適に使用できる。
また、これらの高融点樹脂に「補強繊維」を含有したものを使用するとよい。内部容器の強度が高まるからである。ここで、「補強繊維」としては、例えば、以下のようなものを使用するとよい。
(1)種類:ガラス繊維,炭素繊維
(2)繊維長:好ましくは1〜20mm、さらに好ましくは3〜10mm
(3)繊維径:好ましくは1〜20μm、さらに好ましくは5〜10μm
(4)配合割合:好ましくは10〜60%、さらに好ましくは30〜50%
Here, the material of the inner container 10 is polyphthalamide resin (PPA), polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyamide, which has high heat resistance, high strength, and excellent chemical resistance such as LLC. A high melting point resin having a melting point of 250 to 340 ° C. such as 66 (PA66) or polyethylene terephthalate (PET) can be suitably used.
In addition, it is preferable to use those high melting point resins containing “reinforcing fibers”. This is because the strength of the inner container is increased. Here, as the “reinforcing fiber”, for example, the following may be used.
(1) Type: glass fiber, carbon fiber (2) Fiber length: preferably 1-20 mm, more preferably 3-10 mm
(3) Fiber diameter: preferably 1-20 μm, more preferably 5-10 μm
(4) Mixing ratio: preferably 10 to 60%, more preferably 30 to 50%

なお、内部容器10として使用する樹脂材料は材料自体を透過する気体透過量が大きいため、長期間にわたって真空断熱層の真空度を維持するためには、気体透過を制御する必要がある。メッキ処理等によって樹脂表面に金属層の形成する、または後述するシート状のガスバリア層を含んだラミネートフィルムで、内部容器10を包む等の措置をとれば長期間に渡る真空度維持に効果が得られる。   Since the resin material used as the inner container 10 has a large gas permeation amount that permeates the material itself, it is necessary to control the gas permeation in order to maintain the vacuum degree of the vacuum heat insulating layer over a long period of time. By taking measures such as wrapping the inner container 10 with a laminate film that includes a metal layer formed on the resin surface by plating or the like, or a sheet-like gas barrier layer that will be described later, it is effective for maintaining the degree of vacuum over a long period of time. It is done.

ポリフタルアミド樹脂の熱分析結果(示差走査熱量測定:DSC)を図2及び図3に示す。図2は大気中で測定した結果であり、図3は窒素雰囲気中で測定した結果である。
約320℃でポリフタルアミド樹脂の融点を示す吸熱反応が見られる。その後大気中で測定したものは、約400℃、490℃に発熱ピークが確認でき、連続して熱分解が進行していることが分る。それに対して窒素雰囲気中で測定したものは、約400℃の発熱ピークは見受けられず、約490℃における発熱ピークの発熱エネルギーも減少していることから、これは酸化を伴った熱分解反応であることが容易に推定できる。そこで、この反応を制御または遅延させることで溶着範囲を拡げることが可能であると考えられる。
The thermal analysis results (differential scanning calorimetry: DSC) of the polyphthalamide resin are shown in FIGS. FIG. 2 shows the result of measurement in the atmosphere, and FIG. 3 shows the result of measurement in a nitrogen atmosphere.
An endothermic reaction showing the melting point of the polyphthalamide resin is observed at about 320 ° C. After that, when measured in the atmosphere, an exothermic peak can be confirmed at about 400 ° C. and 490 ° C., and it can be seen that thermal decomposition proceeds continuously. On the other hand, when measured in a nitrogen atmosphere, the exothermic peak at about 400 ° C was not observed, and the exothermic energy at the exothermic peak at about 490 ° C also decreased, so this is a thermal decomposition reaction involving oxidation. It can be estimated easily. Therefore, it is considered that the welding range can be expanded by controlling or delaying this reaction.

まず、上記の測定と同様にポリフタルアミド樹脂の溶着を窒素雰囲気中で行えば、改善できると思われるが、製造時の製造設備投資、ランニングコストが増大するため現実味はない。そこで、本願発明者らによる鋭意検討の結果、低コストでかつ強度低下の防止効果の大きい老化防止剤の使用に至った。
樹脂は酸素が存在すると,熱,光,触媒の作用によって,まず分子中で最も結合力の弱い炭素−水素結合が切れ水素が離れる。これは遊離基(フリーラジカル)と呼ばれており、遊離基の発生が連鎖的に広がることにより劣化が進行する。老化防止剤は、その分子内に−NH−や−OHなどの遊離基と反応し易い水素を持ち、樹脂中に生じた遊離基等と反応して安定な物質にすることにより、劣化の進行を制御する作用を持つものである。
First, it can be improved if the polyphthalamide resin is welded in a nitrogen atmosphere in the same manner as in the above measurement, but this is not realistic because the manufacturing equipment investment and running cost during the production increase. Thus, as a result of intensive studies by the inventors of the present application, the use of an anti-aging agent which is low in cost and has a large effect of preventing a decrease in strength has been achieved.
When oxygen is present in the resin, the carbon-hydrogen bond with the weakest binding force in the molecule is first broken by the action of heat, light, and catalyst, and hydrogen is released. This is called a free radical (free radical), and the deterioration progresses as the generation of free radicals spreads in a chain. The anti-aging agent has hydrogen in its molecule that easily reacts with free radicals such as -NH- and -OH, and reacts with free radicals generated in the resin to make it a stable substance, thereby progressing deterioration. It has the effect | action which controls.

老化防止剤の種類としては酸化防止効果が高ければ特に限定するものではないが、例えば、アミン−ケトン系の2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、芳香族第二級アミン系の4,4-ビス(α,α−ジメチルベンジル)ジフェニルアミンやN,N'-ジ-2-ナフチル-p−フェニレンジアミン、ベンツイミダゾール系の2-メルカプトベンツイミダゾールの亜鉛塩や2-メルカプトメチルベンツイミダゾールの亜鉛塩、ジチオカルバミン酸塩系のジブチルジチオカルバミン酸ニッケル、亜リン酸系のトリス(ノニルフェニル)ホスフェイト等から選択されればよく、熱分解温度が使用する高融点樹脂の融点以上であればよい。例えば、融点が320℃であるポリフタルアミド樹脂を使用するのであれば、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミンが好適に使用できる(図4)。ここで老化防止剤は複数種類を混合して使用してもよい。   The type of anti-aging agent is not particularly limited as long as the antioxidant effect is high. For example, amine-ketone type 2,2,4-trimethyl-1,2-dihydroquinoline polymer, aromatic secondary Amine-based 4,4-bis (α, α-dimethylbenzyl) diphenylamine, N, N'-di-2-naphthyl-p-phenylenediamine, benzimidazole-based zinc salt of 2-mercaptobenzimidazole and 2-mercapto It may be selected from methyl benzimidazole zinc salt, dithiocarbamate-based nickel dibutyldithiocarbamate, phosphite-based tris (nonylphenyl) phosphate, etc. That's fine. For example, if a polyphthalamide resin having a melting point of 320 ° C. is used, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine can be suitably used (FIG. 4). Here, you may mix and use anti-aging agent in multiple types.

ここで、接合部(接合面)での老化防止剤は均一分散していることが望ましい。老化防止剤をアセトン、トルエン、メチルエチルケトン、キシレン、ベンゼンといった有機溶剤中に溶解させた溶液中に、接合面を含浸させる手法が均一な塗布を行う面でも、コスト面でも最適である。使用する有機溶剤は老化防止剤が溶解すれば特に限定するものではないが、一例として、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミンを使用する場合はアセトンが好適に使用できる。また、溶液の濃度は低濃度では酸化防止効果は小さく、また、高濃度では加熱時の老化防止剤溶融による吸熱反応でポリフタルアミド樹脂(高融点樹脂)が低温化し、加熱溶融に時間を要するため、0.1〜20wt%であればよく、このましくは0.5〜10wt%、さらに好ましくは1〜5wt%であればなおよい。   Here, it is desirable that the anti-aging agent at the joint (joint surface) is uniformly dispersed. The method of impregnating the joint surface in a solution prepared by dissolving an anti-aging agent in an organic solvent such as acetone, toluene, methyl ethyl ketone, xylene, and benzene is optimal in terms of uniform application and cost. The organic solvent to be used is not particularly limited as long as the antioxidant is dissolved, but as an example, acetone can be suitably used when 4,4′-bis (α, α-dimethylbenzyl) diphenylamine is used. In addition, when the concentration of the solution is low, the anti-oxidation effect is small, and when the concentration is high, the polyphthalamide resin (high melting point resin) is lowered in temperature by the endothermic reaction caused by melting the anti-aging agent during heating, and it takes time for melting. Therefore, it may be 0.1 to 20 wt%, preferably 0.5 to 10 wt%, more preferably 1 to 5 wt%.

次に、内部容器10の作製法について図5−1〜図5−4を用いて説明する。なお、図5ではワークを固定するための冶具を省略して記す。
まず、射出成形法で内部容器10を構成するポリフタルアミド樹脂(高融点樹脂)製の接合部材(半割り品)11,12を作製する(図5−1)。
次に、この接合部材11,12の接合部(接合面)を上述の老化防止剤溶液50に含浸させた後、同溶剤を乾燥、除去する(図5−2)。
Next, a method for manufacturing the inner container 10 will be described with reference to FIGS. In FIG. 5, a jig for fixing the workpiece is omitted.
First, the joining members (semi-divided products) 11 and 12 made of polyphthalamide resin (high melting point resin) constituting the inner container 10 are manufactured by an injection molding method (FIG. 5-1).
Next, after the joint portion (joint surface) of the joining members 11 and 12 is impregnated with the above-described anti-aging solution 50, the solvent is dried and removed (FIG. 5-2).

その後、2つの接合部材(成形品)11,12の接合部(接合面)を離間させ対面する様に冶具にセットし、加熱された熱板60を接合部(接合面)間に挿入する(図5−3)。この時、接合部材11,12の接合面(表面)の温度は、樹脂の融点の−10〜+100℃、より好ましくは+10〜+50℃であればよい。具体的には、ポリフタルアミド樹脂製成形品を接合する場合には630〜700℃であればよく、660〜690℃であればなおよい。
そして、熱板60を接合部(接合面)間から抜いて加圧し(図5−4)、接合部(接合面)の温度が十分に下がった時点で冶具から取り外し、内部容器10とした。
Thereafter, the joining portions (joint surfaces) of the two joining members (molded articles) 11 and 12 are set on the jig so as to be separated and face each other, and the heated hot plate 60 is inserted between the joining portions (joint surfaces) ( Fig. 5-3). At this time, the temperature of the joining surfaces (surfaces) of the joining members 11 and 12 may be −10 to + 100 ° C., more preferably +10 to + 50 ° C. of the melting point of the resin. Specifically, when joining a molded product made of polyphthalamide resin, it may be 630 to 700 ° C, and more preferably 660 to 690 ° C.
And the hot platen 60 was extracted from between joining parts (joining surface), and was pressurized (FIGS. 5-4), and when the temperature of the joining part (joining surface) fell sufficiently, it removed from the jig and set it as the internal container 10. FIG.

上記図5では、内部容器10が液体貯留空間を形成する外壁部分の他に、内部容器10の内部を仕切るために設けられた仕切り板14も含まれており、外壁15部分の接合だけでなく、内部の仕切り板14の接合も必要とされる。そして、このような内部構造の接合も必要とされる内部容器(成形品)の作製法として本願発明は極めて有効である。すなわち、前記背景技術で説明した「振動溶着法」では、溶着(接合)部分にバリが発生し(特に補強繊維を含有する樹脂を使用した場合は顕著である)、容器内部に発生したバリは除去困難であり、場合によっては、異物として保温貯留する液体に混入してしまう可能性もある。また、「超音波溶着法」や「電磁誘導加熱式溶着法」では、外壁部分と厚さの異なる仕切ち板部分を同時に接合することは困難である。これに対して、本願発明による「非接触式熱板溶着法」を用いれば、図5に示す仕切り板14のような複雑な内部構造を持つ内部容器10も確実に作製することができるのである。   In FIG. 5, in addition to the outer wall portion in which the inner container 10 forms a liquid storage space, a partition plate 14 provided for partitioning the inside of the inner container 10 is also included. In addition, the inner partition plate 14 must be joined. And this invention is very effective as a preparation method of the internal container (molded article) which also requires joining of such an internal structure. That is, in the “vibration welding method” described in the background art, burrs are generated at the welded (joined) portion (particularly when a resin containing reinforcing fibers is used), and burrs generated inside the container are It is difficult to remove, and in some cases, it may be mixed into the liquid to be kept warm as foreign matter. Further, in the “ultrasonic welding method” and the “electromagnetic induction heating type welding method”, it is difficult to join the outer wall portion and the partition plate portion having different thicknesses at the same time. On the other hand, if the “non-contact type hot plate welding method” according to the present invention is used, the internal container 10 having a complicated internal structure such as the partition plate 14 shown in FIG. 5 can be reliably produced. .

次に、外装材30の一例を模式図(図6)に示す。シート状の外装材30は複数のフィルムを積層したラミネートフィルムである。表面の保護層は、ガスバリア層への孔、亀裂等の欠陥発生防止が主な目的である。接着層を熱溶着する際は、接着層同士を相対させて表面の保護層側から熱をかけるため、保護層の融点は少なくとも接着層の融点より50℃以上高いことが望ましい。ポリエチレンテレフタレート、ナイロンが好適に使用できる。次にガスバリア層は気体透過制御を目的としているため、金属箔が望ましい。安価なアルミニウム箔が好適に使用でき、厚みは5〜30μmであればよく、7〜12μmがより望ましい。また、接着層は、ポリエチレン、ポリプロピレン、エチレンビニルアルコール等が好適に使用でき、厚みは30〜50μmが望ましい。   Next, an example of the exterior material 30 is shown in a schematic diagram (FIG. 6). The sheet-shaped exterior material 30 is a laminated film in which a plurality of films are laminated. The main purpose of the protective layer on the surface is to prevent the occurrence of defects such as holes and cracks in the gas barrier layer. When the adhesive layer is thermally welded, the adhesive layers are opposed to each other and heat is applied from the protective layer side of the surface. Therefore, the melting point of the protective layer is preferably at least 50 ° C. higher than the melting point of the adhesive layer. Polyethylene terephthalate and nylon can be preferably used. Next, since the gas barrier layer is intended for gas permeation control, a metal foil is desirable. An inexpensive aluminum foil can be suitably used, and the thickness may be 5 to 30 μm, more preferably 7 to 12 μm. Moreover, polyethylene, polypropylene, ethylene vinyl alcohol, etc. can be used conveniently for a contact bonding layer, and thickness is 30-30 micrometers desirable.

また、内包する断熱材20はグラスウール、ロックウール、セラミックファイバーのいずれかの無機繊維からなり、特に平均繊維径が5μm以下で、高温雰囲気で吸着水分を乾燥したグラスウールを使用することが望ましい。
なお、断熱層は長期使用すると、断熱材20から発生するガス、接合部樹脂を透過するガス等により真空度が低下するおそれがあり、それを防ぐために断熱層内部のガスを吸着するための気体吸着材21が不可欠である。気体吸着材21は主に水分を吸着する酸化カルシウム、主に酸素、窒素を吸着するバリウム/リチウム合金、主に水素を吸着する酸化コバルトが望ましい。但し、それぞれの気体吸着材21を単独で封入した場合、バリウム/リチウム合金は断熱材から発生する水分を吸着し、目的である酸素、窒素の吸着能力が低下する問題があるため、バリウム/リチウム合金層を中間層とする、酸化カルシウム層、酸化コバルト層からなる3層構造とすることが好適である(図示省略)。
The heat insulating material 20 to be included is made of glass wool, rock wool, or ceramic fiber, and it is desirable to use glass wool having an average fiber diameter of 5 μm or less and dried adsorbed moisture in a high temperature atmosphere.
In addition, when a heat insulation layer is used for a long time, there exists a possibility that a vacuum degree may fall with the gas etc. which generate | occur | produce from the heat insulating material 20, the gas which permeate | transmits joining part resin, and the gas for adsorb | sucking the gas inside a heat insulation layer in order to prevent it The adsorbent 21 is indispensable. The gas adsorbent 21 is preferably calcium oxide that mainly adsorbs moisture, barium / lithium alloy that mainly adsorbs oxygen and nitrogen, and cobalt oxide that mainly adsorbs hydrogen. However, when each gas adsorbent 21 is enclosed alone, the barium / lithium alloy adsorbs moisture generated from the heat insulating material, and there is a problem that the target oxygen and nitrogen adsorbing capacity is lowered, so that barium / lithium is present. A three-layer structure including a calcium oxide layer and a cobalt oxide layer with an alloy layer as an intermediate layer is preferable (not shown).

本来であれば、内部容器10の溶着に関して記すべきであるが、容器形状が複雑であり外壁を切断して引張強度を測定した結果も切断点でそれぞれ接合面積も異なる。そこで、老化防止剤のポリフタルアミド樹脂の非接触熱板式溶着に対する効果を明確にするため、ここでは試験片を用いた実施例を示す。   Originally, it should be noted regarding the welding of the inner container 10, but the container shape is complicated, and the results of measuring the tensile strength by cutting the outer wall are different from each other at the cutting points. Therefore, in order to clarify the effect of the anti-aging agent on the non-contact hot plate welding of the polyphthalamide resin, an example using a test piece is shown here.

ポリフタルアミド樹脂を用いて射出成形で強度試験片(JIS K 7162)を作製した。この強度試験片の中央部で切断し、この切断箇所を溶着接合部とした。接合面積は4×10mmで40mm2である。 A strength test piece (JIS K 7162) was produced by injection molding using a polyphthalamide resin. It cut | disconnected in the center part of this strength test piece, and this cutting location was made into the welding junction part. The bonding area is 4 × 10 mm and 40 mm 2 .

老化防止剤として、4,4’−ビス(α,α−ジメチルベンジル)ジフェニルアミンをもちいて、アセトン中に3wt%の濃度で溶解させた。この老化防止剤溶液中に試験片の接合部を含浸させ、室温で約30分間放置して溶剤であるアセトンを気化させた後、溶着冶具にセットした。この時、熱板を挿入した際、熱版上側と上側試験片の距離が1.5mm、熱板下側と下側試験片の距離が0.8mmとなる様に高さを調整した(図7)。690℃に加熱した熱板を試験片間に挿入し、接合部を加熱溶融させた。この加熱時間を13秒〜19秒間の範囲で行っている。加熱後熱板を抜いて加圧し、30秒間放置した後冶具から取り外し引張強度を測定した。引張強度の測定結果を図8に示す。   4,4'-bis (α, α-dimethylbenzyl) diphenylamine was used as an anti-aging agent and dissolved in acetone at a concentration of 3 wt%. The joint portion of the test piece was impregnated in this anti-aging solution, and allowed to stand at room temperature for about 30 minutes to evaporate acetone as a solvent, and then set on a welding jig. At this time, when the hot plate was inserted, the height was adjusted so that the distance between the hot plate upper side and the upper test piece was 1.5 mm, and the distance between the hot plate lower side and the lower test piece was 0.8 mm (FIG. 7). . A hot plate heated to 690 ° C. was inserted between the test pieces, and the joint was heated and melted. This heating time is performed in the range of 13 to 19 seconds. After heating, the hot plate was removed and pressurized, left for 30 seconds, then removed from the jig, and the tensile strength was measured. The measurement results of the tensile strength are shown in FIG.

[比較例]
比較例として、実施例と同様に老化防止剤を使用しないポリフタルアミド樹脂の溶着試験片を作製した。加熱時間を12〜21秒間の範囲で行っている以外は全て実施例と同条件で行った。引張強度の測定結果を図9に示す。
[Comparative example]
As a comparative example, a welded test piece of polyphthalamide resin not using an anti-aging agent was prepared as in the example. All were performed under the same conditions as in the Examples except that the heating time was in the range of 12 to 21 seconds. The measurement result of tensile strength is shown in FIG.

図8(実施例)と図9(比較例)を見比べると、図8(実施例)が図9(比較例)よりも長時間にわたって2000N以上の高強度を維持できていることが分かる。この結果から、老化防止剤を塗布することにより、高強度範囲を増大させ、強度バラツキを低減する効果を確認することができた。本願発明により、信頼性の高い内部容器の安定供給が可能となることが期待できる。   Comparing FIG. 8 (Example) and FIG. 9 (Comparative Example), it can be seen that FIG. 8 (Example) can maintain a high strength of 2000 N or more over a longer time than FIG. 9 (Comparative Example). From these results, it was possible to confirm the effect of increasing the high strength range and reducing the strength variation by applying the anti-aging agent. According to the present invention, it can be expected that a highly reliable internal container can be stably supplied.

本願発明によれば、液体を保温貯留する断熱容器として利用でき、特に車両用エンジンのLLCを保温貯留する断熱容器に適用するものである。その他に、電気ポットなどの保温容器あるいは液化ガスなどの保冷容器にも利用することも可能である。   According to this invention, it can utilize as a heat insulation container which heat-retains a liquid, and is applied to the heat insulation container which heat-retains the LLC of the vehicle engine especially. In addition, it can also be used for a heat retaining container such as an electric pot or a cold container such as a liquefied gas.

1 断熱容器
10 内部容器
11 接合部材(半割り品)
12 接合部材(半割り品)
13 流入出口部
14 仕切り板
15 外壁
20 断熱材
21 気体吸着材(ゲッター材)
30 外装材
50 老化防止剤溶液
60 熱板
1 Insulated container 10 Inner container 11 Joining member (half product)
12 Joining parts (half-cut product)
13 Inlet / Outlet Portion 14 Partition Plate 15 Outer Wall 20 Heat Insulating Material 21 Gas Adsorbent (Getter Material)
30 exterior material 50 anti-aging solution 60 hot plate

Claims (12)

液体を保温貯留する断熱容器であって、
液体を貯留するため断熱容器内部に設けられる内部容器は、補強繊維を含有した高融点樹脂製の接合部材を複数接合することによって液体貯留空間を形成するように構成されており、
その接合部材の接合は、老化防止剤の塗布された接合部を非接触熱板溶着法で接合したものであることを特徴とした断熱容器。
An insulated container for storing and storing liquid,
The internal container provided inside the heat insulating container for storing liquid is configured to form a liquid storage space by joining a plurality of joining members made of high melting point resin containing reinforcing fibers,
A heat insulating container characterized in that the joining of the joining members is a joining part to which an anti-aging agent is applied, joined by a non-contact hot plate welding method.
前記接合部材の接合部には、内部容器の液体貯留空間を形成する外壁部分の他に、内部容器の内部を仕切るために設けられた仕切板部分も含まれることを特徴とした請求項1記載の断熱容器。   The partition part provided in order to partition the inside of an internal container other than the outer wall part which forms the liquid storage space of an internal container is also contained in the junction part of the said joining member, The inside is characterized by the above-mentioned. Insulated container. 前記高融点樹脂は、ポリフタルアミド樹脂であることを特徴とした請求項1又は2記載の断熱容器。   The heat insulating container according to claim 1 or 2, wherein the high melting point resin is a polyphthalamide resin. 前記老化防止剤は、アミン−ケトン系、芳香族第二級アミン系、ベンツイミダゾール系、ジチオカルバミン酸塩系、亜リン酸系から選択され、熱分解温度が320℃以上であることを特徴とする請求項1から3のいずれかに記載の断熱容器。   The anti-aging agent is selected from amine-ketones, aromatic secondary amines, benzimidazoles, dithiocarbamates, and phosphorous acids, and has a thermal decomposition temperature of 320 ° C. or higher. The heat insulation container in any one of Claim 1 to 3. 液体を保温貯留する断熱容器の製造方法であって、
液体を貯留するため断熱容器内部に設けられる内部容器が、複数の接合部材を接合することによって内部容器を構成する補強繊維を含有した高融点樹脂製の接合部材を成形し、その接合部材の接合部に老化防止剤を塗布した後、非接触熱板溶着法で接合することによって、液体貯留空間を備えた内部容器として作製されることを特徴とした断熱容器の製造方法。
A method for manufacturing an insulated container for storing and storing liquid,
An internal container provided inside the heat insulating container for storing liquid forms a joining member made of a high melting point resin containing reinforcing fibers constituting the internal container by joining a plurality of joining members, and joining the joining members A method for producing a heat-insulating container, characterized in that an anti-aging agent is applied to the part and then bonded by a non-contact hot plate welding method to produce an inner container having a liquid storage space.
前記老化防止剤の塗布は、有機溶剤を溶媒とした0.1〜5wt%の老化防止剤溶液に前記接合部を含浸させることを特徴とした請求項5記載の断熱容器の製造方法。   6. The method for producing a heat-insulating container according to claim 5, wherein the anti-aging agent is applied by impregnating the joint with a 0.1 to 5 wt% anti-aging agent solution using an organic solvent as a solvent. 補強繊維を含有した高融点樹脂製成形品の接合方法であって、
補強繊維を含有した高融点樹脂製の接合部材の接合部に老化防止剤を塗布した後、非接触熱板溶着法で前記接合部材どうしを接合し、補強繊維を含有した高融点樹脂製成形品を得ることを特徴とした高融点樹脂製成形品の接合方法。
A method of joining a molded article made of a high melting point resin containing reinforcing fibers,
After applying an anti-aging agent to the joint portion of the high melting point resin-containing joining member containing the reinforcing fiber, the joining members are joined to each other by a non-contact hot plate welding method, and the molded product made of the high melting point resin containing the reinforcing fiber A method of joining a molded product made of a high melting point resin, characterized in that:
前記老化防止剤の塗布は、有機溶剤を溶媒とした0.1〜5wt%の老化防止剤溶液に前記接合部を含浸させたことを特徴とした請求項7記載の高融点樹脂製成形品の接合方法。   8. The method for bonding a molded article made of a high melting point resin according to claim 7, wherein the anti-aging agent is applied by impregnating the bonding portion with an anti-aging solution of 0.1 to 5 wt% using an organic solvent as a solvent. . 複数の接合部材を接合することによって構成される補強繊維を含有した高融点樹脂製成形品であって、
その接合部材の接合は、老化防止剤の塗布された接合部を非接触熱板溶着法で接合したものであることを特徴とした高融点樹脂製成形品。
It is a molded product made of high melting point resin containing reinforcing fibers constituted by joining a plurality of joining members,
The high melting point resin molded product characterized in that the bonding of the bonding member is a bonding portion to which an anti-aging agent is applied, bonded by a non-contact hot plate welding method.
前記接合部材の接合部には、高融点樹脂製成形品の外部構造を形成する外側部分の他に、同内部構造を形成する内側部分も含まれることを特徴とした請求項9記載の高融点樹脂製成形品。   10. The high melting point according to claim 9, wherein the joint part of the joining member includes an inner part forming the internal structure in addition to the outer part forming the external structure of the high melting point resin molded product. Plastic molded product. 前記高融点樹脂は、ポリフタルアミド樹脂であることを特徴とした請求項9又は10記載の高融点樹脂製成形品。   The molded article made of a high melting point resin according to claim 9 or 10, wherein the high melting point resin is a polyphthalamide resin. 前記老化防止剤は、アミン−ケトン系、芳香族第二級アミン系、ベンツイミダゾール系、ジチオカルバミン酸塩系、亜リン酸系から選択され、熱分解温度が320℃以上であることを特徴とする請求項9から11のいずれかに記載の高融点樹脂製成形品。   The anti-aging agent is selected from amine-ketones, aromatic secondary amines, benzimidazoles, dithiocarbamates, and phosphorous acids, and has a thermal decomposition temperature of 320 ° C. or higher. The molded article made of a high melting point resin according to any one of claims 9 to 11.
JP2009080675A 2009-03-27 2009-03-27 Heat insulating container, method for manufacturing heat insulating container, method for bonding molded article made of resin with high melting point, and molded article made of resin with high melting point Pending JP2010228798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080675A JP2010228798A (en) 2009-03-27 2009-03-27 Heat insulating container, method for manufacturing heat insulating container, method for bonding molded article made of resin with high melting point, and molded article made of resin with high melting point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080675A JP2010228798A (en) 2009-03-27 2009-03-27 Heat insulating container, method for manufacturing heat insulating container, method for bonding molded article made of resin with high melting point, and molded article made of resin with high melting point

Publications (1)

Publication Number Publication Date
JP2010228798A true JP2010228798A (en) 2010-10-14

Family

ID=43045008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080675A Pending JP2010228798A (en) 2009-03-27 2009-03-27 Heat insulating container, method for manufacturing heat insulating container, method for bonding molded article made of resin with high melting point, and molded article made of resin with high melting point

Country Status (1)

Country Link
JP (1) JP2010228798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094008A1 (en) 2011-12-20 2013-06-27 トヨタ自動車株式会社 Method for connecting members and connection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094008A1 (en) 2011-12-20 2013-06-27 トヨタ自動車株式会社 Method for connecting members and connection structure

Similar Documents

Publication Publication Date Title
JP5946150B2 (en) High temperature vacuum insulation
JP3942189B2 (en) Manufacturing method of vacuum insulation
JP6075162B2 (en) Exterior material, storage battery, and method for manufacturing exterior material
JP6224017B2 (en) Method for producing CFRTP complex
EP3202572A1 (en) Resin composite
US20180326678A1 (en) Improvements in or relating to fibre reinforced composites
US10759915B2 (en) Thermoplastic material for vehicle interior or exterior, method for preparing the same and article for vehicle interior or exterior using the same
US20210237335A1 (en) Method for manufacturing high-pressure tank
RU2009123834A (en) METAL / POLYMERIC PIPELINE WITH A LAYERED STRUCTURE AND METHOD FOR ITS MANUFACTURE
EP3200966A1 (en) Method for welding a heat shield during manufacturing of a vehicle component
JP2010228798A (en) Heat insulating container, method for manufacturing heat insulating container, method for bonding molded article made of resin with high melting point, and molded article made of resin with high melting point
JP5193395B2 (en) Heat-sealable laminate and method for producing the same
JP2014214856A (en) Method of manufacturing vacuum heat insulating material, and outer packaging material for vacuum heat insulating material
JP2010281444A (en) Heat insulating material
US20230151255A1 (en) Multilayer structure for transporting or storing hydrogen
US20090260745A1 (en) Method of Manufacturing Resin Pipe
KR20220133961A (en) Multi-layered structures for transporting or storing hydrogen
KR101944162B1 (en) Outer packaging materials having high temperature resistance for vacuum insulation panel, Vacuum insulation panel using the same, and Manufacturing method thereof
JP2017133568A (en) Vacuum heat insulation material and equipment with vacuum heat insulation material
Miao et al. Overmolded hybrid thermoset‐thermoplastic structures: Experimental study on the bonding strength of co‐curing thermoplastic film onto thermoset composite
KR102522216B1 (en) Primer layer composition, secondary battery pouch film using the same, and method for manufacturing the same
US20230075842A1 (en) Multilayer structure for transporting or storing hydrogen
WO2016157931A1 (en) Outer packaging member for vacuum heat insulating member, vacuum heat-insulating member, and device with vacuum heat-insulating member
CN111215739A (en) Method for preparing resistance welding heating element by using carbon fiber treated by plasma
JP2012057745A (en) Vacuum heat insulation material