JP2010228666A - Duct - Google Patents

Duct Download PDF

Info

Publication number
JP2010228666A
JP2010228666A JP2009080218A JP2009080218A JP2010228666A JP 2010228666 A JP2010228666 A JP 2010228666A JP 2009080218 A JP2009080218 A JP 2009080218A JP 2009080218 A JP2009080218 A JP 2009080218A JP 2010228666 A JP2010228666 A JP 2010228666A
Authority
JP
Japan
Prior art keywords
duct
straight pipe
deformation
eccentric
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009080218A
Other languages
Japanese (ja)
Other versions
JP5185175B2 (en
Inventor
Masaya Makihara
真也 牧原
Teruo Shiraishi
輝男 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoue MTP KK
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp filed Critical Inoue MTP KK
Priority to JP2009080218A priority Critical patent/JP5185175B2/en
Publication of JP2010228666A publication Critical patent/JP2010228666A/en
Application granted granted Critical
Publication of JP5185175B2 publication Critical patent/JP5185175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Duct Arrangements (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the ventilation performance of a bent duct. <P>SOLUTION: A duct 10 comprises a straight pipe 12, a bendable bellows-shaped deformation part 14, and an offset part provided between the straight pipe 12 and the deformation part 14. The offset part 16 is constituted so that a connection part of the deformation part 14 with one end of the offset part 16 connected thereto is deviated to a side forming the inner bend side of the deformation part 14 with respect to the connection part of the straight pipe 12 with the other end of the offset part 16 connected thereto. In the duct 10, a curved portion 10a is constituted of the bent deformation part 14 and the offset part 16. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、蛇腹状の変形部を備え、変形部の曲げ変形により湾曲部分が設けられるダクトに関するものである。   The present invention relates to a duct provided with a bellows-like deformed portion and provided with a curved portion by bending deformation of the deformable portion.

自動車には、車体の乗員室前方にエアコンユニットが設置されると共に、乗員室内に取付けられた車両内装部材(インストルメントパネルやフロアコンソール等)にエアアウトレットが配設され、エアコンユニットから送出された調温空気をエアアウトレットから乗員室内へ吹出して該乗員室内の空調が行なわれる。このため、エアコンユニットとエアアウトレットとは、車両内装部材の裏側に配設されたダクトで連結されている。   In an automobile, an air conditioner unit is installed in front of the passenger compartment of the vehicle body, and an air outlet is disposed on a vehicle interior member (instrument panel, floor console, etc.) installed in the passenger compartment and sent from the air conditioner unit. Temperature-controlled air is blown out from the air outlet into the passenger compartment, thereby air conditioning the passenger compartment. For this reason, the air conditioner unit and the air outlet are connected by a duct disposed on the back side of the vehicle interior member.

前述したダクトは、エアコンユニットおよびエアアウトレットの配置に合わせて途中に湾曲部分を設けて、他の部材に干渉しないように配設されている。例えばダクトとしては、伸縮や曲げ等の変形が可能な蛇腹状の変形部を備え、この変形部の変形によって湾曲部分を形成するものが提案されている(例えば、特許文献1参照)。   The duct described above is provided so that a curved portion is provided on the way in accordance with the arrangement of the air conditioner unit and the air outlet so as not to interfere with other members. For example, a duct has been proposed that includes a bellows-like deformable portion that can be deformed such as expansion and contraction, and that forms a curved portion by deformation of the deformable portion (see, for example, Patent Document 1).

特開2000−108637号公報JP 2000-108637 A

図10に例示するダクト80のように、蛇腹状の変形部82を曲げて湾曲部分を形成した際には、当該湾曲部分の曲率が大きくなり、変形した変形部82で画成される空気流通路84を通過する空気がスムーズに変向されないことがある。このため、ダクト80における湾曲部分の空気流通路84において、曲がりの内側から気流が剥離すると共に、気流が曲がりの外側に集中して、空気流通路84の断面全体を流路として有効利用できず、圧力損失が大きくなる難点がある。また、ダクト80における湾曲部分の空気流通路84において、曲がりの内側から気流が剥離することで、変形部82の下流側に旋回流(渦)Fが発生して圧力損失が大きくなる要因となる。   When the curved portion is formed by bending the bellows-like deformed portion 82 as in the duct 80 illustrated in FIG. 10, the curvature of the curved portion increases, and the air flow defined by the deformed deformed portion 82. The air passing through the path 84 may not be smoothly redirected. For this reason, in the air flow passage 84 in the curved portion of the duct 80, the air flow is separated from the inside of the bend, and the air flow is concentrated on the outside of the bend, so that the entire cross section of the air flow passage 84 cannot be effectively used as the flow path. There is a drawback that the pressure loss becomes large. Moreover, in the air flow passage 84 in the curved portion of the duct 80, the air flow is separated from the inside of the bend, so that a swirling flow (vortex) F is generated on the downstream side of the deformed portion 82, which increases the pressure loss. .

すなわち本発明は、従来の技術に係るダクトに内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、湾曲部分における圧力損失を低減し得るダクトを提供することを目的とする。   That is, the present invention has been proposed in order to suitably solve these problems inherent in the duct according to the prior art, and an object of the present invention is to provide a duct that can reduce pressure loss in a curved portion. And

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明のダクトは、
直管部および曲げ変形可能な蛇腹状の変形部を有し、該変形部を曲げて車両に取り付けられるダクトにおいて、
前記直管部と前記変形部との間に偏心部を設け、
前記偏心部は、前記変形部における該偏心部との接続部位の通風断面を、前記直管部における該偏心部との接続部位の通風断面に対して、該変形部の曲がりの内側となる側へずらして繋ぎ、
曲げた前記変形部および前記偏心部によって湾曲部分を構成することを特徴とする。
請求項1に係る発明によれば、直管部と変形部との間に変形部を曲げる方向に合わせた偏心部を設けることで、変形部および偏心部とから構成される湾曲部分の曲率を小さくすることができるので、当該湾曲部分での圧力損失を低減することができる。
In order to overcome the above-mentioned problems and achieve the intended purpose, the duct of the invention according to claim 1 of the present application provides:
In a duct having a straight pipe portion and a bellows-like deformable portion that can be bent and deformed, and the bent portion is bent and attached to a vehicle,
An eccentric part is provided between the straight pipe part and the deformation part,
The eccentric portion has a ventilation cross section of a connecting portion with the eccentric portion in the deformable portion, and a side on the inner side of the bent portion of the deformable portion with respect to the vent cross section of the connecting portion with the eccentric portion in the straight pipe portion. Connect and move
A curved portion is formed by the bent deformed portion and the eccentric portion.
According to the first aspect of the present invention, the curvature of the curved portion composed of the deforming portion and the eccentric portion is provided by providing the eccentric portion in the direction in which the deforming portion is bent between the straight pipe portion and the deforming portion. Since it can be made small, the pressure loss in the said curved part can be reduced.

請求項2に係る発明では、前記偏心部は、前記直管部との接続端から前記変形部との接続端に向かうにつれて、該変形部の曲がりの内側となる側が凹となるように湾曲していることを要旨とする。
請求項2に係る発明によれば、偏心部を湾曲形状にすることで、ダクトの湾曲部分の曲面を滑らかにすることができ、当該湾曲部分での圧力損失をより低減することができる。
In the invention according to claim 2, the eccentric portion bends so that the side that is the inside of the bending of the deforming portion becomes concave as it goes from the connecting end to the straight pipe portion to the connecting end to the deforming portion. It is a summary.
According to the invention which concerns on Claim 2, the curved surface of the duct part can be made smooth by making an eccentric part into a curve shape, and the pressure loss in the said curve part can be reduced more.

請求項3に係る発明では、前記偏心部は、前記変形部の両側に夫々設けられることを要旨とする。
請求項3に係る発明によれば、変形部の両側に偏心部を設けることで、変形部および2つの偏心部とから構成される湾曲部分の曲率をより小さくすることができるので、当該湾曲部分での圧力損失を更に低減することができる。
The gist of the invention according to claim 3 is that the eccentric portion is provided on each side of the deformable portion.
According to the invention of claim 3, by providing the eccentric portions on both sides of the deformable portion, the curvature of the curved portion constituted by the deformable portion and the two eccentric portions can be further reduced. The pressure loss at can be further reduced.

請求項4に係る発明では、前記変形部を挟んで設けられた一対の直管部の中心軸線が、該変形部の直線状態において同一直線上に位置することを要旨とする。
請求項4に係る発明によれば、湾曲部分での圧力損失を低減することができる。
The gist of the invention according to claim 4 is that the central axes of the pair of straight pipe portions provided with the deformation portion interposed therebetween are positioned on the same straight line in the linear state of the deformation portion.
According to the invention which concerns on Claim 4, the pressure loss in a curved part can be reduced.

請求項5に係る発明では、前記変形部は、曲がった状態で自己保持可能に構成されることを要旨とする。
請求項5に係る発明によれば、変形部が曲がった状態で自己保持するので、別途の支持金具を用いることなく、圧力損失を有利に低減できる湾曲部分の曲がり角度を適切に維持し得る。
The gist of the invention according to claim 5 is that the deformable portion is configured to be capable of self-holding in a bent state.
According to the invention which concerns on Claim 5, since the deformation | transformation part hold | maintains in the bent state, the bending angle of the curved part which can reduce pressure loss advantageously can be maintained appropriately, without using a separate support metal fitting.

本発明に係るダクトによれば、湾曲部分において圧力損失を低減でき、通風性能を向上できる。   According to the duct according to the present invention, pressure loss can be reduced at the curved portion, and ventilation performance can be improved.

実施例のダクトを、エアコンユニットおよびエアアウトレットに夫々接続した状態で示した説明図である。It is explanatory drawing shown in the state which connected the duct of the Example to the air-conditioner unit and the air outlet, respectively. 実施例のダクトを示す平面図であって、直線状態とした変形部を拡開していいる。It is a top view which shows the duct of an Example, Comprising: The deformation | transformation part made into the linear state is expanded. 実施例のダクトを示す平面図であって、直線状態とした変形部を縮めている。It is a top view which shows the duct of an Example, Comprising: The deformation | transformation part made into the linear state is shrunk | reduced. 実施例のダクトの湾曲部分を拡大して示す平面図である。It is a top view which expands and shows the curved part of the duct of an Example. 変形部における各突状部の第2壁部が第1状態に変形し、隣り合う谷部同士が近接した状態に保持されることを示した部分断面図である。It is the fragmentary sectional view which showed that the 2nd wall part of each protrusion-shaped part in a deformation | transformation part deform | transforms into a 1st state, and the adjacent trough parts hold | maintained in the close proximity | contact state. 変形部における各突状部の第2壁部が第2状態に変形し、隣り合う谷部同士が離間した状態に保持されることを示した部分断面図である。It is the fragmentary sectional view which showed that the 2nd wall part of each protrusion-shaped part in a deformation | transformation part deform | transforms into a 2nd state, and the adjacent trough parts hold | maintained in the separated state. 実施例の突状部における第1壁部および第2壁部の形状を示した拡大断面図である。It is the expanded sectional view which showed the shape of the 1st wall part in the protrusion part of an Example, and the 2nd wall part. 変形部の曲がり角度が90°となる実験例2のダクトの平面図であって、変形部を真っ直ぐにした状態で示す。It is a top view of the duct of Experimental example 2 in which the bending angle of a deformation | transformation part becomes 90 degrees, Comprising: It shows in the state which made the deformation | transformation part straight. 実験例2のダクトを示す平面図であって、(a)は湾曲部分を90°とした場合を示し、(b)は湾曲部分を75°とした場合を示し、(c)は湾曲部分を60°とした場合を示し、(d)は湾曲部分を45°とした場合を示し、(e)は湾曲部分を30°とした場合を示す。It is a top view which shows the duct of Experimental example 2, Comprising: (a) shows the case where a curved part is 90 degrees, (b) shows the case where a curved part is 75 degrees, (c) shows the curved part. The case of 60 ° is shown, (d) shows the case where the curved portion is 45 °, and (e) shows the case where the curved portion is 30 °. 従来のダクトを示す平面図である。It is a top view which shows the conventional duct.

次に、本発明に係るダクトにつき、好適な実施例を挙げて、添付図面を参照して以下に説明する。実施例では、図1に示すように、自動車の乗員室に設置されたエアコンユニットACと、乗員室内に設置された車両内装部材IPに配設されたエアアウトレットAOとに夫々連結され、エアコンユニットACから送出された調温空気をエアアウトレットAOへ案内するダクト10を例示する。   Next, a preferred embodiment of the duct according to the present invention will be described below with reference to the accompanying drawings. In the embodiment, as shown in FIG. 1, the air conditioner unit AC installed in the passenger compartment of the automobile and the air outlet AO arranged in the vehicle interior member IP installed in the passenger compartment are respectively connected to the air conditioner unit. The duct 10 which guides the temperature-controlled air sent out from AC to the air outlet AO is illustrated.

図1に示すように、実施例のダクト10は、筒状の直管部12と、曲げ変形可能な蛇腹状の変形部14と、直管部12および変形部14の間に設けた偏心部16とから構成されている。また、ダクト10は、変形部14および偏心部16についても基本形状が筒状であって、一方の開口端から他方の開口端に連通する空気流通路18が内部に画成されている。実施例のダクト10では、変形部14が空気流通方向に離間して途中に2ヶ所設けられると共に、エアエアコンユニットACおよびエアアウトレットAOに接続する部位が直管部12で構成されている。ここで、実施例のダクト10では、曲げた変形部14と偏心部16とにより湾曲部分10aを構成して、エアコンユニットACやエアアウトレットAO等の空気案内対象に接続されるものであって、変形部14を曲げて車両に取り付けることを前提としている。   As shown in FIG. 1, the duct 10 according to the embodiment includes a cylindrical straight pipe portion 12, a bellows-like deformable portion 14 that can be bent and deformed, and an eccentric portion provided between the straight pipe portion 12 and the deformable portion 14. 16. The duct 10 also has a cylindrical shape in the deformable portion 14 and the eccentric portion 16, and an air flow passage 18 communicating from one opening end to the other opening end is defined inside. In the duct 10 according to the embodiment, the deformable portion 14 is provided in two places in the middle of the air flow direction, and the portion connected to the air air conditioner unit AC and the air outlet AO is constituted by the straight pipe portion 12. Here, in the duct 10 of the embodiment, the bent deformed portion 14 and the eccentric portion 16 constitute a curved portion 10a and is connected to an air guide target such as an air conditioner unit AC or an air outlet AO. It is assumed that the deformable portion 14 is bent and attached to the vehicle.

実施例の直管部12は、円筒形であって、空気流通方向上流側から下流側の全体に亘って同一の径で形成されている(図1または図2参照)。また、直管部12は、該直管部12に画成される空気流通路18の中心軸線Cが一直線になるように直線的に形成されており、ダクト10の直線部分を構成している。ここで、ダクト10の中心軸線Cは、直管部12、変形部14および偏心部16の形状によって規定される空気流通路18において空気流通方向に交差する通風断面の中心を通る仮想線であって、空気流通路18の空気流通方向に沿って延在している。   The straight pipe portion 12 of the embodiment is cylindrical and is formed with the same diameter from the upstream side to the downstream side in the air flow direction (see FIG. 1 or FIG. 2). The straight pipe portion 12 is linearly formed so that the central axis C of the air flow passage 18 defined in the straight pipe portion 12 is a straight line, and constitutes a straight portion of the duct 10. . Here, the central axis C of the duct 10 is an imaginary line that passes through the center of the ventilation cross section that intersects the air flow direction in the air flow passage 18 defined by the shapes of the straight pipe portion 12, the deformation portion 14, and the eccentric portion 16. The air flow passage 18 extends along the air flow direction.

前記変形部14は、複数(実施例では13個)の突状部20を空気流通方向に連ねて構成した伸縮および曲げ変形可能な蛇腹状の部位であって(図1〜図3参照)、直管部12に合わせた円筒形状を基本形状としている。各突状部20は、変形部14の周方向全周に亘って延在して、該変形部14における空気流通路18の一部が内部に画成されている。各突状部20は、変形部14において空気流通方向と交差する外側(筒形状の径方向外方)に突出する頂部22で接続されて、空気流通方向に対向する一対の壁部24,26から構成されている(図5〜図7参照)。そして、変形部14は、複数の突状部20の裾部分同士を接続して構成される。ここで、変形部14では、突状部20の頂部22で囲われる部位が、該変形部14における空気流通路18の最大径部となる。これに対して、変形部14では、隣り合う突状部20,20の接続部位である谷部28で囲われる部位が、該変形部14における空気流通路18の最小径部となる。   The deformable portion 14 is a bellows-like portion that can be expanded and contracted and deformed by connecting a plurality (13 in the embodiment) of the protruding portions 20 in the air flow direction (see FIGS. 1 to 3), A cylindrical shape matched to the straight pipe portion 12 is a basic shape. Each projecting portion 20 extends over the entire circumference of the deformable portion 14, and a part of the air flow passage 18 in the deformable portion 14 is defined inside. Each projecting portion 20 is connected by a top portion 22 that protrudes outwardly (in the radially outward direction of the tubular shape) in the deformable portion 14 and intersects the air flow direction, and a pair of wall portions 24 and 26 facing the air flow direction. (Refer to FIGS. 5 to 7). And the deformation | transformation part 14 is comprised by connecting the skirt | hip | mouth parts of the some protruding part 20 mutually. Here, in the deformed portion 14, a portion surrounded by the top portion 22 of the projecting portion 20 is the maximum diameter portion of the air flow passage 18 in the deformed portion 14. On the other hand, in the deformed portion 14, a portion surrounded by the valley portion 28 that is a connecting portion of the adjacent projecting portions 20 and 20 becomes the minimum diameter portion of the air flow passage 18 in the deformed portion 14.

前記変形部14は、各突状部20の頂部22側の所定位置(頂部22側の変形基点(以下、湾曲変形基点30という。))および谷部28側の所定位置(谷部28側の変形基点)が屈伸変形可能に構成されて、該変形部14を空気流通方向に伸縮したり、該変形部14を空気流通方向に交差する方向に曲げることが可能になっている(図7参照)。実施例の突状部20では、谷部28側の変形基点が谷部28に合わせて設けられている。一方、実施例の突状部20では、湾曲変形基点30が一方の壁部(実施例では後述する第2壁部26)の頂部22側に偏倚した途中部位に設けられている。より具体的には、湾曲変形基点30は、前記一方の壁部26における頂部22の近傍部分において該壁部26の肉厚と同程度の間隔で該頂部22から離間した位置に、該壁部26の全周に亘って延設されている。なお、実施例のダクト10では、変形部14の最小径部が直管部12の直径と同一に設定されている。   The deforming portion 14 includes a predetermined position on the top portion 22 side of each projecting portion 20 (a deformation base point on the top portion 22 side (hereinafter referred to as a curved deformation base point 30)) and a predetermined position on the trough portion 28 side (on the trough portion 28 side). The deformation base point is configured to be able to bend and stretch, and the deformable portion 14 can be expanded and contracted in the air flow direction, or the deformable portion 14 can be bent in a direction intersecting the air flow direction (see FIG. 7). ). In the protruding portion 20 of the embodiment, the deformation base point on the valley portion 28 side is provided in accordance with the valley portion 28. On the other hand, in the protruding portion 20 of the embodiment, the bending deformation base point 30 is provided at a midway portion that is biased toward the top portion 22 side of one wall portion (second wall portion 26 described later in the embodiment). More specifically, the bending deformation base point 30 is located in the vicinity of the top portion 22 of the one wall portion 26 at a position separated from the top portion 22 at a distance similar to the thickness of the wall portion 26. 26 is extended over the entire circumference. In the duct 10 of the embodiment, the minimum diameter portion of the deformable portion 14 is set to be the same as the diameter of the straight pipe portion 12.

図5または図6に示すように、変形部14の各突状部20は、頂部22を空気流通方向に挟んで第1壁部24および第2壁部26を備えている。実施例の変形部14では、ダクト10の空気流通方向下流側に第1壁部24が設けられ、ダクト10の空気流通方向上流側に第2壁部26が設けられている(図5参照)。すなわち、変形部14では、第1壁部24と第2壁部26とが空気流通方向に交互に配置され、第1壁部24の裾部分に空気流通方向に隣り合う突状部20の第2壁部26の裾部分が接続されて谷部28を構成している。また、第1壁部24および第2壁部26は、図7に示すように、谷部28から頂部22に向かって徐々に薄くなるよう形成されている。   As shown in FIG. 5 or FIG. 6, each projecting portion 20 of the deformable portion 14 includes a first wall portion 24 and a second wall portion 26 with the top portion 22 sandwiched in the air flow direction. In the deformation part 14 of an Example, the 1st wall part 24 is provided in the air flow direction downstream of the duct 10, and the 2nd wall part 26 is provided in the air flow direction upstream of the duct 10 (refer FIG. 5). . In other words, in the deformable portion 14, the first wall portions 24 and the second wall portions 26 are alternately arranged in the air flow direction, and the first wall portions 24 of the protrusions 20 adjacent to the hem portion of the first wall portion 24 in the air flow direction are arranged. The bottom part of 2 wall part 26 is connected, and the trough part 28 is comprised. Moreover, the 1st wall part 24 and the 2nd wall part 26 are formed so that it may become thin gradually from the trough part 28 toward the top part 22, as shown in FIG.

図7に示すように、第1壁部24は、頂部22と谷部28とを結んだ直線ラインに沿って延在するように形成され、頂部22から谷部28に向けて平坦状になっている。これに対して、第2壁部26は、頂部22側に設けられた湾曲変形基点30と谷部28との間で湾曲するように形成されて、湾曲変形基点30と谷部28とを結んだ直線ラインより該第2壁部26の湾曲面が突出している。また、突状部20は、第1壁部24における頂部22から谷部28までの直線距離S1が、第2壁部26における頂部22から谷部28までの直線距離S2より長く設定されている。   As shown in FIG. 7, the first wall portion 24 is formed so as to extend along a straight line connecting the top portion 22 and the trough portion 28, and becomes flat from the top portion 22 toward the trough portion 28. ing. On the other hand, the second wall portion 26 is formed so as to bend between the bending deformation base point 30 and the valley portion 28 provided on the top portion 22 side, and connects the bending deformation base point 30 and the valley portion 28. The curved surface of the second wall portion 26 protrudes from the straight line. Further, in the protruding portion 20, the linear distance S1 from the top portion 22 to the trough portion 28 in the first wall portion 24 is set to be longer than the linear distance S2 from the top portion 22 to the trough portion 28 in the second wall portion 26. .

前記第2壁部26は、湾曲変形基点30および谷部28で保持された湾曲面が弾性変形可能に構成されて、該湾曲面の凸側が湾曲変形基点30と谷部28とを結ぶ直線ラインを挟んで入れ替わるようになっている(図7参照)。ここで、第2壁部26は、変形部14の伸縮または曲げ変形に応じて、該頂部22で接続する第1壁部24側へ湾曲面の凸側が突出するよう湾曲した第1状態(図5または図7の2点鎖線参照)に変形される。また、第2壁部26は、谷部28で接続する第1壁部24側へ湾曲面の凸側が突出するよう湾曲(頂部22で接続する第1壁部24側と反対側へ突出するよう湾曲)した第2状態(図6または図7の実線参照)に変形される。そして、変形部14は、第1状態の第2壁部26によって隣り合う谷部28同士が近接するよう保持され、第2状態の第2壁部26によって隣り合う谷部28同士が離間するよう保持されるようになっている。このように、変形部14は、曲がった状態で自己保持可能に構成される。すなわち、ダクト10は、車両への取り付け時に設定された湾曲部分10aの曲がり角度θを、支持金具等を別途用いることなく適切に維持し得る。なお、第2状態に変形した第2壁部26は、図6に示すように、同一中心で湾曲変形基点30および谷部28を通る半径Mの球面の一部をなす曲面形状になっている。   The second wall portion 26 is configured such that the curved surface held by the curved deformation base point 30 and the valley portion 28 can be elastically deformed, and the convex side of the curved surface connects the curved deformation base point 30 and the valley portion 28. Are interchanged (see FIG. 7). Here, the second wall portion 26 is curved in a first state in which the convex side of the curved surface protrudes toward the first wall portion 24 connected at the top portion 22 in accordance with the expansion or contraction or bending deformation of the deformation portion 14 (FIG. 5 or a two-dot chain line in FIG. 7). The second wall portion 26 is curved so that the convex side of the curved surface protrudes toward the first wall portion 24 side connected at the valley portion 28 (so as to protrude opposite to the first wall portion 24 side connected at the top portion 22. The second state is bent (see the solid line in FIG. 6 or 7). And the deformation | transformation part 14 is hold | maintained so that the adjacent trough parts 28 may adjoin by the 2nd wall part 26 of a 1st state, and the adjacent trough parts 28 are spaced apart by the 2nd wall part 26 of a 2nd state. It is supposed to be retained. Thus, the deformation | transformation part 14 is comprised so that self-holding is possible in the bent state. That is, the duct 10 can appropriately maintain the bending angle θ of the curved portion 10a set at the time of attachment to the vehicle without separately using a support fitting or the like. In addition, the 2nd wall part 26 deform | transformed into the 2nd state becomes a curved surface shape which makes a part of spherical surface of the radius M which passes along the curved deformation | transformation origin 30 and the trough part 28 in the same center, as shown in FIG. .

実施例のダクト10では、取り付け対象に合わせて変形部14の曲がり方向が予め設定されている。そして、実施例の変形部14は、曲がりの内側となる部位(曲がりの凹側)が曲がりの外側(曲がりの凸側)となる部位と比べて肉厚が薄く形成されている。これにより、曲げた変形部14の曲げ変形状態の保持性を向上することができる。   In the duct 10 of the embodiment, the bending direction of the deformable portion 14 is set in advance according to the attachment target. And the deformation | transformation part 14 of an Example is formed thinly compared with the site | part from which the site | part which becomes the inner side of a curve (the concave side of a curve) becomes the outer side of a curve (the convex side of a curve). Thereby, the retention property of the bending deformation state of the bending deformation part 14 can be improved.

前記ダクト10において、偏心部16は、直管部12と変形部14とを接続する部位であって(図1参照)、直管部12および変形部14に合わせて円筒形状に形成されている。偏心部16は、直管部12への接続端が直管部12の直径と同じに形成されると共に、変形部14への接続端が該変形部14の最小径部と同じに形成されている。また、偏心部16は、空気流通方向上流側から下流側の全体に亘って同一の径で形成されている。すなわち、実施例のダクト10は、空気流通方向上流側の開口端から下流側の開口端までに亘って、変形部14の突状部を除いて直管部12の直径と同一のダクト径Dを基本として形成されている。更に、実施例のダクト10では、変形部14の空気流通方向に離間する両端に偏心部16が夫々設けられており、変形部14の直線状態において該変形部14を挟んで設けられた一対の直管部12,12の中心軸線Cが同一直線状に位置するよう構成される。   In the duct 10, the eccentric portion 16 is a portion that connects the straight pipe portion 12 and the deformable portion 14 (see FIG. 1), and is formed in a cylindrical shape according to the straight pipe portion 12 and the deformable portion 14. . The eccentric portion 16 has a connection end to the straight pipe portion 12 that is the same as the diameter of the straight pipe portion 12, and a connection end to the deformation portion 14 that is the same as the minimum diameter portion of the deformation portion 14. Yes. The eccentric portion 16 is formed with the same diameter from the upstream side to the downstream side in the air flow direction. That is, the duct 10 of the embodiment has a duct diameter D that is the same as the diameter of the straight pipe portion 12 except for the projecting portion of the deformable portion 14 from the upstream opening end to the downstream opening end in the air flow direction. It is formed on the basis. Further, in the duct 10 according to the embodiment, the eccentric portions 16 are provided at both ends of the deformable portion 14 that are separated from each other in the air flow direction, and a pair of the deformable portions 14 provided with the deformable portion 14 interposed therebetween in a linear state. The straight axes 12 and 12 are configured such that the central axes C of the straight pipe portions 12 and 12 are positioned on the same straight line.

前記偏心部16は、変形部14における該偏心部16との接続部位の通風断面を、直管部12における該偏心部16との接続部位の通風断面に対して、該変形部14の曲がりの内側となる側へずらすように繋いでいる(図2または図4参照)。すなわち、偏心部16は、直管部12との接続部位から変形部14との接続部位に向かうにつれて、変形部14の曲がりの内側となる側へ中心軸線Cが傾くように形成されている(図2または図3参照)。実施例では、偏心部16が直管部12との接続部位から変形部14との接続部位に向かうにつれて、変形部14の曲がりの内側となる側が凹になるように湾曲形成されている。   The eccentric portion 16 is configured such that the deformation section 14 has a ventilation cross section at the connection portion with the eccentric portion 16 with respect to the ventilation cross section at the connection portion with the eccentric portion 16 in the straight pipe portion 12. They are connected so as to be shifted to the inner side (see FIG. 2 or FIG. 4). That is, the eccentric portion 16 is formed such that the central axis C is inclined toward the inner side of the bending of the deforming portion 14 as it goes from the connecting portion with the straight pipe portion 12 to the connecting portion with the deforming portion 14 ( (See FIG. 2 or FIG. 3). In the embodiment, the eccentric portion 16 is curved so that the inner side of the bending of the deforming portion 14 becomes concave as it goes from the connecting portion with the straight pipe portion 12 to the connecting portion with the deforming portion 14.

前記ダクト10では、前述の如く変形部14および偏心部16により湾曲部分10aが構成される。そして、ダクト10では、空気流通方向上流側の直管部12と空気流通方向下流側の直管部12との間に湾曲部分10aの曲がり角度θに応じて規定される曲率を小さく(曲率半径を大きく)するのが、圧力損失低減の観点から好ましい。すなわち、ダクト10では、変形部14を曲げた状態において、空気流通方向上流側の直管部12の接続部位から変形部14の曲がりの内側に伸ばしたラインと空気流通方向下流側の直管部12の接続部位から変形部14の曲がりの内側に伸ばしたラインとが交差する交差点を中心として、該交差点から直管部12の接続部位を通る中心軸線Cまでを半径とする円弧に対して、偏心部16および変形部14の中心軸線Cが整合または近似する関係に設定するのがよい(図4参照)。そして、ダクト10では、ダクト径D、湾曲部分10aの曲がり角度θ、直管部12の接続部位とこの直管部12の接続部位に偏心部16を挟んで向かい合う変形部14の接続部位との水平距離(以下、偏心距離Lという。)および直管部12の中心軸線Cと直線状態にある変形部14の中心軸線Cとの間のずれ寸法(以下、偏心度Eという。)等の諸条件を勘案して、湾曲部分10aが構成される(図2または図4参照)。   In the duct 10, the curved portion 10 a is configured by the deformable portion 14 and the eccentric portion 16 as described above. In the duct 10, the curvature defined according to the bending angle θ of the curved portion 10 a is reduced between the straight pipe portion 12 on the upstream side in the air flow direction and the straight pipe portion 12 on the downstream side in the air flow direction (the radius of curvature). Is preferable from the viewpoint of reducing pressure loss. That is, in the duct 10, in a state where the deformed portion 14 is bent, a line extending from the connection portion of the straight pipe portion 12 on the upstream side in the air flow direction to the inside of the bend of the deformable portion 14 and the straight pipe portion on the downstream side in the air flow direction. With respect to an arc having a radius from the intersection to the central axis C passing through the connection portion of the straight pipe portion 12 around the intersection where the line extending from the connection portion of 12 to the inside of the bend of the deformable portion 14 intersects, The center axis C of the eccentric part 16 and the deforming part 14 is preferably set so as to match or approximate (see FIG. 4). In the duct 10, the duct diameter D, the bending angle θ of the curved portion 10 a, the connection portion of the straight pipe portion 12, and the connection portion of the deformable portion 14 facing each other with the eccentric portion 16 sandwiched between the connection portion of the straight pipe portion 12. Various factors such as a horizontal distance (hereinafter referred to as an eccentric distance L) and a displacement dimension (hereinafter referred to as an eccentricity E) between the central axis C of the straight pipe portion 12 and the central axis C of the deformed portion 14 in a straight state. In consideration of the conditions, the curved portion 10a is configured (see FIG. 2 or FIG. 4).

(実施例の作用)
前記ダクト10では、直線状態における変形部14の中心軸線Cが、直管部12の中心軸線Cに対して該変形部14の曲がりの内側となる側へ偏心部16,16によってずらされいるので、変形部14が直管部12に対して曲がりの内側とする側へ突出している(図2参照)。すなわち、ダクト10は、外観から変形部14を曲げる方向が判り易いので、車両への取り付け作業性がよく、取り付け効率を向上することができる。また、ダクト10は、湾曲部分10aが予め形成されるものと異なり、該ダクト10の取り付け時に変形部14を曲げて湾曲部分10aを形成している。従って、ダクト10は、変形部14を直線的に伸ばした状態で搬送や保管等において取り扱うことができ、取り扱い易く、例えば運搬において多量に搬送することが可能であるので運搬コストを低減できる。
(Operation of Example)
In the duct 10, the central axis C of the deformable portion 14 in the straight state is shifted by the eccentric portions 16, 16 toward the inner side of the bend of the deformable portion 14 with respect to the central axis C of the straight pipe portion 12. The deformable portion 14 protrudes toward the side of the bend with respect to the straight tube portion 12 (see FIG. 2). That is, since the duct 10 can easily understand the direction in which the deformed portion 14 is bent from the appearance, it can be easily attached to the vehicle and can improve the attachment efficiency. Further, unlike the duct 10 in which the curved portion 10a is formed in advance, the deformed portion 14 is bent to form the curved portion 10a when the duct 10 is attached. Therefore, the duct 10 can be handled in transportation, storage, etc. with the deformed portion 14 linearly extended, and is easy to handle. For example, it can be transported in large quantities during transportation, so that transportation costs can be reduced.

前記ダクト10では、変形部14を、直管部12から空気流通方向に交差する方向に突出した側を内にして曲げることで、変形部14および偏心部16,16によって湾曲部分10aが構成される(図1参照)。ダクト10は、湾曲部分10aの曲がり角度θが同一であれば、変形部14のみで湾曲部分を構成する場合と変形部14の曲がり角度が変わらない。しかしながら、実施例のダクト10によれば、変形部14のみで湾曲部分を構成する場合と比べて、湾曲部分10aの曲がり角度θが同一であっても、偏心部16が変形部14と直管部12との間で湾曲部分10aの一部を構成するので、湾曲部分10aの曲率半径を大きくできると共に、湾曲部分10aの曲率を全体として小さくすることができる(図4参照)。なお、図4では、実施例と同一の変形部を有する従来例で説明したダクト80を破線で示している。このように、ダクト10では、湾曲部分10aで画成される空気流通路18の曲率を小さくし得るので、湾曲部分10aの空気流通路18において曲がりの内側から気流が剥離して、曲がりの外側に気流が集中することを抑制することができる。すなわち、空気流通路18において、気流の偏在を抑制することで、該空気流通路18の断面積全体を気流が通過する空間として有効利用することができる。また、湾曲部分10aの空気流通路18において、曲がりの空気流通方向下流側において旋回流の発生を抑えることができ、該空気流通路18における気流の圧力損失を低減できる。従って、実施例のダクト10によれば、湾曲部分10aを設けて車両に取り付けても該湾曲部分10aに起因する圧力損失を低減し得るので、通風性能を改善することができる。   In the duct 10, the bending portion 10 a is configured by the deformation portion 14 and the eccentric portions 16, 16 by bending the deformation portion 14 with the side protruding from the straight pipe portion 12 in the direction intersecting the air flow direction. (See FIG. 1). In the duct 10, if the bending angle θ of the curved portion 10 a is the same, the bending angle of the deformable portion 14 does not change from the case where the curved portion is configured by only the deformable portion 14. However, according to the duct 10 of the embodiment, as compared with the case where the curved portion is configured by only the deformable portion 14, the eccentric portion 16 and the straight portion 16 are straight even if the curved portion 10 a has the same bending angle θ. Since a portion of the curved portion 10a is formed with the portion 12, the radius of curvature of the curved portion 10a can be increased and the curvature of the curved portion 10a can be reduced as a whole (see FIG. 4). In FIG. 4, the duct 80 described in the conventional example having the same deformation portion as that of the embodiment is indicated by a broken line. Thus, in the duct 10, the curvature of the air flow passage 18 defined by the curved portion 10 a can be reduced, so that the air flow is separated from the inside of the bend in the air flow passage 18 of the curved portion 10 a, and the outside of the bend. It is possible to suppress the airflow from concentrating on. That is, by suppressing the uneven distribution of the airflow in the airflow passage 18, the entire cross-sectional area of the airflow passage 18 can be effectively used as a space through which the airflow passes. Further, in the air flow passage 18 of the curved portion 10a, the generation of the swirling flow can be suppressed on the downstream side in the air flow direction of the curve, and the pressure loss of the air flow in the air flow passage 18 can be reduced. Therefore, according to the duct 10 of the embodiment, even if the curved portion 10a is provided and attached to the vehicle, the pressure loss due to the curved portion 10a can be reduced, so that the ventilation performance can be improved.

前記偏心部16は、直管部12との接続端から変形部14との接続端に向かうにつれて、該変形部14の曲がりの内側となる側が凹となるように湾曲しているので、ダクト10の湾曲部分10aの曲面を滑らかにすることができ、当該湾曲部分10aでの圧力損失をより低減することができる。また、ダクト10では、変形部14の両側に偏心部16を設けることで、変形部14および2つの偏心部16,16とから構成される湾曲部分10aの曲率をより小さくすることができるので、当該湾曲部分10aでの圧力損失を更に低減することができる。   The eccentric portion 16 is curved so that the inner side of the bending of the deforming portion 14 becomes concave as it goes from the connecting end with the straight pipe portion 12 to the connecting end with the deforming portion 14. The curved surface of the curved portion 10a can be smoothed, and the pressure loss at the curved portion 10a can be further reduced. Further, in the duct 10, by providing the eccentric portions 16 on both sides of the deformable portion 14, the curvature of the curved portion 10a formed by the deformable portion 14 and the two eccentric portions 16, 16 can be further reduced. The pressure loss in the curved portion 10a can be further reduced.

前記ダクト10は、各突状部20の周方向における同一位置を空気流通方向において縮閉すると共に、該変形部14の径方向において縮閉位置と対向する部位を空気流通方向へ伸ばして拡開することで、変形部14を適宜の曲がり角度の扇状に変形し得る。ここで、第2壁部26の第1状態から第2状態への変形および第2状態から第1状態への変形は、谷部28を介して連設された隣接する突状部20の第1壁部24により発現する。すなわち、図5に示すように、各突状部20が空気流通方向において両側から押されると、頂部22と谷部28とがダクト10の内外方向においてオーバーラップして各谷部28が近接する。このとき、第2壁部26の湾曲形状は、該第2壁部26の谷部28で連設された第1壁部24側から、該第2壁部26の頂部22で連設された第1壁部24側へ反転(変形)する。このように、各第2壁部26が第1状態に保持されると、各谷部28が近接した状態に保持される。   The duct 10 contracts the same position in the circumferential direction of each projecting portion 20 in the air flow direction, and expands a portion facing the contracted position in the radial direction of the deformation portion 14 in the air flow direction. By doing so, the deformation | transformation part 14 can be deform | transformed in the fan shape of a suitable bending angle. Here, the deformation of the second wall portion 26 from the first state to the second state and the deformation from the second state to the first state are the same as those of the adjacent projecting portions 20 provided continuously through the valley portions 28. 1 wall 24 expresses. That is, as shown in FIG. 5, when each projecting portion 20 is pushed from both sides in the air flow direction, the top portion 22 and the valley portion 28 overlap each other in the inside and outside direction of the duct 10, and each valley portion 28 approaches. . At this time, the curved shape of the second wall portion 26 was continuously provided at the top portion 22 of the second wall portion 26 from the first wall portion 24 side continuously provided at the valley portion 28 of the second wall portion 26. It reverses (deforms) toward the first wall 24 side. Thus, when each 2nd wall part 26 is hold | maintained in a 1st state, each trough part 28 will be hold | maintained in the state which adjoined.

一方、縮められた変形部14は、図6に示すように、空気流通方向において両側へ引張ると谷部28が空気流通方向へ離間するようになる。このとき、第2壁部26の湾曲形状は、該第2壁部26の頂部22で連設された第1壁部24側から、該第2壁部26の谷部28で連設された第1壁部24側へ反転(変形)する。このように、各第2壁部26が第2状態に保持されると、各谷部28が離間した状態に保持される。   On the other hand, as shown in FIG. 6, when the contracted deformed portion 14 is pulled to both sides in the air flow direction, the valley portion 28 is separated in the air flow direction. At this time, the curved shape of the second wall portion 26 was continuously provided at the valley portion 28 of the second wall portion 26 from the first wall portion 24 side continuously provided at the top portion 22 of the second wall portion 26. It reverses (deforms) toward the first wall 24 side. Thus, if each 2nd wall part 26 is hold | maintained in a 2nd state, each trough part 28 will be hold | maintained in the separated state.

前記変形部14は、曲げた際に、各突状部20の周方向において曲がりの内側に位置する第2壁部26が第1状態に変形して隣り合う谷部28同士が近接した状態に保持されるので、各突状部20の当該部位は縮閉した状態で保持される。また、変形部14は、各突状部20の周方向において曲がりの外側に位置する第2壁部26が第2状態に変形して隣り合う谷部28同士が離間した状態に保持されるので、各突状部20の当該部位は拡開した状態で保持される。このように、ダクト10は、変形部14を曲げた状態で形状保持できる。従って、ダクト10は、変形部14を伸縮状態だけでなく折り曲げた状態でも保持できるので、ダクト10を所定位置に配設するに先立って変形部14を予め所要の形状に変形させておくことができ、ダクト10の取付作業の簡易化を図り得る。   When the deforming portion 14 is bent, the second wall portion 26 located inside the bend in the circumferential direction of each protruding portion 20 is deformed to the first state, and the adjacent valley portions 28 are close to each other. Since it is hold | maintained, the said site | part of each protrusion-like part 20 is hold | maintained in the contracted state. Moreover, since the deformation | transformation part 14 is hold | maintained in the state where the 2nd wall part 26 located in the outer side of a curve in the circumferential direction of each protrusion-like part 20 deform | transforms into a 2nd state, and the adjacent trough parts 28 have separated. In addition, the portion of each protrusion 20 is held in an expanded state. Thus, the duct 10 can maintain the shape with the deformed portion 14 being bent. Therefore, the duct 10 can hold the deformed portion 14 not only in the expanded / contracted state but also in a bent state. Therefore, the deformable portion 14 can be deformed in advance into a required shape prior to disposing the duct 10 at a predetermined position. It is possible to simplify the installation work of the duct 10.

前記変形部14は、各突状部20の壁部24,26の頂部22側を薄く形成し、また突状部20における曲がりの内側となる部位が曲がりの外側となる部位より薄肉に形成されているので、突状部20同士を縮閉する曲がりの内側部位を変形させ易く、突状部20同士を拡開する曲がりの外側部位において形状保持性を向上することができる。また、突状部20では、隣り合う谷部28同士が離間している状態(図7の実線表示)において、湾曲変形基点30が頂部22より内側(ダクト10の径方向中心側)に位置していおり、頂部22と湾曲変形基点30との間隔が、第2壁部26の湾曲変形基点30近傍の肉厚と同程度となっている。これにより、第2壁部26は、第1状態および第2状態に変形し易くなり、図7に2点鎖線で示すように、第1状態に変形した第2壁部26が、頂部22で接続する第1壁部24への干渉が防止される。従って、変形部14は、複数の突状部20が縮閉した状態と拡開した状態とに容易に変形すると共に、何れの状態に変形しても第2壁部26の反対状態への復元力が発現し難くいので、変形した状態に適切に保持される。   The deformed portion 14 is formed so that the top portion 22 side of the wall portions 24 and 26 of each projecting portion 20 is thin, and a portion of the projecting portion 20 on the inside of the bend is formed thinner than a portion on the outside of the bend. Therefore, it is easy to deform the inner part of the bend that contracts and closes the protruding parts 20, and the shape retainability can be improved at the outer part of the bend that expands the protruding parts 20. Further, in the protruding portion 20, the bending deformation base point 30 is located on the inner side (the radial center side of the duct 10) than the top portion 22 in a state where the adjacent valley portions 28 are separated from each other (shown by a solid line in FIG. 7). In addition, the distance between the top portion 22 and the bending deformation base point 30 is approximately the same as the thickness of the second wall portion 26 near the bending deformation base point 30. Thereby, the 2nd wall part 26 becomes easy to deform | transform into a 1st state and a 2nd state, and as shown by the dashed-two dotted line in FIG. Interference with the first wall 24 to be connected is prevented. Therefore, the deforming portion 14 is easily deformed into a state where the plurality of projecting portions 20 are contracted and expanded, and the second wall portion 26 is restored to the opposite state regardless of which state is deformed. Since it is difficult to develop force, it is appropriately held in a deformed state.

前述した実施例のダクト10の製造方法について簡単に説明する。ブロー成形型は、変形部14が直線状態で、かつ伸ばされた状態にあるダクト10の外形に合わせて形成されている。先ず、ポリエチレン(PE)またはポリプロピレン(PP)等の熱可塑性樹脂を材質とするチューブ状のパリソンを、ぶら下げるようにブロー成形型にセットする。この際、パリソンは、直管部12の中心軸線Cに合わせてブロー成形型にセットされるので、該ブロー成形型の変形部14に対応する部位においてパリソンが変形部14の曲がりの外側となる側に偏倚して配置される。そして、ブロー成形型を閉めた後,コンプレッサーから圧縮空気をパリソンに吹き込んむとパリソンが膨らみ、パリソンにおける変形部14の曲がりの外側になる部位がブロー成形型の内面に先に当たり、パリソンにおける変形部14の曲がりの内側になる部位がブロー成形型の内面に遅れて当たる。すなわち、ブロー成形型に後に当たる変形部14の曲がりの内側となる部位が、ブロー成形型に先に当たる変形部14の曲がりの外側となる部位と比べて薄肉に形成される。なお、パリソンにおける直管部12となる部位は、ブロー成形型の内面に当たるタイミングがほぼ同じなので全周の肉厚がほぼ同じになる。このように、前述したダクト10の製造方法によれば、変形部14の肉厚を曲がりの内外で簡単に調節することができ、直管部12、変形部14および偏心部16が一体形成されたダクト10を得られる。   A method for manufacturing the duct 10 of the above-described embodiment will be briefly described. The blow mold is formed in conformity with the outer shape of the duct 10 in which the deformable portion 14 is in a straight line and extended. First, a tubular parison made of a thermoplastic resin such as polyethylene (PE) or polypropylene (PP) is set in a blow mold so as to hang. At this time, since the parison is set in the blow molding die in accordance with the central axis C of the straight pipe portion 12, the parison is outside the bending of the deformation portion 14 at a portion corresponding to the deformation portion 14 of the blow molding die. It is biased to the side. Then, after the blow mold is closed, when the compressed air is blown into the parison from the compressor, the parison expands, and the portion that is outside the curve of the deformed portion 14 in the parison first hits the inner surface of the blow mold, and the deformed portion 14 in the parison. The part which becomes the inside of the bend hits the inner surface of the blow mold with a delay. That is, the portion that is the inside of the bending portion of the deformable portion 14 that contacts the blow molding die is formed thinner than the portion that is the outside of the bending portion of the deforming portion 14 that contacts the blow molding die. In addition, since the site | part used as the straight pipe part 12 in a parison has the substantially same timing which hits the inner surface of a blow molding die, the thickness of a perimeter is substantially the same. Thus, according to the manufacturing method of the duct 10 described above, the thickness of the deformable portion 14 can be easily adjusted inside and outside the bend, and the straight pipe portion 12, the deformable portion 14, and the eccentric portion 16 are integrally formed. Duct 10 is obtained.

(通風実験)
実施例で説明した偏心部および変形部からなる湾曲部分を有するダクトと、従来技術で説明した変形部のみからなる湾曲部分を有するダクトとの解析モデルを作成し、直管部の中心軸線と直線状態にある変形部の中心軸線との間のずれ寸法である偏心度Eおよび湾曲部分の曲がり角度θの条件を変えて、通風性をコンピュータ上での解析により検証した。実験例および参考例のダクトは、変形部14の両側に偏心部16,16が設けられると共に、各偏心部16の変形部14との接続側と反対に直管部12が夫々設けられ、変形部14および該変形部14を挟む2つの偏心部16,16から湾曲部分10aが構成されている(図8参照)。比較例のダクトは、変形部の両側に直管部が設けられ、変形部だけにより湾曲部分が構成されている。実験例、参考例および比較例のダクトは、湾曲部分を1ヶ所のみ設けており、変形部の構成(突状部の数や形状)は同一である。
(Ventilation experiment)
An analysis model of a duct having a curved portion composed of an eccentric portion and a deformed portion described in the embodiment and a duct having a curved portion composed only of the deformed portion described in the prior art is created, and a straight line and a central axis of the straight pipe portion Ventilation was verified by analysis on a computer while changing the conditions of the eccentricity E, which is a deviation dimension from the central axis of the deformed portion in the state, and the bending angle θ of the curved portion. The ducts of the experimental example and the reference example are provided with the eccentric portions 16 and 16 on both sides of the deformable portion 14, and the straight pipe portion 12 is provided on the opposite side to the connection side of each eccentric portion 16 with the deformable portion 14. The curved part 10a is comprised from the two eccentric parts 16 and 16 which pinch | interpose the part 14 and this deformation | transformation part 14 (refer FIG. 8). In the duct of the comparative example, straight pipe portions are provided on both sides of the deformable portion, and a curved portion is configured only by the deformable portion. The ducts of the experimental example, the reference example, and the comparative example are provided with only one curved portion, and the configuration of the deforming portion (the number and shape of the protruding portions) is the same.

実験例および参考例のダクトでは、変形部14の空気流通方向上流側に位置する直管部12の長さN1(空気の流入口から変形部14の空気流通方向上流側に位置する偏心部16の偏心起点までの寸法)を270mmに設定すると共に、変形部14の空気流通方向下流側に位置する直管部12の長さN2(変形部14の空気流通方向下流側に位置する偏心部16の偏心起点から流出口までの寸法)を150mmとした(図8参照)。また、実験例、参考例および比較例のダクトは、直管部の内径を73mm、偏心部の内径を73mm、変形部の最大径部の内径を83mm、変形部の最小径部の内径を73mmに設定した。すなわち、実験例、参考例および比較例では、ダクト径Dを73mmに設定した。   In the ducts of the experimental example and the reference example, the length N1 of the straight pipe portion 12 located on the upstream side in the air flow direction of the deformation portion 14 (the eccentric portion 16 located on the upstream side in the air flow direction of the deformation portion 14 from the air inlet port). Is set to 270 mm, and the length N2 of the straight pipe portion 12 located downstream of the deformable portion 14 in the air flow direction (the eccentric portion 16 located downstream of the deformable portion 14 in the air flow direction). The dimension from the eccentric starting point to the outlet is 150 mm (see FIG. 8). The ducts of the experimental example, the reference example, and the comparative example have an inner diameter of the straight pipe portion of 73 mm, an inner diameter of the eccentric portion of 73 mm, an inner diameter of the maximum diameter portion of the deformation portion of 83 mm, and an inner diameter of the minimum diameter portion of the deformation portion of 73 mm. Set to. That is, in the experimental example, the reference example, and the comparative example, the duct diameter D was set to 73 mm.

実験例、参考例および比較例のダクトでは、90°の湾曲部分10aを構成する変形部14の突状部数を13個とし(図9(a)参照)、75°の湾曲部分10aを構成する変形部14の突状部数を11個とし(図9(b)参照)、60°の湾曲部分10aを構成する変形部14の突状部数を9個とし(図9(cb)参照)、45°の湾曲部分10aを構成する変形部14の突状部数を7個とし(図9(d)参照)、30°の湾曲部分10aを構成する変形部14の突状部数を5個とした(図9(e)参照)。変形部14は、谷部を互いに離間した伸ばした状態において、突状部20の1ピッチの寸法Tが10mmに設定されている(図8参照)。また、実験例および参考例のダクトでは、直管部12の接続部位とこの直管部12の接続部位に偏心部16を挟んで向かい合う変形部14の接続部位との水平距離である偏心距離Lを、直管部12の内径と同じ73mmに設定してある(図8参照)。比較例のダクトは、変形部の空気流通方向上流側に位置する直管部12の長さを343mm(実験例の対応する直管部の長さ+ダクト径D)に設定すると共に、変形部の空気流通方向下流側に位置する直管部の長さを223mm(実験例の対応する直管部の長さ+ダクト径D)とした。更に、実験例、参考例および比較例では、ダクトの一端から空気を168m/hの流量で吹き込み、ダクトの他端から大気圧0の疑似大気空間に空気を吹き出す解析モデルを設定した。ここで、実験例1では、偏心度Eをダクト径Dの1/8の寸法(1/8D)に設定し、実験例2では、偏心度Eをダクト径Dの2/8の寸法(2/8D)に設定した。また、参考例1では、偏心度Eをダクト径Dの3/8の寸法(3/8D)に設定し、参考例2では、偏心度Eをダクト径Dの4/8の寸法(4/8D)に設定した。そして、実験例、参考例および比較例のダクトにおいて、湾曲部分の曲がり角度θ(30°,45°,60°,75°,90°)を変えて、圧力損失(単位:Pa)を算出した。この結果を以下の表1に示す。 In the ducts of the experimental example, the reference example, and the comparative example, the number of projecting portions 14 of the deformable portion 14 constituting the 90 ° curved portion 10a is 13 (see FIG. 9A), and the 75 ° curved portion 10a is configured. The number of projecting portions of the deforming portion 14 is 11 (see FIG. 9B), the number of projecting portions of the deforming portion 14 constituting the 60 ° curved portion 10a is 9 (see FIG. 9C), 45 The number of projecting portions of the deformable portion 14 constituting the curved portion 10a of 7 ° is 7 (see FIG. 9D), and the number of projecting portions of the deformable portion 14 constituting the curved portion 10a of 30 ° is 5 (see FIG. 9D). (See FIG. 9 (e)). In the deformed portion 14, the dimension T of one pitch of the protruding portion 20 is set to 10 mm in a state where the valley portions are extended apart from each other (see FIG. 8). Further, in the ducts of the experimental example and the reference example, the eccentric distance L that is the horizontal distance between the connecting portion of the straight pipe portion 12 and the connecting portion of the deformable portion 14 facing the connecting portion of the straight pipe portion 12 with the eccentric portion 16 interposed therebetween. Is set to 73 mm, which is the same as the inner diameter of the straight pipe portion 12 (see FIG. 8). In the duct of the comparative example, the length of the straight pipe portion 12 located on the upstream side of the deformation portion in the air flow direction is set to 343 mm (the length of the corresponding straight pipe portion in the experimental example + duct diameter D), and the deformation portion The length of the straight pipe portion located on the downstream side in the air flow direction was 223 mm (the length of the corresponding straight pipe portion in the experimental example + the duct diameter D). Furthermore, experimental examples, the reference examples and comparative examples, the air from one end of the duct blowing at a flow rate of 168 m 3 / h, were set an analysis model for blowing air into the pseudo-air space of the atmospheric pressure 0 from the other end of the duct. Here, in Experimental Example 1, the eccentricity E is set to a size (1 / 8D) that is 1/8 of the duct diameter D, and in Experimental Example 2, the eccentricity E is set to a dimension that is 2/8 of the duct diameter D (2 / 8D). Further, in the reference example 1, the eccentricity E is set to the dimension 3/8 of the duct diameter D (3 / 8D), and in the reference example 2, the eccentricity E is set to the dimension 4/8 of the duct diameter D (4 / 8D). In the ducts of the experimental example, the reference example, and the comparative example, the pressure loss (unit: Pa) was calculated by changing the bending angle θ (30 °, 45 °, 60 °, 75 °, 90 °) of the curved portion. . The results are shown in Table 1 below.

Figure 2010228666
Figure 2010228666

表1によれば、前述したダクト径Dおよび偏心距離L等の条件のもとで、実験例1および実験例2では、全ての曲がり角度θにおいて比較例より圧力損失が低減することが確認された。また、通風性能改善効果は、ダクトの湾曲部分の曲がり角度θが大きくなるのに従って大きくなり、参考例1であっても、45°以上の曲がり角度であれば比較例と比べて圧力損失を低減できる。更に、実験例および参考例より判るように、比較例から偏心度Eを大きくしていくのにつれて圧力損失が低減していくが、偏心度Eがある値を越えると圧力損失が増加する。前述したダクト径Dおよび偏心距離L等の条件であっては、実験例2の条件が圧力損失を最も低減できる。すなわち、実験例2のダクトでは、空気流通方向上流側の直管部と空気流通方向下流側の直管部との間に理想的な中心軸線に対し、偏心部および変形部の中心軸線が近似していると考えられる。   According to Table 1, under the conditions such as the duct diameter D and the eccentric distance L described above, it is confirmed that in Experimental Examples 1 and 2, the pressure loss is reduced as compared with the comparative example at all the bending angles θ. It was. The effect of improving the ventilation performance increases as the bending angle θ of the curved portion of the duct increases, and even in the reference example 1, if the bending angle is 45 ° or more, the pressure loss is reduced compared to the comparative example. it can. Further, as can be seen from the experimental example and the reference example, the pressure loss decreases as the eccentricity E increases from the comparative example, but the pressure loss increases when the eccentricity E exceeds a certain value. Under the conditions such as the duct diameter D and the eccentric distance L described above, the pressure loss can be reduced most by the condition of Experimental Example 2. That is, in the duct of Experimental Example 2, the center axis of the eccentric part and the deformed part approximates the ideal center axis between the straight pipe part upstream of the air flow direction and the straight pipe part downstream of the air flow direction. it seems to do.

(変更例)
本願が対象とするダクトは、前述した実施例の形態に限定されず、様々な変更可能である。
(1)実施例では、変形部の突状部を除く直管部、変形部の谷部および偏心部を同一のダクト径で形成したが、直管部における偏心部に接続する接続部位、変形部の谷部および偏心部を同一のダクト径で形成し、直管部の途中部分やエアアウトレット等への接続側を拡開したり、縮径したりしてもよい。
(2)湾曲変形基点の形成位置は、頂部から第2壁部の肉厚と同程度の間隔で離間した位置に限定されず、第1状態に変形した第2壁部が該第1状態に保持され得れば、頂部との間隔を、第2壁部の肉厚より小さく設定してもよいし、第2壁部の肉厚より大きく設定してもよい。
(3)湾曲変形基点を、頂部と一致させてもよい。この場合、第2壁部は、全体が湾曲して第1状態および第2状態に変形するようになる。
(4)実施例では、90度に曲がる湾曲部を例示したが、変形部における突状部の配設数等を変更することで、90度以下または90度以上に曲がるよう構成することも可能である。
(5)ダクトは、円筒形状に限らず、四角形や五角形等の角筒形状であってもよい。
(6)本願が対象とするダクトは、自動車に配設されるものに限らず、これ以外の車両や建物等に配設されるものも対象とされる。
(7)実施例では、変形部として曲げた状態で自己保持可能な構成を例に挙げたが、これに限定されず、ダクトを車両に対して取り付ける支持金具で変形部を曲げた状態に保持してもよい。
(8)変形部が曲げた状態で自己保持する構成は、実施例の例に限定されず、その他の構成を採用し得る。
(Example of change)
The duct targeted by the present application is not limited to the embodiment described above, and various modifications can be made.
(1) In the embodiment, the straight pipe part excluding the projecting part of the deforming part, the valley part of the deforming part and the eccentric part are formed with the same duct diameter, but the connecting part connected to the eccentric part in the straight pipe part, the deformation The trough part and the eccentric part of the part may be formed with the same duct diameter, and the connecting part to the middle part of the straight pipe part, the air outlet, or the like may be expanded or reduced in diameter.
(2) The formation position of the bending deformation base point is not limited to a position spaced from the top portion at the same interval as the thickness of the second wall portion, and the second wall portion deformed to the first state is in the first state. If it can be held, the distance from the top may be set smaller than the thickness of the second wall or larger than the thickness of the second wall.
(3) The bending deformation base point may coincide with the top. In this case, the entire second wall portion is curved and deforms into the first state and the second state.
(4) In the embodiment, the curved portion that bends at 90 degrees has been exemplified, but it is also possible to be configured to bend to 90 degrees or less or 90 degrees or more by changing the number of protrusions provided in the deformed portion. It is.
(5) The duct is not limited to a cylindrical shape, and may be a rectangular tube shape such as a quadrangle or a pentagon.
(6) The ducts targeted by the present application are not limited to those provided in automobiles, but also those provided in other vehicles and buildings.
(7) In the embodiment, a configuration capable of self-holding in a bent state as a deformed portion is given as an example. However, the present invention is not limited to this, and the deformed portion is held in a bent state with a support fitting for attaching a duct to a vehicle. May be.
(8) The configuration of self-holding in a state where the deformed portion is bent is not limited to the example of the embodiment, and other configurations can be adopted.

10a 湾曲部分,12 直管部,14 変形部,16 偏心部,20 突状部,
22 頂部,24 第1壁部,26 第2壁部,28 谷部,30 湾曲変形基点,
C 中心軸線,S1 直線距離,S2 直線距離
10a curved part, 12 straight pipe part, 14 deformed part, 16 eccentric part, 20 projecting part,
22 top part, 24 1st wall part, 26 2nd wall part, 28 valley part, 30 curve deformation base point,
C Center axis, S1 linear distance, S2 linear distance

Claims (5)

直管部および曲げ変形可能な蛇腹状の変形部を有し、該変形部を曲げて車両に取り付けられるダクトにおいて、
前記直管部と前記変形部との間に偏心部を設け、
前記偏心部は、前記変形部における該偏心部との接続部位の通風断面を、前記直管部における該偏心部との接続部位の通風断面に対して、該変形部の曲がりの内側となる側へずらして繋ぎ、
曲げた前記変形部および前記偏心部によって湾曲部分を構成する
ことを特徴とするダクト。
In a duct having a straight pipe portion and a bellows-like deformable portion that can be bent and deformed, and the bent portion is bent and attached to a vehicle,
An eccentric part is provided between the straight pipe part and the deformation part,
The eccentric portion has a ventilation cross section of a connecting portion with the eccentric portion in the deformable portion, and a side on the inner side of the bent portion of the deformable portion with respect to the vent cross section of the connecting portion with the eccentric portion in the straight pipe portion. Connect and move
A duct characterized in that a curved portion is constituted by the bent deformed portion and the eccentric portion.
前記偏心部は、前記直管部との接続端から前記変形部との接続端に向かうにつれて、該変形部の曲がりの内側となる側が凹となるように湾曲している請求項1記載のダクト。   2. The duct according to claim 1, wherein the eccentric portion is curved so that a side that is an inner side of the bending of the deforming portion becomes concave as it goes from the connecting end with the straight pipe portion toward the connecting end with the deforming portion. . 前記偏心部は、前記変形部の両側に夫々設けられる請求項1または2記載のダクト。   The duct according to claim 1 or 2, wherein the eccentric portion is provided on each side of the deformable portion. 前記変形部を挟んで設けられた一対の直管部の中心軸線が、該変形部の直線状態において同一直線上に位置する請求項3記載のダクト。   The duct according to claim 3, wherein central axes of a pair of straight pipe portions provided with the deformation portion interposed therebetween are positioned on the same straight line in a straight state of the deformation portion. 前記変形部は、曲がった状態で自己保持可能に構成される請求項1〜4の何れか一項に記載のダクト。   The said deformation | transformation part is a duct as described in any one of Claims 1-4 comprised so that self-holding is possible in the bent state.
JP2009080218A 2009-03-27 2009-03-27 duct Active JP5185175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009080218A JP5185175B2 (en) 2009-03-27 2009-03-27 duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009080218A JP5185175B2 (en) 2009-03-27 2009-03-27 duct

Publications (2)

Publication Number Publication Date
JP2010228666A true JP2010228666A (en) 2010-10-14
JP5185175B2 JP5185175B2 (en) 2013-04-17

Family

ID=43044906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009080218A Active JP5185175B2 (en) 2009-03-27 2009-03-27 duct

Country Status (1)

Country Link
JP (1) JP5185175B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019326A (en) * 2012-07-19 2014-02-03 Toyota Boshoku Corp Vehicle seat with air conditioner
CN108119713A (en) * 2017-12-19 2018-06-05 浙江方圆机电设备制造有限公司 A kind of combined type flexible Pressuretight sylphon bellows

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194694U (en) * 1987-12-15 1989-06-22
JPH11141965A (en) * 1997-11-12 1999-05-28 Daihatsu Motor Co Ltd Air guide structure for bent part of air duct
JP2000038921A (en) * 1998-07-22 2000-02-08 Honda Motor Co Ltd Vehicular cooling water circulating tube
JP2000108637A (en) * 1999-11-10 2000-04-18 Nippon Plast Co Ltd Air conditioning duct structure for automobile
JP2001088545A (en) * 1999-09-24 2001-04-03 Howa Kasei Kk Air register
JP2002071060A (en) * 2000-08-25 2002-03-08 Kojima Press Co Ltd Duct with bellows and its manufacturing method
JP2002156977A (en) * 2000-11-22 2002-05-31 Mitsubishi Heavy Ind Ltd Muffler
JP2008236976A (en) * 2007-03-23 2008-10-02 Totaku Industries Inc Pipe material for forming underground conduit
JP2009287894A (en) * 2008-05-30 2009-12-10 Inoac Corp Duct and its attaching method
JP2009292442A (en) * 2008-06-09 2009-12-17 Inoac Corp Duct

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0194694U (en) * 1987-12-15 1989-06-22
JPH11141965A (en) * 1997-11-12 1999-05-28 Daihatsu Motor Co Ltd Air guide structure for bent part of air duct
JP2000038921A (en) * 1998-07-22 2000-02-08 Honda Motor Co Ltd Vehicular cooling water circulating tube
JP2001088545A (en) * 1999-09-24 2001-04-03 Howa Kasei Kk Air register
JP2000108637A (en) * 1999-11-10 2000-04-18 Nippon Plast Co Ltd Air conditioning duct structure for automobile
JP2002071060A (en) * 2000-08-25 2002-03-08 Kojima Press Co Ltd Duct with bellows and its manufacturing method
JP2002156977A (en) * 2000-11-22 2002-05-31 Mitsubishi Heavy Ind Ltd Muffler
JP2008236976A (en) * 2007-03-23 2008-10-02 Totaku Industries Inc Pipe material for forming underground conduit
JP2009287894A (en) * 2008-05-30 2009-12-10 Inoac Corp Duct and its attaching method
JP2009292442A (en) * 2008-06-09 2009-12-17 Inoac Corp Duct

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019326A (en) * 2012-07-19 2014-02-03 Toyota Boshoku Corp Vehicle seat with air conditioner
CN108119713A (en) * 2017-12-19 2018-06-05 浙江方圆机电设备制造有限公司 A kind of combined type flexible Pressuretight sylphon bellows

Also Published As

Publication number Publication date
JP5185175B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
US9903256B2 (en) Bent pipe and manufacturing method thereof
WO2003010017A1 (en) Air conditioning duct for automobile
JP5185175B2 (en) duct
JP2016148266A (en) Intake noise reducing device for internal combustion engine
JP2003148262A (en) Air intake duct
US11718157B2 (en) Air discharge device
JP5252628B2 (en) duct
US5305800A (en) Flexible hose of tube
JP5010540B2 (en) duct
CN112204288B (en) Fluid pipeline
JP4636907B2 (en) Intake manifold
JP2006038322A (en) Duct, and duct connecting structure
JP5551419B2 (en) duct
JP2018119674A (en) Conduit and hot water supply system
JP2002071060A (en) Duct with bellows and its manufacturing method
JP2009056870A (en) Air-conditioning duct structure for automobile
JPWO2021250889A5 (en)
JP3591531B2 (en) Funnel for cathode ray tube
CN108602415B (en) Ionized air delivery system
CN219570220U (en) Gas pipe
CN210680324U (en) Low-noise automobile air conditioner air pipe
JP2005335628A (en) Air-conditioning duct for vehicle, and its mounting method
CN217270547U (en) Lightweight car intake pipe
CN219841214U (en) Pipeline assembly, vehicle air conditioner and car
JP6636316B2 (en) Pipe member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5185175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250