JP2010227958A - Nozzle for continuous casting - Google Patents
Nozzle for continuous casting Download PDFInfo
- Publication number
- JP2010227958A JP2010227958A JP2009076942A JP2009076942A JP2010227958A JP 2010227958 A JP2010227958 A JP 2010227958A JP 2009076942 A JP2009076942 A JP 2009076942A JP 2009076942 A JP2009076942 A JP 2009076942A JP 2010227958 A JP2010227958 A JP 2010227958A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- shape
- rdy
- refractory structure
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、溶鋼等の溶融金属が通過する内孔を軸中心に有し、軸対称に形成された管状耐火物構造体からなる連続鋳造用ノズルに関し、とくにその損傷防止技術に関する。 The present invention relates to a continuous casting nozzle comprising a tubular refractory structure having an inner hole through which a molten metal such as molten steel passes in the axial center and formed symmetrically with respect to the axis, and particularly to a technique for preventing damage thereof.
取鍋からタンディッシュに溶鋼を排出するロングノズルなどの連続鋳造用ノズルは、その軸中心に溶鋼が通過する内孔を有し、軸対称に形成された管状耐火物構造体から構成されており、溶鋼が内孔を通過する際には内孔側と外周側で温度勾配が生じる。とくに溶鋼の排出・通過開始時には、内孔側又は外周側が急激に昇温されるので、その現象は顕著になる。 The nozzle for continuous casting, such as a long nozzle that discharges molten steel from the ladle to the tundish, has an inner hole through which the molten steel passes at the center of the axis, and is composed of an axially symmetric tubular refractory structure. When the molten steel passes through the inner hole, a temperature gradient is generated on the inner hole side and the outer peripheral side. In particular, when the molten steel starts to be discharged and passed, the inner hole side or the outer peripheral side is rapidly heated, and this phenomenon becomes remarkable.
このような温度勾配は、管状耐火物構造体を構成する耐火物が単層であるか複数層であるかにかかわらず耐火物の内部に応力の歪みを生じさせ、外周部分の割れ等の破壊を生じる原因の一つになっており、温度勾配が大きいほどその危険性は高い。 Such a temperature gradient causes stress distortion inside the refractory regardless of whether the refractory constituting the tubular refractory structure is a single layer or a plurality of layers, and damage such as cracks in the outer peripheral portion. The greater the temperature gradient, the higher the risk.
このような熱応力に起因する破壊の対策としては、連続鋳造用ノズルを構成する耐火物に黒鉛を多量に含有させたり、熱膨張量の小さい溶融シリカなどを添加したりすることによって、耐火物の高熱伝導率化、低膨張化、かつ低弾性率化を図り熱応力破壊を防止することが一般的である。しかし、一方で黒鉛や溶融シリカの増量は耐酸化性の低下や溶鋼成分との反応性増大を招くため、耐食性や耐摩耗性等の低下による耐用性低下を招く弊害がある。そこで、これまでは、耐熱衝撃性に優れた材質の耐火物を管状耐火物構造体の基礎部分とし、流速や乱れの大きい溶鋼流と接触することで摩耗等の影響が大きい内孔側には耐摩耗性の高い材質を必要最低限の厚みで設置し、溶鋼への浸漬部分などのスラグ等との化学的侵蝕の影響の大きい部位には耐食性に優れる材質を設置する等、部位毎の損傷形態に応じた適正材質をモザイク状に配設することで連続鋳造用ノズルの寿命延長を図ってきた。 As a countermeasure against destruction due to such thermal stress, a refractory can be obtained by adding a large amount of graphite to the refractory constituting the continuous casting nozzle or adding fused silica having a small thermal expansion amount. It is common to prevent thermal stress failure by increasing the thermal conductivity, lowering expansion, and lowering the elastic modulus. However, on the other hand, an increase in graphite or fused silica causes a decrease in oxidation resistance and an increase in reactivity with molten steel components, and thus has a detrimental effect on a decrease in durability due to a decrease in corrosion resistance and wear resistance. So far, refractories made of materials with excellent thermal shock resistance have been used as the basic part of tubular refractory structures. Damage to each part, for example, by installing a material with high wear resistance at the minimum necessary thickness, and installing a material with excellent corrosion resistance on the part that is affected by chemical erosion with slag such as the part immersed in molten steel. The lifetime of the continuous casting nozzle has been extended by arranging appropriate materials according to the shape in a mosaic pattern.
しかし、近年の連続鋳造用ノズルへの高耐用化や安定鋳造、さらには溶鋼の清浄度の向上等の要求が高まる中で、これらの要求に応じる形で、とくに連続鋳造用ノズルの内孔側に関しては外周側の耐火物よりもさらなる低炭素化や高機能化が進められている。最近では、黒鉛を全く含まない材質や成分的に耐摩耗性、耐溶損性、又は内孔面へのアルミナ等の介在物の付着抑制機能に優れる塩基性成分を含む材質を内孔側に適用する試みも増加しており、内孔側にCaO成分、MgO成分、ZrO2成分を含有する耐火物層を内装した浸漬ノズルなどの適用が増える傾向にある。 However, in recent years, there has been a growing demand for continuous casting nozzles with high durability, stable casting, and improved cleanliness of molten steel. In response to these demands, the inner hole side of continuous casting nozzles in particular. As for, refractories on the outer peripheral side are being further reduced in carbon and functionality. Recently, materials that do not contain graphite at all, and materials that contain basic components that are excellent in wear resistance, erosion resistance, or adhesion prevention of inclusions such as alumina on the inner surface are applied to the inner hole side. Attempts to do so are also increasing, and there is a tendency to increase the application of immersion nozzles and the like in which a refractory layer containing a CaO component, a MgO component, and a ZrO 2 component is provided on the inner hole side.
ところが、これらの高耐用化や安定化に関わる内孔側耐火物層の材質に係る技術の方向は、前述したように低カーボン化(Al2O3成分の高含有化等)、塩基性化等であるために高熱膨張化を伴う。したがって、これらの材質を外周側耐火物層の強化層として内孔側に設置した場合は、外周側耐火物層は、とくに通鋼初期に、管状耐火物構造体の半径方向の温度差により生じる熱膨張差に起因する熱応力に加えて、熱膨張性の大きい内孔側耐火物層の膨張に伴う、内孔側耐火物層からの押し割り(半径方向の圧縮応力)を受けることになる。その結果、外周側耐火物層に縦方向や横方向の亀裂の発生ないし破壊が生じやすくなる。 However, the direction of the technology related to the material of the inner hole side refractory layer related to the high durability and stabilization is, as described above, low carbon (high Al 2 O 3 component content, etc.), basic It is accompanied by high thermal expansion. Therefore, when these materials are installed on the inner hole side as the reinforcing layer of the outer refractory layer, the outer refractory layer is generated due to a temperature difference in the radial direction of the tubular refractory structure, particularly in the early stage of steel passing. In addition to the thermal stress resulting from the thermal expansion difference, it is subject to a split (radial compressive stress) from the inner hole side refractory layer accompanying the expansion of the inner hole side refractory layer having a large thermal expansibility. As a result, cracks or breaks in the vertical direction or the horizontal direction are likely to occur in the outer peripheral refractory layer.
これに対して例えば特許文献1には、先端部外周を先細り状形状とした連続鋳造用ロングノズルが開示されている。具体的には、その先端部外周をR形状(円弧カット)又はC形状(直線カット)として、先端部の熱的、機械的応力集中及びスラグや地金の付着を抑制することが記載されている。
On the other hand, for example,
この特許文献1は、ロングノズルが各チャージ毎に冷却されかつタンディッシュ内の溶鋼に浸漬されることから、ロングノズルの先端部が厳しい熱衝撃条件にさらされて先端部の割れや欠損などを生じること、また、ロングノズル先端部に付着したスラグや地金は冷却固化時に収縮し、ロングノズルの先端部を締め付け先端部の亀裂発生や欠損を助長することに鑑み、繰り返し使用時の熱衝撃と先端付着物による締め付けの緩和を図ろうとするものである。
In
特許文献1では前述のとおり、ロングノズルの先端部を先細り形状とすることで、繰り返し使用時の熱衝撃と先端付着物による締め付けの緩和を図っているが、ロングノズルの先端部の破壊は依然として生じており、とくに先端部にスラグや地金の付着のない状態である最初の通鋼時に多く生じている。
In
本発明が解決しようとする課題は、ロングノズル等の連続鋳造用ノズルにおいて、とくに通鋼初期の破壊を防止することにある。 The problem to be solved by the present invention is to prevent breakage particularly in the initial stage of steel passing in a continuous casting nozzle such as a long nozzle.
本発明者は連続鋳造用ノズル(以下、単に「ノズル」ともいう、)の熱応力解析の結果、以下の知見を得た。
1.通鋼初期のノズルの破損は主として熱的応力によること
2.熱的応力による破壊は、ノズル下端付近の外周の径が拡大する方向(外周部分が上方に反る方向)にノズルが変形することが一つの原因であること
3.前記の熱的応力は管状耐火物構造体の下端部外周の縦方向断面(管状耐火物構造体の軸中心を通過する縦方向断面)の形状に大きく依存していること
4.特許文献1に示されているようなR形状(円弧カット)又はC形状(直線カット)では前記の熱的応力の緩和効果は十分ではなく、二次曲線に沿った形状が前記の熱的応力をさらに緩和するには有効であること
As a result of thermal stress analysis of a continuous casting nozzle (hereinafter also simply referred to as “nozzle”), the present inventor has obtained the following knowledge.
1. The failure of the nozzle in the early stages of steel passing is mainly due to thermal stress. 2. Destruction due to thermal stress is caused by deformation of the nozzle in the direction in which the outer diameter near the lower end of the nozzle expands (direction in which the outer peripheral portion warps upward). 3. The thermal stress largely depends on the shape of the longitudinal section (vertical section passing through the axial center of the tubular refractory structure) on the outer periphery of the lower end of the tubular refractory structure. In the R shape (arc cut) or C shape (straight cut) as shown in
本発明はこれらの知見に基づき完成されたもので、具体的には、溶融金属が通過する内孔を軸中心に有し、軸対称に形成された管状耐火物構造体からなる連続鋳造用ノズルであって、管状耐火物構造体の軸中心を通過する縦方向断面において、その下端部外周が、前記内孔の下端のエッジから下方向にdy、外周方向にdxの任意の点を基点として、式1で示される二次曲線の形状を有し、さらに、この二次曲線の形状において式2で表される発生応力Sesが、前記管状耐火物構造体の下端部外周の縦方向断面が直角形状である場合に式3で表される発生応力Sorに対して、式4の条件を満たすことを特徴とするものである。
y=a(x−dx)2+dy … 式1
Ses=0.939573−11.497993×T1+2.204375×a+0.040648×rdy+12.648575×T1×T1+4.307205×T1×a+0.227584×T1×rdy−2.155509×a×a−1.505931×a×rdx+0.0159940×a×rdy−8.921956×rdx×rdx+0.109840×rdx×rdy−0.000306851×rdy×rdy … 式2
Sor=(0.503748−0.00131236×T1×T1+0.122377×T1) … 式3
Ses<Sor×(1−0.17) … 式4
ただし、T1は管状耐火物構造体の厚み、aは曲線形状パラメータ、rdxはdxをT1で除した値(dx/T1)、rdyはdyをT1で除した値(dy/T1)
The present invention has been completed on the basis of these findings. Specifically, the continuous casting nozzle has a tubular refractory structure having an inner hole through which molten metal passes in the axial center and formed symmetrically. In the longitudinal cross section passing through the axial center of the tubular refractory structure, the outer periphery of the lower end thereof is based on an arbitrary point of dy downward from the edge of the lower end of the inner hole and dx in the outer peripheral direction. The generated stress Ses represented by the
y = a (x−dx) 2 + dy (1)
Ses = 0.939573-11.497993 * T1 + 2.204375 * a + 0.040648 * rdy + 12.664875 * T1 * T1 + 4.307205 * T1 * a + 0.227584 * T1 * rdy-2.155509 * a * a-1.505593 * a × rdx + 0.0159940 × a × rdy−8.9921956 × rdx × rdx + 0.109840 × rdx × rdy−0.000306851 × rdy ×
Sor = (0.503748−0.00131236 × T1 × T1 + 0.122377 × T1) Equation 3
Ses <Sor × (1−0.17) ...
Where T1 is the thickness of the tubular refractory structure, a is a curve shape parameter, rdx is a value obtained by dividing dx by T1 (dx / T1), and rdy is a value obtained by dividing dy by T1 (dy / T1)
以下、取鍋からタンディッシュに溶鋼を注入する際に使用するロングノズルを例に本発明を詳細に述べる。 Hereinafter, the present invention will be described in detail by taking as an example a long nozzle used when pouring molten steel from a ladle into a tundish.
ロングノズルは使用開始時(通鋼初期)に、その内孔に約1500〜1600℃の溶鋼が通過する。このため通常、ロングノズルは予熱して受鋼に備える。この予熱によりある程度熱的応力は緩和されるが、通常の予熱温度は800℃〜1200℃程度であり、溶鋼温度との差によりロングノズルの内部には応力が発生する。さらには予熱終了から通鋼までの間の冷却(操業の個別の条件によって異なる)により、その応力はさらに大きくなる。 When the long nozzle starts to be used (at the beginning of steel passing), molten steel of about 1500 to 1600 ° C. passes through its inner hole. For this reason, normally, a long nozzle is preheated and prepared for steel receiving. Although the thermal stress is relieved to some extent by this preheating, the normal preheating temperature is about 800 ° C. to 1200 ° C., and stress is generated inside the long nozzle due to the difference from the molten steel temperature. Furthermore, the stress is further increased by the cooling between the end of preheating and the passing of steel (depending on the individual conditions of operation).
通鋼の際、ロングノズルはその内孔面から急加熱され、相対的に低温度である外周側との間に熱勾配が生じる。この熱勾配により、そのロングノズルを構成する耐火物の熱膨張に応じた体積膨脹の差が生じ、熱膨張の大きい内孔側の鉛直方向の寸法が熱膨張の小さい外周側の鉛直方向の寸法よりも大きくなる。その結果、ロングノズルの下端部付近には内孔側から外周側に内孔を拡大する方向、すなわち外周側が外〜上方に反るような変形を生じさせる力が発生する。これにより発生する応力によってロングノズルが破壊する。 When passing steel, the long nozzle is rapidly heated from the inner hole surface, and a thermal gradient is generated between the long nozzle and the outer peripheral side, which has a relatively low temperature. Due to this thermal gradient, a difference in volume expansion according to the thermal expansion of the refractory constituting the long nozzle occurs, and the vertical dimension on the inner hole side where thermal expansion is large is the vertical dimension on the outer peripheral side where thermal expansion is small. Bigger than. As a result, in the vicinity of the lower end portion of the long nozzle, a force is generated that causes a deformation that causes the inner hole to expand from the inner hole side to the outer peripheral side, that is, the outer peripheral side warps outwardly to upward. The long nozzle is destroyed by the stress generated by this.
本発明は、この破壊の原因となる変形の程度、内部の最大応力を、ノズル下端部付近の外周の形状を最適化することによって緩和し、ノズルの破壊を防止する。 The present invention mitigates the degree of deformation that causes this breakage and the internal maximum stress by optimizing the shape of the outer periphery near the lower end of the nozzle, thereby preventing the breakage of the nozzle.
実操業では、特許文献1に示された改善形状であるノズル下端部の外周形状が、図5(a)に示すようなR形状(円弧カット)、又は図5(b)に示すような傾斜角度θが30°〜60°のC形状(直線カット)の場合にも、操業条件の変化などにより1〜5%程度の確率でノズルの破壊が生じ、問題となる場合がある。
In actual operation, the outer peripheral shape of the lower end of the nozzle, which is an improved shape shown in
すなわち、この破壊の確率よりもさらに破壊の確率を低減するためには、ノズル下端部内部の発生応力を、前記のR形状又C形状の値よりも小さくすることが必要となる。 That is, in order to reduce the probability of destruction further than the probability of destruction, it is necessary to make the generated stress in the lower end of the nozzle smaller than the value of the R shape or C shape.
そこで本発明者は、前記式1内の各パラメータを直交表に割り振り、各形状についてFEMによる応力計算を行い、計算値と予測値とがほぼ1の相関係数となるパラメータの値で応答曲面近似を行い、熱応力推定値の近似式を得た(式5)。
Therefore, the present inventor assigns each parameter in the
この式5を整理したのが前記式2である。
また本発明者は、ノズルの下端部外周に円弧カットも直線カットもない場合、すなわちノズルの下端部外周の縦方向断面が直角形状である場合について、ノズルの厚みT1をパラメータとしてFEMによる応力計算を行い、ノズルの厚みT1と応力の関係を二次式で近似した。これが前記式3である。すなわち、前記式3で表されるSorはノズルの下端部を加工する前の形状で発生する熱応力の推定値を示している。 Further, the present inventor calculated the stress by FEM using the nozzle thickness T1 as a parameter when there is neither an arc cut nor a straight line cut at the outer periphery of the lower end of the nozzle, that is, when the longitudinal cross section of the outer periphery of the lower end of the nozzle is a right angle. The relationship between the nozzle thickness T1 and the stress was approximated by a quadratic equation. This is Equation 3 above. In other words, Sor represented by Equation 3 represents an estimated value of thermal stress generated in the shape before processing the lower end portion of the nozzle.
なお、これらの熱応力計算には、ソリッドワークス・ジャパン(株)社製の有限要素法ソフトウェア「CosmosWorks2007」を使用した。その入力パラメータ及び条件は以下のとおりである。
弾性率 4.0Gpa
ポアソン比 0.2
膨張係数 3.8×10−6 1/℃
かさ比重 2.3 g/cm3
熱伝導率: 15W/mK
比熱: 837J/kgK
初期温度: 800℃
加熱面: 接触温度 1550℃、熱伝達率 1160W/m2K
In addition, the finite element method software “CosmosWorks2007” manufactured by Solid Works Japan Co., Ltd. was used for these thermal stress calculations. The input parameters and conditions are as follows.
Elastic modulus 4.0 Gpa
Poisson's ratio 0.2
Expansion coefficient 3.8 × 10 −6 1 / ° C.
Bulk specific gravity 2.3 g / cm 3
Thermal conductivity: 15W / mK
Specific heat: 837J / kgK
Initial temperature: 800 ° C
Heating surface: Contact temperature 1550 ° C., heat transfer coefficient 1160 W / m 2 K
本発明において応力緩和の程度は、前記Sorを基準とした応力推定値の低減率で表すこととした。そして本発明は、前記式1の二次曲線に合致する下端部外周形状での応力の値(Ses)の応力低減率を、前記のR形状(円弧カット)、又は傾斜角度θが30°〜60°のC形状(直線カット)の場合の応力低減率(以下「基準低減率」という。)よりも高くすることを条件とした。この基準低減率は後述するように最大で16.8%であることから、本発明では前記Sorを基準とした応力低減率が17%以上であることを条件とした。この条件を表したのが前記式4である。
In the present invention, the degree of stress relaxation is represented by the reduction rate of the stress estimation value based on the Sor. In the present invention, the stress reduction rate of the stress value (Ses) in the outer peripheral shape of the lower end portion that matches the quadratic curve of
なお、前記式1に合致する二次曲線の形状において、a、dx、dyは任意に決定することができる。これらは、製造の容易さ、搬送時の外的要素、例えば衝突等での機械的応力による破壊の防止等の任意の諸要素によって決定すればよい(例えば、ノズルの搬送時にノズル下端部を設置する際のその下端部を保護するためにエッジの傾斜を小さくする等)。
Note that a, dx, and dy can be arbitrarily determined in the shape of the quadratic curve that meets the above-described
また前記式2における発生応力は、ノズル(管状耐火物構造体)の厚みT1の影響を受ける。この影響はdx、dyとの相対的な関係として評価することが可能であることがわかった。そこで、前記式2においてrdxは前記dxをT1で除した値(= dx/T1)、rdyは前記dyをT1で除した値(= dy/T1)とした。ここで、前記式2においてノズル(管状耐火物構造体)の厚みT1とは、ノズル下端部の二次曲線上端における厚みをいう。
Further, the generated stress in
本発明によれば、ロングノズル等の連続鋳造用ノズルにおいて、とくに通鋼初期の破壊をより安定的に防止することができる。 According to the present invention, in a continuous casting nozzle such as a long nozzle, it is possible to more stably prevent breakage particularly in the initial stage of steel passing.
図1に本発明をロングノズルに適用した場合の、その下端部外周の縦方向断面形状を示す。 FIG. 1 shows a longitudinal sectional shape of the outer periphery of the lower end when the present invention is applied to a long nozzle.
本発明において、ノズルを構成する管状耐火物構造体1の下端部外周の縦方向断面は、図1に示すように、内孔2の下端のエッジ(点O1)から下方向にdy、外周方向にdxの任意の点O2を基点として、前記式1(y=a(x−dx)2+dy)で示される二次曲線の形状を有する。
In the present invention, the longitudinal section of the outer periphery of the lower end of the tubular
このように管状耐火物構造体1の下端部外周の縦方向断面が前記式1で示される二次曲線の形状を有する場合において、前記式2で表される発生応力Sesをコンピュータ・シミュレーションにより計算した例を表1に示す。また、表1の各計算例に対応する、管状耐火物構造体1の下端部外周の縦方向断面形状を図2に示す。
Thus, when the longitudinal section of the outer periphery of the lower end of the tubular
本発明は、前述のとおり、前記Sorを基準とした応力低減率が17%以上であることを条件としているので、表1において応力低減率が17%未満の場合は比較例としている。表1から、二次曲線による下端部外周形状を有していても、その二次曲線の条件を満たすのみでは、応力低減率が不十分な場合があることがわかる。 As described above, the present invention is based on the condition that the stress reduction rate based on the Sor is 17% or more. Therefore, in Table 1, the case where the stress reduction rate is less than 17% is used as a comparative example. From Table 1, it can be seen that even if the lower end portion outer peripheral shape is a quadratic curve, the stress reduction rate may be insufficient only by satisfying the condition of the quadratic curve.
表2に従来技術、すなわちノズル下端部外周形状がR形状(円弧カット)及びC形状(直線カット)の場合の計算例を示す。また、表2の各計算例に対応する、管状耐火物構造体1の下端部外周の縦方向断面形状を図3に示す。
Table 2 shows a calculation example in the case of the conventional technique, that is, the case where the outer peripheral shape of the lower end of the nozzle is an R shape (arc cut) and a C shape (straight cut). Moreover, the longitudinal direction cross-sectional shape of the outer periphery of the lower end part of the tubular
表2から、従来のR形状(円弧カット)ではそのrを変化させても、またC形状(直線カット)ではその傾斜角度θを変化させても、応力低減率は最大で16.8%であることがわかる。 From Table 2, the stress reduction rate is 16.8% at maximum even if the r is changed in the conventional R shape (arc cut) and the inclination angle θ is changed in the C shape (straight cut). I know that there is.
なお、応力低減率が相対的な割合としての値であることから、ロングノズルの実用的な形状(内径として約80mm〜約300mm程度)において、ロングノズル内径の応力低減率に対する影響はほとんどない。因みに本実施例の計算では内径は180mmを代表例とした。 Since the stress reduction rate is a value as a relative ratio, there is almost no influence on the stress reduction rate of the long nozzle inner diameter in the practical shape of the long nozzle (the inner diameter is about 80 mm to about 300 mm). Incidentally, in the calculation of this example, the inner diameter was set to 180 mm as a representative example.
図4には、表1及び表2の計算結果による応力低減率を示す。 In FIG. 4, the stress reduction rate by the calculation result of Table 1 and Table 2 is shown.
本発明は取鍋からタンディッシュへの溶鋼注入に使用するロングノズルに止まらず、同様に管状耐火物構造体からなる、タンディッシュから鋳型に溶鋼を注入する際に使用するオープンノズル等の連続鋳造用ノズル全般に適用可能である。 The present invention is not limited to a long nozzle used for pouring molten steel from a ladle into a tundish, but is also composed of a tubular refractory structure, and continuously casting such as an open nozzle used when pouring molten steel from a tundish into a mold. It can be applied to general nozzles.
1 管状耐火物構造体
2 内孔
1 Tubular
Claims (1)
管状耐火物構造体の軸中心を通過する縦方向断面において、その下端部外周が、前記内孔の下端のエッジから下方向にdy、外周方向にdxの任意の点を基点として、式1で示される二次曲線の形状を有し、
さらに、この二次曲線の形状において式2で表される発生応力Sesが、前記管状耐火物構造体の下端部外周の縦方向断面が直角形状である場合に式3で表される発生応力Sorに対して、式4の条件を満たす連続鋳造用ノズル。
y=a(x−dx)2+dy … 式1
Ses=0.939573−11.497993×T1+2.204375×a+0.040648×rdy+12.648575×T1×T1+4.307205×T1×a+0.227584×T1×rdy−2.155509×a×a−1.505931×a×rdx+0.0159940×a×rdy−8.921956×rdx×rdx+0.109840×rdx×rdy−0.000306851×rdy×rdy … 式2
Sor=(0.503748−0.00131236×T1×T1+0.122377×T1) … 式3
Ses<Sor×(1−0.17) … 式4
ただし、T1は管状耐火物構造体の厚み、aは曲線形状パラメータ、rdxはdxをT1で除した値(dx/T1)、rdyはdyをT1で除した値(dy/T1) A continuous casting nozzle comprising a tubular refractory structure having an inner hole through which molten metal passes in the center of the axis and formed symmetrically,
In the longitudinal section passing through the axial center of the tubular refractory structure, the outer periphery of the lower end thereof is expressed by the following equation (1) based on an arbitrary point of dy downward from the edge of the lower end of the inner hole and dx in the outer peripheral direction. Having the shape of the quadratic curve shown,
Further, the generated stress Ses expressed by the equation 2 in the shape of the quadratic curve is the generated stress Sor expressed by the equation 3 when the longitudinal section of the outer periphery of the lower end portion of the tubular refractory structure is a right-angled shape. On the other hand, a nozzle for continuous casting that satisfies the condition of Formula 4.
y = a (x−dx) 2 + dy (1)
Ses = 0.939573-11.497993 * T1 + 2.204375 * a + 0.040648 * rdy + 12.664875 * T1 * T1 + 4.307205 * T1 * a + 0.227584 * T1 * rdy-2.155509 * a * a-1.505593 * a × rdx + 0.0159940 × a × rdy−8.9921956 × rdx × rdx + 0.109840 × rdx × rdy−0.000306851 × rdy × rdy Formula 2
Sor = (0.503748−0.00131236 × T1 × T1 + 0.122377 × T1) Equation 3
Ses <Sor × (1−0.17) ... Formula 4
Where T1 is the thickness of the tubular refractory structure, a is a curve shape parameter, rdx is a value obtained by dividing dx by T1 (dx / T1), and rdy is a value obtained by dividing dy by T1 (dy / T1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009076942A JP2010227958A (en) | 2009-03-26 | 2009-03-26 | Nozzle for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009076942A JP2010227958A (en) | 2009-03-26 | 2009-03-26 | Nozzle for continuous casting |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012030763A Division JP5291814B2 (en) | 2012-02-15 | 2012-02-15 | Continuous casting nozzle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010227958A true JP2010227958A (en) | 2010-10-14 |
Family
ID=43044331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009076942A Ceased JP2010227958A (en) | 2009-03-26 | 2009-03-26 | Nozzle for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010227958A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110125379A (en) * | 2019-04-24 | 2019-08-16 | 首钢集团有限公司 | A kind of submersed nozzle reducing nozzle blocking |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59194360A (en) * | 1984-04-04 | 1984-11-05 | Matsushita Electric Ind Co Ltd | Plate grid of lead-acid battery |
JPS62165044A (en) * | 1985-10-28 | 1987-07-21 | ロラン・ソシエテ・アノニム | Vibration damper for rotary cylindrical body |
JPH10180425A (en) * | 1996-12-26 | 1998-07-07 | Kawasaki Steel Corp | Immersion nozzle for continuous casting |
-
2009
- 2009-03-26 JP JP2009076942A patent/JP2010227958A/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59194360A (en) * | 1984-04-04 | 1984-11-05 | Matsushita Electric Ind Co Ltd | Plate grid of lead-acid battery |
JPS62165044A (en) * | 1985-10-28 | 1987-07-21 | ロラン・ソシエテ・アノニム | Vibration damper for rotary cylindrical body |
JPH10180425A (en) * | 1996-12-26 | 1998-07-07 | Kawasaki Steel Corp | Immersion nozzle for continuous casting |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110125379A (en) * | 2019-04-24 | 2019-08-16 | 首钢集团有限公司 | A kind of submersed nozzle reducing nozzle blocking |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4773569B1 (en) | MgO-C quality brick for ladle lining | |
JP2010058155A (en) | Ceramic composite member | |
JP6003850B2 (en) | Manufacturing method of continuous casting mold and continuous casting method of steel | |
JP2009091204A (en) | Casting refractory for molten metal treatment | |
JP6254203B2 (en) | Refractory for converter bottom blowing tuyeres | |
JP5129636B2 (en) | Continuous casting nozzle | |
JP5291814B2 (en) | Continuous casting nozzle | |
JP2010227958A (en) | Nozzle for continuous casting | |
WO2009116425A1 (en) | Vessel for molten metal | |
JP5330898B2 (en) | Aluminum spout for continuous casting | |
JP5849562B2 (en) | Refractory lining structure for steelmaking containers | |
JP6204825B2 (en) | Immersion nozzle | |
JP4676927B2 (en) | Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method | |
JP4881359B2 (en) | Refractory for injection tuyere and method for manufacturing refractory for injection tuyere | |
JP5148963B2 (en) | Continuous casting nozzle | |
JP5611621B2 (en) | Impeller for molten metal stirring | |
JP7107141B2 (en) | Converter tuyere structure | |
JP5891777B2 (en) | Refractory lining structure for pan-type steel containers | |
JP2778339B2 (en) | Stave cooler with thermal stress relaxation type functionally gradient material | |
JP6428692B2 (en) | Refractory structure | |
JP6226483B2 (en) | Circulation tube of vacuum degasser | |
JP4124588B2 (en) | Magnesia carbon brick | |
JP4026528B2 (en) | Stave cooler | |
JP5391810B2 (en) | Structure of gas blowing part of molten metal container | |
JP5544743B2 (en) | Refractory lining structure for chaotic cars |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20120130 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20120203 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A045 | Written measure of dismissal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20120622 |