JP2010227271A - Blood sugar measuring method and device therefor - Google Patents

Blood sugar measuring method and device therefor Download PDF

Info

Publication number
JP2010227271A
JP2010227271A JP2009077692A JP2009077692A JP2010227271A JP 2010227271 A JP2010227271 A JP 2010227271A JP 2009077692 A JP2009077692 A JP 2009077692A JP 2009077692 A JP2009077692 A JP 2009077692A JP 2010227271 A JP2010227271 A JP 2010227271A
Authority
JP
Japan
Prior art keywords
temperature
measurement
blood glucose
measured
living tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009077692A
Other languages
Japanese (ja)
Inventor
Katsuhiko Maruo
勝彦 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009077692A priority Critical patent/JP2010227271A/en
Publication of JP2010227271A publication Critical patent/JP2010227271A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure a blood sugar level without being affected by the metabolic status in the body. <P>SOLUTION: By the blood sugar measuring method, a measuring probe 9 which irradiates living tissue with near-infrared light and measures the near-infrared light diffused in the living tissue is used. The measuring probe 9 is maintained at a temperature substantially equal to that of the deep part of the body which is measured by a means 23 for measuring the temperature of deep parts of the body. The near-infrared light diffused in the living tissue is measured in this state. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、近赤外分光法を用いた血糖測定方法及びその装置に関するものである。   The present invention relates to a blood glucose measurement method using near infrared spectroscopy and an apparatus therefor.

近赤外分光法は、分子振動による光の基準振動波長の倍音およびその結合音が観察される波長が800〜2500nmの近赤外光を用いる分析手法であり、生体での透過性に優れる上に非破壊、非侵襲、リアルタイムで定量・定性分析を行えるといった点から生体成分の分析に広く用いられており、特に、パルスオキシメータに代表される血中酸素濃度測定については実用化されて既に広く利用されている。   Near-infrared spectroscopy is an analysis technique that uses near-infrared light having a wavelength of 800 to 2500 nm at which a harmonic overtone of the reference vibration wavelength of light due to molecular vibrations and its combined sound is observed, and has excellent permeability in a living body. It is widely used for analysis of biological components because it is non-destructive, non-invasive, and can perform quantitative and qualitative analysis in real time. Especially, blood oxygen concentration measurement represented by pulse oximeter has already been put into practical use. Widely used.

ところで、生体成分濃度測定に近赤外分光法を用いる場合、生体組織に照射されて生体組織内を拡散した近赤外光を測定し、該測定結果から得られるスペクトル信号を基に生体組織の定性・定量分析を行うわけであるが、血糖値測定への応用については、特開2006‐87913号公報(特許文献1)に開示されている。   By the way, when using near-infrared spectroscopy for measuring the concentration of biological components, near-infrared light that has been irradiated to the living tissue and diffused in the living tissue is measured, and based on the spectral signal obtained from the measurement result, Qualitative / quantitative analysis is performed, and its application to blood glucose level measurement is disclosed in Japanese Patent Application Laid-Open No. 2006-87913 (Patent Document 1).

図3は、特許文献1に開示された非侵襲式の光学式血糖値測定システムを示しており、ハロゲンランプ1から発光された近赤外光は熱遮蔽板2、ピンホール3、レンズ4、光ファイババンドル5を介して生体組織6に入射される。光ファイババンドル5には測定用光ファイバ7の一端とリファレンス用光ファイバ8の一端が接続されており、測定用光ファイバ7の他端は基準板18に対向する測定用プローブ9に接続され、リファレンス用光ファイバ8の他端はリファレンス用プローブ10に接続されている。さらに、測定プローブ9およびリファレンスプローブ10は光ファイバを介して測定側出射体11,リファレンス側出射体12にそれぞれ接続されている。   FIG. 3 shows a non-invasive optical blood glucose level measuring system disclosed in Patent Document 1, and near-infrared light emitted from the halogen lamp 1 is converted into a heat shielding plate 2, a pinhole 3, a lens 4, The light enters the living tissue 6 through the optical fiber bundle 5. One end of the measurement optical fiber 7 and one end of the reference optical fiber 8 are connected to the optical fiber bundle 5, and the other end of the measurement optical fiber 7 is connected to the measurement probe 9 facing the reference plate 18, The other end of the reference optical fiber 8 is connected to a reference probe 10. Further, the measurement probe 9 and the reference probe 10 are connected to the measurement-side emitter 11 and the reference-side emitter 12 via optical fibers, respectively.

測定プローブ9とリファレンスプローブ10は、その端面に図1(b)に示すように、円周上に配置された多数本の発光ファイバ20と中心に配置された1本の受光ファイバ19で構成されており、発光ファイバ20と受光ファイバ19の中心間距離Lは例えば0.65 mmに設定されている。   As shown in FIG. 1B, the measurement probe 9 and the reference probe 10 are composed of a plurality of light emitting fibers 20 arranged on the circumference and one light receiving fiber 19 arranged in the center. The distance L between the centers of the light emitting fiber 20 and the light receiving fiber 19 is set to 0.65 mm, for example.

人体の前腕部などの生体組織6の表面に測定プローブ9の先端面を所定圧力で接触させて近赤外スペクトル測定を行う時、光源1から光ファイババンドル5に入射した近赤外光は、測定用光ファイバ7内を伝達し、図3(b)に示すような測定用プローブ9の先端から同心円周上に配置された多数本の発光ファイバ20より生体組織6の表面に照射される。   When the near-infrared spectrum measurement is performed by bringing the tip surface of the measurement probe 9 into contact with the surface of the living tissue 6 such as the forearm of the human body at a predetermined pressure, the near-infrared light incident on the optical fiber bundle 5 from the light source 1 is The light is transmitted through the measurement optical fiber 7 and irradiated from the tip of the measurement probe 9 as shown in FIG. 3B on the surface of the living tissue 6 from a plurality of light emitting fibers 20 arranged on the concentric circumference.

生体組織6に照射されたこの測定光は、生体組織内で拡散反射した後に拡散反射光の一部が測定プローブ9の先端に配置されている受光ファイバ19に受光される。受光された光はこの受光側光ファイバ19を介して、測定側出射体11から出射され、レンズ13を通して回折格子14に入射し、分光された後、受光素子15において検出され、受光素子15からの光信号はA/Dコンバーター16でAD変換された後、パーソナルコンピュータなどの演算装置17に入力され、演算装置では得られたスペクトルデータを解析することで血糖値を算出する。図中22はシャッター、26はレンズである。   The measurement light applied to the living tissue 6 is diffusely reflected in the living tissue, and a part of the diffuse reflected light is received by the light receiving fiber 19 disposed at the tip of the measurement probe 9. The received light is emitted from the measurement-side emitting body 11 through the light-receiving side optical fiber 19, enters the diffraction grating 14 through the lens 13, is dispersed, and is detected by the light-receiving element 15. After the A / D converter 16 performs AD conversion, the optical signal is input to an arithmetic device 17 such as a personal computer, and the arithmetic device analyzes the obtained spectrum data to calculate a blood glucose level. In the figure, 22 is a shutter, and 26 is a lens.

ここで、発光ファイバ20と受光ファイバ19の中心間距離Lを上記値に設定しているのは、表面より表皮、真皮、皮下組織の層状構造を有する皮膚組織のうち、真皮部分のスペクトルを選択的に測定するためである。   Here, the center-to-center distance L between the light-emitting fiber 20 and the light-receiving fiber 19 is set to the above value because the spectrum of the dermis part is selected from the skin tissue having a layered structure of epidermis, dermis, and subcutaneous tissue from the surface. This is because it measures automatically.

特開2006‐87913号公報JP 2006-87913 A

ところで、水の近赤外スペクトルは温度によって水分子間の水素結合の状態が変化する。生体組織の近赤外スペクトルにおいても、生体組織の主要な構成成分が水であるために、温度変化の影響を強く受ける。従って、生体組織で血糖値を精度良く測定するには、近赤外スペクトルを測定する部位の温度を一定とする操作を行う必要があるが、環境や生理状態に応じて変化する熱代謝を有する生体組織においては、その設定温度が測定期間を通じて安定に近赤外スペクトルを測定するため重要となる。   By the way, in the near-infrared spectrum of water, the state of hydrogen bonding between water molecules changes with temperature. Even in the near-infrared spectrum of a living tissue, water is the main component of the living tissue, so that it is strongly affected by temperature changes. Therefore, in order to accurately measure the blood glucose level in a living tissue, it is necessary to perform an operation to keep the temperature of the site where the near-infrared spectrum is measured, but it has thermal metabolism that changes according to the environment and physiological state. In living tissue, the set temperature is important in order to stably measure the near infrared spectrum throughout the measurement period.

一方、皮膚組織の近赤外スペクトルを測定する場合、体表面温度は体深部温度に比較して低く、環境温度や体内での代謝状態の影響を強く受ける。このために設定温度が不適切な場合は、スペクトルが不安定になったり、生体組織に作用して余計な発汗を誘発させたりすることで測定精度を劣化させてしまったり、末梢の血液循環を阻害し血液中のグルコース濃度に対する皮膚組織のグルコース濃度の追随性を劣化させてしまうことがある。たとえば、医療における手術時の血糖値測定においては、その手技において体温を通常より低くコントロールする場合があり、近赤外スペクトルを測定する部位の温度を不用意に設定すると、精度良い血糖値測定が行えないという場合がある。   On the other hand, when measuring the near-infrared spectrum of skin tissue, the body surface temperature is lower than the deep body temperature, and is strongly influenced by the environmental temperature and the metabolic state in the body. For this reason, when the set temperature is inappropriate, the spectrum becomes unstable, the measurement accuracy is deteriorated by inducing excessive sweating by acting on the living tissue, and the peripheral blood circulation is reduced. Inhibition may degrade the followability of the glucose concentration of the skin tissue relative to the glucose concentration in the blood. For example, when measuring blood glucose levels during surgery in medicine, the body temperature may be controlled lower than usual in the procedure, and if the temperature of the part where the near-infrared spectrum is measured is set carelessly, accurate blood glucose level measurement is possible. There are cases where it cannot be done.

本発明はこのような点に鑑みなされたものであって、環境温度だけでなく、体内での代謝状態の影響も受けることなく血糖値の測定を行うことができる血糖測定方法及びその装置を提供することを課題とするものである。   The present invention has been made in view of these points, and provides a blood glucose measurement method and apparatus capable of measuring a blood glucose level without being affected by not only the environmental temperature but also the metabolic state in the body. It is an object to do.

本発明に係る血糖測定方法は、近赤外光を生体組織に照射するとともに生体組織内を拡散した近赤外光を測定する測定プローブを用いた血糖測定方法において、体深部温度測定手段で測定された体深部温度とほぼ同じ温度に上記測定プローブの温度を保持し、この状態で生体組織内を拡散した近赤外光を測定することに特徴を有しており、本発明に係る血糖測定装置は、近赤外光を生体組織に照射するとともに生体組織内を拡散した近赤外光を測定する測定プローブを備えた血糖測定装置において、体深部温度を測定する体深部温度測定手段と、体深部温度測定手段で測定された体深部温度とほぼ同じ温度に上記測定プローブの温度を保持する温度制御手段とを備えていることに特徴を有している。   A blood glucose measurement method according to the present invention is a blood glucose measurement method using a measurement probe that irradiates a living tissue with near-infrared light and measures near-infrared light diffused in the living tissue. Blood glucose measurement according to the present invention, characterized in that the temperature of the measurement probe is maintained at substantially the same temperature as the measured deep body temperature, and near-infrared light diffused in the living tissue in this state is measured. The apparatus is a blood glucose measurement device provided with a measurement probe for irradiating a living tissue with near-infrared light and measuring the near-infrared light diffused in the living tissue, and a body depth temperature measuring means for measuring a body depth temperature; It is characterized by comprising temperature control means for maintaining the temperature of the measurement probe at substantially the same temperature as the body depth temperature measured by the body depth temperature measuring means.

体深部温度は、核心温度あるいは深部体温と呼ばれるもので、環境温度の影響を受けにくい身体深部の温度を示す。これに対して、環境影響を受けやすい表層の温度を体表面温度(外殻温度あるいは皮膚温度)という。体深部温度は、環境の変動によっても温度が変化しない生体の核心部(頭腔、胸腹腔など身体深部)の温度で、体表面温度と異なり体温調節により一定に調節されている。体深部温度としては通常、直腸温度、口腔温度、腋窩温度、鼓膜温度、食道温度が測定されるが、特殊な温度センサーつきのカテーテル類を用いることで膀胱温度や肺動脈血温度などでも測定される。通常、直腸温度は腋窩温度よりも0.5℃高いと言われている。   The deep body temperature is called the core temperature or deep body temperature, and indicates the temperature of the deep body that is not easily affected by the environmental temperature. On the other hand, the temperature of the surface layer that is easily affected by the environment is called body surface temperature (outer shell temperature or skin temperature). The deep body temperature is the temperature of the core of the living body (the deep part of the body such as the head cavity, thoracoabdominal cavity, etc.) where the temperature does not change even when the environment changes. As the deep body temperature, rectal temperature, oral cavity temperature, axillary temperature, tympanic temperature, and esophageal temperature are usually measured. By using catheters with a special temperature sensor, it is also measured by bladder temperature, pulmonary artery blood temperature, or the like. The rectal temperature is usually said to be 0.5 ° C. higher than the axillary temperature.

本発明は、生体組織内で拡散反射した近赤外光(近赤外スペクトル)の測定に際し、測定対象部位の温度を、体深部温度に設定することの有用性を見出したものである。すなわち、体深部温度は環境温度の変化に対して温度が変化しないとされているが、生体での分布が変化することが知られており、環境温度が低いときには体躯のコア部分に体深部温度が分布するのに対し、環境温度が高いときは体深部温度の分布が広がり、場合によっては上肢、下肢の深部にまでその分布を広げる。   The present invention has found the usefulness of setting the temperature of the measurement target site to the deep body temperature when measuring near-infrared light (near-infrared spectrum) diffusely reflected in living tissue. In other words, it is known that the body depth temperature does not change with respect to the change in the environmental temperature, but the distribution in the living body is known to change, and when the environmental temperature is low, the body deep part temperature is added to the core part of the body. In contrast, when the environmental temperature is high, the distribution of the deep body temperature spreads, and in some cases, the distribution extends to the deep part of the upper and lower limbs.

したがって、上肢や下肢の末梢皮膚温度は環境温度や生理状態によって大きく変化することになり、測定プローブを上肢や下肢に設置し血糖値測定を行う場合、前述のように測定プローブの温度設定が安定な血糖値測定を行うために重要となる。   Therefore, the peripheral skin temperature of the upper limbs and lower limbs will vary greatly depending on the environmental temperature and physiological condition. It is important to perform proper blood sugar level measurement.

そして上肢、下肢等の末梢での皮膚表面付近の温度を安定させるには、前述のような環境温度の高い場合と低い場合を想定して温度設定が行われるべきで、前述のようは体深部温度分布の変化に対して、ヒーター等の加温手段のみで測定プローブとその接触部分の温度を安定化させるためには、体深部温度付近に設定することが有効である
このために、測定プローブの温度を上述のように体深部温度に合わせた温度に保持することで、測定部分の皮膚温度や皮膚組織中の血流状態等の皮膚状態を安定にし、その結果、皮膚組織より得られる近赤外スペクトルを安定化させることができる。
In order to stabilize the temperature near the skin surface at the periphery of the upper limb, lower limb, etc., temperature setting should be performed assuming the case where the environmental temperature is high and low as described above. In order to stabilize the temperature of the measurement probe and its contact area with only heating means such as a heater against changes in the temperature distribution, it is effective to set the temperature near the deep body temperature. Is maintained at a temperature that matches the deep body temperature as described above, so that the skin temperature such as the skin temperature of the measurement part and the blood flow state in the skin tissue is stabilized. The infrared spectrum can be stabilized.

また、測定プローブの設定温度を体深部温度とすることで、測定プローブが接触する皮膚表面部分の角質水分量の上昇を小さくすることができる。皮膚組織より得られる近赤外スペクトルの安定化は、血糖値の予測を安定化させ、測定精度の向上につながる。   Moreover, the raise of the amount of stratum corneum of the skin surface part which a measurement probe contacts can be made small by making preset temperature of a measurement probe into body deep part temperature. Stabilization of the near-infrared spectrum obtained from the skin tissue stabilizes the blood sugar level prediction and leads to improved measurement accuracy.

体深部温度測定手段が測定する体深部温度は、鼓膜温度、直腸温度、口腔温度、あるいは腋窩温度のいずれかであることが好ましい。また、上記温度制御手段は、上記測定プローブを測定された体深部温度の±1℃の範囲に保持するものであることが有用である。   The deep body temperature measured by the deep body temperature measuring means is preferably any of the eardrum temperature, rectal temperature, oral cavity temperature, or axillary temperature. In addition, it is useful that the temperature control means holds the measurement probe in a range of ± 1 ° C. of the measured deep body temperature.

本発明においては、皮膚組織に照射された近赤外光の拡散反射光を測定する測定プローブの温度をその使用者の体深度温度とほぼ同じ温度に保持するために、測定部分の皮膚温度や皮膚組織中の血流状態等の皮膚状態を安定させることができ、これに伴って血糖測定の精度も高くすることができる。   In the present invention, in order to maintain the temperature of the measurement probe that measures the diffuse reflected light of near-infrared light irradiated to the skin tissue at the same temperature as the user's body depth temperature, The skin condition such as the blood flow condition in the skin tissue can be stabilized, and the accuracy of blood glucose measurement can be increased accordingly.

本発明の実施の形態の一例を示すもので、(a)は概略図、(b)は測定プローブ部分の破断側面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an example of an embodiment of the present invention, where (a) is a schematic view and (b) is a cutaway side view of a measurement probe portion. 同上の血糖値の推定結果を示す説明図である。It is explanatory drawing which shows the estimation result of a blood glucose level same as the above. 従来例を示すもので、(a)はブロック図、(b)は測定プローブの端面図である。The conventional example is shown, (a) is a block diagram, (b) is an end view of the measurement probe.

本発明を実施の形態の一例に基づいて詳述すると、本発明における血糖測定装置は、特許文献1で示された装置と基本的に同一であり、皮膚組織を対象とした近赤外スペクトル測定を行うことで、皮膚組織における真皮組織中のグルコース濃度変化を代用特性として血糖値を非侵襲的に測定するものである。   The present invention will be described in detail based on an example of an embodiment. A blood glucose measurement device according to the present invention is basically the same as the device disclosed in Patent Document 1, and a near-infrared spectrum measurement for skin tissue is performed. In this way, the blood glucose level is non-invasively measured using the change in glucose concentration in the dermal tissue in the skin tissue as a substitute characteristic.

ただし、前記装置に対して、体深部温度計23を備えるとともに、加熱手段(ヒータ)24と熱電対のような温度測定手段25とを設けた点において相違する。ここにおける加熱手段24及び温度測定手段25は、測定プローブ9を中央に保持する円筒状のホルダー22内に配されている。   However, the apparatus differs from the apparatus in that a deep body thermometer 23 is provided, and a heating means (heater) 24 and a temperature measuring means 25 such as a thermocouple are provided. The heating means 24 and the temperature measuring means 25 are arranged in a cylindrical holder 22 that holds the measuring probe 9 in the center.

上記ホルダー22は、皮膚接触面となる一面に両面接着テープ25が配されて、該両面接着テープ25で皮膚表面に貼り付けられることで、測定プローブ9の端面を皮膚表面に接触させるものであり、該ホルダー22に設けた加熱手段24と温度測定手段25、そして上記体深部温度計23は、装置本体30に内蔵される温度制御部に接続されている。   The holder 22 is provided with a double-sided adhesive tape 25 on one surface serving as a skin contact surface, and is attached to the skin surface with the double-sided adhesive tape 25, thereby bringing the end surface of the measurement probe 9 into contact with the skin surface. The heating means 24 and the temperature measuring means 25 provided in the holder 22 and the deep body thermometer 23 are connected to a temperature control unit built in the apparatus main body 30.

該温度制御部は、体深部温度計23で測定された体深部温度と、ホルダー22に配した温度測定手段25とが一致するように上記加熱手段24を動作させるもので、今、体深部温度計23が直腸温度計であり、被験者の直腸に肛門から6cm挿入した状態での測定温度が例えば37.0℃であれば、ホルダー22も37.0℃を保持するように加熱手段24の動作を制御しする。そして、皮膚表面に貼り付けたホルダー22が上記温度を保持している間に、近赤外スペクトルに基づく血糖測定を行う。この時、測定プローブ9及び皮膚におけるホルダー22が接する部分もほぼ上記温度に保たれる。   The temperature control unit operates the heating means 24 so that the body temperature measured by the body depth thermometer 23 and the temperature measuring means 25 disposed on the holder 22 coincide with each other. If the total temperature 23 is a rectal thermometer and the measurement temperature is 67.0 ° C. in a state where 6 cm is inserted into the subject's rectum from the anus, for example, the operation of the heating means 24 so that the holder 22 also maintains 37.0 ° C. To control. And while the holder 22 affixed on the skin surface is maintaining the said temperature, the blood glucose measurement based on a near-infrared spectrum is performed. At this time, the portion of the skin where the measurement probe 9 and the holder 22 are in contact with each other is also maintained at the above temperature.

測定した体深部温度と、ホルダー22の温度とは正確に一致していなくてもよく、±1℃の範囲内であれば、精度良い測定が可能である。また、環境温度が20℃以下であって体深部温度が測定部分の近傍まで分布する可能性の低い場合や、手術等で通常より体温を下げる必要がある場合は、体深部温度をT℃とする時、測定した体深部温度に対してホルダー22に保持させるべき設定温度をT℃〜(T−1)℃の範囲内で低く設定したほうが好ましい。逆に末梢循環の悪い被験者においては、測定した体深部温度T℃に対してT℃〜(T+1)℃の範囲内で高く設定した方がよい。   The measured deep body temperature and the temperature of the holder 22 do not have to coincide with each other accurately, and accurate measurement is possible as long as they are within a range of ± 1 ° C. In addition, when the ambient temperature is 20 ° C or lower and the deep body temperature is unlikely to be distributed to the vicinity of the measurement part, or when it is necessary to lower the body temperature than usual for surgery or the like, the deep body temperature is set to T ° C. When doing, it is more preferable to set the set temperature to be held in the holder 22 to be lower than the measured body deep temperature within a range of T ° C to (T-1) ° C. Conversely, for subjects with poor peripheral circulation, it is better to set the temperature higher within the range of T ° C. to (T + 1) ° C. with respect to the measured deep body temperature T ° C.

血糖値を求める検量モデルの作成には、前記特許文献1に示されている手法と同様の差分スペクトルデータを用いればよい。つまり、血糖値測定時に測定した初期近赤外スペクトル(通常、測定開始時に測定した近赤外スペクトル)に差分スペクトルデータセットを加算演算し、検量モデル作成のためのスペクトルデータセットを演算的に作成する。血糖値推定に用いる検量モデルは、血糖値を目的変量、検量モデル作成のためのスペクトルデータセットを説明変量とし、PLS回帰分析により作成する。血糖値の推定は、この検量モデルに測定した近赤外スペクトルの各波長の吸光度を代入することで行う。   For the creation of a calibration model for obtaining a blood glucose level, difference spectrum data similar to the method disclosed in Patent Document 1 may be used. In other words, the difference spectrum data set is added to the initial near-infrared spectrum measured during blood glucose measurement (usually the near-infrared spectrum measured at the start of measurement), and a spectrum data set for creating a calibration model is created computationally. To do. The calibration model used for blood glucose level estimation is created by PLS regression analysis using the blood glucose level as a target variable and the spectrum data set for creating a calibration model as explanatory variables. The blood glucose level is estimated by substituting the absorbance at each wavelength of the near-infrared spectrum measured in this calibration model.

次に測定プローブ9を保持するとともに測定対象部位の皮膚に接触するホルダー22を、体深部温度とほぼ同じ温度に保持した状態での血糖測定の結果について説明する。
[実施例1]
図3に本例で導き出した血糖値イと、採血により測定した血糖値ロとを比較したグラフを示す。推定血糖値のバイアス補正は測定開始時(キャリブレーション時)の1点で実測血糖値と推定血糖値が一致するようにした。また、ホルダー22の設定温度もキャリブレーション時に測定した体深部温度(直腸温度:37.0℃)に設定した。ホルダー22の温度は約6時間の測定期間中37.0±0.1℃で制御した。なお、測定期間中の室温(環境温度)は24.0〜25.0℃の範囲であった。
Next, the results of blood glucose measurement in a state where the holder 22 that holds the measurement probe 9 and contacts the skin of the measurement target site is held at substantially the same temperature as the deep body temperature will be described.
[Example 1]
FIG. 3 shows a graph comparing the blood glucose level a derived in this example with the blood glucose level b measured by blood sampling. The bias correction of the estimated blood glucose level was made so that the measured blood glucose level and the estimated blood glucose level matched at one point at the start of measurement (during calibration). The set temperature of the holder 22 was also set to the deep body temperature (rectal temperature: 37.0 ° C.) measured during calibration. The temperature of the holder 22 was controlled at 37.0 ± 0.1 ° C. during the measurement period of about 6 hours. The room temperature (environmental temperature) during the measurement period was in the range of 24.0 to 25.0 ° C.

本実施例で測定した血糖値イと採血により測定した血糖値ロとの相関係数は0.93であった。本実施例で測定した血糖値が、採血で測定した血糖値の変化によく追随していることがわかる。
[実施例2]
本実施例においては、環境温度が18.5℃と20℃未満であり、体深部温度が測定部分の近傍まで分布する可能性がきわめて低いと考えられることから、測定プローブ9を保持するホルダー22を、被験者の直腸温度計23より得られた値(37.0℃)を基準より−1℃低い値(36.0℃)に設定した。設定温度の決定は血糖値の測定開始時に行い、測定の終了までこの設定温度は変化させていない。
The correlation coefficient between the blood glucose level a measured in this example and the blood glucose level b measured by blood sampling was 0.93. It can be seen that the blood glucose level measured in this example well follows the change in blood glucose level measured by blood sampling.
[Example 2]
In the present embodiment, the environmental temperature is 18.5 ° C. and less than 20 ° C., and it is considered that the possibility that the deep body temperature is distributed to the vicinity of the measurement portion is extremely low. Therefore, the holder 22 for holding the measurement probe 9 The value (37.0 ° C.) obtained from the rectal thermometer 23 of the subject was set to a value (36.0 ° C.) lower by −1 ° C. than the reference. The set temperature is determined at the start of blood glucose level measurement, and this set temperature is not changed until the end of the measurement.

この場合、本実施例で測定した血糖値と採血により測定した血糖値との相関係数は0.90であった。実施例1と同様に本実施例で測定した血糖値が、採血で測定した血糖値の変化によく追随していることがわかる。   In this case, the correlation coefficient between the blood glucose level measured in this example and the blood glucose level measured by blood sampling was 0.90. As in Example 1, it can be seen that the blood glucose level measured in the present example closely follows the change in blood glucose level measured by blood sampling.

環境温度だけでなく、被験者の着衣の状況に応じて設定温度を低く設定してもよい。いずれにしても、温度制御手段に過度の負荷をかける必要がなくなって制御温度が安定することに加え、体深部温度を基準に測定部分の温度を決定するので、末梢循環を阻害することなく皮膚組織の安定を保つことができる。
[実施例3]
本実施例において基本的な構成は実施例1と同じであるが、体深部温度計23として鼓膜温度を測定する鼓膜温度計を用いた。この鼓膜温度計は、装置本体21と直接接続されておらず、装置に付随する装置として用いられる。
The set temperature may be set low depending on not only the environmental temperature but also the condition of the subject's clothes. In any case, since it is not necessary to place an excessive load on the temperature control means and the control temperature is stabilized, the temperature of the measurement part is determined based on the deep body temperature, so that the skin is not disturbed without inhibiting the peripheral circulation. The organization can be kept stable.
[Example 3]
In this example, the basic configuration is the same as that of Example 1, but an eardrum thermometer that measures the eardrum temperature is used as the deep body thermometer 23. This eardrum thermometer is not directly connected to the apparatus main body 21 and is used as an apparatus attached to the apparatus.

鼓膜温度計での体深部温度測定は、実施例1と同様にキャリブレーション時に行い、その測定値は手動で装置本体に入力した。測定プローブ9の設定温度は、環境温度が25.0℃であったことから、鼓膜温度計で測定した体深部温度と同じ値(37.0℃)に設定した。設定温度の決定は血糖値の測定開始時に行い、測定の終了までこの設定温度は変化させていない。   Body temperature measurement with the tympanic thermometer was performed during calibration in the same manner as in Example 1, and the measured value was manually input to the apparatus body. The set temperature of the measurement probe 9 was set to the same value (37.0 ° C.) as the deep body temperature measured with the tympanic thermometer because the environmental temperature was 25.0 ° C. The set temperature is determined at the start of blood glucose level measurement, and this set temperature is not changed until the end of the measurement.

本実施例で測定した血糖値と採血により測定した血糖値の相関係数は0.92で、他の実施例と同様に本実施例で測定した血糖値が採血により測定した変化によく追随していることがわかる。   The correlation coefficient between the blood glucose level measured in this example and the blood glucose level measured by blood sampling is 0.92, and the blood glucose level measured in this example follows the change measured by blood sampling as in the other examples. You can see that

体深部温度計23として、直腸温を測定する直腸温度計と、鼓膜温度を測定する鼓膜温度計を示したが、このほか、口腔温度あるいは腋窩温度を測定するものを用いてもよい。   As the deep body thermometer 23, a rectal thermometer that measures rectal temperature and an eardrum thermometer that measures eardrum temperature are shown, but in addition, a device that measures oral cavity temperature or axillary temperature may be used.

9 測定プローブ
23 体深部温度計
24 加熱手段
9 Measurement probe 23 Body thermometer 24 Heating means

Claims (4)

近赤外光を生体組織に照射するとともに生体組織内を拡散した近赤外光を測定する測定プローブを用いた血糖測定方法において、体深部温度測定手段で測定された体深部温度とほぼ同じ温度に上記測定プローブの温度を保持し、この状態で生体組織内を拡散した近赤外光を測定することを特徴とする血糖測定方法。   In a blood glucose measurement method using a measurement probe that irradiates a living tissue with near-infrared light and measures near-infrared light diffused in the living tissue, the temperature is substantially the same as the body temperature measured by the body temperature measuring means. A method for measuring blood glucose, characterized in that the temperature of the measurement probe is held and near infrared light diffused in the living tissue in this state is measured. 近赤外光を生体組織に照射するとともに生体組織内を拡散した近赤外光を測定する測定プローブを備えた血糖測定装置において、体深部温度を測定する体深部温度測定手段と、体深部温度測定手段で測定された体深部温度とほぼ同じ温度に上記測定プローブの温度を保持する温度制御手段とを備えていることを特徴とする血糖測定装置。   In a blood glucose measurement device equipped with a measurement probe that irradiates a living tissue with near-infrared light and measures near-infrared light diffused in the living tissue, a body depth temperature measuring means for measuring a body depth temperature, and a body depth temperature A blood glucose measurement device comprising temperature control means for maintaining the temperature of the measurement probe at substantially the same temperature as the deep body temperature measured by the measurement means. 前記体深部温度測定手段が測定する体深部温度は、鼓膜温度、直腸温度、口腔温度、あるいは腋窩温度のいずれかであることを特徴とする請求項2記載の血糖測定装置。   The blood glucose measuring device according to claim 2, wherein the body deep part temperature measured by the body deep part temperature measuring means is any of an eardrum temperature, a rectal temperature, an oral temperature, or an axillary temperature. 上記温度制御手段は、上記測定プローブを測定された体深部温度の±1℃の範囲に保持するものであることを特徴とする請求項2または3記載の血糖測定装置。   4. The blood glucose measurement device according to claim 2, wherein the temperature control means holds the measurement probe in a range of ± 1 ° C. of the measured deep body temperature.
JP2009077692A 2009-03-26 2009-03-26 Blood sugar measuring method and device therefor Withdrawn JP2010227271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077692A JP2010227271A (en) 2009-03-26 2009-03-26 Blood sugar measuring method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077692A JP2010227271A (en) 2009-03-26 2009-03-26 Blood sugar measuring method and device therefor

Publications (1)

Publication Number Publication Date
JP2010227271A true JP2010227271A (en) 2010-10-14

Family

ID=43043765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077692A Withdrawn JP2010227271A (en) 2009-03-26 2009-03-26 Blood sugar measuring method and device therefor

Country Status (1)

Country Link
JP (1) JP2010227271A (en)

Similar Documents

Publication Publication Date Title
Tanaka et al. Differential continuous wave photoacoustic spectroscopy for non-invasive glucose monitoring
US9464983B2 (en) Concentration determination apparatus, probe, concentration determination method, and program
US8043227B2 (en) Non-invasive system and method for measuring skin hydration of a subject
US8657758B2 (en) Devices and methods for temperature determination
JP4872536B2 (en) Biological component concentration measurement method
JP2004510146A (en) Minimizing spectral effects during NIR-based blood sample determination
WO2016140625A1 (en) Photo-acoustic sensing apparatus and methods of operation thereof
Bornmyr et al. Skin temperature changes and changes in skin blood flow monitored with laser Doppler flowmetry and imaging: a methodological study in normal humans
JP2006198321A (en) Blood sugar level measuring apparatus
JP5750750B2 (en) Concentration meter
BR112018003528B1 (en) DEVICE FOR NON-INVASIVE BLOOD SUGAR MEASUREMENT LEVEL AND METHOD FOR MEASURING A BLOOD SUGAR LEVEL USING THIS DEVICE
JP2007083028A (en) Noninvasive inspecting apparatus
JP5216709B2 (en) Blood glucose level measuring device
JP2005027821A (en) Blood glucose level measuring instrument
JP4772408B2 (en) Optical biological information measurement system and coupling layer used for optical information measurement
JP3884036B2 (en) Blood glucose level measuring device
Uwadaira et al. Noninvasive blood glucose measurement
US20210251571A1 (en) Monitoring physiological parameters
JP2016010717A (en) Concentration quantification apparatus
JP2007105331A (en) Measuring instrument of metabolic amount
JP2010227271A (en) Blood sugar measuring method and device therefor
CN113598943A (en) Surgical instrument and measurement method
EP1595493A1 (en) Blood sugar level measuring apparatus
US10448843B1 (en) Flow detection
Rogatkin et al. Thermal-vision monitoring of processes of heating and microcirculation of blood accompanying low-intensity laser therapeutic procedures

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121