JP2010227023A - Method for producing 2-deoxy-scyllo-inosose by nadh/nad ratio control - Google Patents

Method for producing 2-deoxy-scyllo-inosose by nadh/nad ratio control Download PDF

Info

Publication number
JP2010227023A
JP2010227023A JP2009078714A JP2009078714A JP2010227023A JP 2010227023 A JP2010227023 A JP 2010227023A JP 2009078714 A JP2009078714 A JP 2009078714A JP 2009078714 A JP2009078714 A JP 2009078714A JP 2010227023 A JP2010227023 A JP 2010227023A
Authority
JP
Japan
Prior art keywords
deoxy
inosose
doi
siro
synthase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009078714A
Other languages
Japanese (ja)
Inventor
Kazumasa Konishi
一誠 小西
Shinichi Imazu
晋一 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2009078714A priority Critical patent/JP2010227023A/en
Publication of JP2010227023A publication Critical patent/JP2010227023A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intracellular metabolite control technique for dramatically improving 2-deoxy-scyllo-inosose (DOI) productivity. <P>SOLUTION: In the method for producing 2-deoxy-scyllo-inosose from glucose-6-phosphate by using a 2-deoxy-scyllo-inosose synthase or a microorganism capable of expressing a 2-deoxy-scyllo-inosose synthase, the ratio of NADH/NAD in the reaction system is controlled to be not more than 1.4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、2−デオキシ−シロ−イノソース合成酵素を用いて2−デオキシ−シロ−イノソースを製造する方法においてNADH/NAD比を制御することを特徴とする2−デオキシ−シロ−イノソースの製造方法に関する。   The present invention relates to a method for producing 2-deoxy-siro-inosose, wherein the NADH / NAD ratio is controlled in a method for producing 2-deoxy-siro-inosose using 2-deoxy-siro-inosose synthase. About.

現在、カテコールなどの芳香族化合物の多くは、石油を原料として生産されているが、石油資源の枯渇問題や二酸化炭素排出量の削減などの観点から、バイオマスを利用した環境調和型の新規製造プロセスの開発が求められている。   At present, most of aromatic compounds such as catechol are produced using petroleum as a raw material. However, from the viewpoint of depletion of petroleum resources and reduction of carbon dioxide emissions, environmentally friendly new manufacturing processes using biomass. Development is required.

一方、2−デオキシ−シロ−イノソース(以下、DOI)が、産業上有用とされる芳香族化合物(カテコール等)へと変換できることが見出され(非特許文献1)、さらには、このDOIを、バイオマスの構成要素の一つであるグルコースから合成できることが報告された(非特許文献1)。本DOI製造プロセスで重要となるのがグルコース−6−リン酸からDOIへと変換する2−デオキシ−シロ−イノソース合成酵素(以下、DOI合成酵素)であり、DOIは上記芳香族化合物への変換のみならず各種有用化合物の中間体ともなり得ることから、DOI合成酵素は非常に大きな注目を浴びている。   On the other hand, it was found that 2-deoxy-siro-inosose (hereinafter DOI) can be converted into an industrially useful aromatic compound (catechol etc.) (Non-Patent Document 1). It has been reported that it can be synthesized from glucose, which is one of the components of biomass (Non-patent Document 1). What is important in this DOI production process is 2-deoxy-siro-inosose synthase (hereinafter referred to as DOI synthase) that converts glucose-6-phosphate to DOI, and DOI is converted to the above aromatic compound. In addition, DOI synthase has attracted much attention because it can be an intermediate for various useful compounds.

DOI合成酵素はブチロシン生産菌であるBacillus circulans に属する微生物から1997年に単離精製(非特許文献2)され、続いて、その遺伝子配列も公開されている(特許文献1)。この他にもStreptoalloteichus hindustanus JCM3268株(非特許文献3)由来のDOI合成酵素などがこれまでに発見されている。   DOI synthase was isolated and purified in 1997 from a microorganism belonging to Bacillus circulans, which is a butyrosine-producing bacterium (Non-patent Document 2), and its gene sequence was also disclosed (Patent Document 1). In addition to this, DOI synthase derived from Streptoallotichichus Hindustanus JCM3268 (Non-patent Document 3) has been discovered so far.

特開2000−236881号公報JP 2000-236881 A

Tetrahedron Letters 41,1935−1938,2000Tetrahedron Letters 41, 1935-1938, 2000 The Journal of Antibiotics 50(5), 424−428, 1997The Journal of Antibiotics 50 (5), 424-428, 1997 The Journal of Antibiotics 59(6), 358−361, 2006The Journal of Antibiotics 59 (6), 358-361, 2006

しかしながら、前記DOI合成酵素の安定性と比活性などの各種特性は、満足のいくものではなく、また、数千トン規模の工業化製法に向けたDOI発酵生産に関する研究開発、特に細胞内代謝物の制御に関するものはほとんどなされてこなかった。
本発明は、従来法と比較して、DOI発酵生産性を飛躍的に向上させうる細胞内代謝産物制御技術を提供することを解決すべき課題とする。
However, the various properties such as the stability and specific activity of the DOI synthase are not satisfactory, and the research and development related to the DOI fermentation production for the industrial production process of several thousand tons, especially the intracellular metabolites Little has been done about control.
This invention makes it the subject which should be solved to provide the intracellular metabolite control technique which can improve DOI fermentation productivity dramatically compared with the conventional method.

これらの課題を解決するため鋭意検討を重ねた結果、本発明者らは、DOI合成酵素の活性が反応系中のNADH/NAD比に予想し得ない領域で影響を受けることを見出し、従来法と比較して、DOI発酵生産性を飛躍的に向上させうるDOI生産技術を見出し、本発明を完成するに至った。   As a result of extensive studies to solve these problems, the present inventors have found that the activity of DOI synthase is influenced by the NADH / NAD ratio in the reaction system in an unpredictable region. As a result, the present inventors have found a DOI production technique capable of dramatically improving DOI fermentation productivity and completed the present invention.

すなわち、本発明は以下の[1]〜[7]に示すDOI製造方法に関するものである。
[1] 2−デオキシ−シロ−イノソース合成酵素又は2−デオキシ−シロ−イノソース合成酵素を発現可能な微生物を利用してグルコース−6−リン酸から2−デオキシ−シロ−イノソースを製造する方法において、反応系におけるNADH/NAD比を1.4以下に制御することを特徴とする、2−デオキシ−シロ−イノソースの製造方法。
[2] グルコースを構成成分とする多糖類あるいはグルコースを含有する原料を用いることを特徴とする、[1]に記載の方法。
[3] 2−デオキシ−シロ−イノソース合成酵素が、安定温度範囲が少なくとも46℃まで安定である耐熱性酵素である、[1]又は[2]に記載の方法。
[4] 2−デオキシ−シロ−イノソース合成酵素が、pH6.0〜 8.0で安定な酵素である、[1]から[3]の何れか記載の方法。
[5] 2−デオキシ−シロ−イノソース合成酵素が下記の特性を有する酵素である、[1]又は[2]に記載の方法。
(1)作用:本酵素は、グルコース−6−リン酸を2−デオキシ−シロ−イノソースへと変換する機能を有する。
(2)安定温度範囲:少なくとも46℃まで安定である。
(3)補酵素としてNAD+を利用。
(4)至適pH範囲:7.0〜 7.7
(5)安定pH範囲:少なくとも6.0〜 8.0の範囲で安定である。
(6)至適温度範囲:55 〜 70 ℃
(7)分子量:39000〜42000
(8)補因子:Co2+イオンの添加により活性向上。
(9)比活性:1.0μmol/min/mg以上(反応温度65℃)。
[6] 2−デオキシ−シロ−イノソース合成酵素が、配列番号2、4、6、8、10又は12に記載のアミノ酸配列を有する2−デオキシ−シロ−イノソース合成酵素である、[1]から[2]の何れか記載の方法。
[7] 2−デオキシ−シロ−イノソース合成酵素が、配列番号2、4、6、8、10又は12で示されるアミノ酸配列において1個または複数個のアミノ酸の欠失、付加、及び/又は置換を含み、配列番号2、4、6、8、10又は12で示されるアミノ酸配列に対して80%以上の相同性を有して且つ、高温安定性及び/又は広範囲pH安定性を持つ2−デオキシ−シロ−イノソース合成酵素である、[1]から[5]の何れか記載の方法。
That is, this invention relates to the DOI manufacturing method shown in the following [1]-[7].
[1] In a method for producing 2-deoxy-siro-inosose from glucose-6-phosphate using a microorganism capable of expressing 2-deoxy-siro-inosose synthase or 2-deoxy-siro-inosose synthase A method for producing 2-deoxy-siro-inosose, wherein the NADH / NAD ratio in the reaction system is controlled to 1.4 or less.
[2] The method according to [1], wherein a polysaccharide comprising glucose or a raw material containing glucose is used.
[3] The method according to [1] or [2], wherein the 2-deoxy-siro-inosose synthase is a thermostable enzyme having a stable temperature range of up to at least 46 ° C.
[4] The method according to any one of [1] to [3], wherein the 2-deoxy-siro-inosose synthase is an enzyme that is stable at pH 6.0 to 8.0.
[5] The method according to [1] or [2], wherein the 2-deoxy-siro-inosose synthase is an enzyme having the following characteristics.
(1) Action: This enzyme has a function of converting glucose-6-phosphate into 2-deoxy-siro-inosose.
(2) Stable temperature range: Stable up to at least 46 ° C.
(3) Use NAD + as a coenzyme.
(4) Optimal pH range: 7.0 to 7.7
(5) Stable pH range: Stable at least in the range of 6.0 to 8.0.
(6) Optimal temperature range: 55 to 70 ° C
(7) Molecular weight: 39000-42000
(8) Cofactor: Activity is improved by adding Co 2+ ions.
(9) Specific activity: 1.0 μmol / min / mg or more (reaction temperature 65 ° C.).
[6] From [1], the 2-deoxy-siro-inosose synthase is a 2-deoxy-siro-inosose synthase having the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, or 12. The method according to any one of [2].
[7] 2-deoxy-siro-inosose synthase is a deletion, addition, and / or substitution of one or more amino acids in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, or 12. And has 80% or more homology to the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10 or 12, and has high temperature stability and / or broad pH stability 2- The method according to any one of [1] to [5], which is deoxy-siro-inosose synthase.

本発明によると、菌体あたりのDOI発酵生産性の向上に寄与することから、短時間で大量のDOIを合成することができる。また、触媒となる菌体量の低減も可能となり、原料利用効率を向上させることもできる。   According to the present invention, since it contributes to the improvement of DOI fermentation productivity per bacterial cell, a large amount of DOI can be synthesized in a short time. In addition, the amount of bacterial cells serving as a catalyst can be reduced, and the raw material utilization efficiency can be improved.

図1は、精製DOI合成酵素(DOIS−1)の至適pH範囲を示す(実施例3)。FIG. 1 shows the optimum pH range of purified DOI synthase (DOIS-1) (Example 3). 図2は、精製DOI合成酵素(DOIS−1)の安定pH範囲を示す(実施例3)。FIG. 2 shows the stable pH range of purified DOI synthase (DOIS-1) (Example 3). 図3は、精製DOI合成酵素(DOIS−1)の至適温度範囲を示す(実施例3)。FIG. 3 shows the optimum temperature range of purified DOI synthase (DOIS-1) (Example 3). 図4は、精製DOI合成酵素(DOIS−1)の安定温度範囲を示す(実施例3)。FIG. 4 shows the stable temperature range of purified DOI synthase (DOIS-1) (Example 3). 図5は、精製既知DOI合成酵素(BtrC)の安定温度範囲を示す(比較例1)。FIG. 5 shows the stable temperature range of purified known DOI synthase (BtrC) (Comparative Example 1).

以下、本発明について具体的に説明する。
[DOI合成酵素]
本発明を実施するための形態(以下、本実施の形態という)のDOI合成酵素は、下記の特性を有し、
(1)作用:本酵素は、グルコース−6−リン酸をDOIへと変換する機能を有する。
さらには、下記に示す一部またはすべての特性を有する。
(2)安定温度範囲:少なくとも46℃まで安定である。
(3)補酵素としてNAD+を利用。
(4)至適pH範囲:7.0〜 7.7
(5)安定pH範囲:少なくとも6.0〜 8.0の範囲で安定である。
(6)至適温度範囲:55 〜 70 ℃
(7)分子量:39000〜42000
(8)補因子:Co2+イオンの添加により活性向上。
(9)比活性:1.0μmol/min/mg以上(反応温度65℃)。
Hereinafter, the present invention will be specifically described.
[DOI synthase]
The DOI synthase in the form for carrying out the present invention (hereinafter referred to as the present embodiment) has the following characteristics:
(1) Action: This enzyme has a function of converting glucose-6-phosphate to DOI.
Further, it has some or all of the following characteristics.
(2) Stable temperature range: Stable up to at least 46 ° C.
(3) Use NAD + as a coenzyme.
(4) Optimal pH range: 7.0 to 7.7
(5) Stable pH range: Stable at least in the range of 6.0 to 8.0.
(6) Optimal temperature range: 55 to 70 ° C
(7) Molecular weight: 39000-42000
(8) Cofactor: Activity is improved by adding Co 2+ ions.
(9) Specific activity: 1.0 μmol / min / mg or more (reaction temperature 65 ° C.).

配列番号2、4、6、8、10及び12に従来のDOI合成酵素と比較して、耐熱性やpH安定性などの面で優れた新規DOI合成酵素のアミノ酸配列を例示するが、このアミノ酸配列からなるタンパク質がDOI合成酵素活性を有する限り、当該アミノ酸配列において少なくとも1個のアミノ酸に欠失、置換、付加等の変異が生じてもよい。例えば、配列番号2、4、6、8、10又は12に示されるアミノ酸配列に対して80%以上、好ましくは85%以上、さらに好ましくは90%以上、さらに好ましくは95%以上、さらに好ましくは99%以上の相同性の範囲内で、配列番号2、4、6、8、10又は12で表されるアミノ酸配列の1個または複数個(例えば1から50個、好ましくは1から30個、さらに好ましくは1から20個、さらに好ましくは1から10個、さらに好ましくは1から5個、さらに好ましくは1から3個))のアミノ酸の欠失、付加、及び/又は置換してもよい。
DOI合成酵素中のアミノ酸に欠失、置換、付加等の変異を生じさせる方法としては、PCR法、エラープローンPCR法、DNAシャッフリング法やキメラ酵素を作製する手法等の公知の方法が利用できる。
上記に、新規DOI合成酵素を示したが、もちろん本発明は従来のDOI合成酵素を用いても良い。
DOI合成酵素活性を測定する方法としては、例えば、1000mMグルコース−6−リン酸溶液20μL、100mMNAD+溶液50μL、100mM塩化コバルト六水和物溶液50μLを含むpH7.0の150mMBis−Tris緩衝液900μLに適当な濃度のDOI合成酵素液100μLを混合し、5〜60分間程度反応させた後、酵素を失活させ、DOIを定量する方法などが挙げられる。
酵素の至適温度範囲あるいは至適pH範囲は、反応温度あるいは反応pHを変化させて酵素活性を測定すればよい。さらにDOI合成酵素を種々のpH条件下又は温度条件下に一定時間さらした後に酵素活性を測定することにより、安定pH範囲及び安定温度範囲を調べることができる。例えば、各pH条件におけるDOI合成酵素の評価には、Bis−Tris緩衝液(pH5.5〜8.0)およびTris緩衝液(pH7.4〜8.0)を用いることができる。
至適pH範囲とは、最大活性を100とするときの活性値が70以上の範囲であり、安定pH範囲とは最大活性を100とするときの活性値が70以上の範囲である。また、至適温度範囲とは、最大活性を100とするときの活性値が50以上の範囲であり、安定温度範囲は最大活性を100とするときの活性値が50以上の範囲である。
本実施の形態におけるDOI合成酵素の高温安定性とは、安定温度範囲が46℃以下、より好ましくは、50℃以下、さらにより好ましくは60℃以下、さらに特に好ましくは95℃以下まで安定なことである。高温安定性を有する2−デオキシ−シロ−イノソース合成酵素としては、例えば、50℃で1時間インキュベートした後の残存酵素活性(最大活性を100とする相対活性)が50以上である酵素を選抜することができる。
本実施の形態における広範囲pH安定性を持つDOI合成酵素は、安定pH範囲が少なくともpH6.0〜7.0、好ましくはpH6.0〜7.4、より好ましくはpH6.0〜7.7、より好ましくはpH6.0〜8.0、特により好ましくはpH4.0〜9.0である特性を有する。
SEQ ID NOs: 2, 4, 6, 8, 10 and 12 illustrate amino acid sequences of a novel DOI synthetase which is superior in terms of heat resistance and pH stability compared to conventional DOI synthetases. As long as the protein comprising the sequence has DOI synthetase activity, at least one amino acid in the amino acid sequence may be mutated such as deletion, substitution, addition and the like. For example, 80% or more, preferably 85% or more, more preferably 90% or more, more preferably 95% or more, more preferably, relative to the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12. One or more of the amino acid sequences represented by SEQ ID NO: 2, 4, 6, 8, 10 or 12 (for example, 1 to 50, preferably 1 to 30, within a range of homology of 99% or more, More preferably, 1 to 20, more preferably 1 to 10, more preferably 1 to 5, more preferably 1 to 3)) amino acid deletions, additions, and / or substitutions may be made.
Known methods such as a PCR method, an error-prone PCR method, a DNA shuffling method, and a method for producing a chimeric enzyme can be used as a method for causing mutations such as deletion, substitution and addition in amino acids in DOI synthase.
Although a novel DOI synthetase has been shown above, of course, the present invention may use a conventional DOI synthetase.
As a method for measuring DOI synthase activity, for example, 900 μL of 150 mM Bis-Tris buffer pH 7.0 containing 20 μL of 1000 mM glucose-6-phosphate solution, 50 μL of 100 mM NAD + solution, and 50 μL of 100 mM cobalt chloride hexahydrate solution was used. Examples include a method of mixing 100 μL of a DOI synthetase solution having an appropriate concentration and reacting for about 5 to 60 minutes, then inactivating the enzyme, and quantifying DOI.
The optimum temperature range or optimum pH range of the enzyme may be determined by changing the reaction temperature or reaction pH and measuring the enzyme activity. Furthermore, the stable pH range and the stable temperature range can be examined by measuring the enzyme activity after exposing the DOI synthase to various pH conditions or temperature conditions for a certain period of time. For example, Bis-Tris buffer (pH 5.5 to 8.0) and Tris buffer (pH 7.4 to 8.0) can be used for evaluation of DOI synthase under each pH condition.
The optimum pH range is a range where the activity value is 70 or more when the maximum activity is 100, and the stable pH range is a range where the activity value is 70 or more when the maximum activity is 100. The optimum temperature range is a range where the activity value is 50 or more when the maximum activity is 100, and the stable temperature range is a range where the activity value is 50 or more when the maximum activity is 100.
The high temperature stability of the DOI synthase in the present embodiment means that the stable temperature range is 46 ° C. or lower, more preferably 50 ° C. or lower, even more preferably 60 ° C. or lower, and even more preferably 95 ° C. or lower. It is. As the 2-deoxy-siro-inosose synthase having high temperature stability, for example, an enzyme having a residual enzyme activity (relative activity with a maximum activity of 100) after incubation at 50 ° C. for 1 hour is selected. be able to.
The DOI synthase having a wide range of pH stability in the present embodiment has a stable pH range of at least pH 6.0 to 7.0, preferably pH 6.0 to 7.4, more preferably pH 6.0 to 7.7, More preferably, it has a property of pH 6.0 to 8.0, particularly preferably pH 4.0 to 9.0.

[DOI合成酵素遺伝子]
本実施の形態のDOI合成酵素遺伝子は、メタゲノムや微生物から単離・抽出した天然のものでも良く、また、その塩基配列に従ってPCR法、人工合成法等の公知の方法によって合成したものでも良い。また、新規DOI酵素キメラ遺伝子の作成には、既知DOI合成酵素遺伝子を組み合わせてもよく、例示される遺伝子としてはPaenibacillus sp.NBRC13157株、Streptoalloteichus hindustanus JCM3268、Streptomyces fradiae NBRC12773株などに由来するDOI合成酵素遺伝子が挙げられる。
[DOI synthase gene]
The DOI synthase gene of the present embodiment may be a natural gene isolated or extracted from a metagenome or a microorganism, or may be synthesized by a known method such as a PCR method or an artificial synthesis method according to its base sequence. In addition, a known DOI synthase gene may be combined in the preparation of a novel DOI enzyme chimera gene. Examples of such genes include Paenibacillus sp. Examples thereof include DOI synthase genes derived from the NBRC13157 strain, Streptoallotichus Hindustanus JCM3268, Streptomyces fradiae NBRC12773 strain, and the like.

配列番号1、3、5、7、9及び11に新規DOI合成酵素遺伝子の塩基配列を例示するが、もちろん本発明は従来のDOI合成酵素遺伝子を用いても良い。   The nucleotide sequences of the novel DOI synthetase genes are exemplified in SEQ ID NOs: 1, 3, 5, 7, 9, and 11. Of course, the present invention may use conventional DOI synthetase genes.

[組み換えベクター及び形質転換体]
本実施の形態の組換えベクターは、プラスミド等の公知のベクターに本発明の遺伝子を連結(挿入)して得ることができる。前記ベクターは宿主中で複製可能なものであれば特に限定されず、例えばプラスミドDNA、ファージDNA等が挙げられる。
[Recombinant vectors and transformants]
The recombinant vector of this embodiment can be obtained by linking (inserting) the gene of the present invention to a known vector such as a plasmid. The vector is not particularly limited as long as it can replicate in the host, and examples thereof include plasmid DNA and phage DNA.

前記プラスミドDNAとしては、大腸菌由来のプラスミド(例えば pBR322, pBR325, pUC18, pUC119, pTrcHis, pBlueBacHis 等)、枯草菌由来のプラスミド(例えば pUB110, pTP5 等)、酵母由来のプラスミド(例えば YEp13, YEp24, YCp50, pYE52 等)などが、ファージ DNAとしてはλファージ等が挙げられる。   Examples of the plasmid DNA include plasmids derived from E. coli (eg, pBR322, pBR325, pUC18, pUC119, pTrcHis, pBlueBacHis, etc.), plasmids derived from Bacillus subtilis (eg, pUB110, pTP5 etc.), and plasmids derived from yeast (eg, YEp13, YEp24, YCp50). , pYE52, etc.), and phage DNA includes λ phage.

前記ベクターへの本発明の遺伝子の挿入は、まず、精製されたDNAを適当な制限酵素で切断し、ベクターDNAの適当な制限酵素部位またはマルチクローニングサイトに挿入してベクターに連結する方法が採用される。   For insertion of the gene of the present invention into the vector, first, the purified DNA is cleaved with an appropriate restriction enzyme, inserted into an appropriate restriction enzyme site or a multicloning site of the vector DNA, and then ligated to the vector. Is done.

宿主内で外来遺伝子を発現させるためには、構造遺伝子の前に、適当なプロモーターを配置させる必要がある。前記プロモーターは特に限定されず、宿主内で機能することが知られている任意のものを用いることができる。なおプロモーターについては、後述する形質転換体において、宿主ごとに詳述する。また、必要であればエンハンサー等のシスエレメント、スプライシングシグナル、ポリA付加シグナル、リボソーム結合配列(SD配列)、ターミネーター配列等を配置させてもよい。   In order to express a foreign gene in a host, it is necessary to arrange an appropriate promoter before the structural gene. The promoter is not particularly limited, and any promoter known to function in the host can be used. The promoter will be described in detail for each host in the transformant described later. If necessary, a cis element such as an enhancer, a splicing signal, a poly A addition signal, a ribosome binding sequence (SD sequence), a terminator sequence and the like may be arranged.

本実施の形態の形質転換体は、本発明の組換えベクターを目的遺伝子が発現しうるように宿主中に導入することによって得ることができる。ここで宿主としては、本発明のDNAを発現できるものであれば特に限定されず、例えば、エッシェリヒア・コリ(Escherichia coli)等のエッシェリヒア属、バチルス・ズブチリス(Bacillus subtilis)等のバチルス属、シュードモナス・プチダ(Pseudomonas putida)等のシュードモナス属、リゾビウム・メリロテイ(Rhizobium meliloti)等のリゾビウム属に属する細菌、またサッカロミセス・セルビシエ(Saccharomyces cerevisiae)等の酵母、その他COS細胞、CHO細胞等の動物細胞、あるいはSf19、Sf21等の昆虫細胞を挙げることができる。   The transformant of the present embodiment can be obtained by introducing the recombinant vector of the present invention into a host so that the target gene can be expressed. Here, the host is not particularly limited as long as it can express the DNA of the present invention. For example, Escherichia such as Escherichia coli, Bacillus subtilis such as Bacillus subtilis, Bacteria belonging to the genus Pseudomonas such as Pseudomonas putida, Rhizobium meliloti, such as Rhizobium, yeast such as Saccharomyces cerevisiae, other animal cells such as COS cells, CHO cells, or Sf19 And insect cells such as Sf21.

また、本実施の形態の形質転換体として利用する宿主は、グルコース−6−リン酸をグルコース、フルクトース、ガラクトース、キシロースなどの単糖類から合成する機能を有するものが好ましい。また、必要に応じて、二つ以上の単糖が連結した多糖類を分解する機能を有することも好ましい。   In addition, the host used as the transformant of the present embodiment preferably has a function of synthesizing glucose-6-phosphate from monosaccharides such as glucose, fructose, galactose, and xylose. Moreover, it is also preferable that it has a function which decomposes | disassembles the polysaccharide which two or more monosaccharide connected as needed.

大腸菌等の細菌を宿主とする場合は、本発明の組換えベクターが各細菌中で自律複製可能であるとともにプロモーター、リボゾーム結合配列、本発明遺伝子、転写終結配列により構成されていることが望ましい。また、プロモーターを制御する遺伝子が含まれていても良い。大腸菌としてはエッシェリヒア・コリ(E. coli)K12、DH1、DH10B(Invitrogen社)、BL21-CodonPlus(DE3)-RIL(ストラタジーン社)、TOP10F等が挙げられ、枯草菌としてはバチルス・ズブチリス(B. subtilis)MI114、207-21 等が挙げられる。   When a bacterium such as Escherichia coli is used as a host, it is desirable that the recombinant vector of the present invention is capable of autonomous replication in each bacterium and is composed of a promoter, a ribosome binding sequence, the gene of the present invention, and a transcription termination sequence. Moreover, the gene which controls a promoter may be contained. Examples of Escherichia coli include Escherichia coli K12, DH1, DH10B (Invitrogen), BL21-CodonPlus (DE3) -RIL (Stratagene), TOP10F, and Bacillus subtilis (B subtilis) MI114, 207-21 and the like.

プロモーターとしては大腸菌等の宿主で機能するものであれば特に限定されず、例えばgapAプロモーター、gadAプロモーター、trpプロモーター、lacプロモーター、PLプロモーター、PRプロモーター等の大腸菌由来のプロモーターや、T7プロモーター等のファージ由来のプロモーターを用いることができる。   The promoter is not particularly limited as long as it functions in a host such as Escherichia coli. For example, a promoter derived from Escherichia coli such as gapA promoter, gadA promoter, trp promoter, lac promoter, PL promoter, PR promoter, or phage such as T7 promoter. Origin promoters can be used.

細菌への組換えベクターの導入方法は、細菌にDNAを導入できる方法であれば特に限定されないが、例えばカルシウムイオンを用いる方法(Cohen, SN et al. Proc. Natl. Acad. Sci. USA, 69 : 2110 (1972))、エレクトロポレーション法等が挙げられる。   The method for introducing a recombinant vector into bacteria is not particularly limited as long as it can introduce DNA into bacteria. For example, a method using calcium ions (Cohen, SN et al. Proc. Natl. Acad. Sci. USA, 69 : 2110 (1972)), electroporation method and the like.

酵母を宿主とする場合は、例えばサッカロミセス・セルビシエ(S. cerevisiae)、ピヒア・パストリス(Pichia pastoris)等が用いられる。この場合、プロモーターとしては酵母で発現しうるもの、例えばgal1プロモーター、gal10プロモーター、ヒートショックタンパク質プロモーター、MFα 1プロモーター、PHO5プロモーター、AOXプロモーター等を挙げることができる。   When yeast is used as a host, for example, S. cerevisiae, Pichia pastoris, and the like are used. In this case, examples of promoters that can be expressed in yeast include gal1 promoter, gal10 promoter, heat shock protein promoter, MFα 1 promoter, PHO5 promoter, AOX promoter and the like.

酵母への組換えベクターの導入方法としては、例えばエレクトロポレーション法(Becker, D.M. et al. : Methods. Enzymol., 194 : 180 (1990))、スフェロプラスト法(Hinnen, A. et al. : Proc Natl. Acad. Sci. USA, 75 : 1929 (1978))、酢酸リチウム法(Itoh, H. : J. Bacteriol., 153 : 163 (1983))等を挙げることができる。   Examples of methods for introducing a recombinant vector into yeast include the electroporation method (Becker, DM et al .: Methods. Enzymol., 194: 180 (1990)) and the spheroplast method (Hinnen, A. et al. : Proc Natl. Acad. Sci. USA, 75: 1929 (1978)), lithium acetate method (Itoh, H .: J. Bacteriol., 153: 163 (1983)) and the like.

[DOI生産法]
本実施の形態のDOI生産法では、反応系におけるNADH/NAD比を1.4以下に制御することを特徴とする。なお、本実施の形態で言う反応系とは、細胞内でもよいし、インビトロでもよい。DOI合成酵素を発現可能な微生物を利用する場合、本実施の形態のDOI生産法では、反応系(細胞内)のNADH/NAD比を制御することを除いては、DOI合成酵素産生微生物を常法に従って培養して得られる培養物からDOIを採取することでえられる。
[DOI production method]
The DOI production method of the present embodiment is characterized in that the NADH / NAD ratio in the reaction system is controlled to 1.4 or less. The reaction system referred to in this embodiment may be in a cell or in vitro. When a microorganism capable of expressing DOI synthase is used, the DOI production method of the present embodiment normally uses a DOI synthase-producing microorganism except that the NADH / NAD ratio in the reaction system (intracellular) is controlled. It is obtained by collecting DOI from a culture obtained by culturing according to the method.

本実施の形態における反応系(細胞内)のNADH/NAD比の制御は、菌の培養開始と同時に行っても良いが、より好ましくは、菌の生育およびDOI合成酵素の発現などの効率性を考慮し、DOIの生成濃度が2g/Lに到達してから開始する。また、DOIの最終到達濃度が50g/Lを超えるようなDOI製造プロセスにおいては、DOIの生成濃度が30g/Lに到達してから反応系(細胞内)のNADH/NAD比の制御を開始してもよい。   The control of the NADH / NAD ratio in the reaction system (intracellular) in the present embodiment may be performed simultaneously with the start of culturing of the bacterium, but more preferably, the efficiency of growth of the bacterium and expression of DOI synthase is improved. Considering, start when the DOI production concentration reaches 2 g / L. In the DOI production process in which the final concentration of DOI exceeds 50 g / L, control of the NADH / NAD ratio of the reaction system (intracellular) is started after the DOI production concentration reaches 30 g / L. May be.

反応系(細胞内)のNADH/NAD比は、好ましくは1.4以下、より好ましくは1.0以下、さらにより好ましくは0.5以下、さらにより好ましくは0.1以下、特により好ましくは0.02以下である。   The NADH / NAD ratio of the reaction system (intracellular) is preferably 1.4 or less, more preferably 1.0 or less, even more preferably 0.5 or less, even more preferably 0.1 or less, and particularly preferably 0.02 or less.

反応系(細胞内)のNADH/NAD比は、制御開始から少なくとも1.4以下に1分間保てばよく、より好ましくは1時間、より好ましくは10時間、さらにより好ましくは24時間、特により好ましくは48時間保てばよい。   The NADH / NAD ratio in the reaction system (intracellular) may be kept at least 1.4 or less from the start of control for 1 minute, more preferably 1 hour, more preferably 10 hours, even more preferably 24 hours, particularly more Preferably, it may be kept for 48 hours.

本実施の形態における反応系(細胞内)のNADH/NAD比を1.4以下に保つ効果的な手法としては、常法に従えばよく、例えば、非特許文献(Metabolic Engineering Volume 7, Issue 2, March 2005, Pages 104-115)に知られているピルビン酸キナーゼ関連遺伝子欠損が利用でき、本手法を用いれば反応系(細胞内)のNADH/NAD比が0.010にできることが知られている。本発明における反応系(細胞内)のNADH/NAD比の測定は、非特許文献(Metabolic Engineering Volume 7, Issue 2, March 2005, Pages 104-115)に記載の手法などで行うことができる。   As an effective technique for maintaining the NADH / NAD ratio of the reaction system (intracellular) in the present embodiment at 1.4 or less, a conventional method may be followed. For example, non-patent literature (Metabolic Engineering Volume 7, Issue 2 , March 2005, Pages 104-115), known to be a pyruvate kinase-related gene deficiency, and it is known that the NADH / NAD ratio of the reaction system (intracellular) can be reduced to 0.010 by using this method. Yes. The measurement of the NADH / NAD ratio of the reaction system (intracellular) in the present invention can be performed by the method described in non-patent literature (Metabolic Engineering Volume 7, Issue 2, March 2005, Pages 104-115).

また、本実施の形態における反応系(細胞内)のNADH/NAD比を1.4以下に保つその他の効果的な手法としては、非特許文献(Appl Microbiol Biotechnol. 2004 Apr;64(3):367-75. Epub 2003 Dec 12.)に記載のグルコースを炭素源とした嫌気(微好気)条件下での培養技術を利用することができる。本技術を用いれば、好気条件で、反応系(細胞内)のNADH/NAD比が1.44にも関わらず、これを嫌気培養することにより0.13まで低下させることができる。   In addition, as another effective technique for maintaining the NADH / NAD ratio of the reaction system (intracellular) in the present embodiment at 1.4 or less, non-patent literature (Appl Microbiol Biotechnol. 2004 Apr; 64 (3): 367-75. Epub 2003 Dec 12.), the culture technique under anaerobic (microaerobic) conditions using glucose as a carbon source can be used. If this technique is used, even if the NADH / NAD ratio of the reaction system (intracellular) is 1.44 under aerobic conditions, it can be reduced to 0.13 by anaerobic culture.

培養に用いる炭素源としては、形質転換体が資化できるものであればグルコースを構成成分とする多糖類を直接用いてもよく、より好ましくは、単糖類もしくはでんぷんや米ぬかや廃糖蜜などの多糖類を含む原料に由来する単糖類が挙げられ、具体的にはD−グルコースなどが挙げられる。また、プロモーターの発現が誘導型である場合には、適時誘導物質を添加すればよい。炭素源以外の栄養源としては、窒素源、無機塩類、その他有機栄養源を含む培地を使用できる。培養温度はその菌の生育可能な温度であれば良い。培養時間には特に制限はないが、1日から7日程度でよい。その後、得られた培養菌体又は培養上清液からDOIを回収すればよい。   As the carbon source used for the culture, a polysaccharide comprising glucose as a constituent may be directly used as long as the transformant can assimilate, and more preferably a monosaccharide or starch, rice bran or molasses. Examples include monosaccharides derived from raw materials containing saccharides, and specifically D-glucose. In addition, when the expression of the promoter is inducible, an inducer may be added in a timely manner. As a nutrient source other than the carbon source, a medium containing a nitrogen source, inorganic salts, and other organic nutrient sources can be used. The culture temperature may be any temperature at which the bacteria can grow. The culture time is not particularly limited, but may be about 1 to 7 days. Then, what is necessary is just to collect | recover DOI from the obtained cultured microbial cell or culture supernatant liquid.

炭素源としては、D−グルコース、ガラクトース、マルトース、サッカロース、トレハロース等の糖類や油脂類や脂肪酸類さらにはn−パラフィン等を用いることができる。油脂としては、例えば、ナタネ油、ヤシ油、パーム油、パーム核油などがあげられる。脂肪酸としてはヘキサン酸、オクタン酸、デカン酸、ラウリン酸、オレイン酸、パルミチン酸、リノール酸、リノレン酸、ミリスチン酸などの飽和・不飽和脂肪酸、あるいはこれら脂肪酸のエステルや塩など脂肪酸誘導体などがあげられる。   As the carbon source, saccharides such as D-glucose, galactose, maltose, saccharose, and trehalose, fats and oils, fatty acids, and n-paraffin can be used. Examples of the fats and oils include rapeseed oil, coconut oil, palm oil, and palm kernel oil. Examples of fatty acids include saturated and unsaturated fatty acids such as hexanoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linoleic acid, linolenic acid, and myristic acid, and fatty acid derivatives such as esters and salts of these fatty acids. It is done.

窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウムなどのアンモニウム塩の他、ペプトン、肉エキス、酵母エキスなどが挙げられる。無機塩類としては、例えば、リン酸水素ナトリウム、リン酸二水素カリウム、塩化マグネシウム、硫酸マグネシウム、塩化ナトリウム、塩化コバルトなどが挙げられる。   Examples of the nitrogen source include ammonium salts such as ammonia, ammonium chloride, ammonium sulfate, and ammonium phosphate, peptone, meat extract, yeast extract, and the like. Examples of inorganic salts include sodium hydrogen phosphate, potassium dihydrogen phosphate, magnesium chloride, magnesium sulfate, sodium chloride, cobalt chloride and the like.

その他の有機栄養源としては、アミノ酸類、例えば、アデニン、ヒスチジン、ロイシン、ウラシル、トリプトファンなどが挙げられる。   Other organic nutrient sources include amino acids such as adenine, histidine, leucine, uracil, tryptophan and the like.

生成するDOIの確認は、非特許文献(Journal of Biotechnology 129, 502-509 (2007))に記載の方法などを用いることができる。   For confirmation of the DOI to be generated, a method described in a non-patent document (Journal of Biotechnology 129, 502-509 (2007)) can be used.

本実施の形態において、DOIの培養液からの回収は,例えば、次のような方法が使用できる。培養終了後、培養液から遠心分離器や濾過装置などで菌体を除き、培養上清液を得る。この培養上清液に対してさらに濾過処理を行い、菌体等の固形物を除き、その濾液にイオン交換樹脂を添加し、蒸留水で溶出を行う。ICP発光分析、pHなどを測定しながら不純物を含まないフラクションを分取して、その水溶液の溶媒を取り除くことでDOIを回収することができる。得られたDOIの分析は、例えば、高速液体クロマトグラフィーや核磁気共鳴法などにより行う。   In this Embodiment, the following methods can be used for the collection | recovery from the culture solution of DOI, for example. After completion of the culture, the cells are removed from the culture solution with a centrifuge or a filtration device to obtain a culture supernatant. The culture supernatant is further filtered to remove solids such as bacterial cells, and an ion exchange resin is added to the filtrate, followed by elution with distilled water. While measuring ICP emission analysis, pH, etc., fractions containing no impurities are collected, and DOI can be recovered by removing the solvent of the aqueous solution. The obtained DOI is analyzed by, for example, high performance liquid chromatography or nuclear magnetic resonance.

本実施の形態のインビトロ下でのDOI製造温度は、反応速度や酵素の安定性の点から、好ましくは10〜95℃、より好ましくは20〜70℃であり、さらに好ましくは30〜60℃である。反応pHは広範囲で調整可能であり、酵素の安定性の点から、好ましくはpH2.0〜10.0、より好ましくはpH4.0〜8.0、さらに好ましくは6.0〜8.0である。   The in vitro DOI production temperature of the present embodiment is preferably 10 to 95 ° C, more preferably 20 to 70 ° C, and further preferably 30 to 60 ° C from the viewpoint of reaction rate and enzyme stability. is there. The reaction pH can be adjusted over a wide range, and is preferably pH 2.0 to 10.0, more preferably pH 4.0 to 8.0, and still more preferably 6.0 to 8.0 from the viewpoint of enzyme stability. is there.

しかしながら、本発明は以上の各種条件に限定されるものではなく、適宜選択することができる。   However, the present invention is not limited to the above various conditions, and can be appropriately selected.

以下、実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   Hereinafter, although an example explains concretely, the present invention is not limited at all by these examples.

[実施例1]
(1)染色体DNAの調製
常法に従ってPaenibacillus sp.NBRC13157株の染色体DNAを調製した。
Paenibacillus sp.NBRC13157株をNR寒天プレート(1% Bacto Tryptone、0.2% Yeast Extract、1% エルリッヒカツオエキス、1.5% Bacto Agar、pH7.0)で、30℃、1日間培養してコロニーを形成させた。その1白金耳を、NR培地(1% Bacto Tryptone、0.2% Yeast Extract、1% エルリッヒカツオエキス、pH7.0)30mLを150mL三角フラスコに分注したものに接種して、30℃、180rpmで1日間培養した。この培養液を、4℃で、1,2000g×1分間遠心分離して上清を除去し、菌体を回収した。
得られた菌体をLysisバッファー(50mM Tris−HCl(pH 8.0)、20mM EDTA、50mM グルコース)に懸濁し、よく洗浄した。遠心分離して菌体を回収した後、Lysisバッファーに再懸濁し、これにリゾチームを加え37℃で45分間インキュベートした。次いでSDSとRNaseを添加し、37℃で45分間インキュベートした。その後Proteinase Kを添加し、50℃で60分間穏やかに振盪した。ここで得られた溶液をフェノール−クロロホルム、クロロホルムで処理後、エタノール沈殿し、析出した核酸をガラスピペットに巻きつけて回収した。この核酸を70%エタノールで洗浄後、乾燥し、TEに再溶解した。この操作により、約100μgの染色体DNAを調製した。
[Example 1]
(1) Preparation of chromosomal DNA Paenibacillus sp. Chromosomal DNA of NBRC13157 strain was prepared.
Paenibacillus sp. NBRC13157 strain was cultured on NR agar plate (1% Bacto Tryptone, 0.2% Yeast Extract, 1% Erlich Skipjack extract, 1.5% Bacto Agar, pH 7.0) for 1 day to form colonies. It was. The 1 platinum ear was inoculated into a 30 mL NR medium (1% Bacto Tryptone, 0.2% Yeast Extract, 1% Erlich skipjack extract, pH 7.0) dispensed into a 150 mL Erlenmeyer flask, 30 ° C., 180 rpm For 1 day. This culture solution was centrifuged at 12,000 g × 1 minute at 4 ° C., the supernatant was removed, and the cells were collected.
The obtained cells were suspended in Lysis buffer (50 mM Tris-HCl (pH 8.0), 20 mM EDTA, 50 mM glucose) and washed thoroughly. The cells were collected by centrifugation, then resuspended in Lysis buffer, added with lysozyme, and incubated at 37 ° C. for 45 minutes. Then SDS and RNase were added and incubated at 37 ° C. for 45 minutes. Proteinase K was then added and gently shaken at 50 ° C. for 60 minutes. The solution obtained here was treated with phenol-chloroform and chloroform and then precipitated with ethanol, and the precipitated nucleic acid was collected by winding it around a glass pipette. The nucleic acid was washed with 70% ethanol, dried and redissolved in TE. By this operation, about 100 μg of chromosomal DNA was prepared.

(2)DOI合成酵素遺伝子の単離
上記(1)において調製した染色体DNAからDOI合成酵素遺伝子を増幅するためのPCRプライマーとして、センスプライマーは配列番号15の配列を有するオリゴDNAを、アンチセンスプライマーは配列番号16の配列を有するオリゴDNAをそれぞれ合成した。
ここで得られたPCRプライマーを用い、上記(1)において調製した染色体DNAを鋳型としてPCR法によるDOI合成酵素遺伝子の増幅を行い、1107塩基対からなるPCR産物を取得した。
(2) Isolation of DOI synthase gene As a PCR primer for amplifying the DOI synthase gene from the chromosomal DNA prepared in (1) above, the sense primer is an oligo DNA having the sequence of SEQ ID NO: 15; Respectively synthesized oligo DNAs having the sequence of SEQ ID NO: 16.
The PCR primer obtained here was used to amplify the DOI synthase gene by PCR using the chromosomal DNA prepared in (1) above as a template, and a PCR product consisting of 1107 base pairs was obtained.

ここで得られたPCR産物の遺伝子配列をDNAシークエンサーで解析することで確認し、配列番号13の塩基配列を有する既知DOI合成酵素btrC遺伝子を得た。また、配列番号14には、既知DOI合成酵素BtrCのアミノ酸配列を示した。   The gene sequence of the PCR product obtained here was confirmed by analyzing with a DNA sequencer, and a known DOI synthase btrC gene having the base sequence of SEQ ID NO: 13 was obtained. SEQ ID NO: 14 shows the amino acid sequence of known DOI synthase BtrC.

(3)DOI合成酵素遺伝子の発現プラスミドベクターの構築及び形質転換
上記(2)で取得したPCR産物の平滑末端化、リン酸化を行い、pUC19に大腸菌由来のgapAプロモーター、SD配列、ターミネーターを連結したプラスミドにライゲーションした。このプラスミドベクターには大腸菌中で外来遺伝子として連結された遺伝子を効率的に転写できるgapAプロモーターが導入されており、グルコースを含む培地で組換え微生物を培養した場合においてもDOI合成酵素遺伝子を効率的に発現・製造させることができる。
ここで得られたプラスミドベクターを、塩化カルシウム法で調製した大腸菌JM109株のコンピテントセルにヒートショック法で形質転換し、組換え微生物を作製した。
(3) Construction and transformation of DOI synthase gene expression plasmid vector The PCR product obtained in (2) above was blunted and phosphorylated, and E. coli-derived gapA promoter, SD sequence, and terminator were ligated to pUC19. Ligated to the plasmid. This plasmid vector is introduced with a gapA promoter capable of efficiently transcribing a gene linked as a foreign gene in E. coli. Even when a recombinant microorganism is cultured in a medium containing glucose, the DOI synthase gene is efficiently expressed. Can be expressed and produced.
The plasmid vector obtained here was transformed into a competent cell of Escherichia coli JM109 prepared by the calcium chloride method by the heat shock method to produce a recombinant microorganism.

(4)耐熱性DOI合成酵素遺伝子の取得
上記(3)で取得したプラスミドベクターに対し、常法による変異導入を行うことで、配列番号1(DOIS−1)、配列番号3(DOIS−2)、配列番号5(DOIS−3)、配列番号7(DOIS−4)に記載の耐熱性DOI合成酵素遺伝子を得ることができる。また、これらの遺伝子配列に対応するそれぞれのアミノ酸配列を配列番号2、4、6及び8に示した。ここで取得したDOI合成酵素遺伝子(DOIS−1)についても(3)と同様に形質転換体の取得を行った。
(4) Acquisition of heat-resistant DOI synthase gene SEQ ID NO: 1 (DOIS-1) and SEQ ID NO: 3 (DOIS-2) are obtained by introducing mutations into the plasmid vector obtained in (3) above by a conventional method. , SEQ ID NO: 5 (DOIS-3) and SEQ ID NO: 7 (DOIS-4) can be obtained. The amino acid sequences corresponding to these gene sequences are shown in SEQ ID NOs: 2, 4, 6, and 8, respectively. For the DOI synthase gene (DOIS-1) obtained here, a transformant was obtained in the same manner as in (3).

(5)広範囲pH安定型DOI合成酵素遺伝子の取得
上記(3)で取得したプラスミドベクターに対し、常法による変異導入を行うことで、配列番号9(DOIS−5)、配列番号11(DOIS−6)、に記載の広範囲pH安定型DOI合成酵素遺伝子を得ることができる。また、これらの遺伝子配列に対応するそれぞれのアミノ酸配列を配列番号10及び12に示した。
(5) Acquisition of wide-range pH-stable DOI synthetase gene SEQ ID NO: 9 (DOIS-5), SEQ ID NO: 11 (DOIS- 6), a wide-range pH stable DOI synthase gene can be obtained. The amino acid sequences corresponding to these gene sequences are shown in SEQ ID NOs: 10 and 12, respectively.

[実施例2]
[精製酵素の取得]
実施例1で作製したDOI合成酵素(DOIS−1)の形質転換体を100mg/Lのアンピシリンを含むLBプレートで、37℃、一日間培養して、コロニーを形成させた。
次いで100mg/Lのアンピシリンを含むLB培地30mLを150mL容の三角フラスコに入れ、上記プレートからコロニーを白金耳で植菌し、37℃で、3〜8時間、OD(600nm)が0.5程度になるまで180rpmで回転振盪培養を行い、これを本培養の前培養液とした。
[Example 2]
[Acquisition of purified enzyme]
The transformant of DOI synthetase (DOIS-1) prepared in Example 1 was cultured at 37 ° C. for 1 day on an LB plate containing 100 mg / L ampicillin to form colonies.
Next, 30 mL of LB medium containing 100 mg / L ampicillin is placed in a 150 mL Erlenmeyer flask, and colonies are inoculated from the above plate with a platinum loop, and OD (600 nm) is about 0.5 at 37 ° C. for 3 to 8 hours. Until this time, rotary shaking culture was performed at 180 rpm, and this was used as a pre-culture solution for main culture.

500mL容の三角フラスコ36本に、2g/Lのグルコースと100mg/Lのアンピシリンを含むLB培地を100mLずつ入れ、それぞれの三角フラスコに0.5mLの前培養液を添加し、37℃で、16時間、180rpmで回転振盪培養を行った。
次いでこの培養液を、4℃で、10,000g×30分間遠心分離して上清を除去し、0.2mg/L塩化コバルト六水和物を含む50mM Tris−HCl緩衝液(pH7.7)で数回洗浄しながら菌体を回収した。回収した菌体は、−80℃で凍結保存した。
100 mL of LB medium containing 2 g / L glucose and 100 mg / L ampicillin was added to 36 500 mL Erlenmeyer flasks, and 0.5 mL of the preculture was added to each Erlenmeyer flask. Rotational shaking culture was performed for 180 hours at 180 rpm.
Next, the culture solution was centrifuged at 4 ° C. for 10,000 g × 30 minutes to remove the supernatant, and 50 mM Tris-HCl buffer (pH 7.7) containing 0.2 mg / L cobalt chloride hexahydrate. The cells were collected while washing several times. The collected cells were stored frozen at -80 ° C.

この凍結保存菌体を0.2mg/L塩化コバルト六水和物を含む50mM Tris−HCl緩衝液(pH7.7)で懸濁し、リゾチーム(Sigma社製 卵白由来)を180mgとデオキシリボヌクレアーゼI(WaKo社製 ウシ由来 組換え体溶液)を60μL添加して、37℃で、5時間、120rpmで振盪し、菌体破砕を行った。
菌体破砕後の溶液を、4℃で、10,000g×30分間遠心分離して菌体残渣を除去し、上清を回収した。
The cryopreserved cells were suspended in 50 mM Tris-HCl buffer (pH 7.7) containing 0.2 mg / L cobalt chloride hexahydrate, 180 mg of lysozyme (derived from Sigma egg white) and deoxyribonuclease I (Wako). 60 μL of a bovine-derived recombinant solution (manufactured by Co., Ltd.) was added and shaken at 120 rpm for 5 hours at 37 ° C. to disrupt the cells.
The solution after disrupting the cells was centrifuged at 10,000 g × 30 minutes at 4 ° C. to remove cell residues, and the supernatant was collected.

この上清に硫酸アンモニウムを加えて30%飽和とし、4℃でしばらく攪拌した後に、生じた沈殿を、4℃で、10,000g×30分間遠心分離して除去し、上清を回収した。
この上清にさらに硫酸アンモニウムを加えて40.0%飽和とし、4℃でしばらく攪拌した後に、生じた沈殿を、4℃で、10,000g×30分間遠心分離して上清を除去し、沈殿を回収した。次いでこの沈殿を0.2mg/L塩化コバルト六水和物を含む50mM Tris−HCl緩衝液(pH7.7)に溶解させた。
Ammonium sulfate was added to the supernatant to make it 30% saturated, and after stirring at 4 ° C. for a while, the resulting precipitate was removed by centrifugation at 10,000 g × 30 minutes at 4 ° C., and the supernatant was recovered.
To this supernatant, ammonium sulfate was further added to achieve 40.0% saturation. After stirring at 4 ° C. for a while, the resulting precipitate was centrifuged at 4 ° C. for 10,000 g × 30 minutes to remove the supernatant, and the precipitate was precipitated. Was recovered. Next, this precipitate was dissolved in 50 mM Tris-HCl buffer (pH 7.7) containing 0.2 mg / L cobalt chloride hexahydrate.

この溶解液を4℃で、平均分画分子量10,000の限外濾過膜を用いて濃縮し、0.2mg/L塩化コバルト六水和物を含む50mM Tris−HCl緩衝液(pH7.7)を加え、再度、濃縮するという脱塩操作を2〜3回繰り返した。
上記で得られた酵素溶液を、50mM Tris−HCl緩衝液(pH7.7)で平衡化した「DEAE Sepharose FF」(商標)(GEヘルスケア バイオサイエンス株式会社)に吸着させた後、0〜0.4Mの塩化ナトリウムを含有する50mM Tris−HCl緩衝液(pH7.7)の濃度勾配法によって酵素を溶出させた。
The lysate was concentrated at 4 ° C. using an ultrafiltration membrane having an average molecular weight cut-off of 10,000, and 50 mM Tris-HCl buffer (pH 7.7) containing 0.2 mg / L cobalt chloride hexahydrate. The desalting operation of adding and concentrating again was repeated 2-3 times.
The enzyme solution obtained above was adsorbed on “DEAE Sepharose FF” (trademark) (GE Healthcare Biosciences) equilibrated with 50 mM Tris-HCl buffer (pH 7.7). The enzyme was eluted by a gradient method of 50 mM Tris-HCl buffer (pH 7.7) containing 4 M sodium chloride.

上記で溶出した活性画分を集め、平均分画分子量10,000の限外濾過膜を用いて濃縮し、10重量%の硫酸アンモニウムを含有する50mM Tris−HCl緩衝液(pH7.7)で懸濁し、10重量%の硫酸アンモニウムを含有する50mM Tris−HCl緩衝液(pH7.7)で平衡化した「HiTrap Phenyl FF (high sub)」(商標)(GEヘルスケア バイオサイエンス株式会社)に吸着させた後、10〜0重量%の硫酸アンモニウムを含有する50mM Tris−HCl緩衝液(pH7.7)の濃度勾配法によって酵素を溶出させた。
上記で溶出した活性画分を集め、平均分画分子量10,000の限外濾過膜を用いて濃縮し、50mM Tris−HCl緩衝液(pH7.7)で平衡化した「MonoQ 5/50 GL」(商標)(GEヘルスケア バイオサイエンス株式会社)に吸着させた後、0〜0.2Mの塩化ナトリウムを含有する50mM Tris−HCl緩衝液(pH7.7)の濃度勾配法によって酵素を溶出させた。
The active fractions eluted above are collected, concentrated using an ultrafiltration membrane with an average molecular weight cut off of 10,000, and suspended in 50 mM Tris-HCl buffer (pH 7.7) containing 10 wt% ammonium sulfate. After adsorbing to “HiTrap Phenyl FF (high sub)” (trademark) (GE Healthcare Biosciences) equilibrated with 50 mM Tris-HCl buffer (pH 7.7) containing 10 wt% ammonium sulfate The enzyme was eluted by a concentration gradient method of 50 mM Tris-HCl buffer (pH 7.7) containing 10 to 0% by weight of ammonium sulfate.
The active fraction eluted above was collected, concentrated using an ultrafiltration membrane with an average molecular weight cut off of 10,000, and equilibrated with 50 mM Tris-HCl buffer (pH 7.7) “MonoQ 5/50 GL” After adsorbing to (trademark) (GE Healthcare Bioscience Co., Ltd.), the enzyme was eluted by a concentration gradient method of 50 mM Tris-HCl buffer (pH 7.7) containing 0 to 0.2 M sodium chloride. .

上記で溶出した活性画分を集め、平均分画分子量10,000の限外濾過膜を用いて濃縮し、0.2mg/L塩化コバルト六水和物と0.1MNaClを含む50mM Tris−HCl緩衝液(pH7.7)で平衡化した「HiLoad 16/60 Superdex 200」(商標)(GEヘルスケア バイオサイエンス株式会社)に充填した後、同様の緩衝液で溶出を行った。
上記で溶出した活性画分を集め、平均分画分子量10,000の限外濾過膜を用いて濃縮し、精製DOI合成酵素(DOIS−1)を得た。
The active fraction eluted above was collected, concentrated using an ultrafiltration membrane with an average molecular weight cut off of 10,000, and 50 mM Tris-HCl buffer containing 0.2 mg / L cobalt chloride hexahydrate and 0.1 M NaCl. After loading in “HiLoad 16/60 Superdex 200” (trademark) (GE Healthcare Bioscience Co., Ltd.) equilibrated with the solution (pH 7.7), elution was performed with the same buffer.
The active fractions eluted above were collected and concentrated using an ultrafiltration membrane having an average fractional molecular weight of 10,000 to obtain purified DOI synthase (DOIS-1).

上記、一連の精製酵素取得実験と同様にして、精製DOI合成酵素(DOIS−2)、精製DOI合成酵素(DOIS−3)、精製DOI合成酵素(DOI−4)、精製DOI合成酵素(DOI−5)および精製DOI合成酵素(DOI−6)、精製既知DOI合成酵素(BtrC)を取得した。   In the same manner as in the above series of purified enzyme acquisition experiments, purified DOI synthetase (DOIS-2), purified DOI synthetase (DOIS-3), purified DOI synthetase (DOI-4), and purified DOI synthetase (DOI- 5) and purified DOI synthase (DOI-6) and purified known DOI synthase (BtrC) were obtained.

[実施例3]
[新規DOI合成酵素の評価]
実施例2で得られた精製DOI合成酵素を用いて、その作用に関する実験を行った。
[Example 3]
[Evaluation of novel DOI synthase]
Using the purified DOI synthase obtained in Example 2, an experiment on its action was conducted.

(1)至適pH範囲
各pHにおける活性測定では、反応液に精製DOI合成酵素(DOIS−1)を適量添加し、グルコース−6−リン酸二ナトリウム塩(オリエンタル酵母製)が20mM、NAD+(オリエンタル酵母製)が5mM、塩化コバルト六水和物が5mM、各種緩衝液が100mMとなるようにして反応液を調整した。緩衝液としては、Bis−Tris緩衝液(pH6.0〜7.7)およびTris緩衝液(pH7.4〜8.0) を使用した。反応温度は30℃とし、生成するDOIを定量することで活性を測定した。最大活性を100とする相対活性を求め、この結果を図1に示す。本発明酵素における至適pH範囲は、pH7.0〜 7.7であった。
(1) Optimal pH range In the activity measurement at each pH, an appropriate amount of purified DOI synthase (DOIS-1) was added to the reaction solution, and glucose-6-phosphate disodium salt (made by Oriental Yeast) was 20 mM, NAD + ( The reaction solution was adjusted so that (oriental yeast) was 5 mM, cobalt chloride hexahydrate was 5 mM, and various buffers were 100 mM. Bis-Tris buffer (pH 6.0 to 7.7) and Tris buffer (pH 7.4 to 8.0) were used as buffers. The reaction temperature was 30 ° C., and the activity was measured by quantifying the generated DOI. The relative activity with the maximum activity of 100 was determined, and the results are shown in FIG. The optimum pH range for the enzyme of the present invention was pH 7.0 to 7.7.

(2)安定pH範囲
pH5.5〜8.0の範囲の100mMの緩衝液を用いて、精製DOI合成酵素(DOIS−1)を各pHで30℃、60分間インキュベートし、その残存酵素活性を測定した。インキュベートに用いた緩衝液としては、Bis−Tris緩衝液(pH5.5〜8.0)およびTris緩衝液(pH7.4〜8.0)を使用した。
残存酵素活性測定は、グルコース−6−リン酸二ナトリウム塩(オリエンタル酵母製)が20mM、NAD+(オリエンタル酵母製)が5mM、塩化コバルト六水和物が5mMとなる100mMBis−Tris緩衝液(pH7.0)中で、反応温度30℃で実施した。最大活性を100とする相対活性を求め、この結果を図2に示した。本酵素の安定pH範囲は、pH6.0〜 8.0であり、非常に幅広いpH範囲で安定であった。精製DOI合成酵素(DOIS−2)および精製DOI合成酵素(DOIS−3)も同様の結果を示した。
(2) Stable pH range Purified DOI synthase (DOIS-1) is incubated at 30 ° C for 60 minutes at each pH using a 100 mM buffer in the range of pH 5.5 to 8.0. It was measured. Bis-Tris buffer (pH 5.5 to 8.0) and Tris buffer (pH 7.4 to 8.0) were used as the buffer used for the incubation.
Residual enzyme activity was measured by measuring 100 mM Bis-Tris buffer (pH 7.5) with glucose-6-phosphate disodium salt (produced by Oriental Yeast) at 20 mM, NAD + (produced by Oriental Yeast) at 5 mM, and cobalt chloride hexahydrate at 5 mM. In 0) at a reaction temperature of 30 ° C. The relative activity with the maximum activity of 100 was determined, and the results are shown in FIG. The stable pH range of this enzyme was pH 6.0 to 8.0 and was stable in a very wide pH range. Purified DOI synthase (DOIS-2) and purified DOI synthase (DOIS-3) showed similar results.

(3)至適温度範囲
反応温度10〜70℃の各反応温度条件において、グルコース−6−リン酸二ナトリウム塩(オリエンタル酵母製)が20mM、NAD+(オリエンタル酵母製)が5mM、塩化コバルト六水和物が5mMとなる100mMBis−Tris緩衝液(pH7.0)中で、精製DOI合成酵素(DOIS−1)の酵素活性測定を実施した。最大活性を100とする相対活性を求め、この結果を図3に示す。至適温度範囲は55〜70℃であり、反応温度65℃における比活性は1.8μmol(DOI)/min/mg(酵素)と非常に高い値を示した。
(3) Optimum temperature range In each reaction temperature condition of reaction temperature 10-70 degreeC, glucose-6-phosphate disodium salt (product made from oriental yeast) is 20 mM, NAD + (product made from oriental yeast) is 5 mM, cobalt chloride 6 water The enzyme activity of purified DOI synthase (DOIS-1) was measured in a 100 mM Bis-Tris buffer solution (pH 7.0) in which the total amount was 5 mM. The relative activity with the maximum activity of 100 was determined, and the results are shown in FIG. The optimum temperature range was 55 to 70 ° C., and the specific activity at a reaction temperature of 65 ° C. was as high as 1.8 μmol (DOI) / min / mg (enzyme).

(4)安定温度範囲
精製DOI合成酵素(DOIS−1)を添加して且つ、NAD+(オリエンタル酵母製)が5mM、塩化コバルト六水和物が5mMとなるように調整した100mMBis−Tris緩衝液(pH7.0)を、温度範囲25〜60℃の各温度で1時間インキュベートした後、それぞれの残存酵素活性を測定した。
残存酵素活性測定は、グルコース−6−リン酸二ナトリウム塩(オリエンタル酵母製)が20mM、NAD+(オリエンタル酵母製)が5mM、塩化コバルト六水和物が5mMとなる100mMBis−Tris緩衝液(pH7.0)中で、反応温度30℃で実施した。最大活性を100とする相対活性を求め、この結果を図4に示した。精製DOI合成酵素(DOIS−1)の安定温度範囲は50℃以下であり、精製DOI合成酵素(DOIS−2)および精製DOI合成酵素(DOIS−3)も同様の結果を示した。これらの高温安定性は、既知酵素にはない新規特性であった。
(4) Stable temperature range 100 mM Bis-Tris buffer solution to which purified DOI synthase (DOIS-1) was added and adjusted so that NAD + (made by Oriental Yeast) was 5 mM and cobalt chloride hexahydrate was 5 mM ( pH 7.0) was incubated at each temperature in the temperature range of 25 to 60 ° C. for 1 hour, and then the residual enzyme activity was measured.
Residual enzyme activity was measured by measuring 100 mM Bis-Tris buffer (pH 7.5) with glucose-6-phosphate disodium salt (produced by Oriental Yeast) at 20 mM, NAD + (produced by Oriental Yeast) at 5 mM, and cobalt chloride hexahydrate at 5 mM. In 0) at a reaction temperature of 30 ° C. The relative activity with the maximum activity of 100 was determined, and the results are shown in FIG. The stable temperature range of purified DOI synthase (DOIS-1) was 50 ° C. or lower, and purified DOI synthase (DOIS-2) and purified DOI synthase (DOIS-3) showed similar results. Their high temperature stability was a novel property not found in known enzymes.

また、安定化剤として作用することが知られているNAD+およびコバルトイオン非存在化でインキュベートした安定温度範囲試験を実施したところ、精製DOI合成酵素(DOIS−1)のインキュベート温度46℃における相対活性は38、インキュベート温度42℃における相対活性は89、インキュベート温度37℃における相対活性は100であった。   In addition, when a stable temperature range test was performed in the absence of NAD + and cobalt ions, which are known to act as a stabilizer, the relative activity of purified DOI synthase (DOIS-1) at an incubation temperature of 46 ° C. 38, the relative activity at an incubation temperature of 42 ° C. was 89, and the relative activity at an incubation temperature of 37 ° C. was 100.

(5)分子量
分離ゲル濃度が10%の「レディーゲルJ」(商標)(日本バイオ・ラッド ラボラトリーズ株式会社)を用いるSDS−ポリアクリルアミドゲル電気泳動により、分子量を求めたところ、精製DOI合成酵素(DOIS−1)の分子量は約40,000であり、アミノ酸配列から推定される分子量40,656とほぼ一致した。
(5) Molecular weight When molecular weight was determined by SDS-polyacrylamide gel electrophoresis using “Ready Gel J” (trademark) (Nippon Bio-Rad Laboratories, Inc.) having a separation gel concentration of 10%, purified DOI synthase ( The molecular weight of DOIS-1) was about 40,000, which almost coincided with the molecular weight of 40,656 estimated from the amino acid sequence.

[比較例1]
[既知DOI合成酵素の評価]
配列番号14に記載のアミノ酸配列を有する精製既知DOI合成酵素(BtrC)に関して、実施例3−(4)安定温度範囲と同様にして以下実験を行った。
精製既知DOI合成酵素(BtrC)を添加して且つ、NAD+(オリエンタル酵母製)が5mM、塩化コバルト六水和物が5mMとなるように調整した100mMBis−Tris緩衝液(pH7.0)を、温度範囲25〜60℃の各温度で1時間インキュベートした後、それぞれの残存酵素活性を測定した。
[Comparative Example 1]
[Evaluation of known DOI synthase]
With respect to purified known DOI synthase (BtrC) having the amino acid sequence of SEQ ID NO: 14, the following experiment was conducted in the same manner as in Example 3- (4) stable temperature range.
A purified 100 mM Bis-Tris buffer (pH 7.0) prepared by adding purified known DOI synthase (BtrC) and adjusting NAD + (oriental yeast) to 5 mM and cobalt chloride hexahydrate to 5 mM, After incubation for 1 hour at each temperature in the range 25-60 ° C., the remaining enzyme activity was measured.

残存酵素活性測定は、グルコース−6−リン酸二ナトリウム塩(オリエンタル酵母製)が20mM、NAD+(オリエンタル酵母製)が5mM、塩化コバルト六水和物が5mMとなる100mMBis−Tris緩衝液(pH7.0)中で、反応温度30℃で実施した。最大活性を100とする相対活性を求め、この結果を図5に示した。精製既知DOI合成酵素(BtrC)の安定温度範囲は42℃以下であり、46℃での相対活性は23、50℃での相対活性は0と著しく低い熱安定性を示した。   Residual enzyme activity was measured by measuring 100 mM Bis-Tris buffer (pH 7.5) with glucose-6-phosphate disodium salt (produced by Oriental Yeast) at 20 mM, NAD + (produced by Oriental Yeast) at 5 mM, and cobalt chloride hexahydrate at 5 mM. In 0) at a reaction temperature of 30 ° C. The relative activity with the maximum activity of 100 was determined, and the results are shown in FIG. The stable temperature range of purified known DOI synthase (BtrC) was 42 ° C. or less, the relative activity at 46 ° C. was 23, and the relative activity at 50 ° C. was 0, indicating a very low thermal stability.

また、安定化剤として作用することが知られているNAD+およびコバルトイオン非存在化でインキュベートした安定温度範囲試験を実施したところ、精製既知DOI合成酵素(BtrC)のインキュベート温度42℃および46℃における相対活性は0、インキュベート温度37℃における相対活性は14であった。本実験からも既存酵素が著しく低い熱安定性を有することが示された。   In addition, when a stable temperature range test was performed in the absence of NAD + and cobalt ions, which are known to act as stabilizers, the incubation temperature of purified known DOI synthase (BtrC) at 42 ° C. and 46 ° C. The relative activity was 0, and the relative activity at an incubation temperature of 37 ° C. was 14. This experiment also showed that the existing enzyme has a significantly lower thermostability.

配列番号14に記載のアミノ酸配列を有する精製既知DOI合成酵素(BtrC)に関して、実施例3−(2)安定pH範囲と同様にして以下実験を行った。
精製既知DOI合成酵素(BtrC)を各pHで30℃、60分間インキュベートし、その残存酵素活性を測定した。インキュベートに用いた緩衝液としては、Bis−Tris緩衝液(pH5.5〜7.0)およびTris緩衝液(pH7.4〜8.0)を使用した。
残存酵素活性測定は、グルコース−6−リン酸二ナトリウム塩(オリエンタル酵母製)が20mM、NAD+(オリエンタル酵母製)が5mM、塩化コバルト六水和物が5mMとなる100mMBis−Tris緩衝液(pH7.0)中で、反応温度30℃で実施した。最大活性を100とする相対活性を求めたところ、pH6における相対活性は27と非常に低い値であった。
With respect to the purified known DOI synthase (BtrC) having the amino acid sequence shown in SEQ ID NO: 14, the following experiment was conducted in the same manner as in Example 3- (2) stable pH range.
Purified known DOI synthase (BtrC) was incubated at 30 ° C. for 60 minutes at each pH, and the residual enzyme activity was measured. Bis-Tris buffer (pH 5.5-7.0) and Tris buffer (pH 7.4-8.0) were used as the buffer used for incubation.
Residual enzyme activity was measured by measuring 100 mM Bis-Tris buffer (pH 7.5) with glucose-6-phosphate disodium salt (produced by Oriental Yeast) at 20 mM, NAD + (produced by Oriental Yeast) at 5 mM, and cobalt chloride hexahydrate at 5 mM. In 0) at a reaction temperature of 30 ° C. When the relative activity with the maximum activity of 100 was determined, the relative activity at pH 6 was 27, which was a very low value.

[実施例4]
[NADH/NAD比の酵素活性依存性]
NAD+およびNADHを表1と表2に記載の濃度となるように調整し且つ、グルコース−6−リン酸二ナトリウム塩(オリエンタル酵母製)が20mM、塩化コバルト六水和物が5mMとなる100mMBis−Tris緩衝液(pH7.0)中で、精製DOI合成酵素(DOIS−1)の酵素活性測定を実施した。NADH/NAD比が0となる際の活性を100とするときの活性値をそれぞれ求め、この結果を表1および表2に示した。
表1および表2に示すように、NADH/NAD比にDOI合成酵素活性は非常に大きな影響を受けることが明らかとなった。
[Example 4]
[Dependence of NADH / NAD ratio on enzyme activity]
NAD + and NADH were adjusted to the concentrations shown in Tables 1 and 2, and glucose-6-phosphate disodium salt (manufactured by Oriental Yeast) was 20 mM, and cobalt chloride hexahydrate was 5 mM. The enzyme activity of purified DOI synthase (DOIS-1) was measured in Tris buffer (pH 7.0). The activity values when the activity at the NADH / NAD ratio of 0 was taken as 100 were determined, and the results are shown in Tables 1 and 2.
As shown in Tables 1 and 2, it was revealed that the DOI synthase activity is greatly influenced by the NADH / NAD ratio.

Figure 2010227023
Figure 2010227023

Figure 2010227023
Figure 2010227023

本発明を用いることにより、利用価値の高いDOIを効率的な製造プロセスを用いて生産することができる。   By using the present invention, a highly useful DOI can be produced using an efficient manufacturing process.

Claims (7)

2−デオキシ−シロ−イノソース合成酵素又は2−デオキシ−シロ−イノソース合成酵素を発現可能な微生物を利用してグルコース−6−リン酸から2−デオキシ−シロ−イノソースを製造する方法において、反応系におけるNADH/NAD比を1.4以下に制御することを特徴とする、2−デオキシ−シロ−イノソースの製造方法。 In a method for producing 2-deoxy-siro-inosose from glucose-6-phosphate using a microorganism capable of expressing 2-deoxy-siro-inosose synthase or 2-deoxy-siro-inosose synthase, a reaction system A method for producing 2-deoxy-siro-inosose, characterized in that the NADH / NAD ratio is controlled to 1.4 or less. グルコースを構成成分とする多糖類あるいはグルコースを含有する原料を用いることを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein a polysaccharide containing glucose as a constituent component or a raw material containing glucose is used. 2−デオキシ−シロ−イノソース合成酵素が、安定温度範囲が少なくとも46℃まで安定である耐熱性酵素である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the 2-deoxy-siro-inosose synthase is a thermostable enzyme that is stable up to a stable temperature range of at least 46 ° C. 2−デオキシ−シロ−イノソース合成酵素が、pH6.0〜 8.0で安定な酵素である、請求項1から3の何れか1項記載の方法。 The method according to any one of claims 1 to 3, wherein the 2-deoxy-siro-inosose synthase is an enzyme that is stable at pH 6.0 to 8.0. 2−デオキシ−シロ−イノソース合成酵素が下記の特性を有する酵素である、請求項1または2に記載の方法。
(1)作用:本酵素は、グルコース−6−リン酸を2−デオキシ−シロ−イノソースへと変換する機能を有する。
(2)安定温度範囲:少なくとも46℃まで安定である。
(3)補酵素としてNAD+を利用。
(4)至適pH範囲:7.0〜 7.7
(5)安定pH範囲:少なくとも6.0〜 8.0の範囲で安定である。
(6)至適温度範囲:55 〜 70 ℃
(7)分子量:39000〜42000
(8)補因子:Co2+イオンの添加により活性向上。
(9)比活性:1.0μmol/min/mg以上(反応温度65℃)。
The method according to claim 1 or 2, wherein the 2-deoxy-siro-inosose synthase is an enzyme having the following characteristics.
(1) Action: This enzyme has a function of converting glucose-6-phosphate into 2-deoxy-siro-inosose.
(2) Stable temperature range: Stable up to at least 46 ° C.
(3) Use NAD + as a coenzyme.
(4) Optimal pH range: 7.0 to 7.7
(5) Stable pH range: Stable at least in the range of 6.0 to 8.0.
(6) Optimal temperature range: 55 to 70 ° C
(7) Molecular weight: 39000-42000
(8) Cofactor: Activity is improved by adding Co 2+ ions.
(9) Specific activity: 1.0 μmol / min / mg or more (reaction temperature 65 ° C.).
2−デオキシ−シロ−イノソース合成酵素が、配列番号2、4、6、8、10又は12に記載のアミノ酸配列を有する2−デオキシ−シロ−イノソース合成酵素である、請求項1から2の何れか1項記載の方法。 The 2-deoxy-siro-inosose synthase is a 2-deoxy-siro-inosose synthase having the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, or 12. The method according to claim 1. 2−デオキシ−シロ−イノソース合成酵素が、配列番号2、4、6、8、10又は12で示されるアミノ酸配列において1個または複数個のアミノ酸の欠失、付加、及び/又は置換を含み、配列番号2、4、6、8、10又は12で示されるアミノ酸配列に対して80%以上の相同性を有して且つ、高温安定性及び/又は広範囲pH安定性を持つ2−デオキシ−シロ−イノソース合成酵素である、請求項1から5の何れか1項に記載の方法。 2-deoxy-siro-inosose synthase comprises one or more amino acid deletions, additions and / or substitutions in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12; 2-deoxy-shiro having 80% or more homology to the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 and having high temperature stability and / or broad pH stability The method according to any one of claims 1 to 5, wherein the method is an inosose synthase.
JP2009078714A 2009-03-27 2009-03-27 Method for producing 2-deoxy-scyllo-inosose by nadh/nad ratio control Pending JP2010227023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078714A JP2010227023A (en) 2009-03-27 2009-03-27 Method for producing 2-deoxy-scyllo-inosose by nadh/nad ratio control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078714A JP2010227023A (en) 2009-03-27 2009-03-27 Method for producing 2-deoxy-scyllo-inosose by nadh/nad ratio control

Publications (1)

Publication Number Publication Date
JP2010227023A true JP2010227023A (en) 2010-10-14

Family

ID=43043573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078714A Pending JP2010227023A (en) 2009-03-27 2009-03-27 Method for producing 2-deoxy-scyllo-inosose by nadh/nad ratio control

Country Status (1)

Country Link
JP (1) JP2010227023A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236881A (en) * 1999-02-22 2000-09-05 Tokyo Inst Of Technol 2-deoxy-scyllo-inosose synthase, amino acid sequence, and base sequence of the gene
JP2004033074A (en) * 2002-07-02 2004-02-05 Sumitomo Chem Co Ltd Modified reductase, its gene and use thereof
JP2005000072A (en) * 2003-06-11 2005-01-06 Hokko Chem Ind Co Ltd Method for producing (-)-2-deoxy-scyllo-inosose
JP2005160403A (en) * 2003-11-10 2005-06-23 Mitsui Chemicals Inc Method for modifying enzyme having nitrile hydratase activity
JP2006262846A (en) * 2005-03-25 2006-10-05 Niigata Bio Research Park Kk Method for synthesizing and purifying 2-deoxy-scyllo-inosose with yeast and obtained 2-deoxy-scyllo-inosose

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236881A (en) * 1999-02-22 2000-09-05 Tokyo Inst Of Technol 2-deoxy-scyllo-inosose synthase, amino acid sequence, and base sequence of the gene
JP2004033074A (en) * 2002-07-02 2004-02-05 Sumitomo Chem Co Ltd Modified reductase, its gene and use thereof
JP2005000072A (en) * 2003-06-11 2005-01-06 Hokko Chem Ind Co Ltd Method for producing (-)-2-deoxy-scyllo-inosose
JP2005160403A (en) * 2003-11-10 2005-06-23 Mitsui Chemicals Inc Method for modifying enzyme having nitrile hydratase activity
JP2006262846A (en) * 2005-03-25 2006-10-05 Niigata Bio Research Park Kk Method for synthesizing and purifying 2-deoxy-scyllo-inosose with yeast and obtained 2-deoxy-scyllo-inosose

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013057325; TETRAHEDRON LETTERS vol.41, 2000, pp.1935-1938 *
JPN6013057327; THE JOURNAL OF ANTIBIOTICS vol.50 no.5, 1997, pp.424-428 *
JPN6013057329; 高分子学会予稿集 vol.52 no.14, 2003, p.4324 IPc147 *
JPN6013057332; 日本生物工学会大会講演要旨集 平成18年度, 2006, p.97 1F16-3, 1F16-4 *

Similar Documents

Publication Publication Date Title
He et al. Construction of a food grade recombinant Bacillus subtilis based on replicative plasmids with an auxotrophic marker for biotransformation of D-fructose to D-allulose
JP5654078B2 (en) Novel 2-deoxy-shiro-inosose synthase
JPWO2004018672A1 (en) Novel aldolase and method for producing substituted α-keto acids
US20160289690A1 (en) Mortierella alpina recombinant gene expression system and construction method and use thereof
Okamoto et al. Production of itaconic acid in Escherichia coli expressing recombinant α-amylase using starch as substrate
JP2020513790A (en) A genetically engineered biosynthetic pathway for the production of tyramine by fermentation
Ma et al. Development of intergeneric conjugal gene transfer system in Streptomyces diastatochromogenes 1628 and its application for improvement of toyocamycin production
Benninghaus et al. Metabolic engineering of Pseudomonas putida for fermentative production of l-theanine
Li et al. Metabolic engineering of the marine bacteria Neptunomonas concharum for the production of acetoin and meso-2, 3-butanediol from acetate
Liu et al. Metabolic engineering of Escherichia coli for biosynthesis of D-galactonate
JP5457058B2 (en) Method for producing 2-deoxy-siro-inosose by controlling phosphoric acid concentration
JP2010227023A (en) Method for producing 2-deoxy-scyllo-inosose by nadh/nad ratio control
An et al. Reconstitution of TCA cycle involving l-isoleucine dioxygenase for hydroxylation of l-isoleucine in Escherichia coli using CRISPR-Cas9
JP2020501525A (en) Glutathione reductase
Xue et al. Directed evolution of the transglutaminase from Streptomyces mobaraensis and its enhanced expression in Escherichia coli
Zhang et al. Enhanced production of poly-3-hydroxybutyrate by recombinant Escherichia coli containing NAD kinase and phbCAB operon
JP5661250B2 (en) Novel glucose-6-phosphate determination method and determination reagent
CN115125179B (en) Genetic engineering bacteria for producing rapamycin and application thereof
JP5799375B2 (en) Novel enzyme, method for producing the enzyme, and use thereof
WO2023139255A1 (en) Genetically modified bacteria resistant to mass cell lysis
KR20150125631A (en) Thermococcus mutant having improved hydrogen production from formate and methods of hydrogen production by using thereof
Wang et al. Stability study on the nitrile hydratase of Nocardia sp. 108: From resting cells to crude enzyme preparation
Henke et al. Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum. Microorganisms 2021, 9, 204
JP2022513674A (en) Designed biosynthetic pathway for producing 2-oxoadipic acid by fermentation
Edelshtein et al. Characterization of genes involved in poly-β-hydroxybutyrate metabolism in Azospirillum brasilense

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902